backward.py 90.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
T
tangwei12 已提交
16
from .proto import framework_pb2
17

18
from paddle.fluid import framework as framework
19
from paddle.fluid import program_guard
F
update  
fengjiayi 已提交
20
from . import core
F
update  
fengjiayi 已提交
21
import collections
22
import copy
23
import six
24
import logging
M
minqiyang 已提交
25
from .. import compat as cpt
26
from . import unique_name
27
from . import log_helper
L
liym27 已提交
28
import paddle.fluid
29
from .data_feeder import check_type
30
import warnings
31 32 33 34
try:
    from collections.abc import Sequence
except:
    from collections import Sequence
M
mapingshuo 已提交
35 36 37 38 39
__all__ = [
    'append_backward',
    'gradients',
]

40 41 42
_logger = log_helper.get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')

M
mapingshuo 已提交
43 44 45 46 47 48 49 50 51 52 53

class ProgramStats(object):
    def __init__(self, block, ops):
        self.block = block
        self.ops = ops
        self.op_deps = {}  # op-> in_ops, out_ops
        self.var_op_deps = {}  # var as input op, var as output op

    def get_input_nodes(self):
        input_names = []
        for name in self.var_op_deps:
54
            if len(self.var_op_deps[name]["var_as_output_ops"]) == 0 and \
T
tangwei12 已提交
55
                    len(self.var_op_deps[name]["var_as_input_ops"]) > 0:
M
mapingshuo 已提交
56 57 58 59 60 61 62 63 64 65 66
                if self.block.var(name).persistable:
                    continue
                input_names.append(name)
        for op in self.ops:
            if op.desc.type() == "read":
                input_names.extend(op.desc.output_arg_names())
        return input_names

    def get_reserved_vars(self):
        var_name = []
        for op in self.ops:
M
mapingshuo 已提交
67
            if op.desc.type() == "seed":
M
mapingshuo 已提交
68 69 70 71 72 73 74 75 76 77 78
                var_name.extend(op.desc.output_arg_names())
        return var_name

    def get_out_of_subgraph_vars(self, begin_op_idx, end_op_idx):
        var_name = []
        for i in range(begin_op_idx, end_op_idx, 1):
            for name in self.ops[i].desc.output_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_input_ops"]:
                        if idx >= end_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
79 80 81 82 83
            for name in self.ops[i].desc.input_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_output_ops"]:
                        if idx < begin_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
        return var_name

    def is_subgraph(self, var_group1, var_group2):
        # should traverse from var_group1 to var_group2
        # max op idx in var_group2
        # min op idx in var_group1
        min_op_idx = len(self.ops)
        max_op_idx = -1
        for name in var_group1:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group2:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group1:
            op_idx = self.var_op_deps[name]["var_as_input_ops"]
            for idx in op_idx:
                min_op_idx = min(min_op_idx, idx)
        for name in var_group2:
            op_idx = self.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if min_op_idx >= max_op_idx:
            return False, min_op_idx, max_op_idx
J
JZ-LIANG 已提交
108

M
mapingshuo 已提交
109 110
        return True, min_op_idx, max_op_idx

J
JZ-LIANG 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123
    def _update_segment_start(self, min_idx, pre_segment_end_idx):
        """
        persist vars of amp-related cast should be included in recompute segment
        """

        def is_amp_cast(op):
            return op.desc.type() == 'cast' and self.block.var(
                op.desc.input_arg_names()[0]).persistable

        idx_ = min_idx - 1
        updated_min_idx = min_idx
        while idx_ > pre_segment_end_idx:
            if is_amp_cast(self.ops[idx_]):
124
                _logger.info("found amp-cast op: {}, : {}".format(self.ops[
J
JZ-LIANG 已提交
125 126 127 128 129 130 131 132 133
                    idx_].desc.type(), self.ops[idx_].desc.input_arg_names()[
                        0]))
                updated_min_idx = idx_
                idx_ -= 1
            else:
                break

        return updated_min_idx

M
mapingshuo 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    def build_stats(self):
        for i, op in enumerate(self.ops):
            self.op_deps[i] = {"in_ops": [], "out_ops": []}
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.op_deps[i]["in_ops"].extend(self.var_op_deps[name][
                        "var_as_output_ops"])
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_input_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = [i]
                    self.var_op_deps[name]["var_as_output_ops"] = []

            for j, name in enumerate(op.desc.output_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_output_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = []
                    self.var_op_deps[name]["var_as_output_ops"] = [i]

            for op_idx in self.op_deps[i]["in_ops"]:
                self.op_deps[op_idx]["out_ops"].extend([i])

160 161 162 163
    def sort_checkpoints(self, checkpoints_name):
        sorted_checkpoints = []
        for name in checkpoints_name:
            if name not in self.var_op_deps:
164
                _logger.info(
165 166 167 168 169 170 171 172 173 174 175
                    "Recompute Optimizer: deleted %s from checkpoints, because it is not used in paddle program."
                    % name)
            elif self.var_op_deps[name]["var_as_output_ops"] == []:
                # input nodes
                sorted_checkpoints.append((name, -1))
            else:
                sorted_checkpoints.append(
                    (name, max(self.var_op_deps[name]["var_as_output_ops"])))
        sorted_checkpoints = sorted(sorted_checkpoints, key=lambda x: x[1])
        return [x[0] for x in sorted_checkpoints]

M
mapingshuo 已提交
176 177 178 179 180 181
    def modify_forward_desc_for_recompute(self):
        op_types = [op.desc.type() for op in self.ops]
        if "dropout" not in op_types:
            return

        op_idx = 0
182
        while op_idx < len(self.ops):
M
mapingshuo 已提交
183 184 185 186
            op = self.ops[op_idx]
            if op.desc.type() != "dropout":
                op_idx += 1
                continue
187 188 189 190
            # already insert seed op before dropout
            if op.input('Seed') is not None and len(op.input('Seed')) == 1:
                op_idx += 1
                continue
M
mapingshuo 已提交
191 192 193 194 195 196 197 198 199 200 201
            # add a seed op so that the two dropout op can generate same output
            op_unique_name = unique_name.generate("seed")
            var_unique_name = unique_name.generate_with_ignorable_key(".".join(
                [op_unique_name, 'tmp']))
            added_var = self.block.create_var(
                name=var_unique_name,
                dtype='int32',
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=False)
            seed = 0 if op.attr("fix_seed") is False else int(op.attr("seed"))
202 203 204 205 206 207 208

            op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
            )
            op_device = ""
            if op.desc.has_attr(op_device_attr_name):
                op_device = op.desc.attr(op_device_attr_name)

209
            # Setting the force_cpu of seed to true will make the output of seed in cpu memory,
210
            # reduce the synchronous copy from GPU to CPU in dropout, and reduce the communication hang
M
mapingshuo 已提交
211 212 213 214 215
            added_op = self.block._insert_op(
                index=op.idx,
                type='seed',
                inputs={},
                outputs={'Out': [added_var]},
216 217 218 219 220
                attrs={
                    'seed': seed,
                    'op_device': op_device,
                    'force_cpu': True
                })
M
mapingshuo 已提交
221 222 223 224 225 226 227 228
            self.ops.insert(op_idx, added_op)
            # modify dropout op desc so that it accept a seed var as input
            op.desc.set_input("Seed", [var_unique_name])
            op.desc.remove_attr("fix_seed")
            op.desc.remove_attr("seed")
            self.block._sync_with_cpp()
            op_idx += 2

M
mapingshuo 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241

def _pretty_op_desc_(op_desc, prefix):
    out_s = "%s\tname:[%s]\n%s    \tinputs:[%s]\n%s    \toutputs:[%s]" % \
            (prefix + "_op", str(op_desc.type()), prefix + "_input", " ".join(op_desc.input_arg_names()),
             prefix + "_output", " ".join(op_desc.output_arg_names()))
    return out_s


def _add_needed_descs_to_block(descs, block, main_block, in_memory_vars):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
T
tangwei12 已提交
242
        core.op_proto_and_checker_maker.kOpRoleAttrName()
M
mapingshuo 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        is_needed = False
        for name in desc.output_arg_names():
            if main_block.has_var(name) and main_block.var(name).persistable:
                continue
            if name not in in_memory_vars:
                is_needed = True
        if is_needed:
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(desc)
            new_op_desc._set_attr(op_role_attr_name, backward)
259 260
            if desc.has_attr('op_device'):
                new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
            result_descs.append(new_op_desc)
    return result_descs


def _add_descs_to_block(descs, block):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
        core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        new_op_desc = block.desc.append_op()
        new_op_desc.copy_from(desc)
        new_op_desc._set_attr(op_role_attr_name, backward)
280 281
        if desc.has_attr('op_device'):
            new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294
        result_descs.append(new_op_desc)
    return result_descs


def _find_loss_op_(loss):
    for op in reversed(loss.block.ops):
        assert isinstance(op, framework.Operator)
        if len(op.output_arg_names) == 1 and op.output_arg_names[
                0] == loss.name:
            loss.op = op
            break
    if loss.op is None:
        raise ValueError("loss.op is None. Should not happend")
295 296


297 298
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
299
    Traverse all ops in op_descs[begin_idx : end_idx],
300 301
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
302 303 304
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
305
        end_idx = len(op_descs)
306 307 308 309 310 311 312 313 314 315 316 317 318
    if isinstance(op_descs, (list, tuple)):
        for i in range(begin_idx, end_idx):
            op_desc = op_descs[i]
            if isinstance(op_desc, tuple):
                op_desc = op_desc[0]
            op_desc._rename_input(old_name, new_name)
            op_desc._rename_output(old_name, new_name)
    if isinstance(op_descs, collections.OrderedDict):
        for key, value in op_descs.items():
            if isinstance(value, (list, tuple)):
                for op_desc in value:
                    op_desc._rename_input(old_name, new_name)
                    op_desc._rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
319 320


F
fengjiayi 已提交
321
def _create_op_desc_(op_type, inputs, outputs, attrs):
322 323 324
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
325 326
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
M
minqiyang 已提交
327
    for para, args in six.iteritems(inputs):
328 329 330 331 332
        op_desc.set_input(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
M
minqiyang 已提交
333
    for para, args in six.iteritems(outputs):
334 335 336 337 338
        op_desc.set_output(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
Y
yuyang18 已提交
339 340

    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
341
    op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
Y
yuyang18 已提交
342 343 344 345

    if op_role_attr_name not in attrs:
        attrs[
            op_role_attr_name] = core.op_proto_and_checker_maker.OpRole.Backward
346 347
    if op_device_attr_name not in attrs:
        attrs[op_device_attr_name] = ""
M
minqiyang 已提交
348
    for name, val in six.iteritems(attrs):
F
fengjiayi 已提交
349 350 351
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
W
Wu Yi 已提交
352
            op_desc._set_attr(name, val)
F
fengjiayi 已提交
353 354 355
    return op_desc


M
mapingshuo 已提交
356 357 358 359 360 361 362 363 364 365
def _create_loss_op_desc_(loss):
    op_desc = _create_op_desc_(
        "fill_constant", {}, {"Out": [_append_grad_suffix_(loss.name)]}, {
            "shape": [1],
            "value": 1.0,
            "dtype": loss.dtype,
            "force_cpu": False,
            core.op_proto_and_checker_maker.kOpRoleAttrName():
            int(core.op_proto_and_checker_maker.OpRole.Backward) |
            int(core.op_proto_and_checker_maker.OpRole.Loss),
366 367
            core.op_proto_and_checker_maker.kOpDeviceAttrName():
            loss.op.attr(core.op_proto_and_checker_maker.kOpDeviceAttrName())
M
mapingshuo 已提交
368 369 370 371
        })
    return op_desc


372
def _infer_var_data_type_shape_(grad_var_name, block):
373
    """
374
    Infer the data type and shape of given grad variable
375
    """
M
minqiyang 已提交
376 377 378 379
    grad_var = block.desc.find_var(cpt.to_bytes(grad_var_name))
    fwd_name = _strip_grad_suffix_(grad_var_name)
    if block.desc.has_var_recursive(cpt.to_bytes(fwd_name)):
        fwd_var = block.desc.find_var_recursive(cpt.to_bytes(fwd_name))
F
fengjiayi 已提交
380
        grad_var.set_dtype(fwd_var.dtype())
381
        grad_var.set_shape(fwd_var.shape())
F
fengjiayi 已提交
382
    else:
383 384 385 386
        # TODO(jiabin): Maybe we should not to this to cause some unexpected error on dtype
        warnings.warn(
            "Set grad var: {} dtype to default FP32, since we can't find its related forward var".
            format(grad_var_name))
387
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
388 389


F
fengjiayi 已提交
390
def _all_in_set_(cands, s):
391 392 393
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
394 395
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
396 397 398 399 400 401
    for c in cands:
        if not c in s:
            return False
    return True


402 403 404 405 406 407
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
M
minqiyang 已提交
408 409
    literal_set = cpt.to_text(s)
    literal_cands = cpt.to_text(cands)
M
minqiyang 已提交
410 411
    for c in literal_cands:
        if c in literal_set:
412 413 414 415
            return True
    return False


F
fengjiayi 已提交
416
def _strip_grad_suffix_(name):
417
    """
M
mapingshuo 已提交
418
    Strip the grad suffix from the given variable name
419 420 421
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
M
minqiyang 已提交
422
    name = cpt.to_text(name)
M
minqiyang 已提交
423
    pos = name.find(core.grad_var_suffix())
424 425 426
    new_name = name[:pos] if pos != -1 else name
    new_pos = name.rfind('grad/')
    return new_name[new_pos + 5:] if new_pos != -1 else new_name
F
fengjiayi 已提交
427 428 429


def _append_grad_suffix_(name):
430 431 432 433
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
M
minqiyang 已提交
434
    return cpt.to_text(name) + core.grad_var_suffix()
F
fengjiayi 已提交
435 436


T
tangwei12 已提交
437 438 439 440 441
def _accumulate_gradients_by_sum_op_(var_name,
                                     renamed_vars,
                                     pending_sum_ops,
                                     op_idx,
                                     op_device=""):
442 443 444 445 446 447
    """
    Use sum op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    pending_sum_ops[op_idx].append(
T
tangwei12 已提交
448 449 450 451
        _create_op_desc_("sum", {"X": renamed_vars[var_name]}, {
            "Out": [var_name]
        }, {"use_mkldnn": False,
            "op_device": op_device}))
452 453 454
    renamed_vars[var_name] = [var_name]


T
tangwei12 已提交
455 456 457 458 459
def _accumulate_gradients_by_add_ops_(var_name,
                                      renamed_vars,
                                      pending_sum_ops,
                                      op_idx,
                                      op_device=""):
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
    """
    Use several inplace add op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    out_name = renamed_vars[var_name][0]
    for i in range(1, len(renamed_vars[var_name])):
        x_name = out_name
        y_name = renamed_vars[var_name][i]
        if i != len(renamed_vars[var_name]) - 1:
            out_name = var_name + '@ADD@' + str(i)
        else:
            out_name = var_name
        pending_sum_ops[op_idx].append(
            _create_op_desc_("grad_add", {"X": [x_name],
                                          "Y": [y_name]}, {"Out": [out_name]},
T
tangwei12 已提交
476 477
                             {"use_mkldnn": False,
                              "op_device": op_device}))
478 479 480
    renamed_vars[var_name] = [var_name]


481
def _addup_repetitive_outputs_(op_descs, block_idx, grad_var_to_var=None):
482 483
    """
    In backward part, an variable may be the output of more than one ops.
F
fengjiayi 已提交
484 485
    And one op may yield its multiple outputs to the same variable.
    In these cases, the variable should be the accumulation of all the outputs.
486
    `sum_op`s are added to implement the accumulate.
487 488 489 490

    Args:
        grad_var_to_var(dict): used to build the mapping between grad var name and forward var name.
        Only for auto parallel.
491
    """
492
    _MAX_ADD_NUM_ = framework._global_flags()['FLAGS_max_inplace_grad_add']
493 494
    #pending_sum_ops = []
    pending_sum_ops = collections.OrderedDict()
F
update  
fengjiayi 已提交
495
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
496
    renamed_vars = collections.defaultdict(list)
497
    renamed_var_start_idx = collections.defaultdict(list)
498
    var_device = collections.defaultdict(str)
F
fengjiayi 已提交
499
    for idx, op_desc in enumerate(op_descs):
T
tangwei12 已提交
500 501 502 503 504
        op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
        )
        op_device = ""
        if op_desc.has_attr(op_device_attr_name):
            op_device = op_desc.attr(op_device_attr_name)
F
update  
fengjiayi 已提交
505
        for var_name in op_desc.input_arg_names():
M
mapingshuo 已提交
506 507
            if "@GRAD" not in var_name:
                continue
F
fengjiayi 已提交
508
            if len(renamed_vars[var_name]) > 1:
509
                if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
W
WangXi 已提交
510 511 512
                    _accumulate_gradients_by_sum_op_(var_name, renamed_vars,
                                                     pending_sum_ops, idx,
                                                     var_device[var_name])
513
                else:
W
WangXi 已提交
514 515 516
                    _accumulate_gradients_by_add_ops_(var_name, renamed_vars,
                                                      pending_sum_ops, idx,
                                                      var_device[var_name])
517

F
update  
fengjiayi 已提交
518
        for param_idx, param_name in enumerate(op_desc.output_names()):
F
fengjiayi 已提交
519 520
            arg_names = op_desc.output(param_name)
            for arg_idx, var_name in enumerate(arg_names):
M
mapingshuo 已提交
521 522
                if "@GRAD" not in var_name:
                    continue
T
tangwei12 已提交
523
                # if "@RENAME@" in var_name:
M
mapingshuo 已提交
524
                #    continue
F
fengjiayi 已提交
525 526 527 528 529 530 531
                if var_name == core.empty_var_name(
                ) or var_name in op_desc.input_arg_names():
                    # empty variable or inplace op
                    continue
                if len(renamed_vars[var_name]) == 0:
                    # it's the first time we get the variable
                    renamed_vars[var_name] = [var_name]
532
                    renamed_var_start_idx[var_name] = idx
F
fengjiayi 已提交
533 534
                else:
                    if len(renamed_vars[var_name]) == 1:
535
                        new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
F
fengjiayi 已提交
536 537
                            str(var_rename_count[var_name])
                        var_rename_count[var_name] += 1
538 539 540 541 542 543 544
                        # Build the mapping between the new_name and var_name (Only for auto parallel)
                        if grad_var_to_var is not None:
                            if var_name in grad_var_to_var:
                                grad_var_to_var[new_name] = grad_var_to_var[
                                    var_name]
                            else:
                                grad_var_to_var[new_name] = var_name
F
fengjiayi 已提交
545 546
                        # rename original var_name
                        renamed_vars[var_name][0] = new_name
547 548 549 550 551 552
                        # before change: _rename_arg_(op_descs, var_name,
                        #                             new_name, 0, idx)
                        # rename arg from idx of the first appearance
                        # in backward, not always from 0
                        _rename_arg_(op_descs, var_name, new_name,
                                     renamed_var_start_idx[var_name], idx)
F
fengjiayi 已提交
553 554
                        _rename_arg_(pending_sum_ops, var_name, new_name)

F
update  
fengjiayi 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567
                        for p in op_desc.output_names()[:param_idx]:
                            p_arg_names = op_desc.output(p)
                            if var_name in p_arg_names:
                                op_desc.set_output(p, [
                                    new_name if x == var_name else x
                                    for x in p_arg_names
                                ])

                        arg_names = [
                            new_name if x == var_name else x
                            for x in arg_names[:arg_idx]
                        ] + arg_names[arg_idx:]

568
                    new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
T
tangwei12 已提交
569
                        str(var_rename_count[var_name])
F
fengjiayi 已提交
570
                    var_rename_count[var_name] += 1
571 572 573 574 575 576 577
                    # Build the mapping between the new_name and var_name (Only for auto parallel)
                    if grad_var_to_var is not None:
                        if var_name in grad_var_to_var:
                            grad_var_to_var[new_name] = grad_var_to_var[
                                var_name]
                        else:
                            grad_var_to_var[new_name] = var_name
F
fengjiayi 已提交
578 579 580
                    arg_names[arg_idx] = new_name
                    op_desc.set_output(param_name, arg_names)
                    renamed_vars[var_name].append(new_name)
W
WangXi 已提交
581
                    # record the latest device
582
                    var_device[var_name] = op_device
F
update  
fengjiayi 已提交
583

M
minqiyang 已提交
584
    for var_name, inputs in six.iteritems(renamed_vars):
585 586
        if len(renamed_vars[var_name]) > 1:
            if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
587 588 589
                _accumulate_gradients_by_sum_op_(
                    var_name, renamed_vars, pending_sum_ops,
                    len(op_descs), var_device[var_name])
590
            else:
591 592 593
                _accumulate_gradients_by_add_ops_(
                    var_name, renamed_vars, pending_sum_ops,
                    len(op_descs), var_device[var_name])
594

F
fengjiayi 已提交
595
    # sum_op descs are sorted according to their insert position
596 597 598 599 600 601 602 603 604 605
    for key, value in collections.OrderedDict(
            reversed(list(pending_sum_ops.items()))).items():

        # NOTE(zhiqiu): Since reversed, the idx of op_descs to be inserted will remains correct.
        # For example, [0, 1, 2], and we want to insert 'a' at idx 1, 'b' at idx 2, and the expected result is [0, 1, 'a', 2, 'b'].
        # If reversed, we first insert 'b' at idx 2, it becomes [0, 1, 2, 'b'], and then insert 'a' at idx 1, it becomes [0, 1, 'a', 2, 'b'].
        # If not reverse, we first insert 'a' at idx 1, it becomes [0, 1, 'a', 2], and then insert 'b' at idx 2, it becomes [0, 1, 'a', 'b', 2].
        idx = key
        for i, op in enumerate(value):
            op_descs.insert(idx + i, op)
F
fengjiayi 已提交
606 607 608 609 610

    return op_descs


def _remove_no_grad_branch_(op_descs, no_grad_set):
611 612 613 614
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
615
        2. all grad inputs of the grad op are in 'no_grad_set'
616
    """
F
fengjiayi 已提交
617 618

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
619 620
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
621
            return True
622 623 624 625
        if _all_in_set_([
                name for name in op_desc.input_arg_names()
                if name.find(core.grad_var_suffix()) != -1
        ], no_grad_set):
F
fengjiayi 已提交
626
            no_grad_set.update(out_arg_names)
F
fengjiayi 已提交
627 628 629
            return True
        return False

F
fengjiayi 已提交
630
    # Remove ops whose outputs are all in no_grad_dict
631 632 633 634
    op_descs = [
        op_desc for op_desc in op_descs
        if not _op_can_be_removed_(op_desc, no_grad_set)
    ]
F
fengjiayi 已提交
635 636
    # Insert fill_zeros_like_op
    to_insert = []
F
fengjiayi 已提交
637
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
638
        for arg in op_desc.input_arg_names():
M
mapingshuo 已提交
639
            # arg is a gradient var name and arg should not have gradient
F
fengjiayi 已提交
640
            if core.grad_var_suffix() in arg and arg in no_grad_set:
641
                x_in = _strip_grad_suffix_(arg)
M
mapingshuo 已提交
642 643
                # the reason should be: arg can be input of another grad op
                # and the op is a not-to-remove op
644 645
                to_insert.append((_create_op_desc_(
                    "fill_zeros_like", {"X": [x_in]}, {"Out": [arg]}, {}), idx))
F
fengjiayi 已提交
646

647
    list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
F
fengjiayi 已提交
648 649 650 651

    return op_descs


C
chengduo 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
def _find_not_need_ops(grad_op_descs, forward_ops, input_grad_names_set):
    """
    Pruning Program with Structural Analysis Method of Computational Graph.
    The nodes of the computational graph composed of backward OPS should be
    interconnected. If there are unconnected sub-graphs in the computational graph,
    these sub-graphs should be cut off.

    Args:
        grad_op_descs(list[core.OpDesc]): The candidate backward OpDescs.
        forward_ops(list[Operator]): The forward ops.
        input_grad_names_set(set): this set is used to store the gradients' name
            which is generated by backward ops, and input_grad_names_set can help
            to prune the unnecessary backward ops.

    Return:
667
        (set[core.OpDesc]): A set of OpDescs which should be pruned.
C
chengduo 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
    """

    class Var(object):
        def __init__(self, var_name):
            self.var_name = var_name
            self.gen_op = None
            self.pendding_ops = []

        def set_gen_op(self, gen_op):
            assert isinstance(gen_op, Op)
            assert self.gen_op is None
            self.gen_op = gen_op

        def add_pending_op(self, op):
            assert isinstance(op, Op)
            self.pendding_ops.append(op)

    class Op(object):
        def __init__(self, op_desc):
            self.op_desc = op_desc
            self.inputs = []
            self.outputs = []

        def insert_input(self, var):
            assert isinstance(var, Var)
            self.inputs.append(var)

        def insert_output(self, var):
            assert isinstance(var, Var)
            self.outputs.append(var)

    var_versions = dict()

    def _create_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        else:
            var_versions[name].append(Var(name))
        return var_versions[name][-1]

    def _create_or_get_last_version_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        return var_versions[name][-1]

    def _create_op_node(op_desc):
        op_node = Op(op_desc)
        for input in op_desc.input_arg_names():
            var = _create_or_get_last_version_node(name=input)
            var.add_pending_op(op_node)
            op_node.insert_input(var)
        for output in op_desc.output_arg_names():
            var = _create_node(name=output)
            var.set_gen_op(op_node)
            op_node.insert_output(var)
        return op_node

    # Record the forward vars
    forward_vars_set = set() if input_grad_names_set is None else set(
        input_grad_names_set)
    for op in forward_ops:
        forward_vars_set.update(op.desc.input_arg_names())
        forward_vars_set.update(op.desc.output_arg_names())

    # Record the vars which are created during backward and is not generated by op.
    backward_vars_set = set()
    # special_op_nodes is the candidate sub-graph head node.
    special_op_nodes = set()
    for op_desc in grad_op_descs:
        input_set = set(op_desc.input_arg_names())
        # The new_vars are created during backward and is not generated by op.
        new_vars = input_set - forward_vars_set - backward_vars_set
        backward_vars_set.update(op_desc.output_arg_names())

        op_node = _create_op_node(op_desc)
        if len(new_vars) == len(input_set):
            special_op_nodes.add(op_node)

    not_need_op_descs = []
    # Start traversing all candidate sub-graph headers to check whether
    # they are connected to backward computational graphs, and if they are
    # not, list them in not_need_op_descs
    for special_op_node in special_op_nodes:
        op_list = [special_op_node]
        ready_vars = set(special_op_node.inputs)
        remove_ops = True
        candidate_ops = [special_op_node]
        while len(candidate_ops) > 0:
            op_node = candidate_ops.pop(0)
            if _all_in_set_(op_node.inputs, ready_vars):
                for out_var in op_node.outputs:
                    candidate_ops.extend(out_var.pendding_ops)
                    op_list.extend(out_var.pendding_ops)
                ready_vars.update(op_node.outputs)
            else:
                remove_ops = False
                break
        if remove_ops:
            not_need_op_descs.extend([node.op_desc for node in op_list])
767 768 769
    not_need_op_descs_set = set(not_need_op_descs)
    grad_op_descs_set = set(grad_op_descs)
    # If a backward computational graph is simply one sub-graph header, the
770
    # not_need_op_descs will be whole graph, this IF clause avoids it.
771 772 773
    if grad_op_descs_set == not_need_op_descs_set:
        return set()
    return not_need_op_descs_set
C
chengduo 已提交
774 775


Y
Yang Yang 已提交
776 777
def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
M
minqiyang 已提交
778
    proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang 已提交
779 780 781
    return proto.__str__()


M
mapingshuo 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
def _append_backward_ops_with_checkpoints_(
        block, ops, target_block, no_grad_dict, grad_to_var, checkpoints):
    """
    Create grad ops with forward ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
        ops(Op): the forward operators whose forward recomputation backward ops need to be added
        target_block(Block): the block which is going to hold new generated grad ops
        no_grad_dict(dict):
            key(int) block index
            val(str): corresponding forward variable name
        checkpoints: variables that a user defined as checkpoint for forward recomputation

    Algorithms:
M
mapingshuo 已提交
797
        0) deal with forward recomputing program descs
M
mapingshuo 已提交
798 799 800 801 802
        1) find ops between checkpoints, i.e. recompute_segments
        2) go through all forward ops and induct all variables that will be hold in memory
            a. variables that are used across segments will be held in memory
            b. output of dropout op will be held in memory
            c. input variables will be held in memory
M
mapingshuo 已提交
803 804 805
        3) go through each recompute_segments, add backward ops with forward recomputation
            a. add ops in current recompute_segment as forward recomputation ops
            b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
806 807
            c. add backward ops of current recomputation ops
            d. add sum op for repetitive_outputs
M
mapingshuo 已提交
808 809
        4) remove no grad branch as it is in _remove_no_grad_branch_
        5) Note1: all appended ops' OpRole are Backward
M
mapingshuo 已提交
810 811
        6) Note2: all variables with new name should be returned so that _append_backward_vars_ can be called
        7) Note3: current forward recomputation backpropagation does not handle programs with subblock
M
mapingshuo 已提交
812
    """
M
mapingshuo 已提交
813 814

    checkpoints_name = [x.name for x in checkpoints]
815
    checkpoints_name = list(set(checkpoints_name))
M
mapingshuo 已提交
816 817
    local_block = block.program._create_block()
    buffer_block = block.program._create_block()
818
    # 0) deal with forward recomputing program descs
M
mapingshuo 已提交
819
    program_stat = ProgramStats(block, ops)
M
mapingshuo 已提交
820
    program_stat.modify_forward_desc_for_recompute()
M
mapingshuo 已提交
821
    program_stat.build_stats()
M
mapingshuo 已提交
822 823

    # 1) find ops between checkpoints, i.e. recompute_segments
824
    checkpoints_name = program_stat.sort_checkpoints(checkpoints_name)
M
mapingshuo 已提交
825 826
    segments = []

827
    if len(checkpoints_name) == 1:
M
mapingshuo 已提交
828 829 830 831 832 833 834
        # only one checkpoint
        max_op_idx = -1
        var_group = [checkpoints_name[0]]
        for name in var_group:
            if name not in program_stat.var_op_deps:
                break
            op_idx = program_stat.var_op_deps[name]["var_as_output_ops"]
J
JZ-LIANG 已提交
835
            # only count the last generate op
M
mapingshuo 已提交
836 837 838 839 840 841
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if max_op_idx > 0:
            segments.append([0, max_op_idx + 1])
    else:
        start_idx = 0
J
JZ-LIANG 已提交
842
        pre_segment_end_idx = -1
M
mapingshuo 已提交
843 844 845
        while True:
            if start_idx >= len(checkpoints_name) - 1:
                break
J
JZ-LIANG 已提交
846 847
            # min_idx: checkpoint_1' s input op
            # max_idx: checkpoint_2' s output op
M
mapingshuo 已提交
848 849 850 851
            flag, min_idx, max_idx = program_stat.is_subgraph(
                [checkpoints_name[start_idx]],
                [checkpoints_name[start_idx + 1]])
            if flag:
J
JZ-LIANG 已提交
852 853 854
                # max_idx + 1 since the exact and used segment end idx is max_idx
                min_idx = program_stat._update_segment_start(
                    min_idx, pre_segment_end_idx)
M
mapingshuo 已提交
855
                segments.append([min_idx, max_idx + 1])
856 857 858
            else:
                _logger.info("Could not recompute op range [{}] - [{}] ".format(
                    min_idx, max_idx + 1))
J
JZ-LIANG 已提交
859

M
mapingshuo 已提交
860 861 862 863 864 865
            start_idx += 1

    if segments != [] and segments[0][0] != 0:
        recompute_segments = [[0, segments[0][0]]] + segments
    else:
        recompute_segments = segments
M
mapingshuo 已提交
866

J
JZ-LIANG 已提交
867
    for i, (idx1, idx2) in enumerate(recompute_segments):
868 869
        _logger.info("recompute segment[{}]".format(i))
        _logger.info("segment start op: [{}]: [{}]".format(ops[idx1].desc.type(
J
JZ-LIANG 已提交
870
        ), ops[idx1].desc.input_arg_names()))
871
        _logger.info("segment end op: [{}]: [{}]".format(ops[
J
JZ-LIANG 已提交
872
            idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()))
873 874
        _logger.info("recompute segment[{}]".format(i))
        _logger.info("segment start op: [{}]: [{}]".format(ops[idx1].desc.type(
J
JZ-LIANG 已提交
875
        ), ops[idx1].desc.input_arg_names()))
876
        _logger.info("segment end op: [{}]: [{}]".format(ops[
J
JZ-LIANG 已提交
877 878
            idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()))

M
mapingshuo 已提交
879
    # 2) go through all forward ops and induct all variables that will be hold in memory
M
mapingshuo 已提交
880
    vars_should_be_hold = []
881
    # a. variables that are used across segments will be held in memory
M
mapingshuo 已提交
882 883 884
    for segment in recompute_segments:
        vars_should_be_hold.extend(
            program_stat.get_out_of_subgraph_vars(segment[0], segment[1]))
J
JZ-LIANG 已提交
885 886

    cross_vars = set(vars_should_be_hold) - set(checkpoints_name)
887
    _logger.info("found [{}] vars which cross recompute segment: [{}], better checkpoints might be set to reduce those vars".format( \
J
JZ-LIANG 已提交
888 889
    len(cross_vars), cross_vars))

M
mapingshuo 已提交
890
    # b. output of seed op should be kept in memory
M
mapingshuo 已提交
891
    vars_should_be_hold.extend(program_stat.get_reserved_vars())
M
mapingshuo 已提交
892
    # c. input variables are checkpoints
M
mapingshuo 已提交
893 894 895
    vars_should_be_hold.extend(program_stat.get_input_nodes())
    vars_should_be_hold = list(set(vars_should_be_hold))

M
mapingshuo 已提交
896
    # 3) go through each recompute_segments, add backward ops with forward recomputation
M
mapingshuo 已提交
897 898 899 900 901 902
    grad_op_descs = []
    var_name_dict = {}

    vars_in_memory = vars_should_be_hold + checkpoints_name

    max_calculated_op_position = len(ops)
903
    device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
mapingshuo 已提交
904 905 906 907 908 909 910 911 912
    if recompute_segments == []:
        gap_ops = ops[0:max_calculated_op_position]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
913 914 915 916 917
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
M
mapingshuo 已提交
918 919 920 921 922 923 924 925 926 927 928 929 930 931
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

    for i, segment in enumerate(recompute_segments[::-1]):
        gap_ops = ops[segment[1]:max_calculated_op_position]
        max_calculated_op_position = segment[0]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
932 933 934 935 936
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
M
mapingshuo 已提交
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

        ff_ops = ops[segment[0]:segment[1]]
        var_suffix = ".subprog_%d" % i

        for op in ff_ops:
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            input_and_output_names = []
            input_and_output_names.extend(op.desc.input_arg_names())
            input_and_output_names.extend(op.desc.output_arg_names())
            for name in input_and_output_names:
                if block.var(name).persistable or name in checkpoints_name:
                    continue
                if name in vars_should_be_hold:
                    continue
                if name not in var_name_dict:
                    var_name_dict[name] = name + var_suffix
959 960 961 962 963 964 965 966 967 968 969

                    # we should create the rename var in subprog, otherwise its VarType will be BOOL
                    ref_var = block.program.global_block().var(name)
                    block.create_var(
                        name=var_name_dict[name],
                        shape=ref_var.shape,
                        dtype=ref_var.dtype,
                        type=ref_var.type,
                        persistable=ref_var.persistable,
                        stop_gradient=ref_var.stop_gradient)

M
mapingshuo 已提交
970
        # 3.a. add ops in current recompute_segment as forward recomputation ops
M
mapingshuo 已提交
971 972 973 974
        buffer_descs = _add_needed_descs_to_block(ff_ops, buffer_block, block,
                                                  vars_in_memory)
        added_descs = _add_descs_to_block(ff_ops, local_block)

M
mapingshuo 已提交
975
        # 3.b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
976 977 978 979 980 981
        for key in var_name_dict:
            _rename_arg_(buffer_descs, key, var_name_dict[key])

        # added_descs should be in grad_op_descs because it is backward op desc
        grad_op_descs.extend(buffer_descs)

982
        # 3.c. add backward ops for all ops in current segment
M
mapingshuo 已提交
983 984 985
        for op_desc in reversed(added_descs):
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op_desc, cpt.to_text(no_grad_dict[block.idx]), [])
986 987 988 989 990 991 992

            # Set device for grad_op according to forward Op
            if op_desc.has_attr(device_attr_name):
                op_device = op_desc.attr(device_attr_name)
                for g_op_desc in grad_op_desc:
                    g_op_desc._set_attr(device_attr_name, op_device)

M
mapingshuo 已提交
993 994 995 996 997
            for key in var_name_dict:
                _rename_arg_(grad_op_desc, key, var_name_dict[key])
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)

M
mapingshuo 已提交
998
    # 3.d. add sum op for repetitive_outputs
999
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs, block.idx)
M
mapingshuo 已提交
1000
    # 4) remove no grad branch as it is in _remove_no_grad_branch_
M
mapingshuo 已提交
1001 1002 1003 1004 1005 1006
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
    added_descs = _add_descs_to_block(grad_op_descs, target_block)
    return program_stat, checkpoints_name, vars_should_be_hold, recompute_segments


1007 1008 1009 1010 1011
def _get_sub_block_path(sub_block,
                        sub_block_op_desc,
                        no_grad_set,
                        op_path_dict,
                        sub_block_target_names=None):
1012 1013
    """
    Get output vars in subblock which will be assigned to parent block.
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
    It is used to find the grad path in subblock.

    Args:
        sub_block(Block): The sub-block in which to get op path.
        sub_block_op_desc: The op desc of the sub-block op such as 'while', 'conditional_block' and 'recurrent'.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        sub_block_target_names(set): Target var names of sub-block.
    Return:
        The forward op path of sub-block corresponding to backward op.
1026
    """
1027

1028 1029 1030
    assert sub_block_op_desc.has_attr(
        "sub_block") and sub_block.idx == sub_block_op_desc._block_attr_id(
            "sub_block")
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
    assert isinstance(sub_block_target_names, (set, type(None)))

    if sub_block_target_names is None:
        sub_block_target_names = sub_block_op_desc.output_arg_names

    # TODO(huihuangzheng): add support for recurrent op.
    if sub_block_op_desc.type in ["conditional_block", "while"]:
        # Step1: get the output vars in sub-block
        sub_outputs = [
            sub_block._var_recursive(var) for var in sub_block_target_names
        ]
        for var in sub_block_target_names:
1043
            for op_desc in sub_block.ops:
1044
                if var in op_desc.output_arg_names:
1045
                    for name in op_desc.input_arg_names:
1046
                        sub_outputs.append(sub_block._var_recursive(name))
1047

1048 1049
        # Step2: find op path of sub-block
        is_while = sub_block_op_desc.type in ["while"]
1050
        sub_block_op_path = _find_op_path_(sub_block, sub_outputs, [],
1051
                                           no_grad_set, op_path_dict, is_while)
1052 1053 1054 1055
        return sub_block_op_path
    return sub_block.ops


1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
def _is_grad_op_(op):
    op_maker = core.op_proto_and_checker_maker
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    if op_maker.kOpRoleVarAttrName() in op.attr_names and \
            int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
        return True
    return False


def _rename_grad_name_(name, grad_order):
    return 'grad/' * grad_order + name


1069 1070
def _append_backward_ops_(block,
                          ops,
F
fengjiayi 已提交
1071 1072 1073
                          target_block,
                          no_grad_dict,
                          grad_to_var,
1074
                          callbacks=None,
1075
                          input_grad_names_set=None,
1076
                          op_path_dict=None,
1077 1078
                          distop_context=None,
                          rename_var_map=None):
1079 1080 1081 1082 1083
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
1084
        ops(Op): the forward operators whose backward ops need to be added
1085
        target_block(Block): the block which is going to hold new generated grad ops
1086
        no_grad_dict(dict):
1087
            key(int)  block index
T
tianshuo78520a 已提交
1088
            val(set) a set of variable names. These variables have no gradient
1089 1090 1091
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
C
chengduo 已提交
1092 1093 1094 1095
        callbacks(callable object): a callable object used to decorate new generated grad ops
        input_grad_names_set(set): this set is used to store the gradients' name which is
            generated by backward ops, and input_grad_names_set can help to prune the unnecessary
            backward ops.
1096 1097 1098
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
1099 1100
        rename_var_map(dict): used to associate target_grad var name with first grad_op input name.
            Only used in for high order gradient.
1101
    """
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

    # Build the mapping between the forward op and backward op (Only for auto parallel)
    def update_distop_context(distop_context, op_grad_to_var,
                              appending_grad_times):
        distop_context.grad_var_to_var[appending_grad_times].update(
            op_grad_to_var)
        for op_desc in grad_op_desc:
            assert op_desc.id() not in distop_context.grad_op_id_to_op_id
            distop_context.grad_op_id_to_op_id[op_desc.id()] = op.desc.id()

Y
Yang Yang 已提交
1112
    if callbacks is not None:
1113
        assert (isinstance(callbacks, (list, tuple)))
Y
Yang Yang 已提交
1114 1115 1116
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
1117

F
fengjiayi 已提交
1118
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
1119 1120
    grad_op_descs = []
    program = block.program
1121

1122 1123 1124
    if rename_var_map is None:
        rename_var_map = {}
    assert isinstance(rename_var_map, dict)
1125

1126
    # add grad_op_desc by reversed ops
1127
    for op in reversed(ops):
F
fengjiayi 已提交
1128 1129 1130
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
W
Wu Yi 已提交
1131
            sub_block = program.block(op._block_attr_id("sub_block"))
W
Wu Yi 已提交
1132
            grad_sub_block = program._create_block()
W
Wu Yi 已提交
1133
            grad_sub_block._set_forward_block_idx(sub_block.idx)
1134 1135 1136
            # see follwing comments for why set None here.
            pre_input_grad_names_set = copy.copy(input_grad_names_set)
            input_grad_names_set = None
1137
            sub_block_path = op_path_dict[op._block_attr_id("sub_block")]
1138
            _append_backward_ops_(sub_block, sub_block_path, grad_sub_block,
1139
                                  no_grad_dict, grad_to_var, callbacks,
1140
                                  input_grad_names_set, op_path_dict)
1141
            input_grad_names_set = pre_input_grad_names_set
Y
Yu Yang 已提交
1142

W
Wu Yi 已提交
1143
            program._rollback()
F
fengjiayi 已提交
1144 1145
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
1146
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
1147
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
M
minqiyang 已提交
1148
            op.desc, cpt.to_text(no_grad_dict[block.idx]), grad_sub_block_list)
1149

1150
        # Build the mapping between the forward op and backward op (Only for auto parallel)
1151
        if distop_context is not None:
1152 1153 1154 1155 1156 1157 1158 1159 1160
            update_distop_context(distop_context, op_grad_to_var,
                                  program._appending_grad_times)
        else:
            default_ctx = getattr(paddle.distributed.auto_parallel.dist_context,
                                  '_g_default_distributed_context', None)
            if default_ctx is not None:
                distop_context = default_ctx.dist_op_context
                update_distop_context(distop_context, op_grad_to_var,
                                      program._appending_grad_times)
Y
Yang Yu 已提交
1161

1162 1163
        # Set device for grad_op according to forward Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
1164 1165 1166 1167
        if op.desc.has_attr(device_attr_name):
            op_device = op.desc.attr(device_attr_name)
            for op_desc in grad_op_desc:
                op_desc._set_attr(device_attr_name, op_device)
1168

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
        # Rename internal gradient variables in multiple backward
        # so that they have different names with previous backward.
        # For example:
        #  y = x * x, grad = fluid.gradients(fluid.gradients(y, x) + y * y, x)
        # In second-time backward, gradient variable names of partial
        # forward network (y * y) may be have same names with first-time
        # fluid.gradients(y, x).
        # So rename here before _addup_repetitive_outputs_.
        if program._appending_grad_times > 1:
            for op_desc in grad_op_desc:
T
Tongxin Bai 已提交
1179 1180 1181 1182
                forward_op_inputs = op.desc.input_arg_names()
                for name in op_desc.input_arg_names():
                    if name in rename_var_map and name not in forward_op_inputs:
                        op_desc._rename_input(name, rename_var_map[name])
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
                for name in op_desc.output_arg_names():
                    if "@GRAD" not in name:
                        continue
                    if block.desc.find_var(name.encode("ascii")):
                        new_name = _rename_grad_name_(
                            name, program._appending_grad_times)
                        op_desc._rename_output(name, new_name)
                        rename_var_map[name] = new_name

                        if name in op_grad_to_var:
1193 1194 1195 1196 1197
                            # Build the mapping between the grad var name and var name (Only for auto parallel)
                            if distop_context is not None:
                                distop_context.grad_var_to_var[
                                    program._appending_grad_times][
                                        new_name] = op_grad_to_var[name]
1198 1199 1200
                            op_grad_to_var[new_name] = op_grad_to_var[name]
                            op_grad_to_var.pop(name)

1201 1202 1203 1204 1205
        # If input_grad_names_set is not None, extend grad_op_descs only when
        # any input grad in outputs of previous grad ops.
        # But this strategy is not suited for while op for some control flow,
        # for example, for while op, the grads maybe generated in next loop.
        if input_grad_names_set is not None:
1206
            is_grad_name = lambda name: name.find(core.grad_var_suffix()) != -1 or name in input_grad_names_set
1207 1208 1209 1210
            is_append_grad = False
            for op_desc in grad_op_desc:
                input_grad_names = [
                    name for name in op_desc.input_arg_names()
1211
                    if is_grad_name(name)
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
                ]
                # some code of gradient ops, like increment, are not very
                # standard, there is no @GRAD in these ops' inputs.
                if len(input_grad_names) == 0:
                    is_append_grad = True
                    break

                if _some_in_set_(input_grad_names, input_grad_names_set):
                    grad_op_descs.append(op_desc)
                    is_append_grad = True
                    for name in op_desc.output_arg_names():
                        input_grad_names_set.add(name)
            if is_append_grad:
                grad_to_var.update(op_grad_to_var)
        else:
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)
F
fengjiayi 已提交
1229

1230 1231 1232 1233 1234
    # record mapping bewteen grad var name and var name (Only for auto parallel)
    grad_var_to_var = None
    if distop_context is not None:
        grad_var_to_var = distop_context.grad_var_to_var[
            program._appending_grad_times]
M
mapingshuo 已提交
1235
    # sum parameter's gradients' var given multiple var gradient
1236 1237
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs, block.idx,
                                               grad_var_to_var)
F
fengjiayi 已提交
1238

M
mapingshuo 已提交
1239 1240
    # if all outputs of the grad op are in no_grad_set, then just remove and fill zero
    # if all inputs of the grad op are in no_grad_set, just remove this op
F
fengjiayi 已提交
1241 1242
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
F
fengjiayi 已提交
1243

M
mapingshuo 已提交
1244
    # remove some backward ops
C
chengduo 已提交
1245
    not_need_ops = _find_not_need_ops(grad_op_descs, ops, input_grad_names_set)
M
mapingshuo 已提交
1246

C
chengduo 已提交
1247 1248 1249
    grad_op_descs = [
        op_desc for op_desc in grad_op_descs if op_desc not in not_need_ops
    ]
1250

F
fengjiayi 已提交
1251
    # append op_desc in grad_op_descs to target_block
Y
yuyang18 已提交
1252 1253
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
F
update  
fengjiayi 已提交
1254
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
1255 1256
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
1257 1258 1259 1260 1261 1262
        # Rebuild the mapping because new_op_desc has a differnt id (Only for auto parallel)
        if distop_context is not None:
            if op_desc.id() in distop_context.grad_op_id_to_op_id:
                distop_context.grad_op_id_to_op_id[new_op_desc.id(
                )] = distop_context.grad_op_id_to_op_id[op_desc.id()]
                distop_context.grad_op_id_to_op_id.pop(op_desc.id())
W
Wu Yi 已提交
1263
        new_op_desc._set_attr(op_role_attr_name, backward)
Y
Yang Yang 已提交
1264
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
1265
        if callbacks is not None:
1266
            assert (isinstance(callbacks, (list, tuple)))
Y
Yang Yang 已提交
1267 1268
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
1269

F
fengjiayi 已提交
1270

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
def _is_grad_var_(var_name):
    return core.grad_var_suffix() in var_name


# Find the op who holds the sub_block as its "sub_block" attr
def _find_parent_op_(sub_block):
    sub_block_id = sub_block.idx

    if sub_block_id == 0:
        return None

    program = sub_block.program
    for block_id in six.moves.range(program.num_blocks):
        block_desc = program.block(block_id).desc
        for op_idx in six.moves.range(block_desc.op_size()):
            op = block_desc.op(op_idx)
            if op.has_attr("sub_block") and op._block_attr_id(
                    "sub_block") == sub_block_id:
                return op

1291
    # NOTE(paddle-dev): When optimizer is added in conditional block,
1292 1293 1294 1295
    # sub_block may not be found.
    return None


F
fengjiayi 已提交
1296
def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
1309
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
1310
    """
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
    ops_to_remove = []
    '''
    NOTE(paddle-dev): while_grad op may hold some inputs which are not found 
    in the parent/forward block, and they are also the outputs of while_grad 
    op. These kinds of inputs are the recursive outputs inside while_grad op. 
    They should be considered as "already created" when scanning the inner 
    ops of while_grad ops.  
    '''
    parent_op = _find_parent_op_(block)
    parent_op_vars = []
    if parent_op is not None:
        input_args = parent_op.input_arg_names()
        output_args = parent_op.output_arg_names()
        for in_arg in input_args:
            if in_arg in output_args:
                parent_op_vars.append(in_arg)

F
fengjiayi 已提交
1328 1329 1330
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
W
Wu Yi 已提交
1331
            sub_block = block.program.block(op_desc._block_attr_id("sub_block"))
F
fengjiayi 已提交
1332
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

        grad_var_ins = [
            var for var in op_desc.input_arg_names() if _is_grad_var_(var)
        ]
        grad_var_outs = [
            var for var in op_desc.output_arg_names() if _is_grad_var_(var)
        ]

        inputs = [
            var for var in op_desc.input_arg_names()
            if var != core.empty_var_name()
        ]
        outputs = [
            var for var in op_desc.output_arg_names()
            if var != core.empty_var_name()
        ]

1350
        # If the outputs of grad op is empty, just remove it
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
        if not outputs:
            ops_to_remove.append(op_idx)
            continue
        else:
            '''
            If the output is not empty and there is any grad input, find 
            whether there is any existing input. If not, just remove it.
            '''
            if grad_var_ins:
                existing_grad_var_ins = [
                    var for var in grad_var_ins
                    if block.desc.has_var_recursive(cpt.to_bytes(var)) or var in
                    parent_op_vars
                ]
                if not existing_grad_var_ins:
                    '''
                    FIXME(paddle-dev, zengjinle): rnn_memory_helper_grad is used
                    in recurrent op. The input of this op does not even exist in 
                    the program! Therefore, any dependency analysis would not 
                    work to this op! If I do not add the following code, this op
                    would be pruned, and the calculation result would be wrong. 
                    Maybe we should re-design this op later...  
                    '''
                    if op_desc.type() not in ['rnn_memory_helper_grad']:
                        ops_to_remove.append(op_idx)
1376
                        continue
1377

F
fengjiayi 已提交
1378 1379 1380
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
M
minqiyang 已提交
1381 1382
            if block.desc.has_var_recursive(cpt.to_bytes(
                    grad_var_name)) or grad_var_name == core.empty_var_name():
F
fengjiayi 已提交
1383
                continue
M
minqiyang 已提交
1384
            block.desc.var(cpt.to_bytes(grad_var_name))
F
fengjiayi 已提交
1385
            new_vars.add(grad_var_name)
1386
            if grad_var_name not in grad_to_var:
F
fengjiayi 已提交
1387 1388 1389
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
H
hong 已提交
1390
        op_desc.check_attrs()
F
fengjiayi 已提交
1391 1392
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
1393

F
fengjiayi 已提交
1394 1395
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
1396
                _infer_var_data_type_shape_(arg, block)
F
update  
fengjiayi 已提交
1397

1398 1399 1400
    for op_idx in reversed(ops_to_remove):
        block.desc._remove_op(op_idx, op_idx + 1)

F
update  
fengjiayi 已提交
1401

1402 1403 1404 1405 1406 1407
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
W
Wu Yi 已提交
1408
                op_desc._rename_input(name, var_map[name])
1409 1410

        for name in op_desc.output_arg_names():
M
mapingshuo 已提交
1411 1412
            if "@GRAD" not in name:
                continue
1413
            if block.desc.find_var(name.encode("ascii")):
Y
Yu Yang 已提交
1414
                new_name = unique_name.generate(name)
W
Wu Yi 已提交
1415
                op_desc._rename_output(name, new_name)
1416 1417
                var_map[name] = new_name

M
minqiyang 已提交
1418
    for g, ng in six.iteritems(var_map):
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
1430
        for var in list(block.vars.values()):
1431 1432 1433 1434 1435 1436 1437
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
def _get_son_parent_block_idx_dict(program, current_block_idx):

    son_parent_block_idx_dict = collections.OrderedDict()
    while current_block_idx >= 0:
        parent_block_idx = program.block(current_block_idx).parent_idx
        son_parent_block_idx_dict[current_block_idx] = parent_block_idx
        current_block_idx = parent_block_idx

    return son_parent_block_idx_dict


1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
def _get_no_grad_set_name(no_grad_set):
    no_grad_set_name = set()
    if no_grad_set is not None:
        if isinstance(no_grad_set, (set, list, tuple)):
            for i, no_grad_var in enumerate(no_grad_set):
                if isinstance(no_grad_var, framework.Variable):
                    no_grad_set_name.add(no_grad_var.name)
                elif isinstance(no_grad_var, six.string_types):
                    no_grad_set_name.add(no_grad_var)
                else:
                    raise TypeError(
                        "The type of no_grad_set's member must be paddle.fluid.Variable or str, but received %s."
                        % (type(no_grad_var)))
        else:
            raise TypeError(
                "The type of no_grad_set should be set or list or tuple, but received {}".
                format(type(no_grad_set)))
    return no_grad_set_name


1469
@framework.static_only
M
mapingshuo 已提交
1470 1471 1472 1473
def append_backward(loss,
                    parameter_list=None,
                    no_grad_set=None,
                    callbacks=None,
1474 1475
                    checkpoints=None,
                    distop_context=None):
1476
    """
1477 1478
    :api_attr: Static Graph

1479
    This function appends backward part to main_program.
F
fengjiayi 已提交
1480

1481 1482
    A complete neural network training is made up of forward and backward
    propagation. However, when we configure a network, we only need to
1483 1484
    specify its forward part. This function uses the chain rule to automatically
    generate the backward part according to the forward part.
F
fengjiayi 已提交
1485

1486 1487
    In most cases, users do not need to invoke this function manually.
    It will be automatically invoked by the optimizer's `minimize` function.
F
fengjiayi 已提交
1488

1489
    Parameters:
1490
        loss(Tensor): The loss Tensor of the network.
1491
        parameter_list(list[Tensor|str]|tuple[Tensor|str], optional): List/Tuple of Parameters or Parameter.names
1492
                                           that need to be updated by optimizers.
1493
                                           If it is None, all parameters
F
fengjiayi 已提交
1494
                                           will be updated.
1495
                                           Default: None.
1496 1497
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1498
                               `stop_gradient=True` from all blocks will
F
fengjiayi 已提交
1499
                               be automatically added into this set.
1500
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1501
                               Default: None.
1502
        callbacks(list[callable object]|tuple[callable object], optional): List/Tuple of callback functions.
1503
                                               The callbacks are used for
1504 1505 1506 1507 1508 1509
                                               doing some custom jobs during
                                               backward part building. All
                                               callable objects in it will
                                               be invoked once each time a
                                               new gradient operator is added
                                               into the program. The callable
Z
zhangchunle 已提交
1510
                                               object must have two input
1511 1512
                                               parameters: ``block`` and ``context`` .
                                               The ``block`` is the :ref:`api_guide_Block_en` which
1513
                                               the new gradient operator will
1514
                                               be added to. The ``context`` is a
1515
                                               map, whose keys are gradient
1516 1517 1518
                                               Tensor names and values are
                                               corresponding original :ref:`api_guide_tensor_en` .
                                               In addition to this, the ``context``
1519
                                               has another special key-value pair:
1520
                                               the key is string ``__current_op_desc__``
1521 1522 1523
                                               and the value is the op_desc of the
                                               gradient operator who has just
                                               triggered the callable object.
1524
                                               Default: None.
F
fengjiayi 已提交
1525 1526

    Returns:
1527 1528
        list of tuple ( :ref:`api_guide_tensor_en` , :ref:`api_guide_tensor_en` ): Pairs of parameter and its corresponding gradients.
        The key is the parameter and the value is gradient Tensor.
F
fengjiayi 已提交
1529 1530

    Raises:
1531
        AssertionError: If ``loss`` is not an instance of Tensor.
F
fengjiayi 已提交
1532 1533 1534 1535

    Examples:
        .. code-block:: python

1536 1537
            import paddle
            import paddle.nn.functional as F
L
lujun 已提交
1538

1539 1540 1541 1542 1543
            paddle.enable_static()

            x = paddle.static.data(name='x', shape=[None, 13], dtype='int64')
            y = paddle.static.data(name='y', shape=[None, 1], dtype='float32')
            x_emb = paddle.static.nn.embedding(x, size=[100, 256])
1544
            y_predict = paddle.static.nn.fc(x=x_emb, size=1, activation=None, name='my_fc')
1545 1546
            loss = F.square_error_cost(input=y_predict, label=y)
            avg_loss = paddle.mean(loss)
1547 1548

            # Get all weights in main_program, not include bias.
1549
            all_weights = [param for param in paddle.static.default_main_program().block(0).all_parameters() if 'w_' in param.name]
1550 1551 1552
            all_weights_name = [w.name for w in all_weights]

            # return all param_grads needed to be updated if parameter_list set default None.
1553
            p_g_list1 = paddle.static.append_backward(loss=avg_loss)
1554 1555
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1556 1557
            # return the param_grads corresponding to parameter_list that can be list of param (Tensor).
            p_g_list2 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights)
1558 1559 1560
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # parameter_list can be list of param.name (str).
1561
            p_g_list3 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights_name)
1562 1563
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

1564 1565
            # no_grad_set can be set of Tensors that means grad will be cut off from these Tensors.
            p_g_list4 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set([x_emb]))
1566 1567
            # output: [(my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1568 1569
            # no_grad_set can be set of Tensor.name when the Tensor is created inside layers and can't be specified explicitly.
            p_g_list5 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set(['my_fc.b_0']))
1570 1571 1572
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # return [] because all param_grads are filtered by no_grad_set.
1573
            p_g_list6 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights, no_grad_set=set(all_weights))
1574

1575
    """
1576
    check_type(loss, 'loss', framework.Variable,
1577
               'paddle.static.append_backward')
Y
yuyang18 已提交
1578

Y
Fix bug  
yuyang18 已提交
1579 1580
    if loss.op is None:
        # the loss is from a cloned program. Find loss op manually.
M
mapingshuo 已提交
1581
        _find_loss_op_(loss)
Y
Fix bug  
yuyang18 已提交
1582

W
Wu Yi 已提交
1583 1584 1585
    loss.op._set_attr(core.op_proto_and_checker_maker.kOpRoleAttrName(),
                      int(core.op_proto_and_checker_maker.OpRole.Forward) |
                      int(core.op_proto_and_checker_maker.OpRole.Loss))
Y
yuyang18 已提交
1586

Y
Yang Yang 已提交
1587
    if callbacks is not None:
1588
        check_type(callbacks, 'callbacks', (list, tuple),
1589
                   'paddle.static.append_backward')
Y
Yu Yang 已提交
1590

F
fengjiayi 已提交
1591
    program = loss.block.program
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
    root_block = program.block(0)
    current_block_idx = program.current_block_idx
    current_block = program.block(current_block_idx)

    is_in_control_flow = current_block_idx != 0

    # Double grad is not supported in sub-block (control flow)
    if not is_in_control_flow:
        # _appending_grad_times used for double grad
        program._appending_grad_times += 1
1602

F
fengjiayi 已提交
1603
    if no_grad_set is None:
1604
        no_grad_set = set()
1605 1606
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1607
    no_grad_dict = _get_stop_gradients_(program)
1608 1609
    # no_grad_set only contains vars in block 0
    # Todo(liym27): support vars in sub block
1610
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
Y
Yu Yang 已提交
1611

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
    # Currently it is only to support the optimizer.minimize
    # in a switch branch, which can append_backward in a sub_block.
    # Note: while_loop is in control flow, but it makes no sense to call optimizer in while.
    # Todo: report error when it is in while_loop
    if is_in_control_flow:
        # create grad block if in switch control flow.
        target_grad_block = program._create_block(
            parent_idx=current_block.parent_idx)
        target_grad_block._set_forward_block_idx(current_block_idx)
        # after _create_block, program.current_block changes
    else:
        target_grad_block = root_block

    son_parent_block_idx_dict = _get_son_parent_block_idx_dict(
        program, current_block_idx)

    block_fwd_op_num_dict = {}  # block_id: fwd_op_num
    for idx in son_parent_block_idx_dict:
        block_fwd_op_num_dict[idx] = program.block(idx).desc.op_size()
F
fengjiayi 已提交
1631

F
fengjiayi 已提交
1632 1633
    grad_to_var = dict()

M
mapingshuo 已提交
1634
    op_desc = _create_loss_op_desc_(loss)
1635 1636 1637 1638 1639 1640 1641
    target_grad_block.desc.append_op().copy_from(op_desc)

    for block_idx in son_parent_block_idx_dict:
        block = program.block(block_idx)

        block_no_grad_set = set(
            map(_strip_grad_suffix_, no_grad_dict[block_idx]))
1642 1643 1644 1645

        op_path_dict = dict()
        op_path = _find_op_path_(block, [loss], [], block_no_grad_set,
                                 op_path_dict)
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657

        no_grad_vars = _find_no_grad_vars(block, op_path, [loss],
                                          block_no_grad_set)

        block_no_grad_set.update(no_grad_vars)
        no_grad_dict[block_idx].update(
            list(map(_append_grad_suffix_, block_no_grad_set)))

        input_grad_names_set = None
        # For double backward, input_grad_names is used for filtering
        # some non-used gradients op(s).

1658
        # TODO(liym27): need a better design.
1659 1660 1661 1662 1663
        # not support double grad in control flow sub-block now.
        if not is_in_control_flow:
            if program._appending_grad_times > 1:
                input_grad_names_set = set([_append_grad_suffix_(loss.name)])

1664
        # TODO: support _append_backward_ops_with_checkpoints_ in
1665
        #  sub-block (control flow)
J
JZ-LIANG 已提交
1666
        is_recompute = False
1667 1668 1669
        if checkpoints != None and \
                isinstance(checkpoints, list) and \
                len(checkpoints) > 0:
J
JZ-LIANG 已提交
1670
            is_recompute = True
1671
            program_stat, checkpoint_names, \
T
tangwei12 已提交
1672 1673
                vars_should_be_hold, \
                recompute_segments = \
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
                _append_backward_ops_with_checkpoints_(
                    root_block,
                    op_path,
                    root_block,
                    no_grad_dict,
                    grad_to_var,
                    checkpoints)
        else:
            _append_backward_ops_(
                block,  # the block where forward ops are in
                op_path,
                target_grad_block,
                no_grad_dict,
                grad_to_var,
                callbacks,
1689
                input_grad_names_set=input_grad_names_set,
1690 1691
                op_path_dict=op_path_dict,
                distop_context=distop_context, )
1692 1693 1694 1695 1696 1697 1698 1699 1700

    grad_info_map = dict()

    # if in control flow, target_grad_block is a created new block which only contains grad ops,
    # so fwd_op_num is set to 0.
    fwd_op_num = block_fwd_op_num_dict[
        current_block_idx] if not is_in_control_flow else 0

    # Because append_backward may be called multiple times,
1701 1702
    # we need rename the internal gradient variables so that they have
    # different names.
1703
    _rename_grad_(target_grad_block, fwd_op_num, grad_to_var, {})
1704

1705 1706
    _append_backward_vars_(target_grad_block, fwd_op_num, grad_to_var,
                           grad_info_map)
F
fengjiayi 已提交
1707

F
fengjiayi 已提交
1708
    program.current_block_idx = current_block_idx
W
Wu Yi 已提交
1709
    program._sync_with_cpp()
F
fengjiayi 已提交
1710

1711
    if parameter_list is not None:
1712 1713
        check_type(parameter_list, 'parameter_list', (list, tuple, set),
                   'fluid.backward.append_backward')
1714 1715
        parameters = []
        for i, param in enumerate(parameter_list):
1716 1717 1718
            check_type(param, 'parameter_list[%s]' % i, (framework.Variable,
                                                         six.string_types),
                       'fluid.backward.append_backward')
1719 1720 1721 1722
            if isinstance(param, framework.Variable):
                parameters.append(param.name)
            elif isinstance(param, six.string_types):
                parameters.append(param)
1723
    else:
F
fengjiayi 已提交
1724
        params = program.global_block().all_parameters()
C
chengduo 已提交
1725
        parameters = [param.name for param in params if param.trainable]
1726

1727
    params_and_grads = []
1728
    op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
1729
    for param in parameters:
M
minqiyang 已提交
1730
        if cpt.to_text(param) not in grad_info_map:
F
fengjiayi 已提交
1731
            continue
F
update  
fengjiayi 已提交
1732
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
1733
        grad_block = grad_info[1]
1734 1735 1736 1737
        if not grad_block.has_var(grad_info[0]):
            raise ValueError("grad block[{0}] did not have grad var {1}".format(
                grad_info[1], grad_info[0]))
        # Get the param var from the global block
F
fengjiayi 已提交
1738
        param_var = program.global_block().var(param)
1739
        grad_var = grad_block.var(grad_info[0])
1740 1741 1742 1743 1744
        if not is_in_control_flow:
            if loss.block.has_var(grad_info[0]):
                params_and_grads.append((param_var, grad_var))
            else:
                params_and_grads.append((param_var, None))
1745
        else:
1746
            params_and_grads.append((param_var, grad_var))
Y
yuyang18 已提交
1747 1748 1749 1750

    for p, g in params_and_grads:
        if g is None:
            continue
1751 1752 1753
        ops = grad_block.ops if is_in_control_flow else program.global_block(
        ).ops
        for op in reversed(ops):
Y
yuyang18 已提交
1754 1755 1756 1757 1758 1759 1760
            assert isinstance(op, framework.Operator)
            if g.name in op.output_arg_names:
                g.op = op
                break

        if g.op is None:
            raise ValueError("Unexpected branch")
Y
yuyang18 已提交
1761
        attr_val = [p.name, g.name]
Y
yuyang18 已提交
1762 1763
        if g.op.has_attr(op_role_var_attr_name):
            attr_val.extend(g.op.attr(op_role_var_attr_name))
W
Wu Yi 已提交
1764
        g.op._set_attr(op_role_var_attr_name, attr_val)
Y
yuyang18 已提交
1765

J
JZ-LIANG 已提交
1766 1767 1768 1769
    if is_recompute:
        return params_and_grads, checkpoint_names
    else:
        return params_and_grads
1770 1771 1772 1773 1774


def _as_list(x):
    if x is None:
        return []
1775
    return list(x) if isinstance(x, Sequence) else [x]
1776 1777


1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
def _is_ancestor_block(ancestor_block, block):
    prog = block.program
    ancestor_idx = ancestor_block.idx
    parent_idx = block.parent_idx

    while parent_idx != -1:
        if parent_idx == ancestor_idx:
            return True
        parent_idx = prog.block(parent_idx).parent_idx

    return False


def _get_output_names(cur_block, targets):
    """
    In `cur_block`, get output names those linked to targets.
    NOTE:
    1. `targets` can be in `cur_block`;
    Usually, `targets` is in `cur_block`. However, considering control flow,
    2. `targets` may be in sub-block but `cur_block` is an ancestor of `targets[0].block`;
    3. `targets` may be in the block which is ancestor of `cur_block`.
    """

    block = targets[0].block if targets else cur_block
    current_output_names = set([out.name for out in targets])

1804 1805 1806 1807 1808 1809
    # 1. If `targets` in cur_block or the ancestral block of `cur_block`
    if block.idx == cur_block.idx or _is_ancestor_block(block, cur_block):
        return current_output_names

    # 2. If `cur_block` is an ancestor of `targets[0].block`, run while loop
    prog = cur_block.program
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
    while block.idx != cur_block.idx:
        assert block.parent_idx != -1
        parent_block = prog.block(block.parent_idx)

        parent_block_output_names = set()
        for op in reversed(block.ops):
            if _some_in_set_(op.desc.output_arg_names(), current_output_names):
                for name in op.desc.input_arg_names():
                    current_output_names.add(name)
                    if not block.desc.find_var(cpt.to_bytes(name)) \
                            and parent_block.desc.find_var(cpt.to_bytes(name)):
                        parent_block_output_names.add(name)

        block = parent_block
        current_output_names = parent_block_output_names

    return current_output_names


1829 1830 1831
def _find_no_grad_vars(block, op_path, targets, no_grad_set):
    """
    Find the vars which is not used in the program, and
1832
    those vars belong to no_grad_var.
1833
    """
1834
    output_names = _get_output_names(block, targets)
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
    no_grad_var = []
    for i, op in reversed(list(enumerate(op_path))):
        # If the op has sub_block, it is too complicated to find the correct no_grad_var.
        if not op.has_attr("sub_block"):
            for out_var in op.desc.output_arg_names():
                if out_var not in output_names and out_var not in op.desc.input_arg_names(
                ) and not block.vars[out_var].stop_gradient:
                    no_grad_var.append(out_var)
        for name in op.desc.input_arg_names():
            if name not in no_grad_set:
                output_names.add(name)
    return set(no_grad_var)


1849 1850 1851 1852 1853 1854
def _find_op_path_(block,
                   targets,
                   inputs,
                   no_grad_set,
                   op_path_dict=None,
                   is_while=False):
1855
    """
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
    It is used to find the grad path in `block`.

    Args:
        block(Block): The block in which to get op path.
        targets(list[Variable]): The target variables.
        inputs(list[Variable]): The input variables.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed. op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        is_while(bool): Whether or not `block` is while block
    Return:
        The forward op path of block corresponding to backward op.
1869
    """
1870

1871
    input_names = set([inp.name for inp in inputs])
1872 1873 1874
    output_names = _get_output_names(block, targets)
    if op_path_dict is None:
        op_path_dict = dict()
1875 1876 1877 1878 1879 1880

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
1881 1882 1883
            if _some_in_set_(
                    op.desc.input_arg_names(),
                    input_names) and core.has_non_empty_grad_op_maker(op.type):
1884 1885 1886 1887 1888 1889 1890
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
1891 1892 1893 1894 1895 1896 1897 1898 1899
        if op.has_attr("sub_block"):
            sub_block_id = op._block_attr_id("sub_block")
            sub_block = block.program.block(sub_block_id)
            sub_block_target_names = output_names & set(op.output_arg_names)
            sub_block_path = _get_sub_block_path(sub_block, op,
                                                 set(), op_path_dict,
                                                 sub_block_target_names)
            op_path_dict[sub_block_id] = sub_block_path

1900 1901 1902
        if _some_in_set_(
                op.desc.output_arg_names(),
                output_names) and core.has_non_empty_grad_op_maker(op.type):
1903 1904 1905 1906 1907 1908
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

1909 1910 1911 1912 1913
    if is_while:
        # If block is while block, dealing with op specifically again.
        # TODO(liym27): Consider special types of ops.
        for i, op in reversed(list(enumerate(block.ops))):
            if relevant_op_flags[i] == False \
T
tangwei12 已提交
1914
                    and _some_in_set_(op.desc.output_arg_names(), output_names):
1915 1916
                relevant_op_flags[i] = True

1917 1918 1919 1920 1921 1922 1923
    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
1924
                if name not in input_names and block.vars[name].stop_gradient:
1925 1926 1927 1928 1929 1930 1931
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
1932
    Backpropagate the gradients of targets to inputs.
1933 1934

    Args:
1935 1936 1937
        targets(Tensor|list[Tensor]|tuple[Tensor]): The target Tensors
        inputs(Tensor|list[Tensor]|tuple[Tensor]): The input Tensors
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensors
1938 1939
            of targets which has the same shape with targets, If None, ones will
            be created for them.
1940 1941
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1942 1943
                               `stop_gradient=True` from all blocks will
                               be automatically added into this set.
1944
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1945
                               Default: None.
1946 1947

    Return:
1948 1949
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
1950 1951 1952 1953 1954 1955 1956 1957
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
1958 1959
    # increase appending gradients times
    prog._appending_grad_times += 1
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
            "Should have the same number of target_gradients as targets")

    if no_grad_set is None:
        no_grad_set = set()
1971 1972
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1973
    no_grad_dict = _get_stop_gradients_(prog)
1974
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
1975 1976 1977

    fwd_op_num = block.desc.op_size()

1978 1979
    input_grad_names_set = set()

1980
    target_grad_map = {}
1981
    rename_var_map = {}
1982 1983
    for i, grad in enumerate(target_gradients):
        target = targets[i]
1984
        grad_name = _append_grad_suffix_(target.name)
1985
        if grad is None:
L
lvmengsi 已提交
1986 1987 1988 1989 1990
            target_shape = target.name + '_shape'
            block.desc.append_op().copy_from(
                _create_op_desc_("shape", {'Input': [target.name]},
                                 {"Out": [target_shape]}, {}))
            input_grad_names_set.add(target_shape)
L
liym27 已提交
1991
            op_desc = _create_op_desc_("fill_constant",
L
lvmengsi 已提交
1992
                                       {"ShapeTensor": [target_shape]},
1993
                                       {"Out": [grad_name]}, {
1994
                                           "shape": target.shape,
1995 1996 1997
                                           "value": 1.0,
                                           "dtype": target.dtype,
                                       })
L
liym27 已提交
1998

1999
            block.desc.append_op().copy_from(op_desc)
2000
            input_grad_names_set.add(grad_name)
2001 2002 2003 2004 2005 2006 2007 2008
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
                    "The shapes of target and grad are different: %s %s" % (
                        target.name, grad.name))
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name
2009
            input_grad_names_set.add(grad.name)
2010
            rename_var_map[grad_name] = grad.name
2011 2012

    # For double backward, input_grad_names is used for filter
2013 2014
    # some non-used gradients op. rename_var_map is used to
    # associate target_grad var name with first grad_op input name.
2015 2016
    if prog._appending_grad_times == 1:
        input_grad_names_set = None
2017
        rename_var_map = {}
2018 2019 2020 2021 2022 2023

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
2024 2025 2026 2027

    op_path_dict = dict()
    op_path = _find_op_path_(block, targets, inputs, block_no_grad_set,
                             op_path_dict)
2028 2029 2030 2031 2032 2033

    # find no grad var by op_path
    no_grad_vars = _find_no_grad_vars(block, op_path, targets,
                                      block_no_grad_set)
    block_no_grad_set.update(no_grad_vars)

2034
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
2035 2036
    grad_to_var = dict()
    grad_info_map = dict()
2037 2038 2039 2040 2041 2042
    _append_backward_ops_(
        block,
        op_path,
        block,
        no_grad_dict,
        grad_to_var,
2043
        input_grad_names_set=input_grad_names_set,
2044 2045
        op_path_dict=op_path_dict,
        rename_var_map=rename_var_map)
2046 2047 2048 2049 2050 2051 2052

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
W
Wu Yi 已提交
2053
    prog._sync_with_cpp()
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars
2069 2070


2071
@framework.static_only
2072 2073
def gradients(targets, inputs, target_gradients=None, no_grad_set=None):
    """
T
tangwei12 已提交
2074

2075 2076 2077
    Backpropagate the gradients of targets to inputs.

    Args:
2078 2079 2080
        targets (Tensor|list[Tensor]|tuple[Tensor]): The target Tensors.
        inputs (Tensor|list[Tensor]|tuple[Tensor]): The input Tensors.
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensor
2081 2082
            of targets which has the same shape with targets, If None, ones will
            be created for them.
2083 2084 2085
        no_grad_set (set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
            should be ignored. All Tensors with ``stop_gradient=True`` from all blocks will
            be automatically added into this set. If this parameter is not None, the Tensors or Tensor.names
2086
            in this set will be added to the default set. Default: None.
2087 2088

    Return:
2089 2090
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
2091 2092 2093
        will be None.

    Examples:
2094
    
2095
        .. code-block:: python
2096
          :name: code-example
2097 2098 2099 2100
            import paddle
            import paddle.nn.functional as F

            paddle.enable_static()
2101

2102
            x = paddle.static.data(name='x', shape=[None, 2, 8, 8], dtype='float32')
2103
            x.stop_gradient=False
2104 2105 2106
            y = paddle.static.nn.conv2d(x, 4, 1, bias_attr=False)
            y = F.relu(y)
            z = paddle.static.gradients([y], x)
2107
            print(z) # [var x@GRAD : LOD_TENSOR.shape(-1, 2, 8, 8).dtype(float32).stop_gradient(False)]
2108
    """
2109
    check_type(targets, 'targets', (framework.Variable, list, tuple),
2110
               'paddle.static.gradients')
2111
    check_type(inputs, 'inputs', (framework.Variable, list, tuple),
2112
               'paddle.static.gradients')
2113
    check_type(target_gradients, 'target_gradients', (
2114
        framework.Variable, list, tuple, type(None)), 'paddle.static.gradients')
2115

2116 2117
    outs = calc_gradient(targets, inputs, target_gradients, no_grad_set)
    return _as_list(outs)
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186


@framework.static_only
def gradients_with_optimizer(program, optimizer, inputs=None, outputs=None):
    """
    :api_attr: Static Graph

    Backpropagate the gradients of the program and apply the gradients with the given optimizer.

    Args:
        program (Program): The input program.
        optimizer (Optimizer): The optimizer to apply the gradients.
        inputs (Tensor|list[Tensor]|tuple[Tensor], optional): The input Tensors.
            If None, the inputs will be created from the input variables in the given program. Default:None.
        outputs (Tensor|list[Tensor]|tuple[Tensor], optional): The output Tensors.
            If None, the outputs will be created from the output variables in the given program. Default: None.

    Return:
        tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by gradients_with_optimizer and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
            ``fetch_list`` before run, see details in ``Executor``.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
            pred = static.nn.fc(x=img, size=10, activation='relu')
            loss = paddle.mean(pred)
            opt_ops, pram_grads = paddle.fluid.backward.gradients_with_optimizer(static.default_main_program(), opt)
            print(opt_ops)

    """
    check_type(program, 'program', paddle.fluid.Program,
               'paddle.static.gradients_with_optimizer')
    check_type(optimizer, 'optimizer', paddle.optimizer.Optimizer,
               'paddle.static.gradients_with_optimizer')

    if inputs is None or outputs is None:
        in_set = set()
        out_set = set()
        for block in program.blocks:
            for op in block.ops:
                for name in op.input_arg_names:
                    in_set.add(block.vars[name])
                for name in op.output_arg_names:
                    out_set.add(block.vars[name])
        if inputs is None:
            inputs = list(in_set.difference(out_set))
        if outputs is None:
            outputs = list(out_set.difference(in_set))

    grads = gradients(outputs, inputs)

    with program_guard(program, None):
        pram_grads = [(pram, grad) for pram, grad in zip(inputs, grads)
                      if isinstance(pram, paddle.fluid.framework.Parameter) and
                      grad is not None]

        optimize_ops = optimizer.apply_gradients(pram_grads)

    return optimize_ops, pram_grads