backward.py 96.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
tangwei12 已提交
15
from .proto import framework_pb2
16

17
from paddle.fluid import framework as framework
18
from paddle.fluid import program_guard
F
update  
fengjiayi 已提交
19
from . import core
F
update  
fengjiayi 已提交
20
import collections
21
import copy
22
import logging
23
from . import unique_name
24
from . import log_helper
L
liym27 已提交
25
import paddle.fluid
26
from .data_feeder import check_type
27
import warnings
28

29
from collections.abc import Sequence
30

M
mapingshuo 已提交
31 32 33 34 35
__all__ = [
    'append_backward',
    'gradients',
]

36 37 38
_logger = log_helper.get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s'
)
39

M
mapingshuo 已提交
40

41
class ProgramStats:
M
mapingshuo 已提交
42 43 44 45 46 47 48 49 50
    def __init__(self, block, ops):
        self.block = block
        self.ops = ops
        self.op_deps = {}  # op-> in_ops, out_ops
        self.var_op_deps = {}  # var as input op, var as output op

    def get_input_nodes(self):
        input_names = []
        for name in self.var_op_deps:
51 52 53 54
            if (
                len(self.var_op_deps[name]["var_as_output_ops"]) == 0
                and len(self.var_op_deps[name]["var_as_input_ops"]) > 0
            ):
M
mapingshuo 已提交
55 56 57 58 59 60 61 62 63 64 65
                if self.block.var(name).persistable:
                    continue
                input_names.append(name)
        for op in self.ops:
            if op.desc.type() == "read":
                input_names.extend(op.desc.output_arg_names())
        return input_names

    def get_reserved_vars(self):
        var_name = []
        for op in self.ops:
M
mapingshuo 已提交
66
            if op.desc.type() == "seed":
M
mapingshuo 已提交
67 68 69 70 71 72 73 74 75 76 77
                var_name.extend(op.desc.output_arg_names())
        return var_name

    def get_out_of_subgraph_vars(self, begin_op_idx, end_op_idx):
        var_name = []
        for i in range(begin_op_idx, end_op_idx, 1):
            for name in self.ops[i].desc.output_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_input_ops"]:
                        if idx >= end_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
78 79 80 81 82
            for name in self.ops[i].desc.input_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_output_ops"]:
                        if idx < begin_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
        return var_name

    def is_subgraph(self, var_group1, var_group2):
        # should traverse from var_group1 to var_group2
        # max op idx in var_group2
        # min op idx in var_group1
        min_op_idx = len(self.ops)
        max_op_idx = -1
        for name in var_group1:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group2:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group1:
            op_idx = self.var_op_deps[name]["var_as_input_ops"]
            for idx in op_idx:
                min_op_idx = min(min_op_idx, idx)
        for name in var_group2:
            op_idx = self.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if min_op_idx >= max_op_idx:
            return False, min_op_idx, max_op_idx
J
JZ-LIANG 已提交
107

M
mapingshuo 已提交
108 109
        return True, min_op_idx, max_op_idx

J
JZ-LIANG 已提交
110 111 112 113 114 115
    def _update_segment_start(self, min_idx, pre_segment_end_idx):
        """
        persist vars of amp-related cast should be included in recompute segment
        """

        def is_amp_cast(op):
116 117 118 119
            return (
                op.desc.type() == 'cast'
                and self.block.var(op.desc.input_arg_names()[0]).persistable
            )
J
JZ-LIANG 已提交
120 121 122 123 124

        idx_ = min_idx - 1
        updated_min_idx = min_idx
        while idx_ > pre_segment_end_idx:
            if is_amp_cast(self.ops[idx_]):
125 126 127 128 129 130
                _logger.info(
                    "found amp-cast op: {}, : {}".format(
                        self.ops[idx_].desc.type(),
                        self.ops[idx_].desc.input_arg_names()[0],
                    )
                )
J
JZ-LIANG 已提交
131 132 133 134 135 136 137
                updated_min_idx = idx_
                idx_ -= 1
            else:
                break

        return updated_min_idx

M
mapingshuo 已提交
138 139 140 141 142
    def build_stats(self):
        for i, op in enumerate(self.ops):
            self.op_deps[i] = {"in_ops": [], "out_ops": []}
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
143
                    self.op_deps[i]["in_ops"].extend(
144 145
                        self.var_op_deps[name]["var_as_output_ops"]
                    )
M
mapingshuo 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_input_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = [i]
                    self.var_op_deps[name]["var_as_output_ops"] = []

            for j, name in enumerate(op.desc.output_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_output_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = []
                    self.var_op_deps[name]["var_as_output_ops"] = [i]

            for op_idx in self.op_deps[i]["in_ops"]:
                self.op_deps[op_idx]["out_ops"].extend([i])

165 166 167 168
    def sort_checkpoints(self, checkpoints_name):
        sorted_checkpoints = []
        for name in checkpoints_name:
            if name not in self.var_op_deps:
169
                _logger.info(
170
                    "Recompute Optimizer: deleted %s from checkpoints, because it is not used in paddle program."
171 172
                    % name
                )
173 174 175 176 177
            elif self.var_op_deps[name]["var_as_output_ops"] == []:
                # input nodes
                sorted_checkpoints.append((name, -1))
            else:
                sorted_checkpoints.append(
178 179
                    (name, max(self.var_op_deps[name]["var_as_output_ops"]))
                )
180 181 182
        sorted_checkpoints = sorted(sorted_checkpoints, key=lambda x: x[1])
        return [x[0] for x in sorted_checkpoints]

M
mapingshuo 已提交
183 184 185 186 187 188
    def modify_forward_desc_for_recompute(self):
        op_types = [op.desc.type() for op in self.ops]
        if "dropout" not in op_types:
            return

        op_idx = 0
189
        while op_idx < len(self.ops):
M
mapingshuo 已提交
190 191 192 193
            op = self.ops[op_idx]
            if op.desc.type() != "dropout":
                op_idx += 1
                continue
194 195 196 197
            # already insert seed op before dropout
            if op.input('Seed') is not None and len(op.input('Seed')) == 1:
                op_idx += 1
                continue
M
mapingshuo 已提交
198 199
            # add a seed op so that the two dropout op can generate same output
            op_unique_name = unique_name.generate("seed")
200 201 202
            var_unique_name = unique_name.generate_with_ignorable_key(
                ".".join([op_unique_name, 'tmp'])
            )
M
mapingshuo 已提交
203 204 205 206 207
            added_var = self.block.create_var(
                name=var_unique_name,
                dtype='int32',
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
208 209
                stop_gradient=False,
            )
M
mapingshuo 已提交
210
            seed = 0 if op.attr("fix_seed") is False else int(op.attr("seed"))
211

212 213
            op_device_attr_name = (
                core.op_proto_and_checker_maker.kOpDeviceAttrName()
214 215 216 217 218
            )
            op_device = ""
            if op.desc.has_attr(op_device_attr_name):
                op_device = op.desc.attr(op_device_attr_name)

219
            # Setting the force_cpu of seed to true will make the output of seed in cpu memory,
220
            # reduce the synchronous copy from GPU to CPU in dropout, and reduce the communication hang
221 222 223 224 225 226 227
            added_op = self.block._insert_op(
                index=op.idx,
                type='seed',
                inputs={},
                outputs={'Out': [added_var]},
                attrs={'seed': seed, 'op_device': op_device, 'force_cpu': True},
            )
M
mapingshuo 已提交
228 229 230 231 232 233 234 235
            self.ops.insert(op_idx, added_op)
            # modify dropout op desc so that it accept a seed var as input
            op.desc.set_input("Seed", [var_unique_name])
            op.desc.remove_attr("fix_seed")
            op.desc.remove_attr("seed")
            self.block._sync_with_cpp()
            op_idx += 2

M
mapingshuo 已提交
236 237

def _pretty_op_desc_(op_desc, prefix):
238 239 240 241 242 243 244 245
    out_s = "%s\tname:[%s]\n%s    \tinputs:[%s]\n%s    \toutputs:[%s]" % (
        prefix + "_op",
        str(op_desc.type()),
        prefix + "_input",
        " ".join(op_desc.input_arg_names()),
        prefix + "_output",
        " ".join(op_desc.output_arg_names()),
    )
M
mapingshuo 已提交
246 247 248
    return out_s


249 250 251
def _add_needed_descs_to_block(
    descs, block, main_block, in_memory_vars, grad_op_id_to_fwd_op=None
):
M
mapingshuo 已提交
252 253 254
    if len(descs) == 0:
        return []
    result_descs = []
255
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
M
mapingshuo 已提交
256 257
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
258 259
        origin_desc = desc
        origin_is_operator = False
M
mapingshuo 已提交
260 261
        if isinstance(desc, framework.Operator):
            desc = desc.desc
262
            origin_is_operator = True
M
mapingshuo 已提交
263 264 265 266 267 268 269 270 271
        if isinstance(desc, tuple):
            desc = desc[0]
        is_needed = False
        for name in desc.output_arg_names():
            if main_block.has_var(name) and main_block.var(name).persistable:
                continue
            if name not in in_memory_vars:
                is_needed = True
        if is_needed:
272 273
            if origin_is_operator and grad_op_id_to_fwd_op is not None:
                grad_op_id_to_fwd_op[desc.original_id()] = origin_desc
M
mapingshuo 已提交
274 275 276
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(desc)
            new_op_desc._set_attr(op_role_attr_name, backward)
277 278
            if desc.has_attr('op_device'):
                new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
279 280 281 282
            result_descs.append(new_op_desc)
    return result_descs


283
def _add_descs_to_block(descs, block, grad_op_id_to_fwd_op=None):
M
mapingshuo 已提交
284 285 286
    if len(descs) == 0:
        return []
    result_descs = []
287
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
M
mapingshuo 已提交
288 289 290
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
291 292 293
            # for recompute, should record recompute ops
            if grad_op_id_to_fwd_op is not None:
                grad_op_id_to_fwd_op[desc.desc.original_id()] = desc
M
mapingshuo 已提交
294 295 296 297 298 299
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        new_op_desc = block.desc.append_op()
        new_op_desc.copy_from(desc)
        new_op_desc._set_attr(op_role_attr_name, backward)
300 301
        if desc.has_attr('op_device'):
            new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
302 303 304 305 306 307 308
        result_descs.append(new_op_desc)
    return result_descs


def _find_loss_op_(loss):
    for op in reversed(loss.block.ops):
        assert isinstance(op, framework.Operator)
309 310 311 312
        if (
            len(op.output_arg_names) == 1
            and op.output_arg_names[0] == loss.name
        ):
M
mapingshuo 已提交
313 314 315 316
            loss.op = op
            break
    if loss.op is None:
        raise ValueError("loss.op is None. Should not happend")
317 318


319 320
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
321
    Traverse all ops in op_descs[begin_idx : end_idx],
322 323
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
324 325 326
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
327
        end_idx = len(op_descs)
328 329 330 331 332 333 334 335 336 337 338 339 340
    if isinstance(op_descs, (list, tuple)):
        for i in range(begin_idx, end_idx):
            op_desc = op_descs[i]
            if isinstance(op_desc, tuple):
                op_desc = op_desc[0]
            op_desc._rename_input(old_name, new_name)
            op_desc._rename_output(old_name, new_name)
    if isinstance(op_descs, collections.OrderedDict):
        for key, value in op_descs.items():
            if isinstance(value, (list, tuple)):
                for op_desc in value:
                    op_desc._rename_input(old_name, new_name)
                    op_desc._rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
341 342


F
fengjiayi 已提交
343
def _create_op_desc_(op_type, inputs, outputs, attrs):
344 345 346
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
347 348
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
349
    for para, args in inputs.items():
350 351 352
        op_desc.set_input(
            para,
            list(
353 354 355 356 357 358
                map(
                    lambda arg: arg.decode() if isinstance(arg, bytes) else arg,
                    args,
                )
            ),
        )
359
    for para, args in outputs.items():
360 361 362
        op_desc.set_output(
            para,
            list(
363 364 365 366 367 368
                map(
                    lambda arg: arg.decode() if isinstance(arg, bytes) else arg,
                    args,
                )
            ),
        )
Y
yuyang18 已提交
369 370

    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
371
    op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
Y
yuyang18 已提交
372 373 374

    if op_role_attr_name not in attrs:
        attrs[
375 376
            op_role_attr_name
        ] = core.op_proto_and_checker_maker.OpRole.Backward
377 378
    if op_device_attr_name not in attrs:
        attrs[op_device_attr_name] = ""
379
    for name, val in attrs.items():
F
fengjiayi 已提交
380 381 382
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
W
Wu Yi 已提交
383
            op_desc._set_attr(name, val)
F
fengjiayi 已提交
384 385 386
    return op_desc


M
mapingshuo 已提交
387
def _create_loss_op_desc_(loss):
388
    create_shape = [] if len(loss.shape) == 0 else [1]
M
mapingshuo 已提交
389
    op_desc = _create_op_desc_(
390 391 392 393
        "fill_constant",
        {},
        {"Out": [_append_grad_suffix_(loss.name)]},
        {
394
            "shape": create_shape,
395 396 397 398 399 400
            "value": 1.0,
            "dtype": loss.dtype,
            "force_cpu": False,
            core.op_proto_and_checker_maker.kOpRoleAttrName(): int(
                core.op_proto_and_checker_maker.OpRole.Backward
            )
401
            | int(core.op_proto_and_checker_maker.OpRole.Loss),
402 403 404 405 406
            core.op_proto_and_checker_maker.kOpDeviceAttrName(): loss.op.attr(
                core.op_proto_and_checker_maker.kOpDeviceAttrName()
            ),
        },
    )
M
mapingshuo 已提交
407 408 409
    return op_desc


410
def _infer_var_data_type_shape_(grad_var_name, block):
411
    """
412
    Infer the data type and shape of given grad variable
413
    """
414
    grad_var = block.desc.find_var(grad_var_name.encode())
M
minqiyang 已提交
415
    fwd_name = _strip_grad_suffix_(grad_var_name)
416 417
    if block.desc.has_var_recursive(fwd_name.encode()):
        fwd_var = block.desc.find_var_recursive(fwd_name.encode())
F
fengjiayi 已提交
418
        grad_var.set_dtype(fwd_var.dtype())
419
        grad_var.set_shape(fwd_var.shape())
F
fengjiayi 已提交
420
    else:
421 422
        # TODO(jiabin): Maybe we should not to this to cause some unexpected error on dtype
        warnings.warn(
423 424 425 426
            "Set grad var: {} dtype to default FP32, since we can't find its related forward var".format(
                grad_var_name
            )
        )
427
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
428 429


F
fengjiayi 已提交
430
def _all_in_set_(cands, s):
431 432 433
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
434 435
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
436 437 438 439 440 441
    for c in cands:
        if not c in s:
            return False
    return True


442 443 444 445 446 447
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
448 449
    for c in cands:
        if c in s:
450 451 452 453
            return True
    return False


F
fengjiayi 已提交
454
def _strip_grad_suffix_(name):
455
    """
M
mapingshuo 已提交
456
    Strip the grad suffix from the given variable name
457 458 459
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
M
minqiyang 已提交
460
    pos = name.find(core.grad_var_suffix())
461 462
    new_name = name[:pos] if pos != -1 else name
    new_pos = name.rfind('grad/')
463
    return new_name[new_pos + 5 :] if new_pos != -1 else new_name
F
fengjiayi 已提交
464 465 466


def _append_grad_suffix_(name):
467 468 469 470
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
471
    return name + core.grad_var_suffix()
F
fengjiayi 已提交
472 473


474 475 476
def _accumulate_gradients_by_sum_op_(
    var_name, renamed_vars, pending_sum_ops, op_idx, op_device=""
):
477 478 479 480 481 482
    """
    Use sum op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    pending_sum_ops[op_idx].append(
483 484 485 486 487 488 489
        _create_op_desc_(
            "sum",
            {"X": renamed_vars[var_name]},
            {"Out": [var_name]},
            {"use_mkldnn": False, "op_device": op_device},
        )
    )
490 491 492
    renamed_vars[var_name] = [var_name]


493 494 495
def _accumulate_gradients_by_add_ops_(
    var_name, renamed_vars, pending_sum_ops, op_idx, op_device=""
):
496 497 498 499 500 501 502 503 504 505 506 507 508 509
    """
    Use several inplace add op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    out_name = renamed_vars[var_name][0]
    for i in range(1, len(renamed_vars[var_name])):
        x_name = out_name
        y_name = renamed_vars[var_name][i]
        if i != len(renamed_vars[var_name]) - 1:
            out_name = var_name + '@ADD@' + str(i)
        else:
            out_name = var_name
        pending_sum_ops[op_idx].append(
510 511 512 513 514 515 516
            _create_op_desc_(
                "grad_add",
                {"X": [x_name], "Y": [y_name]},
                {"Out": [out_name]},
                {"use_mkldnn": False, "op_device": op_device},
            )
        )
517 518 519
    renamed_vars[var_name] = [var_name]


520 521 522
def _addup_repetitive_outputs_(
    op_descs, block_idx, grad_var_to_var=None, grad_op_id_to_fwd_op=None
):
523 524
    """
    In backward part, an variable may be the output of more than one ops.
F
fengjiayi 已提交
525 526
    And one op may yield its multiple outputs to the same variable.
    In these cases, the variable should be the accumulation of all the outputs.
527
    `sum_op`s are added to implement the accumulate.
528 529 530 531

    Args:
        grad_var_to_var(dict): used to build the mapping between grad var name and forward var name.
        Only for auto parallel.
532
    """
533

534
    _MAX_ADD_NUM_ = framework._global_flags()['FLAGS_max_inplace_grad_add']
535
    # pending_sum_ops = []
536
    pending_sum_ops = collections.OrderedDict()
F
update  
fengjiayi 已提交
537
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
538
    renamed_vars = collections.defaultdict(list)
539
    renamed_var_start_idx = collections.defaultdict(list)
540
    var_device = collections.defaultdict(str)
F
fengjiayi 已提交
541
    for idx, op_desc in enumerate(op_descs):
542 543
        op_device_attr_name = (
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
T
tangwei12 已提交
544 545 546 547
        )
        op_device = ""
        if op_desc.has_attr(op_device_attr_name):
            op_device = op_desc.attr(op_device_attr_name)
F
update  
fengjiayi 已提交
548
        for var_name in op_desc.input_arg_names():
M
mapingshuo 已提交
549 550
            if "@GRAD" not in var_name:
                continue
F
fengjiayi 已提交
551
            if len(renamed_vars[var_name]) > 1:
552
                if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
553 554 555 556 557 558 559
                    _accumulate_gradients_by_sum_op_(
                        var_name,
                        renamed_vars,
                        pending_sum_ops,
                        idx,
                        var_device[var_name],
                    )
560
                else:
561 562 563 564 565 566 567
                    _accumulate_gradients_by_add_ops_(
                        var_name,
                        renamed_vars,
                        pending_sum_ops,
                        idx,
                        var_device[var_name],
                    )
568

F
update  
fengjiayi 已提交
569
        for param_idx, param_name in enumerate(op_desc.output_names()):
F
fengjiayi 已提交
570 571
            arg_names = op_desc.output(param_name)
            for arg_idx, var_name in enumerate(arg_names):
M
mapingshuo 已提交
572 573
                if "@GRAD" not in var_name:
                    continue
T
tangwei12 已提交
574
                # if "@RENAME@" in var_name:
M
mapingshuo 已提交
575
                #    continue
576 577 578 579
                if (
                    var_name == core.empty_var_name()
                    or var_name in op_desc.input_arg_names()
                ):
F
fengjiayi 已提交
580 581 582 583 584
                    # empty variable or inplace op
                    continue
                if len(renamed_vars[var_name]) == 0:
                    # it's the first time we get the variable
                    renamed_vars[var_name] = [var_name]
585
                    renamed_var_start_idx[var_name] = idx
F
fengjiayi 已提交
586 587
                else:
                    if len(renamed_vars[var_name]) == 1:
588 589 590 591 592 593 594
                        new_name = (
                            var_name
                            + "@RENAME@block"
                            + str(block_idx)
                            + "@"
                            + str(var_rename_count[var_name])
                        )
F
fengjiayi 已提交
595
                        var_rename_count[var_name] += 1
596 597 598 599
                        # Build the mapping between the new_name and var_name (Only for auto parallel)
                        if grad_var_to_var is not None:
                            if var_name in grad_var_to_var:
                                grad_var_to_var[new_name] = grad_var_to_var[
600 601
                                    var_name
                                ]
602 603
                            else:
                                grad_var_to_var[new_name] = var_name
F
fengjiayi 已提交
604 605
                        # rename original var_name
                        renamed_vars[var_name][0] = new_name
606 607 608 609
                        # before change: _rename_arg_(op_descs, var_name,
                        #                             new_name, 0, idx)
                        # rename arg from idx of the first appearance
                        # in backward, not always from 0
610 611 612 613 614 615 616
                        _rename_arg_(
                            op_descs,
                            var_name,
                            new_name,
                            renamed_var_start_idx[var_name],
                            idx,
                        )
F
fengjiayi 已提交
617 618
                        _rename_arg_(pending_sum_ops, var_name, new_name)

F
update  
fengjiayi 已提交
619 620 621
                        for p in op_desc.output_names()[:param_idx]:
                            p_arg_names = op_desc.output(p)
                            if var_name in p_arg_names:
622 623 624 625 626 627 628
                                op_desc.set_output(
                                    p,
                                    [
                                        new_name if x == var_name else x
                                        for x in p_arg_names
                                    ],
                                )
F
update  
fengjiayi 已提交
629 630 631 632 633 634

                        arg_names = [
                            new_name if x == var_name else x
                            for x in arg_names[:arg_idx]
                        ] + arg_names[arg_idx:]

635 636 637 638 639 640 641
                    new_name = (
                        var_name
                        + "@RENAME@block"
                        + str(block_idx)
                        + "@"
                        + str(var_rename_count[var_name])
                    )
F
fengjiayi 已提交
642
                    var_rename_count[var_name] += 1
643 644 645 646
                    # Build the mapping between the new_name and var_name (Only for auto parallel)
                    if grad_var_to_var is not None:
                        if var_name in grad_var_to_var:
                            grad_var_to_var[new_name] = grad_var_to_var[
647 648
                                var_name
                            ]
649 650
                        else:
                            grad_var_to_var[new_name] = var_name
F
fengjiayi 已提交
651 652 653
                    arg_names[arg_idx] = new_name
                    op_desc.set_output(param_name, arg_names)
                    renamed_vars[var_name].append(new_name)
W
WangXi 已提交
654
                    # record the latest device
655
                    var_device[var_name] = op_device
F
update  
fengjiayi 已提交
656

657
    for var_name, inputs in renamed_vars.items():
658 659
        if len(renamed_vars[var_name]) > 1:
            if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
660 661 662 663 664 665 666
                _accumulate_gradients_by_sum_op_(
                    var_name,
                    renamed_vars,
                    pending_sum_ops,
                    len(op_descs),
                    var_device[var_name],
                )
667
            else:
668 669 670 671 672 673 674
                _accumulate_gradients_by_add_ops_(
                    var_name,
                    renamed_vars,
                    pending_sum_ops,
                    len(op_descs),
                    var_device[var_name],
                )
675

676
    op_descs_len = len(op_descs)
F
fengjiayi 已提交
677
    # sum_op descs are sorted according to their insert position
678
    for key, value in collections.OrderedDict(
679 680
        reversed(list(pending_sum_ops.items()))
    ).items():
681 682 683 684 685 686 687

        # NOTE(zhiqiu): Since reversed, the idx of op_descs to be inserted will remains correct.
        # For example, [0, 1, 2], and we want to insert 'a' at idx 1, 'b' at idx 2, and the expected result is [0, 1, 'a', 2, 'b'].
        # If reversed, we first insert 'b' at idx 2, it becomes [0, 1, 2, 'b'], and then insert 'a' at idx 1, it becomes [0, 1, 'a', 2, 'b'].
        # If not reverse, we first insert 'a' at idx 1, it becomes [0, 1, 'a', 2], and then insert 'b' at idx 2, it becomes [0, 1, 'a', 'b', 2].
        idx = key
        for i, op in enumerate(value):
688 689
            # update the mapping between fwd and bwd
            target_idx = idx - 1 if idx == op_descs_len else idx + i
690 691 692 693 694 695 696
            if (
                grad_op_id_to_fwd_op is not None
                and grad_op_id_to_fwd_op.get(
                    op_descs[target_idx].original_id(), None
                )
                is not None
            ):
697
                grad_op_id_to_fwd_op[op.original_id()] = grad_op_id_to_fwd_op[
698 699
                    op_descs[target_idx].original_id()
                ]
700
            op_descs.insert(idx + i, op)
F
fengjiayi 已提交
701 702 703 704

    return op_descs


705 706 707
def _remove_no_grad_branch_(
    op_descs, no_grad_set, grad_op_id_to_fwd_op=None, target_vars=[]
):
708 709 710 711
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
712
        2. all grad inputs of the grad op are in 'no_grad_set'
713
    NOTE: we will skip target_vars's grad name.
714
    """
F
fengjiayi 已提交
715 716

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
717 718
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
719
            return True
720 721 722 723
        if _all_in_set_(
            [
                name
                for name in op_desc.input_arg_names()
724
                if name.find(core.grad_var_suffix()) != -1
725 726 727
            ],
            no_grad_set,
        ):
728
            no_grad_set.update(set(out_arg_names) - target_grad_var_names)
F
fengjiayi 已提交
729 730 731
            return True
        return False

F
fengjiayi 已提交
732
    # Remove ops whose outputs are all in no_grad_dict
733
    target_grad_var_names = set(
734 735
        [var.name + core.grad_var_suffix() for var in target_vars]
    )
736
    op_descs = [
737 738
        op_desc
        for op_desc in op_descs
739 740
        if not _op_can_be_removed_(op_desc, no_grad_set)
    ]
741
    # Insert fill_any_like_op with value 0
F
fengjiayi 已提交
742
    to_insert = []
F
fengjiayi 已提交
743
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
744
        for arg in op_desc.input_arg_names():
M
mapingshuo 已提交
745
            # arg is a gradient var name and arg should not have gradient
F
fengjiayi 已提交
746
            if core.grad_var_suffix() in arg and arg in no_grad_set:
747
                x_in = _strip_grad_suffix_(arg)
M
mapingshuo 已提交
748 749
                # the reason should be: arg can be input of another grad op
                # and the op is a not-to-remove op
750 751 752 753 754 755
                new_op_desc = _create_op_desc_(
                    "fill_any_like",
                    {"X": [x_in]},
                    {"Out": [arg]},
                    {'value': 0, 'dtype': -1},
                )
756
                # update the mapping between fwd and bwd
757 758 759 760 761 762 763 764
                if (
                    grad_op_id_to_fwd_op is not None
                    and grad_op_id_to_fwd_op.get(op_desc.original_id(), None)
                    is not None
                ):
                    grad_op_id_to_fwd_op[
                        new_op_desc.original_id()
                    ] = grad_op_id_to_fwd_op[op_desc.original_id()]
765
                to_insert.append((new_op_desc, idx))
F
fengjiayi 已提交
766

767
    list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
F
fengjiayi 已提交
768 769 770 771

    return op_descs


C
chengduo 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
def _find_not_need_ops(grad_op_descs, forward_ops, input_grad_names_set):
    """
    Pruning Program with Structural Analysis Method of Computational Graph.
    The nodes of the computational graph composed of backward OPS should be
    interconnected. If there are unconnected sub-graphs in the computational graph,
    these sub-graphs should be cut off.

    Args:
        grad_op_descs(list[core.OpDesc]): The candidate backward OpDescs.
        forward_ops(list[Operator]): The forward ops.
        input_grad_names_set(set): this set is used to store the gradients' name
            which is generated by backward ops, and input_grad_names_set can help
            to prune the unnecessary backward ops.

    Return:
787
        (set[core.OpDesc]): A set of OpDescs which should be pruned.
C
chengduo 已提交
788 789
    """

790
    class Var:
C
chengduo 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804
        def __init__(self, var_name):
            self.var_name = var_name
            self.gen_op = None
            self.pendding_ops = []

        def set_gen_op(self, gen_op):
            assert isinstance(gen_op, Op)
            assert self.gen_op is None
            self.gen_op = gen_op

        def add_pending_op(self, op):
            assert isinstance(op, Op)
            self.pendding_ops.append(op)

805
    class Op:
C
chengduo 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
        def __init__(self, op_desc):
            self.op_desc = op_desc
            self.inputs = []
            self.outputs = []

        def insert_input(self, var):
            assert isinstance(var, Var)
            self.inputs.append(var)

        def insert_output(self, var):
            assert isinstance(var, Var)
            self.outputs.append(var)

    var_versions = dict()

    def _create_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        else:
            var_versions[name].append(Var(name))
        return var_versions[name][-1]

    def _create_or_get_last_version_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        return var_versions[name][-1]

    def _create_op_node(op_desc):
        op_node = Op(op_desc)
        for input in op_desc.input_arg_names():
            var = _create_or_get_last_version_node(name=input)
            var.add_pending_op(op_node)
            op_node.insert_input(var)
        for output in op_desc.output_arg_names():
            var = _create_node(name=output)
            var.set_gen_op(op_node)
            op_node.insert_output(var)
        return op_node

    # Record the forward vars
846 847 848
    forward_vars_set = (
        set() if input_grad_names_set is None else set(input_grad_names_set)
    )
C
chengduo 已提交
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
    for op in forward_ops:
        forward_vars_set.update(op.desc.input_arg_names())
        forward_vars_set.update(op.desc.output_arg_names())

    # Record the vars which are created during backward and is not generated by op.
    backward_vars_set = set()
    # special_op_nodes is the candidate sub-graph head node.
    special_op_nodes = set()
    for op_desc in grad_op_descs:
        input_set = set(op_desc.input_arg_names())
        # The new_vars are created during backward and is not generated by op.
        new_vars = input_set - forward_vars_set - backward_vars_set
        backward_vars_set.update(op_desc.output_arg_names())

        op_node = _create_op_node(op_desc)
        if len(new_vars) == len(input_set):
            special_op_nodes.add(op_node)

    not_need_op_descs = []
    # Start traversing all candidate sub-graph headers to check whether
    # they are connected to backward computational graphs, and if they are
    # not, list them in not_need_op_descs
    for special_op_node in special_op_nodes:
        op_list = [special_op_node]
        ready_vars = set(special_op_node.inputs)
        remove_ops = True
        candidate_ops = [special_op_node]
        while len(candidate_ops) > 0:
            op_node = candidate_ops.pop(0)
            if _all_in_set_(op_node.inputs, ready_vars):
                for out_var in op_node.outputs:
                    candidate_ops.extend(out_var.pendding_ops)
                    op_list.extend(out_var.pendding_ops)
                ready_vars.update(op_node.outputs)
            else:
                remove_ops = False
                break
        if remove_ops:
            not_need_op_descs.extend([node.op_desc for node in op_list])
888 889 890
    not_need_op_descs_set = set(not_need_op_descs)
    grad_op_descs_set = set(grad_op_descs)
    # If a backward computational graph is simply one sub-graph header, the
891
    # not_need_op_descs will be whole graph, this IF clause avoids it.
892 893 894
    if grad_op_descs_set == not_need_op_descs_set:
        return set()
    return not_need_op_descs_set
C
chengduo 已提交
895 896


Y
Yang Yang 已提交
897 898
def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
899
    proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang 已提交
900 901 902
    return proto.__str__()


903 904 905 906 907 908 909 910 911 912
def _append_backward_ops_with_checkpoints_(
    block,
    ops,
    target_vars,
    target_block,
    no_grad_dict,
    grad_to_var,
    checkpoints,
    grad_op_id_to_fwd_op=None,
):
M
mapingshuo 已提交
913 914 915 916 917 918
    """
    Create grad ops with forward ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
        ops(Op): the forward operators whose forward recomputation backward ops need to be added
919
        target_vars(list[Tensor]): the loss vars we want to calculate gradient.
M
mapingshuo 已提交
920 921 922 923 924 925 926
        target_block(Block): the block which is going to hold new generated grad ops
        no_grad_dict(dict):
            key(int) block index
            val(str): corresponding forward variable name
        checkpoints: variables that a user defined as checkpoint for forward recomputation

    Algorithms:
M
mapingshuo 已提交
927
        0) deal with forward recomputing program descs
M
mapingshuo 已提交
928 929 930 931 932
        1) find ops between checkpoints, i.e. recompute_segments
        2) go through all forward ops and induct all variables that will be hold in memory
            a. variables that are used across segments will be held in memory
            b. output of dropout op will be held in memory
            c. input variables will be held in memory
M
mapingshuo 已提交
933 934 935
        3) go through each recompute_segments, add backward ops with forward recomputation
            a. add ops in current recompute_segment as forward recomputation ops
            b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
936 937
            c. add backward ops of current recomputation ops
            d. add sum op for repetitive_outputs
M
mapingshuo 已提交
938 939
        4) remove no grad branch as it is in _remove_no_grad_branch_
        5) Note1: all appended ops' OpRole are Backward
M
mapingshuo 已提交
940 941
        6) Note2: all variables with new name should be returned so that _append_backward_vars_ can be called
        7) Note3: current forward recomputation backpropagation does not handle programs with subblock
M
mapingshuo 已提交
942
    """
M
mapingshuo 已提交
943 944

    checkpoints_name = [x.name for x in checkpoints]
945
    checkpoints_name = list(set(checkpoints_name))
M
mapingshuo 已提交
946 947
    local_block = block.program._create_block()
    buffer_block = block.program._create_block()
948
    # 0) deal with forward recomputing program descs
M
mapingshuo 已提交
949
    program_stat = ProgramStats(block, ops)
M
mapingshuo 已提交
950
    program_stat.modify_forward_desc_for_recompute()
M
mapingshuo 已提交
951
    program_stat.build_stats()
M
mapingshuo 已提交
952 953

    # 1) find ops between checkpoints, i.e. recompute_segments
954
    checkpoints_name = program_stat.sort_checkpoints(checkpoints_name)
M
mapingshuo 已提交
955 956
    segments = []

957
    if len(checkpoints_name) == 1:
M
mapingshuo 已提交
958 959 960 961 962 963 964
        # only one checkpoint
        max_op_idx = -1
        var_group = [checkpoints_name[0]]
        for name in var_group:
            if name not in program_stat.var_op_deps:
                break
            op_idx = program_stat.var_op_deps[name]["var_as_output_ops"]
J
JZ-LIANG 已提交
965
            # only count the last generate op
M
mapingshuo 已提交
966 967 968 969 970 971
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if max_op_idx > 0:
            segments.append([0, max_op_idx + 1])
    else:
        start_idx = 0
J
JZ-LIANG 已提交
972
        pre_segment_end_idx = -1
M
mapingshuo 已提交
973 974 975
        while True:
            if start_idx >= len(checkpoints_name) - 1:
                break
J
JZ-LIANG 已提交
976 977
            # min_idx: checkpoint_1' s input op
            # max_idx: checkpoint_2' s output op
M
mapingshuo 已提交
978
            flag, min_idx, max_idx = program_stat.is_subgraph(
979 980
                [checkpoints_name[start_idx]], [checkpoints_name[start_idx + 1]]
            )
M
mapingshuo 已提交
981
            if flag:
J
JZ-LIANG 已提交
982 983
                # max_idx + 1 since the exact and used segment end idx is max_idx
                min_idx = program_stat._update_segment_start(
984 985
                    min_idx, pre_segment_end_idx
                )
M
mapingshuo 已提交
986
                segments.append([min_idx, max_idx + 1])
987
            else:
988 989 990 991 992
                _logger.info(
                    "Could not recompute op range [{}] - [{}] ".format(
                        min_idx, max_idx + 1
                    )
                )
J
JZ-LIANG 已提交
993

M
mapingshuo 已提交
994 995 996 997 998 999
            start_idx += 1

    if segments != [] and segments[0][0] != 0:
        recompute_segments = [[0, segments[0][0]]] + segments
    else:
        recompute_segments = segments
M
mapingshuo 已提交
1000

J
JZ-LIANG 已提交
1001
    for i, (idx1, idx2) in enumerate(recompute_segments):
1002
        _logger.info("recompute segment[{}]".format(i))
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
        _logger.info(
            "segment start op: [{}]: [{}]".format(
                ops[idx1].desc.type(), ops[idx1].desc.input_arg_names()
            )
        )
        _logger.info(
            "segment end op: [{}]: [{}]".format(
                ops[idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()
            )
        )
1013
        _logger.info("recompute segment[{}]".format(i))
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
        _logger.info(
            "segment start op: [{}]: [{}]".format(
                ops[idx1].desc.type(), ops[idx1].desc.input_arg_names()
            )
        )
        _logger.info(
            "segment end op: [{}]: [{}]".format(
                ops[idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()
            )
        )
J
JZ-LIANG 已提交
1024

M
mapingshuo 已提交
1025
    # 2) go through all forward ops and induct all variables that will be hold in memory
M
mapingshuo 已提交
1026
    vars_should_be_hold = []
1027
    # a. variables that are used across segments will be held in memory
M
mapingshuo 已提交
1028 1029
    for segment in recompute_segments:
        vars_should_be_hold.extend(
1030 1031
            program_stat.get_out_of_subgraph_vars(segment[0], segment[1])
        )
J
JZ-LIANG 已提交
1032 1033

    cross_vars = set(vars_should_be_hold) - set(checkpoints_name)
1034 1035 1036 1037 1038
    _logger.info(
        "found [{}] vars which cross recompute segment: [{}], better checkpoints might be set to reduce those vars".format(
            len(cross_vars), cross_vars
        )
    )
J
JZ-LIANG 已提交
1039

M
mapingshuo 已提交
1040
    # b. output of seed op should be kept in memory
M
mapingshuo 已提交
1041
    vars_should_be_hold.extend(program_stat.get_reserved_vars())
M
mapingshuo 已提交
1042
    # c. input variables are checkpoints
M
mapingshuo 已提交
1043 1044 1045
    vars_should_be_hold.extend(program_stat.get_input_nodes())
    vars_should_be_hold = list(set(vars_should_be_hold))

M
mapingshuo 已提交
1046
    # 3) go through each recompute_segments, add backward ops with forward recomputation
M
mapingshuo 已提交
1047 1048 1049 1050 1051 1052
    grad_op_descs = []
    var_name_dict = {}

    vars_in_memory = vars_should_be_hold + checkpoints_name

    max_calculated_op_position = len(ops)
1053
    device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
mapingshuo 已提交
1054 1055 1056 1057
    if recompute_segments == []:
        gap_ops = ops[0:max_calculated_op_position]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
1058 1059 1060 1061 1062
                raise Exception(
                    "Recompute don't support ops with sub_block"
                    "invoke op: %s"
                    % _pretty_op_desc_(op.desc, "with_sub_block")
                )
M
mapingshuo 已提交
1063
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
1064 1065
                op.desc, no_grad_dict[block.idx], []
            )
1066 1067 1068 1069 1070 1071

            # record the mapping between fwd and bwd
            if grad_op_id_to_fwd_op is not None:
                for op_desc in grad_op_desc:
                    grad_op_id_to_fwd_op[op_desc.original_id()] = op

1072 1073 1074 1075 1076
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
1077 1078 1079
            added_descs = _add_descs_to_block(
                grad_op_desc, local_block, grad_op_id_to_fwd_op
            )
M
mapingshuo 已提交
1080 1081 1082 1083
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

    for i, segment in enumerate(recompute_segments[::-1]):
1084
        gap_ops = ops[segment[1] : max_calculated_op_position]
M
mapingshuo 已提交
1085 1086 1087
        max_calculated_op_position = segment[0]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
1088 1089 1090 1091 1092
                raise Exception(
                    "Recompute don't support ops with sub_block"
                    "invoke op: %s"
                    % _pretty_op_desc_(op.desc, "with_sub_block")
                )
M
mapingshuo 已提交
1093
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
1094 1095
                op.desc, no_grad_dict[block.idx], []
            )
1096 1097 1098 1099 1100 1101

            # record the mapping between fwd and bwd
            if grad_op_id_to_fwd_op is not None:
                for op_desc in grad_op_desc:
                    grad_op_id_to_fwd_op[op_desc.original_id()] = op

1102 1103 1104 1105 1106
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
1107 1108 1109
            added_descs = _add_descs_to_block(
                grad_op_desc, local_block, grad_op_id_to_fwd_op
            )
M
mapingshuo 已提交
1110 1111 1112
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

1113
        ff_ops = ops[segment[0] : segment[1]]
M
mapingshuo 已提交
1114 1115 1116 1117
        var_suffix = ".subprog_%d" % i

        for op in ff_ops:
            if op.has_attr("sub_block"):
1118 1119 1120 1121 1122
                raise Exception(
                    "Recompute don't support ops with sub_block"
                    "invoke op: %s"
                    % _pretty_op_desc_(op.desc, "with_sub_block")
                )
M
mapingshuo 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
            input_and_output_names = []
            input_and_output_names.extend(op.desc.input_arg_names())
            input_and_output_names.extend(op.desc.output_arg_names())
            for name in input_and_output_names:
                if block.var(name).persistable or name in checkpoints_name:
                    continue
                if name in vars_should_be_hold:
                    continue
                if name not in var_name_dict:
                    var_name_dict[name] = name + var_suffix
1133 1134 1135

                    # we should create the rename var in subprog, otherwise its VarType will be BOOL
                    ref_var = block.program.global_block().var(name)
1136 1137 1138 1139 1140 1141 1142 1143
                    block.create_var(
                        name=var_name_dict[name],
                        shape=ref_var.shape,
                        dtype=ref_var.dtype,
                        type=ref_var.type,
                        persistable=ref_var.persistable,
                        stop_gradient=ref_var.stop_gradient,
                    )
1144

M
mapingshuo 已提交
1145
        # 3.a. add ops in current recompute_segment as forward recomputation ops
1146 1147 1148 1149 1150 1151
        buffer_descs = _add_needed_descs_to_block(
            ff_ops, buffer_block, block, vars_in_memory, grad_op_id_to_fwd_op
        )
        added_descs = _add_descs_to_block(
            ff_ops, local_block, grad_op_id_to_fwd_op
        )
M
mapingshuo 已提交
1152

M
mapingshuo 已提交
1153
        # 3.b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
1154 1155 1156 1157 1158 1159
        for key in var_name_dict:
            _rename_arg_(buffer_descs, key, var_name_dict[key])

        # added_descs should be in grad_op_descs because it is backward op desc
        grad_op_descs.extend(buffer_descs)

1160
        # 3.c. add backward ops for all ops in current segment
M
mapingshuo 已提交
1161 1162
        for op_desc in reversed(added_descs):
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
1163 1164
                op_desc, no_grad_dict[block.idx], []
            )
1165

1166 1167 1168
            # record the mapping between fwd and bwd
            if grad_op_id_to_fwd_op is not None:
                for g_op_desc in grad_op_desc:
1169 1170 1171
                    grad_op_id_to_fwd_op[
                        g_op_desc.original_id()
                    ] = grad_op_id_to_fwd_op[op_desc.original_id()]
1172

1173 1174 1175 1176 1177 1178
            # Set device for grad_op according to forward Op
            if op_desc.has_attr(device_attr_name):
                op_device = op_desc.attr(device_attr_name)
                for g_op_desc in grad_op_desc:
                    g_op_desc._set_attr(device_attr_name, op_device)

M
mapingshuo 已提交
1179 1180 1181 1182 1183
            for key in var_name_dict:
                _rename_arg_(grad_op_desc, key, var_name_dict[key])
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)

M
mapingshuo 已提交
1184
    # 3.d. add sum op for repetitive_outputs
1185
    grad_op_descs = _addup_repetitive_outputs_(
1186 1187
        grad_op_descs, block.idx, grad_op_id_to_fwd_op=grad_op_id_to_fwd_op
    )
M
mapingshuo 已提交
1188
    # 4) remove no grad branch as it is in _remove_no_grad_branch_
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
    grad_op_descs = _remove_no_grad_branch_(
        grad_op_descs,
        no_grad_dict[block.idx],
        grad_op_id_to_fwd_op,
        target_vars,
    )
    added_descs = _add_descs_to_block(
        grad_op_descs, target_block, grad_op_id_to_fwd_op
    )
    return (
        program_stat,
        checkpoints_name,
        vars_should_be_hold,
        recompute_segments,
    )


def _get_sub_block_path(
    sub_block,
    sub_block_op_desc,
    no_grad_set,
    op_path_dict,
    sub_block_target_names=None,
):
1213 1214
    """
    Get output vars in subblock which will be assigned to parent block.
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
    It is used to find the grad path in subblock.

    Args:
        sub_block(Block): The sub-block in which to get op path.
        sub_block_op_desc: The op desc of the sub-block op such as 'while', 'conditional_block' and 'recurrent'.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        sub_block_target_names(set): Target var names of sub-block.
    Return:
        The forward op path of sub-block corresponding to backward op.
1227
    """
1228

1229
    assert sub_block_op_desc.has_attr(
1230 1231
        "sub_block"
    ) and sub_block.idx == sub_block_op_desc._block_attr_id("sub_block")
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
    assert isinstance(sub_block_target_names, (set, type(None)))

    if sub_block_target_names is None:
        sub_block_target_names = sub_block_op_desc.output_arg_names

    # TODO(huihuangzheng): add support for recurrent op.
    if sub_block_op_desc.type in ["conditional_block", "while"]:
        # Step1: get the output vars in sub-block
        sub_outputs = [
            sub_block._var_recursive(var) for var in sub_block_target_names
        ]
        for var in sub_block_target_names:
1244
            for op_desc in sub_block.ops:
1245
                if var in op_desc.output_arg_names:
1246
                    for name in op_desc.input_arg_names:
1247
                        sub_outputs.append(sub_block._var_recursive(name))
1248

1249 1250
        # Step2: find op path of sub-block
        is_while = sub_block_op_desc.type in ["while"]
1251 1252 1253
        sub_block_op_path = _find_op_path_(
            sub_block, sub_outputs, [], no_grad_set, op_path_dict, is_while
        )
1254 1255 1256 1257
        return sub_block_op_path
    return sub_block.ops


1258 1259 1260
def _is_grad_op_(op):
    op_maker = core.op_proto_and_checker_maker
    backward = core.op_proto_and_checker_maker.OpRole.Backward
1261 1262 1263
    if op_maker.kOpRoleVarAttrName() in op.attr_names and int(
        op.all_attrs()[op_maker.kOpRoleAttrName()]
    ) == int(backward):
1264 1265 1266 1267 1268 1269 1270 1271
        return True
    return False


def _rename_grad_name_(name, grad_order):
    return 'grad/' * grad_order + name


1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
def _append_backward_ops_(
    block,
    ops,
    target_vars,
    target_block,
    no_grad_dict,
    grad_to_var,
    callbacks=None,
    input_grad_names_set=None,
    op_path_dict=None,
    distop_context=None,
    rename_var_map=None,
    grad_op_id_to_fwd_op=None,
):
1286 1287 1288 1289 1290
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
1291
        ops(Op): the forward operators whose backward ops need to be added
1292
        target_vars(list[Tensor]): the loss vars we want to calculate gradient.
1293
        target_block(Block): the block which is going to hold new generated grad ops
1294
        no_grad_dict(dict):
1295
            key(int)  block index
T
tianshuo78520a 已提交
1296
            val(set) a set of variable names. These variables have no gradient
1297 1298 1299
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
C
chengduo 已提交
1300 1301 1302 1303
        callbacks(callable object): a callable object used to decorate new generated grad ops
        input_grad_names_set(set): this set is used to store the gradients' name which is
            generated by backward ops, and input_grad_names_set can help to prune the unnecessary
            backward ops.
1304 1305 1306
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
1307 1308
        rename_var_map(dict): used to associate target_grad var name with first grad_op input name.
            Only used in for high order gradient.
1309
    """
1310 1311

    # Build the mapping between the forward op and backward op (Only for auto parallel)
1312 1313 1314
    def update_distop_context(
        distop_context, op_grad_to_var, appending_grad_times
    ):
1315
        distop_context.grad_var_to_var[appending_grad_times].update(
1316 1317
            op_grad_to_var
        )
1318
        for op_desc in grad_op_desc:
1319 1320 1321
            assert (
                op_desc.original_id() not in distop_context.grad_op_id_to_op_id
            )
1322
            distop_context.grad_op_id_to_op_id[
1323 1324
                op_desc.original_id()
            ] = op.desc.original_id()
1325

Y
Yang Yang 已提交
1326
    if callbacks is not None:
1327
        assert isinstance(callbacks, (list, tuple))
Y
Yang Yang 已提交
1328 1329 1330
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
1331

F
fengjiayi 已提交
1332
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
1333 1334
    grad_op_descs = []
    program = block.program
1335

1336 1337 1338
    if rename_var_map is None:
        rename_var_map = {}
    assert isinstance(rename_var_map, dict)
1339

1340
    # add grad_op_desc by reversed ops
1341
    for op in reversed(ops):
F
fengjiayi 已提交
1342 1343 1344
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
W
Wu Yi 已提交
1345
            sub_block = program.block(op._block_attr_id("sub_block"))
W
Wu Yi 已提交
1346
            grad_sub_block = program._create_block()
W
Wu Yi 已提交
1347
            grad_sub_block._set_forward_block_idx(sub_block.idx)
1348 1349 1350
            # see follwing comments for why set None here.
            pre_input_grad_names_set = copy.copy(input_grad_names_set)
            input_grad_names_set = None
1351
            sub_block_path = op_path_dict[op._block_attr_id("sub_block")]
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
            _append_backward_ops_(
                sub_block,
                sub_block_path,
                target_vars,
                grad_sub_block,
                no_grad_dict,
                grad_to_var,
                callbacks,
                input_grad_names_set,
                op_path_dict,
                grad_op_id_to_fwd_op=grad_op_id_to_fwd_op,
            )
1364
            input_grad_names_set = pre_input_grad_names_set
Y
Yu Yang 已提交
1365

W
Wu Yi 已提交
1366
            program._rollback()
F
fengjiayi 已提交
1367 1368
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
1369
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
1370
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
1371 1372
            op.desc, no_grad_dict[block.idx], grad_sub_block_list
        )
1373

1374 1375 1376 1377 1378
        # record the mapping between fwd and bwd
        if grad_op_id_to_fwd_op is not None:
            for op_desc in grad_op_desc:
                grad_op_id_to_fwd_op[op_desc.original_id()] = op

1379
        # Build the mapping between the forward op and backward op (Only for auto parallel)
1380
        if distop_context is not None:
1381 1382 1383
            update_distop_context(
                distop_context, op_grad_to_var, program._appending_grad_times
            )
1384
        else:
1385 1386 1387 1388 1389
            default_ctx = getattr(
                paddle.distributed.auto_parallel.dist_context,
                '_g_default_distributed_context',
                None,
            )
1390 1391
            if default_ctx is not None:
                distop_context = default_ctx.dist_op_context
1392 1393 1394 1395 1396
                update_distop_context(
                    distop_context,
                    op_grad_to_var,
                    program._appending_grad_times,
                )
Y
Yang Yu 已提交
1397

1398 1399
        # Set device for grad_op according to forward Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
1400 1401 1402 1403
        if op.desc.has_attr(device_attr_name):
            op_device = op.desc.attr(device_attr_name)
            for op_desc in grad_op_desc:
                op_desc._set_attr(device_attr_name, op_device)
1404

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
        # Rename internal gradient variables in multiple backward
        # so that they have different names with previous backward.
        # For example:
        #  y = x * x, grad = fluid.gradients(fluid.gradients(y, x) + y * y, x)
        # In second-time backward, gradient variable names of partial
        # forward network (y * y) may be have same names with first-time
        # fluid.gradients(y, x).
        # So rename here before _addup_repetitive_outputs_.
        if program._appending_grad_times > 1:
            for op_desc in grad_op_desc:
T
Tongxin Bai 已提交
1415 1416 1417 1418
                forward_op_inputs = op.desc.input_arg_names()
                for name in op_desc.input_arg_names():
                    if name in rename_var_map and name not in forward_op_inputs:
                        op_desc._rename_input(name, rename_var_map[name])
1419 1420 1421 1422 1423
                for name in op_desc.output_arg_names():
                    if "@GRAD" not in name:
                        continue
                    if block.desc.find_var(name.encode("ascii")):
                        new_name = _rename_grad_name_(
1424 1425
                            name, program._appending_grad_times
                        )
1426 1427 1428 1429
                        op_desc._rename_output(name, new_name)
                        rename_var_map[name] = new_name

                        if name in op_grad_to_var:
1430 1431 1432
                            # Build the mapping between the grad var name and var name (Only for auto parallel)
                            if distop_context is not None:
                                distop_context.grad_var_to_var[
1433 1434
                                    program._appending_grad_times
                                ][new_name] = op_grad_to_var[name]
1435 1436 1437
                            op_grad_to_var[new_name] = op_grad_to_var[name]
                            op_grad_to_var.pop(name)

1438 1439 1440 1441 1442
        # If input_grad_names_set is not None, extend grad_op_descs only when
        # any input grad in outputs of previous grad ops.
        # But this strategy is not suited for while op for some control flow,
        # for example, for while op, the grads maybe generated in next loop.
        if input_grad_names_set is not None:
1443 1444 1445 1446
            is_grad_name = (
                lambda name: name.find(core.grad_var_suffix()) != -1
                or name in input_grad_names_set
            )
1447 1448 1449
            is_append_grad = False
            for op_desc in grad_op_desc:
                input_grad_names = [
1450 1451
                    name
                    for name in op_desc.input_arg_names()
1452
                    if is_grad_name(name)
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
                ]
                # some code of gradient ops, like increment, are not very
                # standard, there is no @GRAD in these ops' inputs.
                if len(input_grad_names) == 0:
                    is_append_grad = True
                    break

                if _some_in_set_(input_grad_names, input_grad_names_set):
                    grad_op_descs.append(op_desc)
                    is_append_grad = True
                    for name in op_desc.output_arg_names():
                        input_grad_names_set.add(name)
            if is_append_grad:
                grad_to_var.update(op_grad_to_var)
        else:
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)
F
fengjiayi 已提交
1470

1471 1472 1473 1474
    # record mapping bewteen grad var name and var name (Only for auto parallel)
    grad_var_to_var = None
    if distop_context is not None:
        grad_var_to_var = distop_context.grad_var_to_var[
1475 1476
            program._appending_grad_times
        ]
M
mapingshuo 已提交
1477
    # sum parameter's gradients' var given multiple var gradient
1478 1479 1480 1481
    grad_op_descs = _addup_repetitive_outputs_(
        grad_op_descs,
        block.idx,
        grad_var_to_var,
1482 1483
        grad_op_id_to_fwd_op=grad_op_id_to_fwd_op,
    )
F
fengjiayi 已提交
1484

M
mapingshuo 已提交
1485 1486
    # if all outputs of the grad op are in no_grad_set, then just remove and fill zero
    # if all inputs of the grad op are in no_grad_set, just remove this op
1487 1488 1489 1490 1491 1492
    grad_op_descs = _remove_no_grad_branch_(
        grad_op_descs,
        no_grad_dict[block.idx],
        grad_op_id_to_fwd_op,
        target_vars,
    )
F
fengjiayi 已提交
1493

M
mapingshuo 已提交
1494
    # remove some backward ops
1495
    # TODO(Jiabin): Support this in prime later, it will prune add_grad, fix this problem
1496
    if not core._is_bwd_prim_enabled():
1497 1498 1499 1500 1501 1502
        not_need_ops = _find_not_need_ops(
            grad_op_descs, ops, input_grad_names_set
        )
        grad_op_descs = [
            op_desc for op_desc in grad_op_descs if op_desc not in not_need_ops
        ]
1503 1504
    else:
        logging.debug("Runing backward composite and disable find_not_need_ops")
1505

F
fengjiayi 已提交
1506
    # append op_desc in grad_op_descs to target_block
Y
yuyang18 已提交
1507 1508
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
F
update  
fengjiayi 已提交
1509
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
1510 1511
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
W
Wu Yi 已提交
1512
        new_op_desc._set_attr(op_role_attr_name, backward)
Y
Yang Yang 已提交
1513
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
1514
        if callbacks is not None:
1515
            assert isinstance(callbacks, (list, tuple))
Y
Yang Yang 已提交
1516 1517
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
1518

F
fengjiayi 已提交
1519

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
def _is_grad_var_(var_name):
    return core.grad_var_suffix() in var_name


# Find the op who holds the sub_block as its "sub_block" attr
def _find_parent_op_(sub_block):
    sub_block_id = sub_block.idx

    if sub_block_id == 0:
        return None

    program = sub_block.program
1532
    for block_id in range(program.num_blocks):
1533
        block_desc = program.block(block_id).desc
1534
        for op_idx in range(block_desc.op_size()):
1535
            op = block_desc.op(op_idx)
1536 1537 1538 1539
            if (
                op.has_attr("sub_block")
                and op._block_attr_id("sub_block") == sub_block_id
            ):
1540 1541
                return op

1542
    # NOTE(paddle-dev): When optimizer is added in conditional block,
1543 1544 1545 1546
    # sub_block may not be found.
    return None


F
fengjiayi 已提交
1547
def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
1560
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
1561
    """
1562 1563
    ops_to_remove = []
    '''
1564 1565 1566 1567 1568
    NOTE(paddle-dev): while_grad op may hold some inputs which are not found
    in the parent/forward block, and they are also the outputs of while_grad
    op. These kinds of inputs are the recursive outputs inside while_grad op.
    They should be considered as "already created" when scanning the inner
    ops of while_grad ops.
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
    '''
    parent_op = _find_parent_op_(block)
    parent_op_vars = []
    if parent_op is not None:
        input_args = parent_op.input_arg_names()
        output_args = parent_op.output_arg_names()
        for in_arg in input_args:
            if in_arg in output_args:
                parent_op_vars.append(in_arg)

F
fengjiayi 已提交
1579 1580 1581
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
W
Wu Yi 已提交
1582
            sub_block = block.program.block(op_desc._block_attr_id("sub_block"))
F
fengjiayi 已提交
1583
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
1584 1585 1586 1587 1588 1589 1590 1591 1592

        grad_var_ins = [
            var for var in op_desc.input_arg_names() if _is_grad_var_(var)
        ]
        grad_var_outs = [
            var for var in op_desc.output_arg_names() if _is_grad_var_(var)
        ]

        inputs = [
1593 1594
            var
            for var in op_desc.input_arg_names()
1595 1596 1597
            if var != core.empty_var_name()
        ]
        outputs = [
1598 1599
            var
            for var in op_desc.output_arg_names()
1600 1601 1602
            if var != core.empty_var_name()
        ]

1603
        # If the outputs of grad op is empty, just remove it
1604 1605 1606 1607 1608
        if not outputs:
            ops_to_remove.append(op_idx)
            continue
        else:
            '''
1609
            If the output is not empty and there is any grad input, find
1610 1611 1612 1613
            whether there is any existing input. If not, just remove it.
            '''
            if grad_var_ins:
                existing_grad_var_ins = [
1614 1615
                    var
                    for var in grad_var_ins
1616
                    if block.desc.has_var_recursive(var.encode())
1617
                    or var in parent_op_vars
1618 1619 1620 1621
                ]
                if not existing_grad_var_ins:
                    '''
                    FIXME(paddle-dev, zengjinle): rnn_memory_helper_grad is used
1622 1623
                    in recurrent op. The input of this op does not even exist in
                    the program! Therefore, any dependency analysis would not
1624
                    work to this op! If I do not add the following code, this op
1625 1626
                    would be pruned, and the calculation result would be wrong.
                    Maybe we should re-design this op later...
1627 1628 1629
                    '''
                    if op_desc.type() not in ['rnn_memory_helper_grad']:
                        ops_to_remove.append(op_idx)
1630
                        continue
1631

F
fengjiayi 已提交
1632 1633 1634
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
1635 1636 1637 1638
            if (
                block.desc.has_var_recursive(grad_var_name.encode())
                or grad_var_name == core.empty_var_name()
            ):
F
fengjiayi 已提交
1639
                continue
1640
            block.desc.var(grad_var_name.encode())
F
fengjiayi 已提交
1641
            new_vars.add(grad_var_name)
1642
            if grad_var_name not in grad_to_var:
F
fengjiayi 已提交
1643 1644 1645
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
H
hong 已提交
1646
        op_desc.check_attrs()
F
fengjiayi 已提交
1647 1648
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
1649

F
fengjiayi 已提交
1650 1651
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
1652
                _infer_var_data_type_shape_(arg, block)
F
update  
fengjiayi 已提交
1653

1654 1655 1656
    for op_idx in reversed(ops_to_remove):
        block.desc._remove_op(op_idx, op_idx + 1)

F
update  
fengjiayi 已提交
1657

1658 1659 1660 1661 1662 1663
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
W
Wu Yi 已提交
1664
                op_desc._rename_input(name, var_map[name])
1665 1666

        for name in op_desc.output_arg_names():
M
mapingshuo 已提交
1667 1668
            if "@GRAD" not in name:
                continue
1669
            if block.desc.find_var(name.encode("ascii")):
Y
Yu Yang 已提交
1670
                new_name = unique_name.generate(name)
W
Wu Yi 已提交
1671
                op_desc._rename_output(name, new_name)
1672 1673
                var_map[name] = new_name

1674
    for g, ng in var_map.items():
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
1686
        for var in list(block.vars.values()):
1687 1688 1689 1690 1691 1692 1693
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
def _get_son_parent_block_idx_dict(program, current_block_idx):

    son_parent_block_idx_dict = collections.OrderedDict()
    while current_block_idx >= 0:
        parent_block_idx = program.block(current_block_idx).parent_idx
        son_parent_block_idx_dict[current_block_idx] = parent_block_idx
        current_block_idx = parent_block_idx

    return son_parent_block_idx_dict


1705 1706 1707 1708 1709 1710 1711
def _get_no_grad_set_name(no_grad_set):
    no_grad_set_name = set()
    if no_grad_set is not None:
        if isinstance(no_grad_set, (set, list, tuple)):
            for i, no_grad_var in enumerate(no_grad_set):
                if isinstance(no_grad_var, framework.Variable):
                    no_grad_set_name.add(no_grad_var.name)
1712
                elif isinstance(no_grad_var, str):
1713 1714 1715 1716
                    no_grad_set_name.add(no_grad_var)
                else:
                    raise TypeError(
                        "The type of no_grad_set's member must be paddle.fluid.Variable or str, but received %s."
1717 1718
                        % (type(no_grad_var))
                    )
1719 1720
        else:
            raise TypeError(
1721 1722 1723 1724
                "The type of no_grad_set should be set or list or tuple, but received {}".format(
                    type(no_grad_set)
                )
            )
1725 1726 1727
    return no_grad_set_name


1728
@framework.static_only
1729 1730 1731 1732 1733 1734 1735 1736
def append_backward(
    loss,
    parameter_list=None,
    no_grad_set=None,
    callbacks=None,
    checkpoints=None,
    distop_context=None,
):
1737
    """
1738 1739
    :api_attr: Static Graph

1740
    This function appends backward part to main_program.
F
fengjiayi 已提交
1741

1742 1743
    A complete neural network training is made up of forward and backward
    propagation. However, when we configure a network, we only need to
1744 1745
    specify its forward part. This function uses the chain rule to automatically
    generate the backward part according to the forward part.
F
fengjiayi 已提交
1746

1747 1748
    In most cases, users do not need to invoke this function manually.
    It will be automatically invoked by the optimizer's `minimize` function.
F
fengjiayi 已提交
1749

1750
    Parameters:
1751
        loss(Tensor): The loss Tensor of the network.
1752
        parameter_list(list[Tensor|str]|tuple[Tensor|str], optional): List/Tuple of Parameters or Parameter.names
1753
                                           that need to be updated by optimizers.
1754
                                           If it is None, all parameters
F
fengjiayi 已提交
1755
                                           will be updated.
1756
                                           Default: None.
1757 1758
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1759
                               `stop_gradient=True` from all blocks will
F
fengjiayi 已提交
1760
                               be automatically added into this set.
1761
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1762
                               Default: None.
1763
        callbacks(list[callable object]|tuple[callable object], optional): List/Tuple of callback functions.
1764
                                               The callbacks are used for
1765 1766 1767 1768 1769 1770
                                               doing some custom jobs during
                                               backward part building. All
                                               callable objects in it will
                                               be invoked once each time a
                                               new gradient operator is added
                                               into the program. The callable
Z
zhangchunle 已提交
1771
                                               object must have two input
1772 1773
                                               parameters: ``block`` and ``context`` .
                                               The ``block`` is the :ref:`api_guide_Block_en` which
1774
                                               the new gradient operator will
1775
                                               be added to. The ``context`` is a
1776
                                               map, whose keys are gradient
1777 1778 1779
                                               Tensor names and values are
                                               corresponding original :ref:`api_guide_tensor_en` .
                                               In addition to this, the ``context``
1780
                                               has another special key-value pair:
1781
                                               the key is string ``__current_op_desc__``
1782 1783 1784
                                               and the value is the op_desc of the
                                               gradient operator who has just
                                               triggered the callable object.
1785
                                               Default: None.
F
fengjiayi 已提交
1786 1787

    Returns:
1788 1789
        list of tuple ( :ref:`api_guide_tensor_en` , :ref:`api_guide_tensor_en` ): Pairs of parameter and its corresponding gradients.
        The key is the parameter and the value is gradient Tensor.
F
fengjiayi 已提交
1790 1791

    Raises:
1792
        AssertionError: If ``loss`` is not an instance of Tensor.
F
fengjiayi 已提交
1793 1794 1795 1796

    Examples:
        .. code-block:: python

1797 1798
            import paddle
            import paddle.nn.functional as F
L
lujun 已提交
1799

1800 1801 1802 1803 1804
            paddle.enable_static()

            x = paddle.static.data(name='x', shape=[None, 13], dtype='int64')
            y = paddle.static.data(name='y', shape=[None, 1], dtype='float32')
            x_emb = paddle.static.nn.embedding(x, size=[100, 256])
1805
            y_predict = paddle.static.nn.fc(x=x_emb, size=1, activation=None, name='my_fc')
1806 1807
            loss = F.square_error_cost(input=y_predict, label=y)
            avg_loss = paddle.mean(loss)
1808 1809

            # Get all weights in main_program, not include bias.
1810
            all_weights = [param for param in paddle.static.default_main_program().block(0).all_parameters() if 'w_' in param.name]
1811 1812 1813
            all_weights_name = [w.name for w in all_weights]

            # return all param_grads needed to be updated if parameter_list set default None.
1814
            p_g_list1 = paddle.static.append_backward(loss=avg_loss)
1815 1816
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1817 1818
            # return the param_grads corresponding to parameter_list that can be list of param (Tensor).
            p_g_list2 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights)
1819 1820 1821
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # parameter_list can be list of param.name (str).
1822
            p_g_list3 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights_name)
1823 1824
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

1825 1826
            # no_grad_set can be set of Tensors that means grad will be cut off from these Tensors.
            p_g_list4 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set([x_emb]))
1827 1828
            # output: [(my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1829 1830
            # no_grad_set can be set of Tensor.name when the Tensor is created inside layers and can't be specified explicitly.
            p_g_list5 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set(['my_fc.b_0']))
1831 1832 1833
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # return [] because all param_grads are filtered by no_grad_set.
1834
            p_g_list6 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights, no_grad_set=set(all_weights))
1835

1836
    """
1837 1838 1839
    grad_op_id_to_fwd_op = (
        {}
    )  # for cuda graph usage, recording the mapping between grad op original id to fwd op
1840

1841 1842 1843
    check_type(
        loss, 'loss', framework.Variable, 'paddle.static.append_backward'
    )
Y
yuyang18 已提交
1844

Y
Fix bug  
yuyang18 已提交
1845 1846
    if loss.op is None:
        # the loss is from a cloned program. Find loss op manually.
M
mapingshuo 已提交
1847
        _find_loss_op_(loss)
Y
Fix bug  
yuyang18 已提交
1848

1849 1850 1851
    loss.op._set_attr(
        core.op_proto_and_checker_maker.kOpRoleAttrName(),
        int(core.op_proto_and_checker_maker.OpRole.Forward)
1852 1853
        | int(core.op_proto_and_checker_maker.OpRole.Loss),
    )
Y
yuyang18 已提交
1854

Y
Yang Yang 已提交
1855
    if callbacks is not None:
1856 1857 1858 1859 1860 1861
        check_type(
            callbacks,
            'callbacks',
            (list, tuple),
            'paddle.static.append_backward',
        )
Y
Yu Yang 已提交
1862

F
fengjiayi 已提交
1863
    program = loss.block.program
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
    root_block = program.block(0)
    current_block_idx = program.current_block_idx
    current_block = program.block(current_block_idx)

    is_in_control_flow = current_block_idx != 0

    # Double grad is not supported in sub-block (control flow)
    if not is_in_control_flow:
        # _appending_grad_times used for double grad
        program._appending_grad_times += 1
1874

F
fengjiayi 已提交
1875
    if no_grad_set is None:
1876
        no_grad_set = set()
1877 1878
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1879
    no_grad_dict = _get_stop_gradients_(program)
1880 1881
    # no_grad_set only contains vars in block 0
    # Todo(liym27): support vars in sub block
1882
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
Y
Yu Yang 已提交
1883

1884 1885 1886 1887 1888 1889 1890
    # Currently it is only to support the optimizer.minimize
    # in a switch branch, which can append_backward in a sub_block.
    # Note: while_loop is in control flow, but it makes no sense to call optimizer in while.
    # Todo: report error when it is in while_loop
    if is_in_control_flow:
        # create grad block if in switch control flow.
        target_grad_block = program._create_block(
1891 1892
            parent_idx=current_block.parent_idx
        )
1893 1894 1895 1896 1897 1898
        target_grad_block._set_forward_block_idx(current_block_idx)
        # after _create_block, program.current_block changes
    else:
        target_grad_block = root_block

    son_parent_block_idx_dict = _get_son_parent_block_idx_dict(
1899 1900
        program, current_block_idx
    )
1901 1902 1903 1904

    block_fwd_op_num_dict = {}  # block_id: fwd_op_num
    for idx in son_parent_block_idx_dict:
        block_fwd_op_num_dict[idx] = program.block(idx).desc.op_size()
F
fengjiayi 已提交
1905

F
fengjiayi 已提交
1906 1907
    grad_to_var = dict()

1908
    # pass the cuda_graph_attr to the fill_constant which generates the loss_grad
M
mapingshuo 已提交
1909
    op_desc = _create_loss_op_desc_(loss)
1910
    grad_op_id_to_fwd_op[op_desc.original_id()] = loss.op
1911 1912 1913 1914 1915 1916
    target_grad_block.desc.append_op().copy_from(op_desc)

    for block_idx in son_parent_block_idx_dict:
        block = program.block(block_idx)

        block_no_grad_set = set(
1917 1918
            map(_strip_grad_suffix_, no_grad_dict[block_idx])
        )
1919 1920

        op_path_dict = dict()
1921 1922 1923
        op_path = _find_op_path_(
            block, [loss], [], block_no_grad_set, op_path_dict
        )
1924

1925 1926 1927
        no_grad_vars = _find_no_grad_vars(
            block, op_path, [loss], block_no_grad_set
        )
1928 1929 1930

        block_no_grad_set.update(no_grad_vars)
        no_grad_dict[block_idx].update(
1931 1932
            list(map(_append_grad_suffix_, block_no_grad_set))
        )
1933 1934 1935 1936 1937

        input_grad_names_set = None
        # For double backward, input_grad_names is used for filtering
        # some non-used gradients op(s).

1938
        # TODO(liym27): need a better design.
1939 1940 1941 1942 1943
        # not support double grad in control flow sub-block now.
        if not is_in_control_flow:
            if program._appending_grad_times > 1:
                input_grad_names_set = set([_append_grad_suffix_(loss.name)])

1944
        # TODO: support _append_backward_ops_with_checkpoints_ in
1945
        #  sub-block (control flow)
J
JZ-LIANG 已提交
1946
        is_recompute = False
1947
        if (
1948
            checkpoints is not None
1949 1950 1951
            and isinstance(checkpoints, list)
            and len(checkpoints) > 0
        ):
J
JZ-LIANG 已提交
1952
            is_recompute = True
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
            (
                program_stat,
                checkpoint_names,
                vars_should_be_hold,
                recompute_segments,
            ) = _append_backward_ops_with_checkpoints_(
                root_block,
                op_path,
                [loss],
                root_block,
                no_grad_dict,
                grad_to_var,
                checkpoints,
                grad_op_id_to_fwd_op,
            )
1968 1969 1970 1971
        else:
            _append_backward_ops_(
                block,  # the block where forward ops are in
                op_path,
1972
                [loss],
1973 1974 1975 1976
                target_grad_block,
                no_grad_dict,
                grad_to_var,
                callbacks,
1977
                input_grad_names_set=input_grad_names_set,
1978
                op_path_dict=op_path_dict,
1979
                distop_context=distop_context,
1980 1981
                grad_op_id_to_fwd_op=grad_op_id_to_fwd_op,
            )
1982 1983 1984 1985 1986

    grad_info_map = dict()

    # if in control flow, target_grad_block is a created new block which only contains grad ops,
    # so fwd_op_num is set to 0.
1987 1988 1989 1990 1991
    fwd_op_num = (
        block_fwd_op_num_dict[current_block_idx]
        if not is_in_control_flow
        else 0
    )
1992 1993

    # Because append_backward may be called multiple times,
1994 1995
    # we need rename the internal gradient variables so that they have
    # different names.
1996
    _rename_grad_(target_grad_block, fwd_op_num, grad_to_var, {})
1997

1998 1999 2000
    _append_backward_vars_(
        target_grad_block, fwd_op_num, grad_to_var, grad_info_map
    )
F
fengjiayi 已提交
2001

F
fengjiayi 已提交
2002
    program.current_block_idx = current_block_idx
W
Wu Yi 已提交
2003
    program._sync_with_cpp()
F
fengjiayi 已提交
2004

2005 2006 2007 2008 2009 2010
    # for cuda graph, copy the cuda graph attr from forward op to backward op
    for op in target_grad_block.ops:
        if grad_op_id_to_fwd_op.get(op.desc.original_id(), None) is not None:
            fwd_op = grad_op_id_to_fwd_op[op.desc.original_id()]
            op._cuda_graph_attr = fwd_op._cuda_graph_attr

2011
    if parameter_list is not None:
2012 2013 2014 2015 2016 2017
        check_type(
            parameter_list,
            'parameter_list',
            (list, tuple, set),
            'fluid.backward.append_backward',
        )
2018 2019
        parameters = []
        for i, param in enumerate(parameter_list):
2020 2021 2022 2023 2024 2025
            check_type(
                param,
                'parameter_list[%s]' % i,
                (framework.Variable, str),
                'fluid.backward.append_backward',
            )
2026 2027
            if isinstance(param, framework.Variable):
                parameters.append(param.name)
2028
            elif isinstance(param, str):
2029
                parameters.append(param)
2030
    else:
F
fengjiayi 已提交
2031
        params = program.global_block().all_parameters()
C
chengduo 已提交
2032
        parameters = [param.name for param in params if param.trainable]
2033

2034
    params_and_grads = []
2035
    op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
2036
    for param in parameters:
2037
        if param not in grad_info_map:
F
fengjiayi 已提交
2038
            continue
F
update  
fengjiayi 已提交
2039
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
2040
        grad_block = grad_info[1]
2041
        if not grad_block.has_var(grad_info[0]):
2042 2043 2044 2045 2046
            raise ValueError(
                "grad block[{0}] did not have grad var {1}".format(
                    grad_info[1], grad_info[0]
                )
            )
2047
        # Get the param var from the global block
F
fengjiayi 已提交
2048
        param_var = program.global_block().var(param)
2049
        grad_var = grad_block.var(grad_info[0])
2050 2051 2052 2053 2054
        if not is_in_control_flow:
            if loss.block.has_var(grad_info[0]):
                params_and_grads.append((param_var, grad_var))
            else:
                params_and_grads.append((param_var, None))
2055
        else:
2056
            params_and_grads.append((param_var, grad_var))
Y
yuyang18 已提交
2057 2058 2059 2060

    for p, g in params_and_grads:
        if g is None:
            continue
2061 2062 2063
        ops = (
            grad_block.ops if is_in_control_flow else program.global_block().ops
        )
2064
        for op in reversed(ops):
Y
yuyang18 已提交
2065 2066 2067 2068 2069 2070 2071
            assert isinstance(op, framework.Operator)
            if g.name in op.output_arg_names:
                g.op = op
                break

        if g.op is None:
            raise ValueError("Unexpected branch")
Y
yuyang18 已提交
2072
        attr_val = [p.name, g.name]
Y
yuyang18 已提交
2073 2074
        if g.op.has_attr(op_role_var_attr_name):
            attr_val.extend(g.op.attr(op_role_var_attr_name))
W
Wu Yi 已提交
2075
        g.op._set_attr(op_role_var_attr_name, attr_val)
Y
yuyang18 已提交
2076

J
JZ-LIANG 已提交
2077 2078 2079 2080
    if is_recompute:
        return params_and_grads, checkpoint_names
    else:
        return params_and_grads
2081 2082 2083 2084 2085


def _as_list(x):
    if x is None:
        return []
2086
    return list(x) if isinstance(x, Sequence) else [x]
2087 2088


2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
def _is_ancestor_block(ancestor_block, block):
    prog = block.program
    ancestor_idx = ancestor_block.idx
    parent_idx = block.parent_idx

    while parent_idx != -1:
        if parent_idx == ancestor_idx:
            return True
        parent_idx = prog.block(parent_idx).parent_idx

    return False


def _get_output_names(cur_block, targets):
    """
    In `cur_block`, get output names those linked to targets.
    NOTE:
    1. `targets` can be in `cur_block`;
    Usually, `targets` is in `cur_block`. However, considering control flow,
    2. `targets` may be in sub-block but `cur_block` is an ancestor of `targets[0].block`;
    3. `targets` may be in the block which is ancestor of `cur_block`.
    """

    block = targets[0].block if targets else cur_block
    current_output_names = set([out.name for out in targets])

2115 2116 2117 2118 2119 2120
    # 1. If `targets` in cur_block or the ancestral block of `cur_block`
    if block.idx == cur_block.idx or _is_ancestor_block(block, cur_block):
        return current_output_names

    # 2. If `cur_block` is an ancestor of `targets[0].block`, run while loop
    prog = cur_block.program
2121 2122 2123 2124 2125 2126 2127 2128 2129
    while block.idx != cur_block.idx:
        assert block.parent_idx != -1
        parent_block = prog.block(block.parent_idx)

        parent_block_output_names = set()
        for op in reversed(block.ops):
            if _some_in_set_(op.desc.output_arg_names(), current_output_names):
                for name in op.desc.input_arg_names():
                    current_output_names.add(name)
2130 2131 2132
                    if not block.desc.find_var(
                        name.encode()
                    ) and parent_block.desc.find_var(name.encode()):
2133 2134 2135 2136 2137 2138 2139 2140
                        parent_block_output_names.add(name)

        block = parent_block
        current_output_names = parent_block_output_names

    return current_output_names


2141 2142 2143
def _find_no_grad_vars(block, op_path, targets, no_grad_set):
    """
    Find the vars which is not used in the program, and
2144
    those vars belong to no_grad_var.
2145
    """
2146
    output_names = _get_output_names(block, targets)
2147 2148 2149 2150 2151
    no_grad_var = []
    for i, op in reversed(list(enumerate(op_path))):
        # If the op has sub_block, it is too complicated to find the correct no_grad_var.
        if not op.has_attr("sub_block"):
            for out_var in op.desc.output_arg_names():
2152 2153 2154 2155 2156
                if (
                    out_var not in output_names
                    and out_var not in op.desc.input_arg_names()
                    and not block.vars[out_var].stop_gradient
                ):
2157 2158 2159 2160 2161 2162 2163
                    no_grad_var.append(out_var)
        for name in op.desc.input_arg_names():
            if name not in no_grad_set:
                output_names.add(name)
    return set(no_grad_var)


2164 2165 2166
def _find_op_path_(
    block, targets, inputs, no_grad_set, op_path_dict=None, is_while=False
):
2167
    """
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
    It is used to find the grad path in `block`.

    Args:
        block(Block): The block in which to get op path.
        targets(list[Variable]): The target variables.
        inputs(list[Variable]): The input variables.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed. op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        is_while(bool): Whether or not `block` is while block
    Return:
        The forward op path of block corresponding to backward op.
2181
    """
2182

2183
    input_names = set([inp.name for inp in inputs])
2184 2185 2186
    output_names = _get_output_names(block, targets)
    if op_path_dict is None:
        op_path_dict = dict()
2187 2188 2189 2190 2191 2192

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
2193 2194 2195
            if _some_in_set_(
                op.desc.input_arg_names(), input_names
            ) and core.has_non_empty_grad_op_maker(op.type):
2196 2197 2198 2199 2200 2201 2202
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
2203 2204 2205 2206
        if op.has_attr("sub_block"):
            sub_block_id = op._block_attr_id("sub_block")
            sub_block = block.program.block(sub_block_id)
            sub_block_target_names = output_names & set(op.output_arg_names)
2207 2208 2209
            sub_block_path = _get_sub_block_path(
                sub_block, op, set(), op_path_dict, sub_block_target_names
            )
2210 2211
            op_path_dict[sub_block_id] = sub_block_path

2212 2213 2214
        if _some_in_set_(
            op.desc.output_arg_names(), output_names
        ) and core.has_non_empty_grad_op_maker(op.type):
2215 2216 2217 2218 2219 2220
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

2221 2222 2223 2224
    if is_while:
        # If block is while block, dealing with op specifically again.
        # TODO(liym27): Consider special types of ops.
        for i, op in reversed(list(enumerate(block.ops))):
2225 2226 2227
            if relevant_op_flags[i] == False and _some_in_set_(
                op.desc.output_arg_names(), output_names
            ):
2228
                relevant_op_flags[i] = True
H
hong 已提交
2229 2230 2231 2232
                if core.has_non_empty_grad_op_maker(op.type):
                    for name in op.desc.input_arg_names():
                        if name not in no_grad_set:
                            output_names.add(name)
2233

2234 2235 2236 2237 2238 2239 2240
    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
2241
                if name not in input_names and block.vars[name].stop_gradient:
2242 2243 2244 2245 2246 2247 2248
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
2249
    Backpropagate the gradients of targets to inputs.
2250 2251

    Args:
2252 2253 2254
        targets(Tensor|list[Tensor]|tuple[Tensor]): The target Tensors
        inputs(Tensor|list[Tensor]|tuple[Tensor]): The input Tensors
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensors
2255 2256
            of targets which has the same shape with targets, If None, ones will
            be created for them.
2257 2258
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
2259 2260
                               `stop_gradient=True` from all blocks will
                               be automatically added into this set.
2261
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
2262
                               Default: None.
2263 2264

    Return:
2265 2266
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
2267 2268 2269 2270 2271 2272 2273 2274
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
2275 2276
    # increase appending gradients times
    prog._appending_grad_times += 1
2277 2278 2279 2280 2281 2282 2283
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
2284 2285
            "Should have the same number of target_gradients as targets"
        )
2286 2287 2288

    if no_grad_set is None:
        no_grad_set = set()
2289 2290
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
2291
    no_grad_dict = _get_stop_gradients_(prog)
2292
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
2293 2294 2295

    fwd_op_num = block.desc.op_size()

2296 2297
    input_grad_names_set = set()

2298
    target_grad_map = {}
2299
    rename_var_map = {}
2300 2301
    for i, grad in enumerate(target_gradients):
        target = targets[i]
2302
        grad_name = _append_grad_suffix_(target.name)
2303
        if grad is None:
L
lvmengsi 已提交
2304 2305
            target_shape = target.name + '_shape'
            block.desc.append_op().copy_from(
2306 2307 2308 2309 2310 2311 2312
                _create_op_desc_(
                    "shape",
                    {'Input': [target.name]},
                    {"Out": [target_shape]},
                    {},
                )
            )
L
lvmengsi 已提交
2313
            input_grad_names_set.add(target_shape)
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
            op_desc = _create_op_desc_(
                "fill_constant",
                {"ShapeTensor": [target_shape]},
                {"Out": [grad_name]},
                {
                    "shape": target.shape,
                    "value": 1.0,
                    "dtype": target.dtype,
                },
            )
L
liym27 已提交
2324

2325
            block.desc.append_op().copy_from(op_desc)
2326
            input_grad_names_set.add(grad_name)
2327 2328 2329 2330 2331
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
2332 2333 2334
                    "The shapes of target and grad are different: %s %s"
                    % (target.name, grad.name)
                )
2335
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name
2336
            input_grad_names_set.add(grad.name)
2337
            rename_var_map[grad_name] = grad.name
2338 2339

    # For double backward, input_grad_names is used for filter
2340 2341
    # some non-used gradients op. rename_var_map is used to
    # associate target_grad var name with first grad_op input name.
2342 2343
    if prog._appending_grad_times == 1:
        input_grad_names_set = None
2344
        rename_var_map = {}
2345 2346 2347 2348 2349 2350

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
2351 2352

    op_path_dict = dict()
2353 2354 2355
    op_path = _find_op_path_(
        block, targets, inputs, block_no_grad_set, op_path_dict
    )
2356 2357

    # find no grad var by op_path
2358 2359 2360
    no_grad_vars = _find_no_grad_vars(
        block, op_path, targets, block_no_grad_set
    )
2361 2362
    block_no_grad_set.update(no_grad_vars)

2363
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
2364 2365
    grad_to_var = dict()
    grad_info_map = dict()
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
    _append_backward_ops_(
        block,
        op_path,
        targets,
        block,
        no_grad_dict,
        grad_to_var,
        input_grad_names_set=input_grad_names_set,
        op_path_dict=op_path_dict,
        rename_var_map=rename_var_map,
    )
2377 2378 2379 2380 2381 2382 2383

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
W
Wu Yi 已提交
2384
    prog._sync_with_cpp()
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars
2400 2401


2402
@framework.static_only
2403 2404
def gradients(targets, inputs, target_gradients=None, no_grad_set=None):
    """
T
tangwei12 已提交
2405

2406 2407 2408
    Backpropagate the gradients of targets to inputs.

    Args:
2409 2410 2411
        targets (Tensor|list[Tensor]|tuple[Tensor]): The target Tensors.
        inputs (Tensor|list[Tensor]|tuple[Tensor]): The input Tensors.
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensor
2412 2413
            of targets which has the same shape with targets, If None, ones will
            be created for them.
2414 2415 2416
        no_grad_set (set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
            should be ignored. All Tensors with ``stop_gradient=True`` from all blocks will
            be automatically added into this set. If this parameter is not None, the Tensors or Tensor.names
2417
            in this set will be added to the default set. Default: None.
2418 2419

    Return:
2420 2421
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
2422 2423 2424
        will be None.

    Examples:
2425

2426
        .. code-block:: python
2427
          :name: code-example
2428 2429 2430 2431
            import paddle
            import paddle.nn.functional as F

            paddle.enable_static()
2432

2433
            x = paddle.static.data(name='x', shape=[None, 2, 8, 8], dtype='float32')
2434
            x.stop_gradient=False
2435 2436 2437
            y = paddle.static.nn.conv2d(x, 4, 1, bias_attr=False)
            y = F.relu(y)
            z = paddle.static.gradients([y], x)
2438
            print(z) # [var x@GRAD : LOD_TENSOR.shape(-1, 2, 8, 8).dtype(float32).stop_gradient(False)]
2439
    """
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
    check_type(
        targets,
        'targets',
        (framework.Variable, list, tuple),
        'paddle.static.gradients',
    )
    check_type(
        inputs,
        'inputs',
        (framework.Variable, list, tuple),
        'paddle.static.gradients',
    )
    check_type(
        target_gradients,
        'target_gradients',
        (framework.Variable, list, tuple, type(None)),
        'paddle.static.gradients',
    )
2458 2459
    outs = calc_gradient(targets, inputs, target_gradients, no_grad_set)
    return _as_list(outs)
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499


@framework.static_only
def gradients_with_optimizer(program, optimizer, inputs=None, outputs=None):
    """
    :api_attr: Static Graph

    Backpropagate the gradients of the program and apply the gradients with the given optimizer.

    Args:
        program (Program): The input program.
        optimizer (Optimizer): The optimizer to apply the gradients.
        inputs (Tensor|list[Tensor]|tuple[Tensor], optional): The input Tensors.
            If None, the inputs will be created from the input variables in the given program. Default:None.
        outputs (Tensor|list[Tensor]|tuple[Tensor], optional): The output Tensors.
            If None, the outputs will be created from the output variables in the given program. Default: None.

    Return:
        tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by gradients_with_optimizer and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
            ``fetch_list`` before run, see details in ``Executor``.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
            pred = static.nn.fc(x=img, size=10, activation='relu')
            loss = paddle.mean(pred)
            opt_ops, pram_grads = paddle.fluid.backward.gradients_with_optimizer(static.default_main_program(), opt)
            print(opt_ops)

    """
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
    check_type(
        program,
        'program',
        paddle.fluid.Program,
        'paddle.static.gradients_with_optimizer',
    )
    check_type(
        optimizer,
        'optimizer',
        paddle.optimizer.Optimizer,
        'paddle.static.gradients_with_optimizer',
    )
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529

    if inputs is None or outputs is None:
        in_set = set()
        out_set = set()
        for block in program.blocks:
            for op in block.ops:
                for name in op.input_arg_names:
                    in_set.add(block.vars[name])
                for name in op.output_arg_names:
                    out_set.add(block.vars[name])
        if inputs is None:
            inputs = list(in_set.difference(out_set))
        if outputs is None:
            outputs = list(out_set.difference(in_set))

    grads = gradients(outputs, inputs)

    with program_guard(program, None):
2530 2531 2532 2533 2534 2535
        pram_grads = [
            (pram, grad)
            for pram, grad in zip(inputs, grads)
            if isinstance(pram, paddle.fluid.framework.Parameter)
            and grad is not None
        ]
2536 2537 2538 2539

        optimize_ops = optimizer.apply_gradients(pram_grads)

    return optimize_ops, pram_grads