backward.py 81.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
T
tangwei12 已提交
16
from .proto import framework_pb2
17

18
from paddle.fluid import framework as framework
F
update  
fengjiayi 已提交
19
from . import core
F
update  
fengjiayi 已提交
20
import collections
21
import copy
22
import six
23
import logging
M
minqiyang 已提交
24
from .. import compat as cpt
25
from . import unique_name
26
from . import log_helper
L
liym27 已提交
27
import paddle.fluid
28
from .data_feeder import check_type
M
mapingshuo 已提交
29 30 31 32 33
__all__ = [
    'append_backward',
    'gradients',
]

34 35 36
_logger = log_helper.get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')

M
mapingshuo 已提交
37 38 39 40 41 42 43 44 45 46 47

class ProgramStats(object):
    def __init__(self, block, ops):
        self.block = block
        self.ops = ops
        self.op_deps = {}  # op-> in_ops, out_ops
        self.var_op_deps = {}  # var as input op, var as output op

    def get_input_nodes(self):
        input_names = []
        for name in self.var_op_deps:
48
            if len(self.var_op_deps[name]["var_as_output_ops"]) == 0 and \
T
tangwei12 已提交
49
                    len(self.var_op_deps[name]["var_as_input_ops"]) > 0:
M
mapingshuo 已提交
50 51 52 53 54 55 56 57 58 59 60
                if self.block.var(name).persistable:
                    continue
                input_names.append(name)
        for op in self.ops:
            if op.desc.type() == "read":
                input_names.extend(op.desc.output_arg_names())
        return input_names

    def get_reserved_vars(self):
        var_name = []
        for op in self.ops:
M
mapingshuo 已提交
61
            if op.desc.type() == "seed":
M
mapingshuo 已提交
62 63 64 65 66 67 68 69 70 71 72
                var_name.extend(op.desc.output_arg_names())
        return var_name

    def get_out_of_subgraph_vars(self, begin_op_idx, end_op_idx):
        var_name = []
        for i in range(begin_op_idx, end_op_idx, 1):
            for name in self.ops[i].desc.output_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_input_ops"]:
                        if idx >= end_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
73 74 75 76 77
            for name in self.ops[i].desc.input_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_output_ops"]:
                        if idx < begin_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        return var_name

    def is_subgraph(self, var_group1, var_group2):
        # should traverse from var_group1 to var_group2
        # max op idx in var_group2
        # min op idx in var_group1
        min_op_idx = len(self.ops)
        max_op_idx = -1
        for name in var_group1:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group2:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group1:
            op_idx = self.var_op_deps[name]["var_as_input_ops"]
            for idx in op_idx:
                min_op_idx = min(min_op_idx, idx)
        for name in var_group2:
            op_idx = self.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if min_op_idx >= max_op_idx:
            return False, min_op_idx, max_op_idx
J
JZ-LIANG 已提交
102

M
mapingshuo 已提交
103 104
        return True, min_op_idx, max_op_idx

J
JZ-LIANG 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117
    def _update_segment_start(self, min_idx, pre_segment_end_idx):
        """
        persist vars of amp-related cast should be included in recompute segment
        """

        def is_amp_cast(op):
            return op.desc.type() == 'cast' and self.block.var(
                op.desc.input_arg_names()[0]).persistable

        idx_ = min_idx - 1
        updated_min_idx = min_idx
        while idx_ > pre_segment_end_idx:
            if is_amp_cast(self.ops[idx_]):
118
                _logger.info("found amp-cast op: {}, : {}".format(self.ops[
J
JZ-LIANG 已提交
119 120 121 122 123 124 125 126 127
                    idx_].desc.type(), self.ops[idx_].desc.input_arg_names()[
                        0]))
                updated_min_idx = idx_
                idx_ -= 1
            else:
                break

        return updated_min_idx

M
mapingshuo 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    def build_stats(self):
        for i, op in enumerate(self.ops):
            self.op_deps[i] = {"in_ops": [], "out_ops": []}
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.op_deps[i]["in_ops"].extend(self.var_op_deps[name][
                        "var_as_output_ops"])
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_input_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = [i]
                    self.var_op_deps[name]["var_as_output_ops"] = []

            for j, name in enumerate(op.desc.output_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_output_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = []
                    self.var_op_deps[name]["var_as_output_ops"] = [i]

            for op_idx in self.op_deps[i]["in_ops"]:
                self.op_deps[op_idx]["out_ops"].extend([i])

154 155 156 157
    def sort_checkpoints(self, checkpoints_name):
        sorted_checkpoints = []
        for name in checkpoints_name:
            if name not in self.var_op_deps:
158
                _logger.info(
159 160 161 162 163 164 165 166 167 168 169
                    "Recompute Optimizer: deleted %s from checkpoints, because it is not used in paddle program."
                    % name)
            elif self.var_op_deps[name]["var_as_output_ops"] == []:
                # input nodes
                sorted_checkpoints.append((name, -1))
            else:
                sorted_checkpoints.append(
                    (name, max(self.var_op_deps[name]["var_as_output_ops"])))
        sorted_checkpoints = sorted(sorted_checkpoints, key=lambda x: x[1])
        return [x[0] for x in sorted_checkpoints]

M
mapingshuo 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    def modify_forward_desc_for_recompute(self):
        op_types = [op.desc.type() for op in self.ops]
        if "dropout" not in op_types:
            return

        op_idx = 0
        while (op_idx < len(self.ops)):
            op = self.ops[op_idx]
            if op.desc.type() != "dropout":
                op_idx += 1
                continue
            # add a seed op so that the two dropout op can generate same output
            op_unique_name = unique_name.generate("seed")
            var_unique_name = unique_name.generate_with_ignorable_key(".".join(
                [op_unique_name, 'tmp']))
            added_var = self.block.create_var(
                name=var_unique_name,
                dtype='int32',
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=False)
            seed = 0 if op.attr("fix_seed") is False else int(op.attr("seed"))
            added_op = self.block._insert_op(
                index=op.idx,
                type='seed',
                inputs={},
                outputs={'Out': [added_var]},
                attrs={'seed': seed})
            self.ops.insert(op_idx, added_op)
            # modify dropout op desc so that it accept a seed var as input
            op.desc.set_input("Seed", [var_unique_name])
            op.desc.remove_attr("fix_seed")
            op.desc.remove_attr("seed")
            self.block._sync_with_cpp()
            op_idx += 2

M
mapingshuo 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218

def _pretty_op_desc_(op_desc, prefix):
    out_s = "%s\tname:[%s]\n%s    \tinputs:[%s]\n%s    \toutputs:[%s]" % \
            (prefix + "_op", str(op_desc.type()), prefix + "_input", " ".join(op_desc.input_arg_names()),
             prefix + "_output", " ".join(op_desc.output_arg_names()))
    return out_s


def _add_needed_descs_to_block(descs, block, main_block, in_memory_vars):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
T
tangwei12 已提交
219
        core.op_proto_and_checker_maker.kOpRoleAttrName()
M
mapingshuo 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        is_needed = False
        for name in desc.output_arg_names():
            if main_block.has_var(name) and main_block.var(name).persistable:
                continue
            if name not in in_memory_vars:
                is_needed = True
        if is_needed:
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(desc)
            new_op_desc._set_attr(op_role_attr_name, backward)
236 237
            if desc.has_attr('op_device'):
                new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
            result_descs.append(new_op_desc)
    return result_descs


def _add_descs_to_block(descs, block):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
        core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        new_op_desc = block.desc.append_op()
        new_op_desc.copy_from(desc)
        new_op_desc._set_attr(op_role_attr_name, backward)
257 258
        if desc.has_attr('op_device'):
            new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271
        result_descs.append(new_op_desc)
    return result_descs


def _find_loss_op_(loss):
    for op in reversed(loss.block.ops):
        assert isinstance(op, framework.Operator)
        if len(op.output_arg_names) == 1 and op.output_arg_names[
                0] == loss.name:
            loss.op = op
            break
    if loss.op is None:
        raise ValueError("loss.op is None. Should not happend")
272 273


274 275
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
276
    Traverse all ops in op_descs[begin_idx : end_idx],
277 278
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
279 280 281
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
282
        end_idx = len(op_descs)
283 284 285 286 287 288 289 290 291 292 293 294 295
    if isinstance(op_descs, (list, tuple)):
        for i in range(begin_idx, end_idx):
            op_desc = op_descs[i]
            if isinstance(op_desc, tuple):
                op_desc = op_desc[0]
            op_desc._rename_input(old_name, new_name)
            op_desc._rename_output(old_name, new_name)
    if isinstance(op_descs, collections.OrderedDict):
        for key, value in op_descs.items():
            if isinstance(value, (list, tuple)):
                for op_desc in value:
                    op_desc._rename_input(old_name, new_name)
                    op_desc._rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
296 297


F
fengjiayi 已提交
298
def _create_op_desc_(op_type, inputs, outputs, attrs):
299 300 301
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
302 303
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
M
minqiyang 已提交
304
    for para, args in six.iteritems(inputs):
305 306 307 308 309
        op_desc.set_input(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
M
minqiyang 已提交
310
    for para, args in six.iteritems(outputs):
311 312 313 314 315
        op_desc.set_output(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
Y
yuyang18 已提交
316 317

    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
318
    op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
Y
yuyang18 已提交
319 320 321 322

    if op_role_attr_name not in attrs:
        attrs[
            op_role_attr_name] = core.op_proto_and_checker_maker.OpRole.Backward
323 324
    if op_device_attr_name not in attrs:
        attrs[op_device_attr_name] = ""
M
minqiyang 已提交
325
    for name, val in six.iteritems(attrs):
F
fengjiayi 已提交
326 327 328
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
W
Wu Yi 已提交
329
            op_desc._set_attr(name, val)
F
fengjiayi 已提交
330 331 332
    return op_desc


M
mapingshuo 已提交
333 334 335 336 337 338 339 340 341 342
def _create_loss_op_desc_(loss):
    op_desc = _create_op_desc_(
        "fill_constant", {}, {"Out": [_append_grad_suffix_(loss.name)]}, {
            "shape": [1],
            "value": 1.0,
            "dtype": loss.dtype,
            "force_cpu": False,
            core.op_proto_and_checker_maker.kOpRoleAttrName():
            int(core.op_proto_and_checker_maker.OpRole.Backward) |
            int(core.op_proto_and_checker_maker.OpRole.Loss),
343 344
            core.op_proto_and_checker_maker.kOpDeviceAttrName():
            loss.op.attr(core.op_proto_and_checker_maker.kOpDeviceAttrName())
M
mapingshuo 已提交
345 346 347 348
        })
    return op_desc


349
def _infer_var_data_type_shape_(grad_var_name, block):
350
    """
351
    Infer the data type and shape of given grad variable
352
    """
M
minqiyang 已提交
353 354 355 356
    grad_var = block.desc.find_var(cpt.to_bytes(grad_var_name))
    fwd_name = _strip_grad_suffix_(grad_var_name)
    if block.desc.has_var_recursive(cpt.to_bytes(fwd_name)):
        fwd_var = block.desc.find_var_recursive(cpt.to_bytes(fwd_name))
F
fengjiayi 已提交
357
        grad_var.set_dtype(fwd_var.dtype())
358
        grad_var.set_shape(fwd_var.shape())
F
fengjiayi 已提交
359
    else:
360
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
361 362


F
fengjiayi 已提交
363
def _all_in_set_(cands, s):
364 365 366
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
367 368
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
369 370 371 372 373 374
    for c in cands:
        if not c in s:
            return False
    return True


375 376 377 378 379 380
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
M
minqiyang 已提交
381 382
    literal_set = cpt.to_text(s)
    literal_cands = cpt.to_text(cands)
M
minqiyang 已提交
383 384
    for c in literal_cands:
        if c in literal_set:
385 386 387 388
            return True
    return False


F
fengjiayi 已提交
389
def _strip_grad_suffix_(name):
390
    """
M
mapingshuo 已提交
391
    Strip the grad suffix from the given variable name
392 393 394
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
M
minqiyang 已提交
395
    name = cpt.to_text(name)
M
minqiyang 已提交
396
    pos = name.find(core.grad_var_suffix())
F
fengjiayi 已提交
397
    return name[:pos] if pos != -1 else name
F
fengjiayi 已提交
398 399 400


def _append_grad_suffix_(name):
401 402 403 404
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
M
minqiyang 已提交
405
    return cpt.to_text(name) + core.grad_var_suffix()
F
fengjiayi 已提交
406 407


T
tangwei12 已提交
408 409 410 411 412
def _accumulate_gradients_by_sum_op_(var_name,
                                     renamed_vars,
                                     pending_sum_ops,
                                     op_idx,
                                     op_device=""):
413 414 415 416 417 418
    """
    Use sum op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    pending_sum_ops[op_idx].append(
T
tangwei12 已提交
419 420 421 422
        _create_op_desc_("sum", {"X": renamed_vars[var_name]}, {
            "Out": [var_name]
        }, {"use_mkldnn": False,
            "op_device": op_device}))
423 424 425
    renamed_vars[var_name] = [var_name]


T
tangwei12 已提交
426 427 428 429 430
def _accumulate_gradients_by_add_ops_(var_name,
                                      renamed_vars,
                                      pending_sum_ops,
                                      op_idx,
                                      op_device=""):
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
    """
    Use several inplace add op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    out_name = renamed_vars[var_name][0]
    for i in range(1, len(renamed_vars[var_name])):
        x_name = out_name
        y_name = renamed_vars[var_name][i]
        if i != len(renamed_vars[var_name]) - 1:
            out_name = var_name + '@ADD@' + str(i)
        else:
            out_name = var_name
        pending_sum_ops[op_idx].append(
            _create_op_desc_("grad_add", {"X": [x_name],
                                          "Y": [y_name]}, {"Out": [out_name]},
T
tangwei12 已提交
447 448
                             {"use_mkldnn": False,
                              "op_device": op_device}))
449 450 451
    renamed_vars[var_name] = [var_name]


452
def _addup_repetitive_outputs_(op_descs, block_idx):
453 454
    """
    In backward part, an variable may be the output of more than one ops.
F
fengjiayi 已提交
455 456
    And one op may yield its multiple outputs to the same variable.
    In these cases, the variable should be the accumulation of all the outputs.
457 458
    `sum_op`s are added to implement the accumulate.
    """
459
    _MAX_ADD_NUM_ = framework._global_flags()['FLAGS_max_inplace_grad_add']
460 461
    #pending_sum_ops = []
    pending_sum_ops = collections.OrderedDict()
F
update  
fengjiayi 已提交
462
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
463
    renamed_vars = collections.defaultdict(list)
464
    renamed_var_start_idx = collections.defaultdict(list)
F
fengjiayi 已提交
465
    for idx, op_desc in enumerate(op_descs):
T
tangwei12 已提交
466 467 468 469 470
        op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
        )
        op_device = ""
        if op_desc.has_attr(op_device_attr_name):
            op_device = op_desc.attr(op_device_attr_name)
F
update  
fengjiayi 已提交
471
        for var_name in op_desc.input_arg_names():
M
mapingshuo 已提交
472 473
            if "@GRAD" not in var_name:
                continue
F
fengjiayi 已提交
474
            if len(renamed_vars[var_name]) > 1:
475
                if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
T
tangwei12 已提交
476 477
                    _accumulate_gradients_by_sum_op_(
                        var_name, renamed_vars, pending_sum_ops, idx, op_device)
478
                else:
T
tangwei12 已提交
479 480
                    _accumulate_gradients_by_add_ops_(
                        var_name, renamed_vars, pending_sum_ops, idx, op_device)
481

F
update  
fengjiayi 已提交
482
        for param_idx, param_name in enumerate(op_desc.output_names()):
F
fengjiayi 已提交
483 484
            arg_names = op_desc.output(param_name)
            for arg_idx, var_name in enumerate(arg_names):
M
mapingshuo 已提交
485 486
                if "@GRAD" not in var_name:
                    continue
T
tangwei12 已提交
487
                # if "@RENAME@" in var_name:
M
mapingshuo 已提交
488
                #    continue
F
fengjiayi 已提交
489 490 491 492 493 494 495
                if var_name == core.empty_var_name(
                ) or var_name in op_desc.input_arg_names():
                    # empty variable or inplace op
                    continue
                if len(renamed_vars[var_name]) == 0:
                    # it's the first time we get the variable
                    renamed_vars[var_name] = [var_name]
496
                    renamed_var_start_idx[var_name] = idx
F
fengjiayi 已提交
497 498
                else:
                    if len(renamed_vars[var_name]) == 1:
499
                        new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
F
fengjiayi 已提交
500 501 502 503
                            str(var_rename_count[var_name])
                        var_rename_count[var_name] += 1
                        # rename original var_name
                        renamed_vars[var_name][0] = new_name
504 505 506 507 508 509
                        # before change: _rename_arg_(op_descs, var_name,
                        #                             new_name, 0, idx)
                        # rename arg from idx of the first appearance
                        # in backward, not always from 0
                        _rename_arg_(op_descs, var_name, new_name,
                                     renamed_var_start_idx[var_name], idx)
F
fengjiayi 已提交
510 511
                        _rename_arg_(pending_sum_ops, var_name, new_name)

F
update  
fengjiayi 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524
                        for p in op_desc.output_names()[:param_idx]:
                            p_arg_names = op_desc.output(p)
                            if var_name in p_arg_names:
                                op_desc.set_output(p, [
                                    new_name if x == var_name else x
                                    for x in p_arg_names
                                ])

                        arg_names = [
                            new_name if x == var_name else x
                            for x in arg_names[:arg_idx]
                        ] + arg_names[arg_idx:]

525
                    new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
T
tangwei12 已提交
526
                        str(var_rename_count[var_name])
F
fengjiayi 已提交
527
                    var_rename_count[var_name] += 1
F
fengjiayi 已提交
528 529 530
                    arg_names[arg_idx] = new_name
                    op_desc.set_output(param_name, arg_names)
                    renamed_vars[var_name].append(new_name)
F
update  
fengjiayi 已提交
531

M
minqiyang 已提交
532
    for var_name, inputs in six.iteritems(renamed_vars):
533 534 535 536 537 538 539 540 541
        if len(renamed_vars[var_name]) > 1:
            if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
                _accumulate_gradients_by_sum_op_(var_name, renamed_vars,
                                                 pending_sum_ops, len(op_descs))
            else:
                _accumulate_gradients_by_add_ops_(var_name, renamed_vars,
                                                  pending_sum_ops,
                                                  len(op_descs))

F
fengjiayi 已提交
542
    # sum_op descs are sorted according to their insert position
543 544 545 546 547 548 549 550 551 552
    for key, value in collections.OrderedDict(
            reversed(list(pending_sum_ops.items()))).items():

        # NOTE(zhiqiu): Since reversed, the idx of op_descs to be inserted will remains correct.
        # For example, [0, 1, 2], and we want to insert 'a' at idx 1, 'b' at idx 2, and the expected result is [0, 1, 'a', 2, 'b'].
        # If reversed, we first insert 'b' at idx 2, it becomes [0, 1, 2, 'b'], and then insert 'a' at idx 1, it becomes [0, 1, 'a', 2, 'b'].
        # If not reverse, we first insert 'a' at idx 1, it becomes [0, 1, 'a', 2], and then insert 'b' at idx 2, it becomes [0, 1, 'a', 'b', 2].
        idx = key
        for i, op in enumerate(value):
            op_descs.insert(idx + i, op)
F
fengjiayi 已提交
553 554 555 556 557

    return op_descs


def _remove_no_grad_branch_(op_descs, no_grad_set):
558 559 560 561
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
562
        2. all grad inputs of the grad op are in 'no_grad_set'
563
    """
F
fengjiayi 已提交
564 565

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
566 567
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
568
            return True
569 570 571 572
        if _all_in_set_([
                name for name in op_desc.input_arg_names()
                if name.find(core.grad_var_suffix()) != -1
        ], no_grad_set):
F
fengjiayi 已提交
573
            no_grad_set.update(out_arg_names)
F
fengjiayi 已提交
574 575 576
            return True
        return False

F
fengjiayi 已提交
577
    # Remove ops whose outputs are all in no_grad_dict
578 579 580 581
    op_descs = [
        op_desc for op_desc in op_descs
        if not _op_can_be_removed_(op_desc, no_grad_set)
    ]
F
fengjiayi 已提交
582 583
    # Insert fill_zeros_like_op
    to_insert = []
F
fengjiayi 已提交
584
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
585
        for arg in op_desc.input_arg_names():
M
mapingshuo 已提交
586
            # arg is a gradient var name and arg should not have gradient
F
fengjiayi 已提交
587
            if core.grad_var_suffix() in arg and arg in no_grad_set:
588
                x_in = _strip_grad_suffix_(arg)
M
mapingshuo 已提交
589 590
                # the reason should be: arg can be input of another grad op
                # and the op is a not-to-remove op
591 592
                to_insert.append((_create_op_desc_(
                    "fill_zeros_like", {"X": [x_in]}, {"Out": [arg]}, {}), idx))
F
fengjiayi 已提交
593

594
    list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
F
fengjiayi 已提交
595 596 597 598

    return op_descs


C
chengduo 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
def _find_not_need_ops(grad_op_descs, forward_ops, input_grad_names_set):
    """
    Pruning Program with Structural Analysis Method of Computational Graph.
    The nodes of the computational graph composed of backward OPS should be
    interconnected. If there are unconnected sub-graphs in the computational graph,
    these sub-graphs should be cut off.

    Args:
        grad_op_descs(list[core.OpDesc]): The candidate backward OpDescs.
        forward_ops(list[Operator]): The forward ops.
        input_grad_names_set(set): this set is used to store the gradients' name
            which is generated by backward ops, and input_grad_names_set can help
            to prune the unnecessary backward ops.

    Return:
614
        (set[core.OpDesc]): A set of OpDescs which should be pruned.
C
chengduo 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
    """

    class Var(object):
        def __init__(self, var_name):
            self.var_name = var_name
            self.gen_op = None
            self.pendding_ops = []

        def set_gen_op(self, gen_op):
            assert isinstance(gen_op, Op)
            assert self.gen_op is None
            self.gen_op = gen_op

        def add_pending_op(self, op):
            assert isinstance(op, Op)
            self.pendding_ops.append(op)

    class Op(object):
        def __init__(self, op_desc):
            self.op_desc = op_desc
            self.inputs = []
            self.outputs = []

        def insert_input(self, var):
            assert isinstance(var, Var)
            self.inputs.append(var)

        def insert_output(self, var):
            assert isinstance(var, Var)
            self.outputs.append(var)

    var_versions = dict()

    def _create_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        else:
            var_versions[name].append(Var(name))
        return var_versions[name][-1]

    def _create_or_get_last_version_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        return var_versions[name][-1]

    def _create_op_node(op_desc):
        op_node = Op(op_desc)
        for input in op_desc.input_arg_names():
            var = _create_or_get_last_version_node(name=input)
            var.add_pending_op(op_node)
            op_node.insert_input(var)
        for output in op_desc.output_arg_names():
            var = _create_node(name=output)
            var.set_gen_op(op_node)
            op_node.insert_output(var)
        return op_node

    # Record the forward vars
    forward_vars_set = set() if input_grad_names_set is None else set(
        input_grad_names_set)
    for op in forward_ops:
        forward_vars_set.update(op.desc.input_arg_names())
        forward_vars_set.update(op.desc.output_arg_names())

    # Record the vars which are created during backward and is not generated by op.
    backward_vars_set = set()
    # special_op_nodes is the candidate sub-graph head node.
    special_op_nodes = set()
    for op_desc in grad_op_descs:
        input_set = set(op_desc.input_arg_names())
        # The new_vars are created during backward and is not generated by op.
        new_vars = input_set - forward_vars_set - backward_vars_set
        backward_vars_set.update(op_desc.output_arg_names())

        op_node = _create_op_node(op_desc)
        if len(new_vars) == len(input_set):
            special_op_nodes.add(op_node)

    not_need_op_descs = []
    # Start traversing all candidate sub-graph headers to check whether
    # they are connected to backward computational graphs, and if they are
    # not, list them in not_need_op_descs
    for special_op_node in special_op_nodes:
        op_list = [special_op_node]
        ready_vars = set(special_op_node.inputs)
        remove_ops = True
        candidate_ops = [special_op_node]
        while len(candidate_ops) > 0:
            op_node = candidate_ops.pop(0)
            if _all_in_set_(op_node.inputs, ready_vars):
                for out_var in op_node.outputs:
                    candidate_ops.extend(out_var.pendding_ops)
                    op_list.extend(out_var.pendding_ops)
                ready_vars.update(op_node.outputs)
            else:
                remove_ops = False
                break
        if remove_ops:
            not_need_op_descs.extend([node.op_desc for node in op_list])
714 715 716
    not_need_op_descs_set = set(not_need_op_descs)
    grad_op_descs_set = set(grad_op_descs)
    # If a backward computational graph is simply one sub-graph header, the
717
    # not_need_op_descs will be whole graph, this IF clause avoids it.
718 719 720
    if grad_op_descs_set == not_need_op_descs_set:
        return set()
    return not_need_op_descs_set
C
chengduo 已提交
721 722


Y
Yang Yang 已提交
723 724
def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
M
minqiyang 已提交
725
    proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang 已提交
726 727 728
    return proto.__str__()


M
mapingshuo 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
def _append_backward_ops_with_checkpoints_(
        block, ops, target_block, no_grad_dict, grad_to_var, checkpoints):
    """
    Create grad ops with forward ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
        ops(Op): the forward operators whose forward recomputation backward ops need to be added
        target_block(Block): the block which is going to hold new generated grad ops
        no_grad_dict(dict):
            key(int) block index
            val(str): corresponding forward variable name
        checkpoints: variables that a user defined as checkpoint for forward recomputation

    Algorithms:
M
mapingshuo 已提交
744
        0) deal with forward recomputing program descs
M
mapingshuo 已提交
745 746 747 748 749
        1) find ops between checkpoints, i.e. recompute_segments
        2) go through all forward ops and induct all variables that will be hold in memory
            a. variables that are used across segments will be held in memory
            b. output of dropout op will be held in memory
            c. input variables will be held in memory
M
mapingshuo 已提交
750 751 752
        3) go through each recompute_segments, add backward ops with forward recomputation
            a. add ops in current recompute_segment as forward recomputation ops
            b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
753 754
            c. add backward ops of current recomputation ops
            d. add sum op for repetitive_outputs
M
mapingshuo 已提交
755 756
        4) remove no grad branch as it is in _remove_no_grad_branch_
        5) Note1: all appended ops' OpRole are Backward
M
mapingshuo 已提交
757 758
        6) Note2: all variables with new name should be returned so that _append_backward_vars_ can be called
        7) Note3: current forward recomputation backpropagation does not handle programs with subblock
M
mapingshuo 已提交
759
    """
M
mapingshuo 已提交
760 761

    checkpoints_name = [x.name for x in checkpoints]
762
    checkpoints_name = list(set(checkpoints_name))
M
mapingshuo 已提交
763 764
    local_block = block.program._create_block()
    buffer_block = block.program._create_block()
765
    # 0) deal with forward recomputing program descs
M
mapingshuo 已提交
766
    program_stat = ProgramStats(block, ops)
M
mapingshuo 已提交
767
    program_stat.modify_forward_desc_for_recompute()
M
mapingshuo 已提交
768
    program_stat.build_stats()
M
mapingshuo 已提交
769 770

    # 1) find ops between checkpoints, i.e. recompute_segments
771
    checkpoints_name = program_stat.sort_checkpoints(checkpoints_name)
M
mapingshuo 已提交
772 773
    segments = []

774
    if len(checkpoints_name) == 1:
M
mapingshuo 已提交
775 776 777 778 779 780 781
        # only one checkpoint
        max_op_idx = -1
        var_group = [checkpoints_name[0]]
        for name in var_group:
            if name not in program_stat.var_op_deps:
                break
            op_idx = program_stat.var_op_deps[name]["var_as_output_ops"]
J
JZ-LIANG 已提交
782
            # only count the last generate op
M
mapingshuo 已提交
783 784 785 786 787 788
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if max_op_idx > 0:
            segments.append([0, max_op_idx + 1])
    else:
        start_idx = 0
J
JZ-LIANG 已提交
789
        pre_segment_end_idx = -1
M
mapingshuo 已提交
790 791 792
        while True:
            if start_idx >= len(checkpoints_name) - 1:
                break
J
JZ-LIANG 已提交
793 794
            # min_idx: checkpoint_1' s input op
            # max_idx: checkpoint_2' s output op
M
mapingshuo 已提交
795 796 797 798
            flag, min_idx, max_idx = program_stat.is_subgraph(
                [checkpoints_name[start_idx]],
                [checkpoints_name[start_idx + 1]])
            if flag:
J
JZ-LIANG 已提交
799 800 801
                # max_idx + 1 since the exact and used segment end idx is max_idx
                min_idx = program_stat._update_segment_start(
                    min_idx, pre_segment_end_idx)
M
mapingshuo 已提交
802
                segments.append([min_idx, max_idx + 1])
803 804 805
            else:
                _logger.info("Could not recompute op range [{}] - [{}] ".format(
                    min_idx, max_idx + 1))
J
JZ-LIANG 已提交
806

M
mapingshuo 已提交
807 808 809 810 811 812
            start_idx += 1

    if segments != [] and segments[0][0] != 0:
        recompute_segments = [[0, segments[0][0]]] + segments
    else:
        recompute_segments = segments
M
mapingshuo 已提交
813

J
JZ-LIANG 已提交
814
    for i, (idx1, idx2) in enumerate(recompute_segments):
815 816
        _logger.info("recompute segment[{}]".format(i))
        _logger.info("segment start op: [{}]: [{}]".format(ops[idx1].desc.type(
J
JZ-LIANG 已提交
817
        ), ops[idx1].desc.input_arg_names()))
818
        _logger.info("segment end op: [{}]: [{}]".format(ops[
J
JZ-LIANG 已提交
819
            idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()))
820 821
        _logger.info("recompute segment[{}]".format(i))
        _logger.info("segment start op: [{}]: [{}]".format(ops[idx1].desc.type(
J
JZ-LIANG 已提交
822
        ), ops[idx1].desc.input_arg_names()))
823
        _logger.info("segment end op: [{}]: [{}]".format(ops[
J
JZ-LIANG 已提交
824 825
            idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()))

M
mapingshuo 已提交
826
    # 2) go through all forward ops and induct all variables that will be hold in memory
M
mapingshuo 已提交
827
    vars_should_be_hold = []
828
    # a. variables that are used across segments will be held in memory
M
mapingshuo 已提交
829 830 831
    for segment in recompute_segments:
        vars_should_be_hold.extend(
            program_stat.get_out_of_subgraph_vars(segment[0], segment[1]))
J
JZ-LIANG 已提交
832 833

    cross_vars = set(vars_should_be_hold) - set(checkpoints_name)
834
    _logger.info("found [{}] vars which cross recompute segment: [{}], better checkpoints might be set to reduce those vars".format( \
J
JZ-LIANG 已提交
835 836
    len(cross_vars), cross_vars))

M
mapingshuo 已提交
837
    # b. output of seed op should be kept in memory
M
mapingshuo 已提交
838
    vars_should_be_hold.extend(program_stat.get_reserved_vars())
M
mapingshuo 已提交
839
    # c. input variables are checkpoints
M
mapingshuo 已提交
840 841 842
    vars_should_be_hold.extend(program_stat.get_input_nodes())
    vars_should_be_hold = list(set(vars_should_be_hold))

M
mapingshuo 已提交
843
    # 3) go through each recompute_segments, add backward ops with forward recomputation
M
mapingshuo 已提交
844 845 846 847 848 849
    grad_op_descs = []
    var_name_dict = {}

    vars_in_memory = vars_should_be_hold + checkpoints_name

    max_calculated_op_position = len(ops)
850
    device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
mapingshuo 已提交
851 852 853 854 855 856 857 858 859
    if recompute_segments == []:
        gap_ops = ops[0:max_calculated_op_position]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
860 861 862 863 864
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
M
mapingshuo 已提交
865 866 867 868 869 870 871 872 873 874 875 876 877 878
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

    for i, segment in enumerate(recompute_segments[::-1]):
        gap_ops = ops[segment[1]:max_calculated_op_position]
        max_calculated_op_position = segment[0]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
879 880 881 882 883
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
M
mapingshuo 已提交
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

        ff_ops = ops[segment[0]:segment[1]]
        var_suffix = ".subprog_%d" % i

        for op in ff_ops:
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            input_and_output_names = []
            input_and_output_names.extend(op.desc.input_arg_names())
            input_and_output_names.extend(op.desc.output_arg_names())
            for name in input_and_output_names:
                if block.var(name).persistable or name in checkpoints_name:
                    continue
                if name in vars_should_be_hold:
                    continue
                if name not in var_name_dict:
                    var_name_dict[name] = name + var_suffix
906 907 908 909 910 911 912 913 914 915 916

                    # we should create the rename var in subprog, otherwise its VarType will be BOOL
                    ref_var = block.program.global_block().var(name)
                    block.create_var(
                        name=var_name_dict[name],
                        shape=ref_var.shape,
                        dtype=ref_var.dtype,
                        type=ref_var.type,
                        persistable=ref_var.persistable,
                        stop_gradient=ref_var.stop_gradient)

M
mapingshuo 已提交
917
        # 3.a. add ops in current recompute_segment as forward recomputation ops
M
mapingshuo 已提交
918 919 920 921
        buffer_descs = _add_needed_descs_to_block(ff_ops, buffer_block, block,
                                                  vars_in_memory)
        added_descs = _add_descs_to_block(ff_ops, local_block)

M
mapingshuo 已提交
922
        # 3.b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
923 924 925 926 927 928
        for key in var_name_dict:
            _rename_arg_(buffer_descs, key, var_name_dict[key])

        # added_descs should be in grad_op_descs because it is backward op desc
        grad_op_descs.extend(buffer_descs)

J
JZ-LIANG 已提交
929
        # 3.c. add backward ops for all ops in current segment 
M
mapingshuo 已提交
930 931 932 933 934 935 936 937
        for op_desc in reversed(added_descs):
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op_desc, cpt.to_text(no_grad_dict[block.idx]), [])
            for key in var_name_dict:
                _rename_arg_(grad_op_desc, key, var_name_dict[key])
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)

M
mapingshuo 已提交
938
    # 3.d. add sum op for repetitive_outputs
939
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs, block.idx)
M
mapingshuo 已提交
940
    # 4) remove no grad branch as it is in _remove_no_grad_branch_
M
mapingshuo 已提交
941 942 943 944 945 946
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
    added_descs = _add_descs_to_block(grad_op_descs, target_block)
    return program_stat, checkpoints_name, vars_should_be_hold, recompute_segments


947 948 949 950 951
def _get_sub_block_path(sub_block,
                        sub_block_op_desc,
                        no_grad_set,
                        op_path_dict,
                        sub_block_target_names=None):
952 953
    """
    Get output vars in subblock which will be assigned to parent block.
954 955 956 957 958 959 960 961 962 963 964 965
    It is used to find the grad path in subblock.

    Args:
        sub_block(Block): The sub-block in which to get op path.
        sub_block_op_desc: The op desc of the sub-block op such as 'while', 'conditional_block' and 'recurrent'.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        sub_block_target_names(set): Target var names of sub-block.
    Return:
        The forward op path of sub-block corresponding to backward op.
966
    """
967

968 969 970
    assert sub_block_op_desc.has_attr(
        "sub_block") and sub_block.idx == sub_block_op_desc._block_attr_id(
            "sub_block")
971 972 973 974 975 976 977 978 979 980 981 982
    assert isinstance(sub_block_target_names, (set, type(None)))

    if sub_block_target_names is None:
        sub_block_target_names = sub_block_op_desc.output_arg_names

    # TODO(huihuangzheng): add support for recurrent op.
    if sub_block_op_desc.type in ["conditional_block", "while"]:
        # Step1: get the output vars in sub-block
        sub_outputs = [
            sub_block._var_recursive(var) for var in sub_block_target_names
        ]
        for var in sub_block_target_names:
983
            for op_desc in sub_block.ops:
984
                if var in op_desc.output_arg_names:
985
                    for name in op_desc.input_arg_names:
986
                        sub_outputs.append(sub_block._var_recursive(name))
987

988 989
        # Step2: find op path of sub-block
        is_while = sub_block_op_desc.type in ["while"]
990
        sub_block_op_path = _find_op_path_(sub_block, sub_outputs, [],
991
                                           no_grad_set, op_path_dict, is_while)
992 993 994 995
        return sub_block_op_path
    return sub_block.ops


996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
def _is_grad_op_(op):
    op_maker = core.op_proto_and_checker_maker
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    if op_maker.kOpRoleVarAttrName() in op.attr_names and \
            int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
        return True
    return False


def _rename_grad_name_(name, grad_order):
    return 'grad/' * grad_order + name


1009 1010
def _append_backward_ops_(block,
                          ops,
F
fengjiayi 已提交
1011 1012 1013
                          target_block,
                          no_grad_dict,
                          grad_to_var,
1014
                          callbacks=None,
1015 1016
                          input_grad_names_set=None,
                          op_path_dict=None):
1017 1018 1019 1020 1021
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
1022
        ops(Op): the forward operators whose backward ops need to be added
1023
        target_block(Block): the block which is going to hold new generated grad ops
1024
        no_grad_dict(dict):
1025
            key(int)  block index
T
tianshuo78520a 已提交
1026
            val(set) a set of variable names. These variables have no gradient
1027 1028 1029
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
C
chengduo 已提交
1030 1031 1032 1033
        callbacks(callable object): a callable object used to decorate new generated grad ops
        input_grad_names_set(set): this set is used to store the gradients' name which is
            generated by backward ops, and input_grad_names_set can help to prune the unnecessary
            backward ops.
1034 1035 1036
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
1037
    """
Y
Yang Yang 已提交
1038
    if callbacks is not None:
1039
        assert (isinstance(callbacks, (list, tuple)))
Y
Yang Yang 已提交
1040 1041 1042
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
1043

F
fengjiayi 已提交
1044
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
1045 1046
    grad_op_descs = []
    program = block.program
1047

1048 1049
    rename_var_map = {}

1050
    # add grad_op_desc by reversed ops
1051
    for op in reversed(ops):
F
fengjiayi 已提交
1052 1053 1054
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
W
Wu Yi 已提交
1055
            sub_block = program.block(op._block_attr_id("sub_block"))
W
Wu Yi 已提交
1056
            grad_sub_block = program._create_block()
W
Wu Yi 已提交
1057
            grad_sub_block._set_forward_block_idx(sub_block.idx)
1058 1059 1060
            # see follwing comments for why set None here.
            pre_input_grad_names_set = copy.copy(input_grad_names_set)
            input_grad_names_set = None
1061
            sub_block_path = op_path_dict[op._block_attr_id("sub_block")]
1062
            _append_backward_ops_(sub_block, sub_block_path, grad_sub_block,
1063
                                  no_grad_dict, grad_to_var, callbacks,
1064
                                  input_grad_names_set, op_path_dict)
1065
            input_grad_names_set = pre_input_grad_names_set
Y
Yu Yang 已提交
1066

W
Wu Yi 已提交
1067
            program._rollback()
F
fengjiayi 已提交
1068 1069
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
1070
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
1071
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
M
minqiyang 已提交
1072
            op.desc, cpt.to_text(no_grad_dict[block.idx]), grad_sub_block_list)
Y
Yang Yu 已提交
1073

1074 1075
        # Set device for grad_op according to forward Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
1076 1077 1078 1079
        if op.desc.has_attr(device_attr_name):
            op_device = op.desc.attr(device_attr_name)
            for op_desc in grad_op_desc:
                op_desc._set_attr(device_attr_name, op_device)
1080

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
        # Rename internal gradient variables in multiple backward
        # so that they have different names with previous backward.
        # For example:
        #  y = x * x, grad = fluid.gradients(fluid.gradients(y, x) + y * y, x)
        # In second-time backward, gradient variable names of partial
        # forward network (y * y) may be have same names with first-time
        # fluid.gradients(y, x).
        # So rename here before _addup_repetitive_outputs_.
        if program._appending_grad_times > 1:
            for op_desc in grad_op_desc:
                if not _is_grad_op_(op):
                    for name in op_desc.input_arg_names():
                        if name in rename_var_map:
                            op_desc._rename_input(name, rename_var_map[name])
                for name in op_desc.output_arg_names():
                    if "@GRAD" not in name:
                        continue
                    if block.desc.find_var(name.encode("ascii")):
                        new_name = _rename_grad_name_(
                            name, program._appending_grad_times)
                        op_desc._rename_output(name, new_name)
                        rename_var_map[name] = new_name

                        if name in op_grad_to_var:
                            op_grad_to_var[new_name] = op_grad_to_var[name]
                            op_grad_to_var.pop(name)

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
        # If input_grad_names_set is not None, extend grad_op_descs only when
        # any input grad in outputs of previous grad ops.
        # But this strategy is not suited for while op for some control flow,
        # for example, for while op, the grads maybe generated in next loop.
        if input_grad_names_set is not None:
            is_append_grad = False
            for op_desc in grad_op_desc:
                input_grad_names = [
                    name for name in op_desc.input_arg_names()
                    if name.find(core.grad_var_suffix()) != -1
                ]
                # some code of gradient ops, like increment, are not very
                # standard, there is no @GRAD in these ops' inputs.
                if len(input_grad_names) == 0:
                    is_append_grad = True
                    break

                if _some_in_set_(input_grad_names, input_grad_names_set):
                    grad_op_descs.append(op_desc)
                    is_append_grad = True
                    for name in op_desc.output_arg_names():
                        input_grad_names_set.add(name)
            if is_append_grad:
                grad_to_var.update(op_grad_to_var)
        else:
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)
F
fengjiayi 已提交
1135

M
mapingshuo 已提交
1136
    # sum parameter's gradients' var given multiple var gradient
1137
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs, block.idx)
F
fengjiayi 已提交
1138

M
mapingshuo 已提交
1139 1140
    # if all outputs of the grad op are in no_grad_set, then just remove and fill zero
    # if all inputs of the grad op are in no_grad_set, just remove this op
F
fengjiayi 已提交
1141 1142
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
F
fengjiayi 已提交
1143

M
mapingshuo 已提交
1144
    # remove some backward ops
C
chengduo 已提交
1145
    not_need_ops = _find_not_need_ops(grad_op_descs, ops, input_grad_names_set)
M
mapingshuo 已提交
1146

C
chengduo 已提交
1147 1148 1149
    grad_op_descs = [
        op_desc for op_desc in grad_op_descs if op_desc not in not_need_ops
    ]
1150

F
fengjiayi 已提交
1151
    # append op_desc in grad_op_descs to target_block
Y
yuyang18 已提交
1152 1153
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
F
update  
fengjiayi 已提交
1154
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
1155 1156
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
W
Wu Yi 已提交
1157
        new_op_desc._set_attr(op_role_attr_name, backward)
Y
Yang Yang 已提交
1158
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
1159
        if callbacks is not None:
1160
            assert (isinstance(callbacks, (list, tuple)))
Y
Yang Yang 已提交
1161 1162
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
1163

F
fengjiayi 已提交
1164

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
def _is_grad_var_(var_name):
    return core.grad_var_suffix() in var_name


# Find the op who holds the sub_block as its "sub_block" attr
def _find_parent_op_(sub_block):
    sub_block_id = sub_block.idx

    if sub_block_id == 0:
        return None

    program = sub_block.program
    for block_id in six.moves.range(program.num_blocks):
        block_desc = program.block(block_id).desc
        for op_idx in six.moves.range(block_desc.op_size()):
            op = block_desc.op(op_idx)
            if op.has_attr("sub_block") and op._block_attr_id(
                    "sub_block") == sub_block_id:
                return op

1185
    # NOTE(paddle-dev): When optimizer is added in conditional block,
1186 1187 1188 1189
    # sub_block may not be found.
    return None


F
fengjiayi 已提交
1190
def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
1203
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
1204
    """
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
    ops_to_remove = []
    '''
    NOTE(paddle-dev): while_grad op may hold some inputs which are not found 
    in the parent/forward block, and they are also the outputs of while_grad 
    op. These kinds of inputs are the recursive outputs inside while_grad op. 
    They should be considered as "already created" when scanning the inner 
    ops of while_grad ops.  
    '''
    parent_op = _find_parent_op_(block)
    parent_op_vars = []
    if parent_op is not None:
        input_args = parent_op.input_arg_names()
        output_args = parent_op.output_arg_names()
        for in_arg in input_args:
            if in_arg in output_args:
                parent_op_vars.append(in_arg)

F
fengjiayi 已提交
1222 1223 1224
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
W
Wu Yi 已提交
1225
            sub_block = block.program.block(op_desc._block_attr_id("sub_block"))
F
fengjiayi 已提交
1226
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243

        grad_var_ins = [
            var for var in op_desc.input_arg_names() if _is_grad_var_(var)
        ]
        grad_var_outs = [
            var for var in op_desc.output_arg_names() if _is_grad_var_(var)
        ]

        inputs = [
            var for var in op_desc.input_arg_names()
            if var != core.empty_var_name()
        ]
        outputs = [
            var for var in op_desc.output_arg_names()
            if var != core.empty_var_name()
        ]

1244
        # If the outputs of grad op is empty, just remove it
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
        if not outputs:
            ops_to_remove.append(op_idx)
            continue
        else:
            '''
            If the output is not empty and there is any grad input, find 
            whether there is any existing input. If not, just remove it.
            '''
            if grad_var_ins:
                existing_grad_var_ins = [
                    var for var in grad_var_ins
                    if block.desc.has_var_recursive(cpt.to_bytes(var)) or var in
                    parent_op_vars
                ]
                if not existing_grad_var_ins:
                    '''
                    FIXME(paddle-dev, zengjinle): rnn_memory_helper_grad is used
                    in recurrent op. The input of this op does not even exist in 
                    the program! Therefore, any dependency analysis would not 
                    work to this op! If I do not add the following code, this op
                    would be pruned, and the calculation result would be wrong. 
                    Maybe we should re-design this op later...  
                    '''
                    if op_desc.type() not in ['rnn_memory_helper_grad']:
                        ops_to_remove.append(op_idx)
1270
                        continue
1271

F
fengjiayi 已提交
1272 1273 1274
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
M
minqiyang 已提交
1275 1276
            if block.desc.has_var_recursive(cpt.to_bytes(
                    grad_var_name)) or grad_var_name == core.empty_var_name():
F
fengjiayi 已提交
1277
                continue
M
minqiyang 已提交
1278
            block.desc.var(cpt.to_bytes(grad_var_name))
F
fengjiayi 已提交
1279
            new_vars.add(grad_var_name)
1280
            if grad_var_name not in grad_to_var:
F
fengjiayi 已提交
1281 1282 1283 1284 1285
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
1286

F
fengjiayi 已提交
1287 1288
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
1289
                _infer_var_data_type_shape_(arg, block)
F
update  
fengjiayi 已提交
1290

1291 1292 1293
    for op_idx in reversed(ops_to_remove):
        block.desc._remove_op(op_idx, op_idx + 1)

F
update  
fengjiayi 已提交
1294

1295 1296 1297 1298 1299 1300
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
W
Wu Yi 已提交
1301
                op_desc._rename_input(name, var_map[name])
1302 1303

        for name in op_desc.output_arg_names():
M
mapingshuo 已提交
1304 1305
            if "@GRAD" not in name:
                continue
1306
            if block.desc.find_var(name.encode("ascii")):
Y
Yu Yang 已提交
1307
                new_name = unique_name.generate(name)
W
Wu Yi 已提交
1308
                op_desc._rename_output(name, new_name)
1309 1310
                var_map[name] = new_name

M
minqiyang 已提交
1311
    for g, ng in six.iteritems(var_map):
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
1323
        for var in list(block.vars.values()):
1324 1325 1326 1327 1328 1329 1330
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
def _get_son_parent_block_idx_dict(program, current_block_idx):

    son_parent_block_idx_dict = collections.OrderedDict()
    while current_block_idx >= 0:
        parent_block_idx = program.block(current_block_idx).parent_idx
        son_parent_block_idx_dict[current_block_idx] = parent_block_idx
        current_block_idx = parent_block_idx

    return son_parent_block_idx_dict


1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
def _get_no_grad_set_name(no_grad_set):
    no_grad_set_name = set()
    if no_grad_set is not None:
        if isinstance(no_grad_set, (set, list, tuple)):
            for i, no_grad_var in enumerate(no_grad_set):
                if isinstance(no_grad_var, framework.Variable):
                    no_grad_set_name.add(no_grad_var.name)
                elif isinstance(no_grad_var, six.string_types):
                    no_grad_set_name.add(no_grad_var)
                else:
                    raise TypeError(
                        "The type of no_grad_set's member must be paddle.fluid.Variable or str, but received %s."
                        % (type(no_grad_var)))
        else:
            raise TypeError(
                "The type of no_grad_set should be set or list or tuple, but received {}".
                format(type(no_grad_set)))
    return no_grad_set_name


1362
@framework.static_only
M
mapingshuo 已提交
1363 1364 1365 1366 1367
def append_backward(loss,
                    parameter_list=None,
                    no_grad_set=None,
                    callbacks=None,
                    checkpoints=None):
1368
    """
1369 1370
    :api_attr: Static Graph

1371
    This function appends backward part to main_program.
F
fengjiayi 已提交
1372

1373 1374
    A complete neural network training is made up of forward and backward
    propagation. However, when we configure a network, we only need to
1375 1376
    specify its forward part. This function uses the chain rule to automatically
    generate the backward part according to the forward part.
F
fengjiayi 已提交
1377

1378 1379
    In most cases, users do not need to invoke this function manually.
    It will be automatically invoked by the optimizer's `minimize` function.
F
fengjiayi 已提交
1380

1381
    Parameters:
1382
        loss(Tensor): The loss Tensor of the network.
1383
        parameter_list(list[Tensor|str]|tuple[Tensor|str], optional): List/Tuple of Parameters or Parameter.names
1384
                                           that need to be updated by optimizers.
1385
                                           If it is None, all parameters
F
fengjiayi 已提交
1386
                                           will be updated.
1387
                                           Default: None.
1388 1389
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1390
                               `stop_gradient=True` from all blocks will
F
fengjiayi 已提交
1391
                               be automatically added into this set.
1392
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1393
                               Default: None.
1394
        callbacks(list[callable object]|tuple[callable object], optional): List/Tuple of callback functions.
1395
                                               The callbacks are used for
1396 1397 1398 1399 1400 1401
                                               doing some custom jobs during
                                               backward part building. All
                                               callable objects in it will
                                               be invoked once each time a
                                               new gradient operator is added
                                               into the program. The callable
Z
zhangchunle 已提交
1402
                                               object must have two input
1403 1404
                                               parameters: ``block`` and ``context`` .
                                               The ``block`` is the :ref:`api_guide_Block_en` which
1405
                                               the new gradient operator will
1406
                                               be added to. The ``context`` is a
1407
                                               map, whose keys are gradient
1408 1409 1410
                                               Tensor names and values are
                                               corresponding original :ref:`api_guide_tensor_en` .
                                               In addition to this, the ``context``
1411
                                               has another special key-value pair:
1412
                                               the key is string ``__current_op_desc__``
1413 1414 1415
                                               and the value is the op_desc of the
                                               gradient operator who has just
                                               triggered the callable object.
1416
                                               Default: None.
F
fengjiayi 已提交
1417 1418

    Returns:
1419 1420
        list of tuple ( :ref:`api_guide_tensor_en` , :ref:`api_guide_tensor_en` ): Pairs of parameter and its corresponding gradients.
        The key is the parameter and the value is gradient Tensor.
F
fengjiayi 已提交
1421 1422

    Raises:
1423
        AssertionError: If ``loss`` is not an instance of Tensor.
F
fengjiayi 已提交
1424 1425 1426 1427

    Examples:
        .. code-block:: python

1428 1429
            import paddle
            import paddle.nn.functional as F
L
lujun 已提交
1430

1431 1432 1433 1434 1435
            paddle.enable_static()

            x = paddle.static.data(name='x', shape=[None, 13], dtype='int64')
            y = paddle.static.data(name='y', shape=[None, 1], dtype='float32')
            x_emb = paddle.static.nn.embedding(x, size=[100, 256])
1436
            y_predict = paddle.static.nn.fc(x=x_emb, size=1, activation=None, name='my_fc')
1437 1438
            loss = F.square_error_cost(input=y_predict, label=y)
            avg_loss = paddle.mean(loss)
1439 1440

            # Get all weights in main_program, not include bias.
1441
            all_weights = [param for param in paddle.static.default_main_program().block(0).all_parameters() if 'w_' in param.name]
1442 1443 1444
            all_weights_name = [w.name for w in all_weights]

            # return all param_grads needed to be updated if parameter_list set default None.
1445
            p_g_list1 = paddle.static.append_backward(loss=avg_loss)
1446 1447
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1448 1449
            # return the param_grads corresponding to parameter_list that can be list of param (Tensor).
            p_g_list2 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights)
1450 1451 1452
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # parameter_list can be list of param.name (str).
1453
            p_g_list3 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights_name)
1454 1455
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

1456 1457
            # no_grad_set can be set of Tensors that means grad will be cut off from these Tensors.
            p_g_list4 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set([x_emb]))
1458 1459
            # output: [(my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1460 1461
            # no_grad_set can be set of Tensor.name when the Tensor is created inside layers and can't be specified explicitly.
            p_g_list5 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set(['my_fc.b_0']))
1462 1463 1464
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # return [] because all param_grads are filtered by no_grad_set.
1465
            p_g_list6 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights, no_grad_set=set(all_weights))
1466

1467
    """
1468
    check_type(loss, 'loss', framework.Variable,
1469
               'paddle.static.append_backward')
Y
yuyang18 已提交
1470

Y
Fix bug  
yuyang18 已提交
1471 1472
    if loss.op is None:
        # the loss is from a cloned program. Find loss op manually.
M
mapingshuo 已提交
1473
        _find_loss_op_(loss)
Y
Fix bug  
yuyang18 已提交
1474

W
Wu Yi 已提交
1475 1476 1477
    loss.op._set_attr(core.op_proto_and_checker_maker.kOpRoleAttrName(),
                      int(core.op_proto_and_checker_maker.OpRole.Forward) |
                      int(core.op_proto_and_checker_maker.OpRole.Loss))
Y
yuyang18 已提交
1478

Y
Yang Yang 已提交
1479
    if callbacks is not None:
1480
        check_type(callbacks, 'callbacks', (list, tuple),
1481
                   'paddle.static.append_backward')
Y
Yu Yang 已提交
1482

F
fengjiayi 已提交
1483
    program = loss.block.program
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
    root_block = program.block(0)
    current_block_idx = program.current_block_idx
    current_block = program.block(current_block_idx)

    is_in_control_flow = current_block_idx != 0

    # Double grad is not supported in sub-block (control flow)
    if not is_in_control_flow:
        # _appending_grad_times used for double grad
        program._appending_grad_times += 1
1494

F
fengjiayi 已提交
1495
    if no_grad_set is None:
1496
        no_grad_set = set()
1497 1498
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1499
    no_grad_dict = _get_stop_gradients_(program)
1500 1501
    # no_grad_set only contains vars in block 0
    # Todo(liym27): support vars in sub block
1502
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
Y
Yu Yang 已提交
1503

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
    # Currently it is only to support the optimizer.minimize
    # in a switch branch, which can append_backward in a sub_block.
    # Note: while_loop is in control flow, but it makes no sense to call optimizer in while.
    # Todo: report error when it is in while_loop
    if is_in_control_flow:
        # create grad block if in switch control flow.
        target_grad_block = program._create_block(
            parent_idx=current_block.parent_idx)
        target_grad_block._set_forward_block_idx(current_block_idx)
        # after _create_block, program.current_block changes
    else:
        target_grad_block = root_block

    son_parent_block_idx_dict = _get_son_parent_block_idx_dict(
        program, current_block_idx)

    block_fwd_op_num_dict = {}  # block_id: fwd_op_num
    for idx in son_parent_block_idx_dict:
        block_fwd_op_num_dict[idx] = program.block(idx).desc.op_size()
F
fengjiayi 已提交
1523

F
fengjiayi 已提交
1524 1525
    grad_to_var = dict()

M
mapingshuo 已提交
1526
    op_desc = _create_loss_op_desc_(loss)
1527 1528 1529 1530 1531 1532 1533
    target_grad_block.desc.append_op().copy_from(op_desc)

    for block_idx in son_parent_block_idx_dict:
        block = program.block(block_idx)

        block_no_grad_set = set(
            map(_strip_grad_suffix_, no_grad_dict[block_idx]))
1534 1535 1536 1537

        op_path_dict = dict()
        op_path = _find_op_path_(block, [loss], [], block_no_grad_set,
                                 op_path_dict)
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549

        no_grad_vars = _find_no_grad_vars(block, op_path, [loss],
                                          block_no_grad_set)

        block_no_grad_set.update(no_grad_vars)
        no_grad_dict[block_idx].update(
            list(map(_append_grad_suffix_, block_no_grad_set)))

        input_grad_names_set = None
        # For double backward, input_grad_names is used for filtering
        # some non-used gradients op(s).

1550
        # TODO(liym27): need a better design.
1551 1552 1553 1554 1555
        # not support double grad in control flow sub-block now.
        if not is_in_control_flow:
            if program._appending_grad_times > 1:
                input_grad_names_set = set([_append_grad_suffix_(loss.name)])

1556
        # TODO: support _append_backward_ops_with_checkpoints_ in
1557
        #  sub-block (control flow)
J
JZ-LIANG 已提交
1558
        is_recompute = False
1559 1560 1561
        if checkpoints != None and \
                isinstance(checkpoints, list) and \
                len(checkpoints) > 0:
J
JZ-LIANG 已提交
1562
            is_recompute = True
1563
            program_stat, checkpoint_names, \
T
tangwei12 已提交
1564 1565
                vars_should_be_hold, \
                recompute_segments = \
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
                _append_backward_ops_with_checkpoints_(
                    root_block,
                    op_path,
                    root_block,
                    no_grad_dict,
                    grad_to_var,
                    checkpoints)
        else:
            _append_backward_ops_(
                block,  # the block where forward ops are in
                op_path,
                target_grad_block,
                no_grad_dict,
                grad_to_var,
                callbacks,
1581 1582
                input_grad_names_set=input_grad_names_set,
                op_path_dict=op_path_dict)
1583 1584 1585 1586 1587 1588 1589 1590 1591

    grad_info_map = dict()

    # if in control flow, target_grad_block is a created new block which only contains grad ops,
    # so fwd_op_num is set to 0.
    fwd_op_num = block_fwd_op_num_dict[
        current_block_idx] if not is_in_control_flow else 0

    # Because append_backward may be called multiple times,
1592 1593
    # we need rename the internal gradient variables so that they have
    # different names.
1594
    _rename_grad_(target_grad_block, fwd_op_num, grad_to_var, {})
1595

1596 1597
    _append_backward_vars_(target_grad_block, fwd_op_num, grad_to_var,
                           grad_info_map)
F
fengjiayi 已提交
1598

F
fengjiayi 已提交
1599
    program.current_block_idx = current_block_idx
W
Wu Yi 已提交
1600
    program._sync_with_cpp()
F
fengjiayi 已提交
1601

1602
    if parameter_list is not None:
1603 1604
        check_type(parameter_list, 'parameter_list', (list, tuple, set),
                   'fluid.backward.append_backward')
1605 1606
        parameters = []
        for i, param in enumerate(parameter_list):
1607 1608 1609
            check_type(param, 'parameter_list[%s]' % i, (framework.Variable,
                                                         six.string_types),
                       'fluid.backward.append_backward')
1610 1611 1612 1613
            if isinstance(param, framework.Variable):
                parameters.append(param.name)
            elif isinstance(param, six.string_types):
                parameters.append(param)
1614
    else:
F
fengjiayi 已提交
1615
        params = program.global_block().all_parameters()
C
chengduo 已提交
1616
        parameters = [param.name for param in params if param.trainable]
1617

1618
    params_and_grads = []
1619
    op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
1620
    for param in parameters:
M
minqiyang 已提交
1621
        if cpt.to_text(param) not in grad_info_map:
F
fengjiayi 已提交
1622
            continue
F
update  
fengjiayi 已提交
1623
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
1624
        grad_block = grad_info[1]
1625 1626 1627 1628
        if not grad_block.has_var(grad_info[0]):
            raise ValueError("grad block[{0}] did not have grad var {1}".format(
                grad_info[1], grad_info[0]))
        # Get the param var from the global block
F
fengjiayi 已提交
1629
        param_var = program.global_block().var(param)
1630
        grad_var = grad_block.var(grad_info[0])
1631 1632 1633 1634 1635
        if not is_in_control_flow:
            if loss.block.has_var(grad_info[0]):
                params_and_grads.append((param_var, grad_var))
            else:
                params_and_grads.append((param_var, None))
1636
        else:
1637
            params_and_grads.append((param_var, grad_var))
Y
yuyang18 已提交
1638 1639 1640 1641

    for p, g in params_and_grads:
        if g is None:
            continue
1642 1643 1644
        ops = grad_block.ops if is_in_control_flow else program.global_block(
        ).ops
        for op in reversed(ops):
Y
yuyang18 已提交
1645 1646 1647 1648 1649 1650 1651
            assert isinstance(op, framework.Operator)
            if g.name in op.output_arg_names:
                g.op = op
                break

        if g.op is None:
            raise ValueError("Unexpected branch")
Y
yuyang18 已提交
1652
        attr_val = [p.name, g.name]
Y
yuyang18 已提交
1653 1654
        if g.op.has_attr(op_role_var_attr_name):
            attr_val.extend(g.op.attr(op_role_var_attr_name))
W
Wu Yi 已提交
1655
        g.op._set_attr(op_role_var_attr_name, attr_val)
Y
yuyang18 已提交
1656

J
JZ-LIANG 已提交
1657 1658 1659 1660
    if is_recompute:
        return params_and_grads, checkpoint_names
    else:
        return params_and_grads
1661 1662 1663 1664 1665 1666 1667 1668


def _as_list(x):
    if x is None:
        return []
    return list(x) if isinstance(x, collections.Sequence) else [x]


1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
def _is_ancestor_block(ancestor_block, block):
    prog = block.program
    ancestor_idx = ancestor_block.idx
    parent_idx = block.parent_idx

    while parent_idx != -1:
        if parent_idx == ancestor_idx:
            return True
        parent_idx = prog.block(parent_idx).parent_idx

    return False


def _get_output_names(cur_block, targets):
    """
    In `cur_block`, get output names those linked to targets.
    NOTE:
    1. `targets` can be in `cur_block`;
    Usually, `targets` is in `cur_block`. However, considering control flow,
    2. `targets` may be in sub-block but `cur_block` is an ancestor of `targets[0].block`;
    3. `targets` may be in the block which is ancestor of `cur_block`.
    """

    block = targets[0].block if targets else cur_block
    current_output_names = set([out.name for out in targets])

1695 1696 1697 1698 1699 1700
    # 1. If `targets` in cur_block or the ancestral block of `cur_block`
    if block.idx == cur_block.idx or _is_ancestor_block(block, cur_block):
        return current_output_names

    # 2. If `cur_block` is an ancestor of `targets[0].block`, run while loop
    prog = cur_block.program
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
    while block.idx != cur_block.idx:
        assert block.parent_idx != -1
        parent_block = prog.block(block.parent_idx)

        parent_block_output_names = set()
        for op in reversed(block.ops):
            if _some_in_set_(op.desc.output_arg_names(), current_output_names):
                for name in op.desc.input_arg_names():
                    current_output_names.add(name)
                    if not block.desc.find_var(cpt.to_bytes(name)) \
                            and parent_block.desc.find_var(cpt.to_bytes(name)):
                        parent_block_output_names.add(name)

        block = parent_block
        current_output_names = parent_block_output_names

    return current_output_names


1720 1721 1722
def _find_no_grad_vars(block, op_path, targets, no_grad_set):
    """
    Find the vars which is not used in the program, and
1723
    those vars belong to no_grad_var.
1724
    """
1725
    output_names = _get_output_names(block, targets)
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
    no_grad_var = []
    for i, op in reversed(list(enumerate(op_path))):
        # If the op has sub_block, it is too complicated to find the correct no_grad_var.
        if not op.has_attr("sub_block"):
            for out_var in op.desc.output_arg_names():
                if out_var not in output_names and out_var not in op.desc.input_arg_names(
                ) and not block.vars[out_var].stop_gradient:
                    no_grad_var.append(out_var)
        for name in op.desc.input_arg_names():
            if name not in no_grad_set:
                output_names.add(name)
    return set(no_grad_var)


1740 1741 1742 1743 1744 1745
def _find_op_path_(block,
                   targets,
                   inputs,
                   no_grad_set,
                   op_path_dict=None,
                   is_while=False):
1746
    """
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
    It is used to find the grad path in `block`.

    Args:
        block(Block): The block in which to get op path.
        targets(list[Variable]): The target variables.
        inputs(list[Variable]): The input variables.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed. op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        is_while(bool): Whether or not `block` is while block
    Return:
        The forward op path of block corresponding to backward op.
1760
    """
1761

1762
    input_names = set([inp.name for inp in inputs])
1763 1764 1765
    output_names = _get_output_names(block, targets)
    if op_path_dict is None:
        op_path_dict = dict()
1766 1767 1768 1769 1770 1771

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
1772 1773 1774
            if _some_in_set_(
                    op.desc.input_arg_names(),
                    input_names) and core.has_non_empty_grad_op_maker(op.type):
1775 1776 1777 1778 1779 1780 1781
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
1782 1783 1784 1785 1786 1787 1788 1789 1790
        if op.has_attr("sub_block"):
            sub_block_id = op._block_attr_id("sub_block")
            sub_block = block.program.block(sub_block_id)
            sub_block_target_names = output_names & set(op.output_arg_names)
            sub_block_path = _get_sub_block_path(sub_block, op,
                                                 set(), op_path_dict,
                                                 sub_block_target_names)
            op_path_dict[sub_block_id] = sub_block_path

1791 1792 1793
        if _some_in_set_(
                op.desc.output_arg_names(),
                output_names) and core.has_non_empty_grad_op_maker(op.type):
1794 1795 1796 1797 1798 1799
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

1800 1801 1802 1803 1804
    if is_while:
        # If block is while block, dealing with op specifically again.
        # TODO(liym27): Consider special types of ops.
        for i, op in reversed(list(enumerate(block.ops))):
            if relevant_op_flags[i] == False \
T
tangwei12 已提交
1805
                    and _some_in_set_(op.desc.output_arg_names(), output_names):
1806 1807
                relevant_op_flags[i] = True

1808 1809 1810 1811 1812 1813 1814
    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
1815
                if name not in input_names and block.vars[name].stop_gradient:
1816 1817 1818 1819 1820 1821 1822
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
1823
    Backpropagate the gradients of targets to inputs.
1824 1825

    Args:
1826 1827 1828
        targets(Tensor|list[Tensor]|tuple[Tensor]): The target Tensors
        inputs(Tensor|list[Tensor]|tuple[Tensor]): The input Tensors
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensors
1829 1830
            of targets which has the same shape with targets, If None, ones will
            be created for them.
1831 1832
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1833 1834
                               `stop_gradient=True` from all blocks will
                               be automatically added into this set.
1835
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1836
                               Default: None.
1837 1838

    Return:
1839 1840
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
1841 1842 1843 1844 1845 1846 1847 1848
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
1849 1850
    # increase appending gradients times
    prog._appending_grad_times += 1
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
            "Should have the same number of target_gradients as targets")

    if no_grad_set is None:
        no_grad_set = set()
1862 1863
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1864
    no_grad_dict = _get_stop_gradients_(prog)
1865
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
1866 1867 1868

    fwd_op_num = block.desc.op_size()

1869 1870
    input_grad_names_set = set()

1871 1872 1873 1874 1875
    target_grad_map = {}
    for i, grad in enumerate(target_gradients):
        target = targets[i]
        if grad is None:
            grad_name = _append_grad_suffix_(target.name)
L
lvmengsi 已提交
1876 1877 1878 1879 1880
            target_shape = target.name + '_shape'
            block.desc.append_op().copy_from(
                _create_op_desc_("shape", {'Input': [target.name]},
                                 {"Out": [target_shape]}, {}))
            input_grad_names_set.add(target_shape)
L
liym27 已提交
1881
            op_desc = _create_op_desc_("fill_constant",
L
lvmengsi 已提交
1882
                                       {"ShapeTensor": [target_shape]},
1883
                                       {"Out": [grad_name]}, {
1884
                                           "shape": target.shape,
1885 1886 1887
                                           "value": 1.0,
                                           "dtype": target.dtype,
                                       })
L
liym27 已提交
1888

1889
            block.desc.append_op().copy_from(op_desc)
1890
            input_grad_names_set.add(grad_name)
1891 1892 1893 1894 1895 1896 1897 1898
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
                    "The shapes of target and grad are different: %s %s" % (
                        target.name, grad.name))
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name
1899 1900 1901 1902 1903 1904
            input_grad_names_set.add(grad.name)

    # For double backward, input_grad_names is used for filter
    # some non-used gradients op.
    if prog._appending_grad_times == 1:
        input_grad_names_set = None
1905 1906 1907 1908 1909 1910

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
1911 1912 1913 1914

    op_path_dict = dict()
    op_path = _find_op_path_(block, targets, inputs, block_no_grad_set,
                             op_path_dict)
1915 1916 1917 1918 1919 1920

    # find no grad var by op_path
    no_grad_vars = _find_no_grad_vars(block, op_path, targets,
                                      block_no_grad_set)
    block_no_grad_set.update(no_grad_vars)

1921
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
1922 1923
    grad_to_var = dict()
    grad_info_map = dict()
1924 1925 1926 1927 1928 1929
    _append_backward_ops_(
        block,
        op_path,
        block,
        no_grad_dict,
        grad_to_var,
1930 1931
        input_grad_names_set=input_grad_names_set,
        op_path_dict=op_path_dict)
1932 1933 1934 1935 1936 1937 1938

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
W
Wu Yi 已提交
1939
    prog._sync_with_cpp()
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars
1955 1956


1957
@framework.static_only
1958 1959
def gradients(targets, inputs, target_gradients=None, no_grad_set=None):
    """
1960
    :api_attr: Static Graph
T
tangwei12 已提交
1961

1962 1963 1964
    Backpropagate the gradients of targets to inputs.

    Args:
1965 1966 1967
        targets (Tensor|list[Tensor]|tuple[Tensor]): The target Tensors.
        inputs (Tensor|list[Tensor]|tuple[Tensor]): The input Tensors.
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensor
1968 1969
            of targets which has the same shape with targets, If None, ones will
            be created for them.
1970 1971 1972
        no_grad_set (set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
            should be ignored. All Tensors with ``stop_gradient=True`` from all blocks will
            be automatically added into this set. If this parameter is not None, the Tensors or Tensor.names
1973
            in this set will be added to the default set. Default: None.
1974 1975

    Return:
1976 1977
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
1978 1979 1980 1981 1982
        will be None.

    Examples:
        .. code-block:: python

1983 1984 1985 1986
            import paddle
            import paddle.nn.functional as F

            paddle.enable_static()
1987

1988
            x = paddle.static.data(name='x', shape=[None, 2, 8, 8], dtype='float32')
1989
            x.stop_gradient=False
1990 1991 1992 1993
            y = paddle.static.nn.conv2d(x, 4, 1, bias_attr=False)
            y = F.relu(y)
            z = paddle.static.gradients([y], x)
            print(z) # [var x@GRAD : fluid.VarType.LOD_TENSOR.shape(-1L, 2L, 8L, 8L).astype(VarType.FP32)]
1994
    """
1995
    check_type(targets, 'targets', (framework.Variable, list, tuple),
1996
               'paddle.static.gradients')
1997
    check_type(inputs, 'inputs', (framework.Variable, list, tuple),
1998
               'paddle.static.gradients')
1999
    check_type(target_gradients, 'target_gradients', (
2000
        framework.Variable, list, tuple, type(None)), 'paddle.static.gradients')
2001

2002 2003
    outs = calc_gradient(targets, inputs, target_gradients, no_grad_set)
    return _as_list(outs)