backward.py 95.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
tangwei12 已提交
15
from .proto import framework_pb2
16

17
from paddle.fluid import framework as framework
18
from paddle.fluid import program_guard
F
update  
fengjiayi 已提交
19
from . import core
F
update  
fengjiayi 已提交
20
import collections
21
import copy
22
import six
23
import logging
M
minqiyang 已提交
24
from .. import compat as cpt
25
from . import unique_name
26
from . import log_helper
L
liym27 已提交
27
import paddle.fluid
28
from .data_feeder import check_type
29
import warnings
30 31 32 33
try:
    from collections.abc import Sequence
except:
    from collections import Sequence
34

M
mapingshuo 已提交
35 36 37 38 39
__all__ = [
    'append_backward',
    'gradients',
]

40 41 42
_logger = log_helper.get_logger(__name__,
                                logging.INFO,
                                fmt='%(asctime)s-%(levelname)s: %(message)s')
43

M
mapingshuo 已提交
44 45

class ProgramStats(object):
46

M
mapingshuo 已提交
47 48 49 50 51 52 53 54 55
    def __init__(self, block, ops):
        self.block = block
        self.ops = ops
        self.op_deps = {}  # op-> in_ops, out_ops
        self.var_op_deps = {}  # var as input op, var as output op

    def get_input_nodes(self):
        input_names = []
        for name in self.var_op_deps:
56
            if len(self.var_op_deps[name]["var_as_output_ops"]) == 0 and \
T
tangwei12 已提交
57
                    len(self.var_op_deps[name]["var_as_input_ops"]) > 0:
M
mapingshuo 已提交
58 59 60 61 62 63 64 65 66 67 68
                if self.block.var(name).persistable:
                    continue
                input_names.append(name)
        for op in self.ops:
            if op.desc.type() == "read":
                input_names.extend(op.desc.output_arg_names())
        return input_names

    def get_reserved_vars(self):
        var_name = []
        for op in self.ops:
M
mapingshuo 已提交
69
            if op.desc.type() == "seed":
M
mapingshuo 已提交
70 71 72 73 74 75 76 77 78 79 80
                var_name.extend(op.desc.output_arg_names())
        return var_name

    def get_out_of_subgraph_vars(self, begin_op_idx, end_op_idx):
        var_name = []
        for i in range(begin_op_idx, end_op_idx, 1):
            for name in self.ops[i].desc.output_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_input_ops"]:
                        if idx >= end_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
81 82 83 84 85
            for name in self.ops[i].desc.input_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_output_ops"]:
                        if idx < begin_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
        return var_name

    def is_subgraph(self, var_group1, var_group2):
        # should traverse from var_group1 to var_group2
        # max op idx in var_group2
        # min op idx in var_group1
        min_op_idx = len(self.ops)
        max_op_idx = -1
        for name in var_group1:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group2:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group1:
            op_idx = self.var_op_deps[name]["var_as_input_ops"]
            for idx in op_idx:
                min_op_idx = min(min_op_idx, idx)
        for name in var_group2:
            op_idx = self.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if min_op_idx >= max_op_idx:
            return False, min_op_idx, max_op_idx
J
JZ-LIANG 已提交
110

M
mapingshuo 已提交
111 112
        return True, min_op_idx, max_op_idx

J
JZ-LIANG 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125
    def _update_segment_start(self, min_idx, pre_segment_end_idx):
        """
        persist vars of amp-related cast should be included in recompute segment
        """

        def is_amp_cast(op):
            return op.desc.type() == 'cast' and self.block.var(
                op.desc.input_arg_names()[0]).persistable

        idx_ = min_idx - 1
        updated_min_idx = min_idx
        while idx_ > pre_segment_end_idx:
            if is_amp_cast(self.ops[idx_]):
126 127 128
                _logger.info("found amp-cast op: {}, : {}".format(
                    self.ops[idx_].desc.type(),
                    self.ops[idx_].desc.input_arg_names()[0]))
J
JZ-LIANG 已提交
129 130 131 132 133 134 135
                updated_min_idx = idx_
                idx_ -= 1
            else:
                break

        return updated_min_idx

M
mapingshuo 已提交
136 137 138 139 140
    def build_stats(self):
        for i, op in enumerate(self.ops):
            self.op_deps[i] = {"in_ops": [], "out_ops": []}
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
141 142
                    self.op_deps[i]["in_ops"].extend(
                        self.var_op_deps[name]["var_as_output_ops"])
M
mapingshuo 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_input_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = [i]
                    self.var_op_deps[name]["var_as_output_ops"] = []

            for j, name in enumerate(op.desc.output_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_output_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = []
                    self.var_op_deps[name]["var_as_output_ops"] = [i]

            for op_idx in self.op_deps[i]["in_ops"]:
                self.op_deps[op_idx]["out_ops"].extend([i])

162 163 164 165
    def sort_checkpoints(self, checkpoints_name):
        sorted_checkpoints = []
        for name in checkpoints_name:
            if name not in self.var_op_deps:
166
                _logger.info(
167 168 169 170 171 172 173 174 175 176 177
                    "Recompute Optimizer: deleted %s from checkpoints, because it is not used in paddle program."
                    % name)
            elif self.var_op_deps[name]["var_as_output_ops"] == []:
                # input nodes
                sorted_checkpoints.append((name, -1))
            else:
                sorted_checkpoints.append(
                    (name, max(self.var_op_deps[name]["var_as_output_ops"])))
        sorted_checkpoints = sorted(sorted_checkpoints, key=lambda x: x[1])
        return [x[0] for x in sorted_checkpoints]

M
mapingshuo 已提交
178 179 180 181 182 183
    def modify_forward_desc_for_recompute(self):
        op_types = [op.desc.type() for op in self.ops]
        if "dropout" not in op_types:
            return

        op_idx = 0
184
        while op_idx < len(self.ops):
M
mapingshuo 已提交
185 186 187 188
            op = self.ops[op_idx]
            if op.desc.type() != "dropout":
                op_idx += 1
                continue
189 190 191 192
            # already insert seed op before dropout
            if op.input('Seed') is not None and len(op.input('Seed')) == 1:
                op_idx += 1
                continue
M
mapingshuo 已提交
193 194 195 196 197 198 199 200 201 202 203
            # add a seed op so that the two dropout op can generate same output
            op_unique_name = unique_name.generate("seed")
            var_unique_name = unique_name.generate_with_ignorable_key(".".join(
                [op_unique_name, 'tmp']))
            added_var = self.block.create_var(
                name=var_unique_name,
                dtype='int32',
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=False)
            seed = 0 if op.attr("fix_seed") is False else int(op.attr("seed"))
204 205 206 207 208 209 210

            op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
            )
            op_device = ""
            if op.desc.has_attr(op_device_attr_name):
                op_device = op.desc.attr(op_device_attr_name)

211
            # Setting the force_cpu of seed to true will make the output of seed in cpu memory,
212
            # reduce the synchronous copy from GPU to CPU in dropout, and reduce the communication hang
213 214 215 216 217 218 219 220 221
            added_op = self.block._insert_op(index=op.idx,
                                             type='seed',
                                             inputs={},
                                             outputs={'Out': [added_var]},
                                             attrs={
                                                 'seed': seed,
                                                 'op_device': op_device,
                                                 'force_cpu': True
                                             })
M
mapingshuo 已提交
222 223 224 225 226 227 228 229
            self.ops.insert(op_idx, added_op)
            # modify dropout op desc so that it accept a seed var as input
            op.desc.set_input("Seed", [var_unique_name])
            op.desc.remove_attr("fix_seed")
            op.desc.remove_attr("seed")
            self.block._sync_with_cpp()
            op_idx += 2

M
mapingshuo 已提交
230 231 232 233 234 235 236 237

def _pretty_op_desc_(op_desc, prefix):
    out_s = "%s\tname:[%s]\n%s    \tinputs:[%s]\n%s    \toutputs:[%s]" % \
            (prefix + "_op", str(op_desc.type()), prefix + "_input", " ".join(op_desc.input_arg_names()),
             prefix + "_output", " ".join(op_desc.output_arg_names()))
    return out_s


238 239 240 241 242
def _add_needed_descs_to_block(descs,
                               block,
                               main_block,
                               in_memory_vars,
                               grad_op_id_to_fwd_op=None):
M
mapingshuo 已提交
243 244 245 246
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
T
tangwei12 已提交
247
        core.op_proto_and_checker_maker.kOpRoleAttrName()
M
mapingshuo 已提交
248 249
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
250 251
        origin_desc = desc
        origin_is_operator = False
M
mapingshuo 已提交
252 253
        if isinstance(desc, framework.Operator):
            desc = desc.desc
254
            origin_is_operator = True
M
mapingshuo 已提交
255 256 257 258 259 260 261 262 263
        if isinstance(desc, tuple):
            desc = desc[0]
        is_needed = False
        for name in desc.output_arg_names():
            if main_block.has_var(name) and main_block.var(name).persistable:
                continue
            if name not in in_memory_vars:
                is_needed = True
        if is_needed:
264 265
            if origin_is_operator and grad_op_id_to_fwd_op is not None:
                grad_op_id_to_fwd_op[desc.original_id()] = origin_desc
M
mapingshuo 已提交
266 267 268
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(desc)
            new_op_desc._set_attr(op_role_attr_name, backward)
269 270
            if desc.has_attr('op_device'):
                new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
271 272 273 274
            result_descs.append(new_op_desc)
    return result_descs


275
def _add_descs_to_block(descs, block, grad_op_id_to_fwd_op=None):
M
mapingshuo 已提交
276 277 278 279 280 281 282 283
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
        core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
284 285 286
            # for recompute, should record recompute ops
            if grad_op_id_to_fwd_op is not None:
                grad_op_id_to_fwd_op[desc.desc.original_id()] = desc
M
mapingshuo 已提交
287 288 289 290 291 292
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        new_op_desc = block.desc.append_op()
        new_op_desc.copy_from(desc)
        new_op_desc._set_attr(op_role_attr_name, backward)
293 294
        if desc.has_attr('op_device'):
            new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
295 296 297 298 299 300 301
        result_descs.append(new_op_desc)
    return result_descs


def _find_loss_op_(loss):
    for op in reversed(loss.block.ops):
        assert isinstance(op, framework.Operator)
302 303
        if len(op.output_arg_names
               ) == 1 and op.output_arg_names[0] == loss.name:
M
mapingshuo 已提交
304 305 306 307
            loss.op = op
            break
    if loss.op is None:
        raise ValueError("loss.op is None. Should not happend")
308 309


310 311
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
312
    Traverse all ops in op_descs[begin_idx : end_idx],
313 314
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
315 316 317
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
318
        end_idx = len(op_descs)
319 320 321 322 323 324 325 326 327 328 329 330 331
    if isinstance(op_descs, (list, tuple)):
        for i in range(begin_idx, end_idx):
            op_desc = op_descs[i]
            if isinstance(op_desc, tuple):
                op_desc = op_desc[0]
            op_desc._rename_input(old_name, new_name)
            op_desc._rename_output(old_name, new_name)
    if isinstance(op_descs, collections.OrderedDict):
        for key, value in op_descs.items():
            if isinstance(value, (list, tuple)):
                for op_desc in value:
                    op_desc._rename_input(old_name, new_name)
                    op_desc._rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
332 333


F
fengjiayi 已提交
334
def _create_op_desc_(op_type, inputs, outputs, attrs):
335 336 337
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
338 339
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
M
minqiyang 已提交
340
    for para, args in six.iteritems(inputs):
341 342 343
        op_desc.set_input(
            para,
            list(
344 345 346
                map(
                    lambda arg: arg.decode()
                    if isinstance(arg, six.binary_type) else arg, args)))
M
minqiyang 已提交
347
    for para, args in six.iteritems(outputs):
348 349 350
        op_desc.set_output(
            para,
            list(
351 352 353
                map(
                    lambda arg: arg.decode()
                    if isinstance(arg, six.binary_type) else arg, args)))
Y
yuyang18 已提交
354 355

    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
356
    op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
Y
yuyang18 已提交
357 358 359 360

    if op_role_attr_name not in attrs:
        attrs[
            op_role_attr_name] = core.op_proto_and_checker_maker.OpRole.Backward
361 362
    if op_device_attr_name not in attrs:
        attrs[op_device_attr_name] = ""
M
minqiyang 已提交
363
    for name, val in six.iteritems(attrs):
F
fengjiayi 已提交
364 365 366
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
W
Wu Yi 已提交
367
            op_desc._set_attr(name, val)
F
fengjiayi 已提交
368 369 370
    return op_desc


M
mapingshuo 已提交
371 372 373 374
def _create_loss_op_desc_(loss):
    op_desc = _create_op_desc_(
        "fill_constant", {}, {"Out": [_append_grad_suffix_(loss.name)]}, {
            "shape": [1],
375 376 377 378 379 380
            "value":
            1.0,
            "dtype":
            loss.dtype,
            "force_cpu":
            False,
M
mapingshuo 已提交
381
            core.op_proto_and_checker_maker.kOpRoleAttrName():
382 383
            int(core.op_proto_and_checker_maker.OpRole.Backward)
            | int(core.op_proto_and_checker_maker.OpRole.Loss),
384 385
            core.op_proto_and_checker_maker.kOpDeviceAttrName():
            loss.op.attr(core.op_proto_and_checker_maker.kOpDeviceAttrName())
M
mapingshuo 已提交
386 387 388 389
        })
    return op_desc


390
def _infer_var_data_type_shape_(grad_var_name, block):
391
    """
392
    Infer the data type and shape of given grad variable
393
    """
394
    grad_var = block.desc.find_var(grad_var_name.encode())
M
minqiyang 已提交
395
    fwd_name = _strip_grad_suffix_(grad_var_name)
396 397
    if block.desc.has_var_recursive(fwd_name.encode()):
        fwd_var = block.desc.find_var_recursive(fwd_name.encode())
F
fengjiayi 已提交
398
        grad_var.set_dtype(fwd_var.dtype())
399
        grad_var.set_shape(fwd_var.shape())
F
fengjiayi 已提交
400
    else:
401 402
        # TODO(jiabin): Maybe we should not to this to cause some unexpected error on dtype
        warnings.warn(
403 404
            "Set grad var: {} dtype to default FP32, since we can't find its related forward var"
            .format(grad_var_name))
405
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
406 407


F
fengjiayi 已提交
408
def _all_in_set_(cands, s):
409 410 411
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
412 413
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
414 415 416 417 418 419
    for c in cands:
        if not c in s:
            return False
    return True


420 421 422 423 424 425
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
M
minqiyang 已提交
426 427
    literal_set = cpt.to_text(s)
    literal_cands = cpt.to_text(cands)
M
minqiyang 已提交
428 429
    for c in literal_cands:
        if c in literal_set:
430 431 432 433
            return True
    return False


F
fengjiayi 已提交
434
def _strip_grad_suffix_(name):
435
    """
M
mapingshuo 已提交
436
    Strip the grad suffix from the given variable name
437 438 439
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
M
minqiyang 已提交
440
    name = cpt.to_text(name)
M
minqiyang 已提交
441
    pos = name.find(core.grad_var_suffix())
442 443 444
    new_name = name[:pos] if pos != -1 else name
    new_pos = name.rfind('grad/')
    return new_name[new_pos + 5:] if new_pos != -1 else new_name
F
fengjiayi 已提交
445 446 447


def _append_grad_suffix_(name):
448 449 450 451
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
M
minqiyang 已提交
452
    return cpt.to_text(name) + core.grad_var_suffix()
F
fengjiayi 已提交
453 454


T
tangwei12 已提交
455 456 457 458 459
def _accumulate_gradients_by_sum_op_(var_name,
                                     renamed_vars,
                                     pending_sum_ops,
                                     op_idx,
                                     op_device=""):
460 461 462 463 464 465
    """
    Use sum op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    pending_sum_ops[op_idx].append(
466 467 468 469 470
        _create_op_desc_("sum", {"X": renamed_vars[var_name]},
                         {"Out": [var_name]}, {
                             "use_mkldnn": False,
                             "op_device": op_device
                         }))
471 472 473
    renamed_vars[var_name] = [var_name]


T
tangwei12 已提交
474 475 476 477 478
def _accumulate_gradients_by_add_ops_(var_name,
                                      renamed_vars,
                                      pending_sum_ops,
                                      op_idx,
                                      op_device=""):
479 480 481 482 483 484 485 486 487 488 489 490 491 492
    """
    Use several inplace add op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    out_name = renamed_vars[var_name][0]
    for i in range(1, len(renamed_vars[var_name])):
        x_name = out_name
        y_name = renamed_vars[var_name][i]
        if i != len(renamed_vars[var_name]) - 1:
            out_name = var_name + '@ADD@' + str(i)
        else:
            out_name = var_name
        pending_sum_ops[op_idx].append(
493 494 495 496 497 498 499
            _create_op_desc_("grad_add", {
                "X": [x_name],
                "Y": [y_name]
            }, {"Out": [out_name]}, {
                "use_mkldnn": False,
                "op_device": op_device
            }))
500 501 502
    renamed_vars[var_name] = [var_name]


503 504 505 506
def _addup_repetitive_outputs_(op_descs,
                               block_idx,
                               grad_var_to_var=None,
                               grad_op_id_to_fwd_op=None):
507 508
    """
    In backward part, an variable may be the output of more than one ops.
F
fengjiayi 已提交
509 510
    And one op may yield its multiple outputs to the same variable.
    In these cases, the variable should be the accumulation of all the outputs.
511
    `sum_op`s are added to implement the accumulate.
512 513 514 515

    Args:
        grad_var_to_var(dict): used to build the mapping between grad var name and forward var name.
        Only for auto parallel.
516
    """
517

518
    _MAX_ADD_NUM_ = framework._global_flags()['FLAGS_max_inplace_grad_add']
519 520
    #pending_sum_ops = []
    pending_sum_ops = collections.OrderedDict()
F
update  
fengjiayi 已提交
521
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
522
    renamed_vars = collections.defaultdict(list)
523
    renamed_var_start_idx = collections.defaultdict(list)
524
    var_device = collections.defaultdict(str)
F
fengjiayi 已提交
525
    for idx, op_desc in enumerate(op_descs):
T
tangwei12 已提交
526 527 528 529 530
        op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
        )
        op_device = ""
        if op_desc.has_attr(op_device_attr_name):
            op_device = op_desc.attr(op_device_attr_name)
F
update  
fengjiayi 已提交
531
        for var_name in op_desc.input_arg_names():
M
mapingshuo 已提交
532 533
            if "@GRAD" not in var_name:
                continue
F
fengjiayi 已提交
534
            if len(renamed_vars[var_name]) > 1:
535
                if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
W
WangXi 已提交
536 537 538
                    _accumulate_gradients_by_sum_op_(var_name, renamed_vars,
                                                     pending_sum_ops, idx,
                                                     var_device[var_name])
539
                else:
W
WangXi 已提交
540 541 542
                    _accumulate_gradients_by_add_ops_(var_name, renamed_vars,
                                                      pending_sum_ops, idx,
                                                      var_device[var_name])
543

F
update  
fengjiayi 已提交
544
        for param_idx, param_name in enumerate(op_desc.output_names()):
F
fengjiayi 已提交
545 546
            arg_names = op_desc.output(param_name)
            for arg_idx, var_name in enumerate(arg_names):
M
mapingshuo 已提交
547 548
                if "@GRAD" not in var_name:
                    continue
T
tangwei12 已提交
549
                # if "@RENAME@" in var_name:
M
mapingshuo 已提交
550
                #    continue
F
fengjiayi 已提交
551 552 553 554 555 556 557
                if var_name == core.empty_var_name(
                ) or var_name in op_desc.input_arg_names():
                    # empty variable or inplace op
                    continue
                if len(renamed_vars[var_name]) == 0:
                    # it's the first time we get the variable
                    renamed_vars[var_name] = [var_name]
558
                    renamed_var_start_idx[var_name] = idx
F
fengjiayi 已提交
559 560
                else:
                    if len(renamed_vars[var_name]) == 1:
561
                        new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
F
fengjiayi 已提交
562 563
                            str(var_rename_count[var_name])
                        var_rename_count[var_name] += 1
564 565 566 567 568 569 570
                        # Build the mapping between the new_name and var_name (Only for auto parallel)
                        if grad_var_to_var is not None:
                            if var_name in grad_var_to_var:
                                grad_var_to_var[new_name] = grad_var_to_var[
                                    var_name]
                            else:
                                grad_var_to_var[new_name] = var_name
F
fengjiayi 已提交
571 572
                        # rename original var_name
                        renamed_vars[var_name][0] = new_name
573 574 575 576 577 578
                        # before change: _rename_arg_(op_descs, var_name,
                        #                             new_name, 0, idx)
                        # rename arg from idx of the first appearance
                        # in backward, not always from 0
                        _rename_arg_(op_descs, var_name, new_name,
                                     renamed_var_start_idx[var_name], idx)
F
fengjiayi 已提交
579 580
                        _rename_arg_(pending_sum_ops, var_name, new_name)

F
update  
fengjiayi 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593
                        for p in op_desc.output_names()[:param_idx]:
                            p_arg_names = op_desc.output(p)
                            if var_name in p_arg_names:
                                op_desc.set_output(p, [
                                    new_name if x == var_name else x
                                    for x in p_arg_names
                                ])

                        arg_names = [
                            new_name if x == var_name else x
                            for x in arg_names[:arg_idx]
                        ] + arg_names[arg_idx:]

594
                    new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
T
tangwei12 已提交
595
                        str(var_rename_count[var_name])
F
fengjiayi 已提交
596
                    var_rename_count[var_name] += 1
597 598 599 600 601 602 603
                    # Build the mapping between the new_name and var_name (Only for auto parallel)
                    if grad_var_to_var is not None:
                        if var_name in grad_var_to_var:
                            grad_var_to_var[new_name] = grad_var_to_var[
                                var_name]
                        else:
                            grad_var_to_var[new_name] = var_name
F
fengjiayi 已提交
604 605 606
                    arg_names[arg_idx] = new_name
                    op_desc.set_output(param_name, arg_names)
                    renamed_vars[var_name].append(new_name)
W
WangXi 已提交
607
                    # record the latest device
608
                    var_device[var_name] = op_device
F
update  
fengjiayi 已提交
609

M
minqiyang 已提交
610
    for var_name, inputs in six.iteritems(renamed_vars):
611 612
        if len(renamed_vars[var_name]) > 1:
            if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
613 614 615
                _accumulate_gradients_by_sum_op_(var_name, renamed_vars,
                                                 pending_sum_ops, len(op_descs),
                                                 var_device[var_name])
616
            else:
617 618 619 620
                _accumulate_gradients_by_add_ops_(var_name,
                                                  renamed_vars, pending_sum_ops,
                                                  len(op_descs),
                                                  var_device[var_name])
621

622
    op_descs_len = len(op_descs)
F
fengjiayi 已提交
623
    # sum_op descs are sorted according to their insert position
624 625 626 627 628 629 630 631 632
    for key, value in collections.OrderedDict(
            reversed(list(pending_sum_ops.items()))).items():

        # NOTE(zhiqiu): Since reversed, the idx of op_descs to be inserted will remains correct.
        # For example, [0, 1, 2], and we want to insert 'a' at idx 1, 'b' at idx 2, and the expected result is [0, 1, 'a', 2, 'b'].
        # If reversed, we first insert 'b' at idx 2, it becomes [0, 1, 2, 'b'], and then insert 'a' at idx 1, it becomes [0, 1, 'a', 2, 'b'].
        # If not reverse, we first insert 'a' at idx 1, it becomes [0, 1, 'a', 2], and then insert 'b' at idx 2, it becomes [0, 1, 'a', 'b', 2].
        idx = key
        for i, op in enumerate(value):
633 634 635 636 637 638
            # update the mapping between fwd and bwd
            target_idx = idx - 1 if idx == op_descs_len else idx + i
            if grad_op_id_to_fwd_op is not None and grad_op_id_to_fwd_op.get(
                    op_descs[target_idx].original_id(), None) is not None:
                grad_op_id_to_fwd_op[op.original_id()] = grad_op_id_to_fwd_op[
                    op_descs[target_idx].original_id()]
639
            op_descs.insert(idx + i, op)
F
fengjiayi 已提交
640 641 642 643

    return op_descs


644 645 646 647
def _remove_no_grad_branch_(op_descs,
                            no_grad_set,
                            grad_op_id_to_fwd_op=None,
                            target_vars=[]):
648 649 650 651
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
652
        2. all grad inputs of the grad op are in 'no_grad_set'
653
    NOTE: we will skip target_vars's grad name.
654
    """
F
fengjiayi 已提交
655 656

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
657 658
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
659
            return True
660 661 662 663
        if _all_in_set_([
                name for name in op_desc.input_arg_names()
                if name.find(core.grad_var_suffix()) != -1
        ], no_grad_set):
664
            no_grad_set.update(set(out_arg_names) - target_grad_var_names)
F
fengjiayi 已提交
665 666 667
            return True
        return False

F
fengjiayi 已提交
668
    # Remove ops whose outputs are all in no_grad_dict
669 670
    target_grad_var_names = set(
        [var.name + core.grad_var_suffix() for var in target_vars])
671 672 673 674
    op_descs = [
        op_desc for op_desc in op_descs
        if not _op_can_be_removed_(op_desc, no_grad_set)
    ]
675
    # Insert fill_any_like_op with value 0
F
fengjiayi 已提交
676
    to_insert = []
F
fengjiayi 已提交
677
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
678
        for arg in op_desc.input_arg_names():
M
mapingshuo 已提交
679
            # arg is a gradient var name and arg should not have gradient
F
fengjiayi 已提交
680
            if core.grad_var_suffix() in arg and arg in no_grad_set:
681
                x_in = _strip_grad_suffix_(arg)
M
mapingshuo 已提交
682 683
                # the reason should be: arg can be input of another grad op
                # and the op is a not-to-remove op
684 685 686 687 688
                new_op_desc = _create_op_desc_("fill_any_like", {"X": [x_in]},
                                               {"Out": [arg]}, {
                                                   'value': 0,
                                                   'dtype': -1
                                               })
689 690 691 692 693 694
                # update the mapping between fwd and bwd
                if grad_op_id_to_fwd_op is not None and grad_op_id_to_fwd_op.get(
                        op_desc.original_id(), None) is not None:
                    grad_op_id_to_fwd_op[new_op_desc.original_id(
                    )] = grad_op_id_to_fwd_op[op_desc.original_id()]
                to_insert.append((new_op_desc, idx))
F
fengjiayi 已提交
695

696
    list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
F
fengjiayi 已提交
697 698 699 700

    return op_descs


C
chengduo 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
def _find_not_need_ops(grad_op_descs, forward_ops, input_grad_names_set):
    """
    Pruning Program with Structural Analysis Method of Computational Graph.
    The nodes of the computational graph composed of backward OPS should be
    interconnected. If there are unconnected sub-graphs in the computational graph,
    these sub-graphs should be cut off.

    Args:
        grad_op_descs(list[core.OpDesc]): The candidate backward OpDescs.
        forward_ops(list[Operator]): The forward ops.
        input_grad_names_set(set): this set is used to store the gradients' name
            which is generated by backward ops, and input_grad_names_set can help
            to prune the unnecessary backward ops.

    Return:
716
        (set[core.OpDesc]): A set of OpDescs which should be pruned.
C
chengduo 已提交
717 718 719
    """

    class Var(object):
720

C
chengduo 已提交
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
        def __init__(self, var_name):
            self.var_name = var_name
            self.gen_op = None
            self.pendding_ops = []

        def set_gen_op(self, gen_op):
            assert isinstance(gen_op, Op)
            assert self.gen_op is None
            self.gen_op = gen_op

        def add_pending_op(self, op):
            assert isinstance(op, Op)
            self.pendding_ops.append(op)

    class Op(object):
736

C
chengduo 已提交
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
        def __init__(self, op_desc):
            self.op_desc = op_desc
            self.inputs = []
            self.outputs = []

        def insert_input(self, var):
            assert isinstance(var, Var)
            self.inputs.append(var)

        def insert_output(self, var):
            assert isinstance(var, Var)
            self.outputs.append(var)

    var_versions = dict()

    def _create_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        else:
            var_versions[name].append(Var(name))
        return var_versions[name][-1]

    def _create_or_get_last_version_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        return var_versions[name][-1]

    def _create_op_node(op_desc):
        op_node = Op(op_desc)
        for input in op_desc.input_arg_names():
            var = _create_or_get_last_version_node(name=input)
            var.add_pending_op(op_node)
            op_node.insert_input(var)
        for output in op_desc.output_arg_names():
            var = _create_node(name=output)
            var.set_gen_op(op_node)
            op_node.insert_output(var)
        return op_node

    # Record the forward vars
    forward_vars_set = set() if input_grad_names_set is None else set(
        input_grad_names_set)
    for op in forward_ops:
        forward_vars_set.update(op.desc.input_arg_names())
        forward_vars_set.update(op.desc.output_arg_names())

    # Record the vars which are created during backward and is not generated by op.
    backward_vars_set = set()
    # special_op_nodes is the candidate sub-graph head node.
    special_op_nodes = set()
    for op_desc in grad_op_descs:
        input_set = set(op_desc.input_arg_names())
        # The new_vars are created during backward and is not generated by op.
        new_vars = input_set - forward_vars_set - backward_vars_set
        backward_vars_set.update(op_desc.output_arg_names())

        op_node = _create_op_node(op_desc)
        if len(new_vars) == len(input_set):
            special_op_nodes.add(op_node)

    not_need_op_descs = []
    # Start traversing all candidate sub-graph headers to check whether
    # they are connected to backward computational graphs, and if they are
    # not, list them in not_need_op_descs
    for special_op_node in special_op_nodes:
        op_list = [special_op_node]
        ready_vars = set(special_op_node.inputs)
        remove_ops = True
        candidate_ops = [special_op_node]
        while len(candidate_ops) > 0:
            op_node = candidate_ops.pop(0)
            if _all_in_set_(op_node.inputs, ready_vars):
                for out_var in op_node.outputs:
                    candidate_ops.extend(out_var.pendding_ops)
                    op_list.extend(out_var.pendding_ops)
                ready_vars.update(op_node.outputs)
            else:
                remove_ops = False
                break
        if remove_ops:
            not_need_op_descs.extend([node.op_desc for node in op_list])
818 819 820
    not_need_op_descs_set = set(not_need_op_descs)
    grad_op_descs_set = set(grad_op_descs)
    # If a backward computational graph is simply one sub-graph header, the
821
    # not_need_op_descs will be whole graph, this IF clause avoids it.
822 823 824
    if grad_op_descs_set == not_need_op_descs_set:
        return set()
    return not_need_op_descs_set
C
chengduo 已提交
825 826


Y
Yang Yang 已提交
827 828
def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
M
minqiyang 已提交
829
    proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang 已提交
830 831 832
    return proto.__str__()


833 834
def _append_backward_ops_with_checkpoints_(block,
                                           ops,
835
                                           target_vars,
836 837 838 839 840
                                           target_block,
                                           no_grad_dict,
                                           grad_to_var,
                                           checkpoints,
                                           grad_op_id_to_fwd_op=None):
M
mapingshuo 已提交
841 842 843 844 845 846
    """
    Create grad ops with forward ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
        ops(Op): the forward operators whose forward recomputation backward ops need to be added
847
        target_vars(list[Tensor]): the loss vars we want to calculate gradient.
M
mapingshuo 已提交
848 849 850 851 852 853 854
        target_block(Block): the block which is going to hold new generated grad ops
        no_grad_dict(dict):
            key(int) block index
            val(str): corresponding forward variable name
        checkpoints: variables that a user defined as checkpoint for forward recomputation

    Algorithms:
M
mapingshuo 已提交
855
        0) deal with forward recomputing program descs
M
mapingshuo 已提交
856 857 858 859 860
        1) find ops between checkpoints, i.e. recompute_segments
        2) go through all forward ops and induct all variables that will be hold in memory
            a. variables that are used across segments will be held in memory
            b. output of dropout op will be held in memory
            c. input variables will be held in memory
M
mapingshuo 已提交
861 862 863
        3) go through each recompute_segments, add backward ops with forward recomputation
            a. add ops in current recompute_segment as forward recomputation ops
            b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
864 865
            c. add backward ops of current recomputation ops
            d. add sum op for repetitive_outputs
M
mapingshuo 已提交
866 867
        4) remove no grad branch as it is in _remove_no_grad_branch_
        5) Note1: all appended ops' OpRole are Backward
M
mapingshuo 已提交
868 869
        6) Note2: all variables with new name should be returned so that _append_backward_vars_ can be called
        7) Note3: current forward recomputation backpropagation does not handle programs with subblock
M
mapingshuo 已提交
870
    """
M
mapingshuo 已提交
871 872

    checkpoints_name = [x.name for x in checkpoints]
873
    checkpoints_name = list(set(checkpoints_name))
M
mapingshuo 已提交
874 875
    local_block = block.program._create_block()
    buffer_block = block.program._create_block()
876
    # 0) deal with forward recomputing program descs
M
mapingshuo 已提交
877
    program_stat = ProgramStats(block, ops)
M
mapingshuo 已提交
878
    program_stat.modify_forward_desc_for_recompute()
M
mapingshuo 已提交
879
    program_stat.build_stats()
M
mapingshuo 已提交
880 881

    # 1) find ops between checkpoints, i.e. recompute_segments
882
    checkpoints_name = program_stat.sort_checkpoints(checkpoints_name)
M
mapingshuo 已提交
883 884
    segments = []

885
    if len(checkpoints_name) == 1:
M
mapingshuo 已提交
886 887 888 889 890 891 892
        # only one checkpoint
        max_op_idx = -1
        var_group = [checkpoints_name[0]]
        for name in var_group:
            if name not in program_stat.var_op_deps:
                break
            op_idx = program_stat.var_op_deps[name]["var_as_output_ops"]
J
JZ-LIANG 已提交
893
            # only count the last generate op
M
mapingshuo 已提交
894 895 896 897 898 899
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if max_op_idx > 0:
            segments.append([0, max_op_idx + 1])
    else:
        start_idx = 0
J
JZ-LIANG 已提交
900
        pre_segment_end_idx = -1
M
mapingshuo 已提交
901 902 903
        while True:
            if start_idx >= len(checkpoints_name) - 1:
                break
J
JZ-LIANG 已提交
904 905
            # min_idx: checkpoint_1' s input op
            # max_idx: checkpoint_2' s output op
M
mapingshuo 已提交
906 907 908 909
            flag, min_idx, max_idx = program_stat.is_subgraph(
                [checkpoints_name[start_idx]],
                [checkpoints_name[start_idx + 1]])
            if flag:
J
JZ-LIANG 已提交
910 911 912
                # max_idx + 1 since the exact and used segment end idx is max_idx
                min_idx = program_stat._update_segment_start(
                    min_idx, pre_segment_end_idx)
M
mapingshuo 已提交
913
                segments.append([min_idx, max_idx + 1])
914 915 916
            else:
                _logger.info("Could not recompute op range [{}] - [{}] ".format(
                    min_idx, max_idx + 1))
J
JZ-LIANG 已提交
917

M
mapingshuo 已提交
918 919 920 921 922 923
            start_idx += 1

    if segments != [] and segments[0][0] != 0:
        recompute_segments = [[0, segments[0][0]]] + segments
    else:
        recompute_segments = segments
M
mapingshuo 已提交
924

J
JZ-LIANG 已提交
925
    for i, (idx1, idx2) in enumerate(recompute_segments):
926
        _logger.info("recompute segment[{}]".format(i))
927 928 929 930
        _logger.info("segment start op: [{}]: [{}]".format(
            ops[idx1].desc.type(), ops[idx1].desc.input_arg_names()))
        _logger.info("segment end op: [{}]: [{}]".format(
            ops[idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()))
931
        _logger.info("recompute segment[{}]".format(i))
932 933 934 935
        _logger.info("segment start op: [{}]: [{}]".format(
            ops[idx1].desc.type(), ops[idx1].desc.input_arg_names()))
        _logger.info("segment end op: [{}]: [{}]".format(
            ops[idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()))
J
JZ-LIANG 已提交
936

M
mapingshuo 已提交
937
    # 2) go through all forward ops and induct all variables that will be hold in memory
M
mapingshuo 已提交
938
    vars_should_be_hold = []
939
    # a. variables that are used across segments will be held in memory
M
mapingshuo 已提交
940 941 942
    for segment in recompute_segments:
        vars_should_be_hold.extend(
            program_stat.get_out_of_subgraph_vars(segment[0], segment[1]))
J
JZ-LIANG 已提交
943 944

    cross_vars = set(vars_should_be_hold) - set(checkpoints_name)
945
    _logger.info("found [{}] vars which cross recompute segment: [{}], better checkpoints might be set to reduce those vars".format( \
J
JZ-LIANG 已提交
946 947
    len(cross_vars), cross_vars))

M
mapingshuo 已提交
948
    # b. output of seed op should be kept in memory
M
mapingshuo 已提交
949
    vars_should_be_hold.extend(program_stat.get_reserved_vars())
M
mapingshuo 已提交
950
    # c. input variables are checkpoints
M
mapingshuo 已提交
951 952 953
    vars_should_be_hold.extend(program_stat.get_input_nodes())
    vars_should_be_hold = list(set(vars_should_be_hold))

M
mapingshuo 已提交
954
    # 3) go through each recompute_segments, add backward ops with forward recomputation
M
mapingshuo 已提交
955 956 957 958 959 960
    grad_op_descs = []
    var_name_dict = {}

    vars_in_memory = vars_should_be_hold + checkpoints_name

    max_calculated_op_position = len(ops)
961
    device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
mapingshuo 已提交
962 963 964 965 966 967 968 969 970
    if recompute_segments == []:
        gap_ops = ops[0:max_calculated_op_position]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
971 972 973 974 975 976

            # record the mapping between fwd and bwd
            if grad_op_id_to_fwd_op is not None:
                for op_desc in grad_op_desc:
                    grad_op_id_to_fwd_op[op_desc.original_id()] = op

977 978 979 980 981
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
982 983
            added_descs = _add_descs_to_block(grad_op_desc, local_block,
                                              grad_op_id_to_fwd_op)
M
mapingshuo 已提交
984 985 986 987 988 989 990 991 992 993 994 995 996
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

    for i, segment in enumerate(recompute_segments[::-1]):
        gap_ops = ops[segment[1]:max_calculated_op_position]
        max_calculated_op_position = segment[0]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
997 998 999 1000 1001 1002

            # record the mapping between fwd and bwd
            if grad_op_id_to_fwd_op is not None:
                for op_desc in grad_op_desc:
                    grad_op_id_to_fwd_op[op_desc.original_id()] = op

1003 1004 1005 1006 1007
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
1008 1009
            added_descs = _add_descs_to_block(grad_op_desc, local_block,
                                              grad_op_id_to_fwd_op)
M
mapingshuo 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

        ff_ops = ops[segment[0]:segment[1]]
        var_suffix = ".subprog_%d" % i

        for op in ff_ops:
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            input_and_output_names = []
            input_and_output_names.extend(op.desc.input_arg_names())
            input_and_output_names.extend(op.desc.output_arg_names())
            for name in input_and_output_names:
                if block.var(name).persistable or name in checkpoints_name:
                    continue
                if name in vars_should_be_hold:
                    continue
                if name not in var_name_dict:
                    var_name_dict[name] = name + var_suffix
1031 1032 1033

                    # we should create the rename var in subprog, otherwise its VarType will be BOOL
                    ref_var = block.program.global_block().var(name)
1034 1035 1036 1037 1038 1039
                    block.create_var(name=var_name_dict[name],
                                     shape=ref_var.shape,
                                     dtype=ref_var.dtype,
                                     type=ref_var.type,
                                     persistable=ref_var.persistable,
                                     stop_gradient=ref_var.stop_gradient)
1040

M
mapingshuo 已提交
1041
        # 3.a. add ops in current recompute_segment as forward recomputation ops
M
mapingshuo 已提交
1042
        buffer_descs = _add_needed_descs_to_block(ff_ops, buffer_block, block,
1043 1044 1045 1046
                                                  vars_in_memory,
                                                  grad_op_id_to_fwd_op)
        added_descs = _add_descs_to_block(ff_ops, local_block,
                                          grad_op_id_to_fwd_op)
M
mapingshuo 已提交
1047

M
mapingshuo 已提交
1048
        # 3.b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
1049 1050 1051 1052 1053 1054
        for key in var_name_dict:
            _rename_arg_(buffer_descs, key, var_name_dict[key])

        # added_descs should be in grad_op_descs because it is backward op desc
        grad_op_descs.extend(buffer_descs)

1055
        # 3.c. add backward ops for all ops in current segment
M
mapingshuo 已提交
1056 1057 1058
        for op_desc in reversed(added_descs):
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op_desc, cpt.to_text(no_grad_dict[block.idx]), [])
1059

1060 1061 1062 1063 1064 1065
            # record the mapping between fwd and bwd
            if grad_op_id_to_fwd_op is not None:
                for g_op_desc in grad_op_desc:
                    grad_op_id_to_fwd_op[g_op_desc.original_id(
                    )] = grad_op_id_to_fwd_op[op_desc.original_id()]

1066 1067 1068 1069 1070 1071
            # Set device for grad_op according to forward Op
            if op_desc.has_attr(device_attr_name):
                op_device = op_desc.attr(device_attr_name)
                for g_op_desc in grad_op_desc:
                    g_op_desc._set_attr(device_attr_name, op_device)

M
mapingshuo 已提交
1072 1073 1074 1075 1076
            for key in var_name_dict:
                _rename_arg_(grad_op_desc, key, var_name_dict[key])
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)

M
mapingshuo 已提交
1077
    # 3.d. add sum op for repetitive_outputs
1078 1079
    grad_op_descs = _addup_repetitive_outputs_(
        grad_op_descs, block.idx, grad_op_id_to_fwd_op=grad_op_id_to_fwd_op)
M
mapingshuo 已提交
1080
    # 4) remove no grad branch as it is in _remove_no_grad_branch_
M
mapingshuo 已提交
1081
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
1082
                                            no_grad_dict[block.idx],
1083
                                            grad_op_id_to_fwd_op, target_vars)
1084 1085
    added_descs = _add_descs_to_block(grad_op_descs, target_block,
                                      grad_op_id_to_fwd_op)
M
mapingshuo 已提交
1086 1087 1088
    return program_stat, checkpoints_name, vars_should_be_hold, recompute_segments


1089 1090 1091 1092 1093
def _get_sub_block_path(sub_block,
                        sub_block_op_desc,
                        no_grad_set,
                        op_path_dict,
                        sub_block_target_names=None):
1094 1095
    """
    Get output vars in subblock which will be assigned to parent block.
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
    It is used to find the grad path in subblock.

    Args:
        sub_block(Block): The sub-block in which to get op path.
        sub_block_op_desc: The op desc of the sub-block op such as 'while', 'conditional_block' and 'recurrent'.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        sub_block_target_names(set): Target var names of sub-block.
    Return:
        The forward op path of sub-block corresponding to backward op.
1108
    """
1109

1110 1111 1112
    assert sub_block_op_desc.has_attr(
        "sub_block") and sub_block.idx == sub_block_op_desc._block_attr_id(
            "sub_block")
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
    assert isinstance(sub_block_target_names, (set, type(None)))

    if sub_block_target_names is None:
        sub_block_target_names = sub_block_op_desc.output_arg_names

    # TODO(huihuangzheng): add support for recurrent op.
    if sub_block_op_desc.type in ["conditional_block", "while"]:
        # Step1: get the output vars in sub-block
        sub_outputs = [
            sub_block._var_recursive(var) for var in sub_block_target_names
        ]
        for var in sub_block_target_names:
1125
            for op_desc in sub_block.ops:
1126
                if var in op_desc.output_arg_names:
1127
                    for name in op_desc.input_arg_names:
1128
                        sub_outputs.append(sub_block._var_recursive(name))
1129

1130 1131
        # Step2: find op path of sub-block
        is_while = sub_block_op_desc.type in ["while"]
1132
        sub_block_op_path = _find_op_path_(sub_block, sub_outputs, [],
1133
                                           no_grad_set, op_path_dict, is_while)
1134 1135 1136 1137
        return sub_block_op_path
    return sub_block.ops


1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
def _is_grad_op_(op):
    op_maker = core.op_proto_and_checker_maker
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    if op_maker.kOpRoleVarAttrName() in op.attr_names and \
            int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
        return True
    return False


def _rename_grad_name_(name, grad_order):
    return 'grad/' * grad_order + name


1151 1152
def _append_backward_ops_(block,
                          ops,
1153
                          target_vars,
F
fengjiayi 已提交
1154 1155 1156
                          target_block,
                          no_grad_dict,
                          grad_to_var,
1157
                          callbacks=None,
1158
                          input_grad_names_set=None,
1159
                          op_path_dict=None,
1160
                          distop_context=None,
1161 1162
                          rename_var_map=None,
                          grad_op_id_to_fwd_op=None):
1163 1164 1165 1166 1167
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
1168
        ops(Op): the forward operators whose backward ops need to be added
1169
        target_vars(list[Tensor]): the loss vars we want to calculate gradient.
1170
        target_block(Block): the block which is going to hold new generated grad ops
1171
        no_grad_dict(dict):
1172
            key(int)  block index
T
tianshuo78520a 已提交
1173
            val(set) a set of variable names. These variables have no gradient
1174 1175 1176
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
C
chengduo 已提交
1177 1178 1179 1180
        callbacks(callable object): a callable object used to decorate new generated grad ops
        input_grad_names_set(set): this set is used to store the gradients' name which is
            generated by backward ops, and input_grad_names_set can help to prune the unnecessary
            backward ops.
1181 1182 1183
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
1184 1185
        rename_var_map(dict): used to associate target_grad var name with first grad_op input name.
            Only used in for high order gradient.
1186
    """
1187 1188 1189 1190 1191 1192 1193

    # Build the mapping between the forward op and backward op (Only for auto parallel)
    def update_distop_context(distop_context, op_grad_to_var,
                              appending_grad_times):
        distop_context.grad_var_to_var[appending_grad_times].update(
            op_grad_to_var)
        for op_desc in grad_op_desc:
1194 1195
            assert op_desc.original_id(
            ) not in distop_context.grad_op_id_to_op_id
1196 1197
            distop_context.grad_op_id_to_op_id[
                op_desc.original_id()] = op.desc.original_id()
1198

Y
Yang Yang 已提交
1199
    if callbacks is not None:
1200
        assert (isinstance(callbacks, (list, tuple)))
Y
Yang Yang 已提交
1201 1202 1203
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
1204

F
fengjiayi 已提交
1205
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
1206 1207
    grad_op_descs = []
    program = block.program
1208

1209 1210 1211
    if rename_var_map is None:
        rename_var_map = {}
    assert isinstance(rename_var_map, dict)
1212

1213
    # add grad_op_desc by reversed ops
1214
    for op in reversed(ops):
F
fengjiayi 已提交
1215 1216 1217
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
W
Wu Yi 已提交
1218
            sub_block = program.block(op._block_attr_id("sub_block"))
W
Wu Yi 已提交
1219
            grad_sub_block = program._create_block()
W
Wu Yi 已提交
1220
            grad_sub_block._set_forward_block_idx(sub_block.idx)
1221 1222 1223
            # see follwing comments for why set None here.
            pre_input_grad_names_set = copy.copy(input_grad_names_set)
            input_grad_names_set = None
1224
            sub_block_path = op_path_dict[op._block_attr_id("sub_block")]
1225 1226
            _append_backward_ops_(sub_block,
                                  sub_block_path,
1227
                                  target_vars,
1228 1229 1230 1231 1232 1233 1234
                                  grad_sub_block,
                                  no_grad_dict,
                                  grad_to_var,
                                  callbacks,
                                  input_grad_names_set,
                                  op_path_dict,
                                  grad_op_id_to_fwd_op=grad_op_id_to_fwd_op)
1235
            input_grad_names_set = pre_input_grad_names_set
Y
Yu Yang 已提交
1236

W
Wu Yi 已提交
1237
            program._rollback()
F
fengjiayi 已提交
1238 1239
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
1240
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
1241
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
M
minqiyang 已提交
1242
            op.desc, cpt.to_text(no_grad_dict[block.idx]), grad_sub_block_list)
1243

1244 1245 1246 1247 1248
        # record the mapping between fwd and bwd
        if grad_op_id_to_fwd_op is not None:
            for op_desc in grad_op_desc:
                grad_op_id_to_fwd_op[op_desc.original_id()] = op

1249
        # Build the mapping between the forward op and backward op (Only for auto parallel)
1250
        if distop_context is not None:
1251 1252 1253 1254 1255 1256 1257 1258 1259
            update_distop_context(distop_context, op_grad_to_var,
                                  program._appending_grad_times)
        else:
            default_ctx = getattr(paddle.distributed.auto_parallel.dist_context,
                                  '_g_default_distributed_context', None)
            if default_ctx is not None:
                distop_context = default_ctx.dist_op_context
                update_distop_context(distop_context, op_grad_to_var,
                                      program._appending_grad_times)
Y
Yang Yu 已提交
1260

1261 1262
        # Set device for grad_op according to forward Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
1263 1264 1265 1266
        if op.desc.has_attr(device_attr_name):
            op_device = op.desc.attr(device_attr_name)
            for op_desc in grad_op_desc:
                op_desc._set_attr(device_attr_name, op_device)
1267

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
        # Rename internal gradient variables in multiple backward
        # so that they have different names with previous backward.
        # For example:
        #  y = x * x, grad = fluid.gradients(fluid.gradients(y, x) + y * y, x)
        # In second-time backward, gradient variable names of partial
        # forward network (y * y) may be have same names with first-time
        # fluid.gradients(y, x).
        # So rename here before _addup_repetitive_outputs_.
        if program._appending_grad_times > 1:
            for op_desc in grad_op_desc:
T
Tongxin Bai 已提交
1278 1279 1280 1281
                forward_op_inputs = op.desc.input_arg_names()
                for name in op_desc.input_arg_names():
                    if name in rename_var_map and name not in forward_op_inputs:
                        op_desc._rename_input(name, rename_var_map[name])
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
                for name in op_desc.output_arg_names():
                    if "@GRAD" not in name:
                        continue
                    if block.desc.find_var(name.encode("ascii")):
                        new_name = _rename_grad_name_(
                            name, program._appending_grad_times)
                        op_desc._rename_output(name, new_name)
                        rename_var_map[name] = new_name

                        if name in op_grad_to_var:
1292 1293 1294 1295 1296
                            # Build the mapping between the grad var name and var name (Only for auto parallel)
                            if distop_context is not None:
                                distop_context.grad_var_to_var[
                                    program._appending_grad_times][
                                        new_name] = op_grad_to_var[name]
1297 1298 1299
                            op_grad_to_var[new_name] = op_grad_to_var[name]
                            op_grad_to_var.pop(name)

1300 1301 1302 1303 1304
        # If input_grad_names_set is not None, extend grad_op_descs only when
        # any input grad in outputs of previous grad ops.
        # But this strategy is not suited for while op for some control flow,
        # for example, for while op, the grads maybe generated in next loop.
        if input_grad_names_set is not None:
1305 1306
            is_grad_name = lambda name: name.find(core.grad_var_suffix(
            )) != -1 or name in input_grad_names_set
1307 1308 1309 1310
            is_append_grad = False
            for op_desc in grad_op_desc:
                input_grad_names = [
                    name for name in op_desc.input_arg_names()
1311
                    if is_grad_name(name)
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
                ]
                # some code of gradient ops, like increment, are not very
                # standard, there is no @GRAD in these ops' inputs.
                if len(input_grad_names) == 0:
                    is_append_grad = True
                    break

                if _some_in_set_(input_grad_names, input_grad_names_set):
                    grad_op_descs.append(op_desc)
                    is_append_grad = True
                    for name in op_desc.output_arg_names():
                        input_grad_names_set.add(name)
            if is_append_grad:
                grad_to_var.update(op_grad_to_var)
        else:
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)
F
fengjiayi 已提交
1329

1330 1331 1332 1333 1334
    # record mapping bewteen grad var name and var name (Only for auto parallel)
    grad_var_to_var = None
    if distop_context is not None:
        grad_var_to_var = distop_context.grad_var_to_var[
            program._appending_grad_times]
M
mapingshuo 已提交
1335
    # sum parameter's gradients' var given multiple var gradient
1336 1337 1338 1339 1340
    grad_op_descs = _addup_repetitive_outputs_(
        grad_op_descs,
        block.idx,
        grad_var_to_var,
        grad_op_id_to_fwd_op=grad_op_id_to_fwd_op)
F
fengjiayi 已提交
1341

M
mapingshuo 已提交
1342 1343
    # if all outputs of the grad op are in no_grad_set, then just remove and fill zero
    # if all inputs of the grad op are in no_grad_set, just remove this op
F
fengjiayi 已提交
1344
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
1345
                                            no_grad_dict[block.idx],
1346
                                            grad_op_id_to_fwd_op, target_vars)
F
fengjiayi 已提交
1347

M
mapingshuo 已提交
1348
    # remove some backward ops
C
chengduo 已提交
1349
    not_need_ops = _find_not_need_ops(grad_op_descs, ops, input_grad_names_set)
M
mapingshuo 已提交
1350

C
chengduo 已提交
1351 1352 1353
    grad_op_descs = [
        op_desc for op_desc in grad_op_descs if op_desc not in not_need_ops
    ]
1354

F
fengjiayi 已提交
1355
    # append op_desc in grad_op_descs to target_block
Y
yuyang18 已提交
1356 1357
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
F
update  
fengjiayi 已提交
1358
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
1359 1360
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
W
Wu Yi 已提交
1361
        new_op_desc._set_attr(op_role_attr_name, backward)
Y
Yang Yang 已提交
1362
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
1363
        if callbacks is not None:
1364
            assert (isinstance(callbacks, (list, tuple)))
Y
Yang Yang 已提交
1365 1366
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
1367

F
fengjiayi 已提交
1368

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
def _is_grad_var_(var_name):
    return core.grad_var_suffix() in var_name


# Find the op who holds the sub_block as its "sub_block" attr
def _find_parent_op_(sub_block):
    sub_block_id = sub_block.idx

    if sub_block_id == 0:
        return None

    program = sub_block.program
    for block_id in six.moves.range(program.num_blocks):
        block_desc = program.block(block_id).desc
        for op_idx in six.moves.range(block_desc.op_size()):
            op = block_desc.op(op_idx)
            if op.has_attr("sub_block") and op._block_attr_id(
                    "sub_block") == sub_block_id:
                return op

1389
    # NOTE(paddle-dev): When optimizer is added in conditional block,
1390 1391 1392 1393
    # sub_block may not be found.
    return None


F
fengjiayi 已提交
1394
def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
1407
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
1408
    """
1409 1410
    ops_to_remove = []
    '''
1411 1412 1413 1414 1415
    NOTE(paddle-dev): while_grad op may hold some inputs which are not found
    in the parent/forward block, and they are also the outputs of while_grad
    op. These kinds of inputs are the recursive outputs inside while_grad op.
    They should be considered as "already created" when scanning the inner
    ops of while_grad ops.
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
    '''
    parent_op = _find_parent_op_(block)
    parent_op_vars = []
    if parent_op is not None:
        input_args = parent_op.input_arg_names()
        output_args = parent_op.output_arg_names()
        for in_arg in input_args:
            if in_arg in output_args:
                parent_op_vars.append(in_arg)

F
fengjiayi 已提交
1426 1427 1428
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
W
Wu Yi 已提交
1429
            sub_block = block.program.block(op_desc._block_attr_id("sub_block"))
F
fengjiayi 已提交
1430
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447

        grad_var_ins = [
            var for var in op_desc.input_arg_names() if _is_grad_var_(var)
        ]
        grad_var_outs = [
            var for var in op_desc.output_arg_names() if _is_grad_var_(var)
        ]

        inputs = [
            var for var in op_desc.input_arg_names()
            if var != core.empty_var_name()
        ]
        outputs = [
            var for var in op_desc.output_arg_names()
            if var != core.empty_var_name()
        ]

1448
        # If the outputs of grad op is empty, just remove it
1449 1450 1451 1452 1453
        if not outputs:
            ops_to_remove.append(op_idx)
            continue
        else:
            '''
1454
            If the output is not empty and there is any grad input, find
1455 1456 1457 1458 1459
            whether there is any existing input. If not, just remove it.
            '''
            if grad_var_ins:
                existing_grad_var_ins = [
                    var for var in grad_var_ins
1460
                    if block.desc.has_var_recursive(var.encode())
1461
                    or var in parent_op_vars
1462 1463 1464 1465
                ]
                if not existing_grad_var_ins:
                    '''
                    FIXME(paddle-dev, zengjinle): rnn_memory_helper_grad is used
1466 1467
                    in recurrent op. The input of this op does not even exist in
                    the program! Therefore, any dependency analysis would not
1468
                    work to this op! If I do not add the following code, this op
1469 1470
                    would be pruned, and the calculation result would be wrong.
                    Maybe we should re-design this op later...
1471 1472 1473
                    '''
                    if op_desc.type() not in ['rnn_memory_helper_grad']:
                        ops_to_remove.append(op_idx)
1474
                        continue
1475

F
fengjiayi 已提交
1476 1477 1478
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
1479 1480
            if block.desc.has_var_recursive(grad_var_name.encode(
            )) or grad_var_name == core.empty_var_name():
F
fengjiayi 已提交
1481
                continue
1482
            block.desc.var(grad_var_name.encode())
F
fengjiayi 已提交
1483
            new_vars.add(grad_var_name)
1484
            if grad_var_name not in grad_to_var:
F
fengjiayi 已提交
1485 1486 1487
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
H
hong 已提交
1488
        op_desc.check_attrs()
F
fengjiayi 已提交
1489 1490
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
1491

F
fengjiayi 已提交
1492 1493
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
1494
                _infer_var_data_type_shape_(arg, block)
F
update  
fengjiayi 已提交
1495

1496 1497 1498
    for op_idx in reversed(ops_to_remove):
        block.desc._remove_op(op_idx, op_idx + 1)

F
update  
fengjiayi 已提交
1499

1500 1501 1502 1503 1504 1505
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
W
Wu Yi 已提交
1506
                op_desc._rename_input(name, var_map[name])
1507 1508

        for name in op_desc.output_arg_names():
M
mapingshuo 已提交
1509 1510
            if "@GRAD" not in name:
                continue
1511
            if block.desc.find_var(name.encode("ascii")):
Y
Yu Yang 已提交
1512
                new_name = unique_name.generate(name)
W
Wu Yi 已提交
1513
                op_desc._rename_output(name, new_name)
1514 1515
                var_map[name] = new_name

M
minqiyang 已提交
1516
    for g, ng in six.iteritems(var_map):
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
1528
        for var in list(block.vars.values()):
1529 1530 1531 1532 1533 1534 1535
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
def _get_son_parent_block_idx_dict(program, current_block_idx):

    son_parent_block_idx_dict = collections.OrderedDict()
    while current_block_idx >= 0:
        parent_block_idx = program.block(current_block_idx).parent_idx
        son_parent_block_idx_dict[current_block_idx] = parent_block_idx
        current_block_idx = parent_block_idx

    return son_parent_block_idx_dict


1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
def _get_no_grad_set_name(no_grad_set):
    no_grad_set_name = set()
    if no_grad_set is not None:
        if isinstance(no_grad_set, (set, list, tuple)):
            for i, no_grad_var in enumerate(no_grad_set):
                if isinstance(no_grad_var, framework.Variable):
                    no_grad_set_name.add(no_grad_var.name)
                elif isinstance(no_grad_var, six.string_types):
                    no_grad_set_name.add(no_grad_var)
                else:
                    raise TypeError(
                        "The type of no_grad_set's member must be paddle.fluid.Variable or str, but received %s."
                        % (type(no_grad_var)))
        else:
            raise TypeError(
1562 1563
                "The type of no_grad_set should be set or list or tuple, but received {}"
                .format(type(no_grad_set)))
1564 1565 1566
    return no_grad_set_name


1567
@framework.static_only
M
mapingshuo 已提交
1568 1569 1570 1571
def append_backward(loss,
                    parameter_list=None,
                    no_grad_set=None,
                    callbacks=None,
1572 1573
                    checkpoints=None,
                    distop_context=None):
1574
    """
1575 1576
    :api_attr: Static Graph

1577
    This function appends backward part to main_program.
F
fengjiayi 已提交
1578

1579 1580
    A complete neural network training is made up of forward and backward
    propagation. However, when we configure a network, we only need to
1581 1582
    specify its forward part. This function uses the chain rule to automatically
    generate the backward part according to the forward part.
F
fengjiayi 已提交
1583

1584 1585
    In most cases, users do not need to invoke this function manually.
    It will be automatically invoked by the optimizer's `minimize` function.
F
fengjiayi 已提交
1586

1587
    Parameters:
1588
        loss(Tensor): The loss Tensor of the network.
1589
        parameter_list(list[Tensor|str]|tuple[Tensor|str], optional): List/Tuple of Parameters or Parameter.names
1590
                                           that need to be updated by optimizers.
1591
                                           If it is None, all parameters
F
fengjiayi 已提交
1592
                                           will be updated.
1593
                                           Default: None.
1594 1595
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1596
                               `stop_gradient=True` from all blocks will
F
fengjiayi 已提交
1597
                               be automatically added into this set.
1598
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1599
                               Default: None.
1600
        callbacks(list[callable object]|tuple[callable object], optional): List/Tuple of callback functions.
1601
                                               The callbacks are used for
1602 1603 1604 1605 1606 1607
                                               doing some custom jobs during
                                               backward part building. All
                                               callable objects in it will
                                               be invoked once each time a
                                               new gradient operator is added
                                               into the program. The callable
Z
zhangchunle 已提交
1608
                                               object must have two input
1609 1610
                                               parameters: ``block`` and ``context`` .
                                               The ``block`` is the :ref:`api_guide_Block_en` which
1611
                                               the new gradient operator will
1612
                                               be added to. The ``context`` is a
1613
                                               map, whose keys are gradient
1614 1615 1616
                                               Tensor names and values are
                                               corresponding original :ref:`api_guide_tensor_en` .
                                               In addition to this, the ``context``
1617
                                               has another special key-value pair:
1618
                                               the key is string ``__current_op_desc__``
1619 1620 1621
                                               and the value is the op_desc of the
                                               gradient operator who has just
                                               triggered the callable object.
1622
                                               Default: None.
F
fengjiayi 已提交
1623 1624

    Returns:
1625 1626
        list of tuple ( :ref:`api_guide_tensor_en` , :ref:`api_guide_tensor_en` ): Pairs of parameter and its corresponding gradients.
        The key is the parameter and the value is gradient Tensor.
F
fengjiayi 已提交
1627 1628

    Raises:
1629
        AssertionError: If ``loss`` is not an instance of Tensor.
F
fengjiayi 已提交
1630 1631 1632 1633

    Examples:
        .. code-block:: python

1634 1635
            import paddle
            import paddle.nn.functional as F
L
lujun 已提交
1636

1637 1638 1639 1640 1641
            paddle.enable_static()

            x = paddle.static.data(name='x', shape=[None, 13], dtype='int64')
            y = paddle.static.data(name='y', shape=[None, 1], dtype='float32')
            x_emb = paddle.static.nn.embedding(x, size=[100, 256])
1642
            y_predict = paddle.static.nn.fc(x=x_emb, size=1, activation=None, name='my_fc')
1643 1644
            loss = F.square_error_cost(input=y_predict, label=y)
            avg_loss = paddle.mean(loss)
1645 1646

            # Get all weights in main_program, not include bias.
1647
            all_weights = [param for param in paddle.static.default_main_program().block(0).all_parameters() if 'w_' in param.name]
1648 1649 1650
            all_weights_name = [w.name for w in all_weights]

            # return all param_grads needed to be updated if parameter_list set default None.
1651
            p_g_list1 = paddle.static.append_backward(loss=avg_loss)
1652 1653
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1654 1655
            # return the param_grads corresponding to parameter_list that can be list of param (Tensor).
            p_g_list2 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights)
1656 1657 1658
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # parameter_list can be list of param.name (str).
1659
            p_g_list3 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights_name)
1660 1661
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

1662 1663
            # no_grad_set can be set of Tensors that means grad will be cut off from these Tensors.
            p_g_list4 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set([x_emb]))
1664 1665
            # output: [(my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1666 1667
            # no_grad_set can be set of Tensor.name when the Tensor is created inside layers and can't be specified explicitly.
            p_g_list5 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set(['my_fc.b_0']))
1668 1669 1670
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # return [] because all param_grads are filtered by no_grad_set.
1671
            p_g_list6 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights, no_grad_set=set(all_weights))
1672

1673
    """
1674 1675 1676
    grad_op_id_to_fwd_op = {
    }  # for cuda graph usage, recording the mapping between grad op original id to fwd op

1677
    check_type(loss, 'loss', framework.Variable,
1678
               'paddle.static.append_backward')
Y
yuyang18 已提交
1679

Y
Fix bug  
yuyang18 已提交
1680 1681
    if loss.op is None:
        # the loss is from a cloned program. Find loss op manually.
M
mapingshuo 已提交
1682
        _find_loss_op_(loss)
Y
Fix bug  
yuyang18 已提交
1683

1684 1685 1686 1687
    loss.op._set_attr(
        core.op_proto_and_checker_maker.kOpRoleAttrName(),
        int(core.op_proto_and_checker_maker.OpRole.Forward)
        | int(core.op_proto_and_checker_maker.OpRole.Loss))
Y
yuyang18 已提交
1688

Y
Yang Yang 已提交
1689
    if callbacks is not None:
1690
        check_type(callbacks, 'callbacks', (list, tuple),
1691
                   'paddle.static.append_backward')
Y
Yu Yang 已提交
1692

F
fengjiayi 已提交
1693
    program = loss.block.program
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
    root_block = program.block(0)
    current_block_idx = program.current_block_idx
    current_block = program.block(current_block_idx)

    is_in_control_flow = current_block_idx != 0

    # Double grad is not supported in sub-block (control flow)
    if not is_in_control_flow:
        # _appending_grad_times used for double grad
        program._appending_grad_times += 1
1704

F
fengjiayi 已提交
1705
    if no_grad_set is None:
1706
        no_grad_set = set()
1707 1708
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1709
    no_grad_dict = _get_stop_gradients_(program)
1710 1711
    # no_grad_set only contains vars in block 0
    # Todo(liym27): support vars in sub block
1712
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
Y
Yu Yang 已提交
1713

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
    # Currently it is only to support the optimizer.minimize
    # in a switch branch, which can append_backward in a sub_block.
    # Note: while_loop is in control flow, but it makes no sense to call optimizer in while.
    # Todo: report error when it is in while_loop
    if is_in_control_flow:
        # create grad block if in switch control flow.
        target_grad_block = program._create_block(
            parent_idx=current_block.parent_idx)
        target_grad_block._set_forward_block_idx(current_block_idx)
        # after _create_block, program.current_block changes
    else:
        target_grad_block = root_block

    son_parent_block_idx_dict = _get_son_parent_block_idx_dict(
        program, current_block_idx)

    block_fwd_op_num_dict = {}  # block_id: fwd_op_num
    for idx in son_parent_block_idx_dict:
        block_fwd_op_num_dict[idx] = program.block(idx).desc.op_size()
F
fengjiayi 已提交
1733

F
fengjiayi 已提交
1734 1735
    grad_to_var = dict()

1736
    # pass the cuda_graph_attr to the fill_constant which generates the loss_grad
M
mapingshuo 已提交
1737
    op_desc = _create_loss_op_desc_(loss)
1738
    grad_op_id_to_fwd_op[op_desc.original_id()] = loss.op
1739 1740 1741 1742 1743 1744 1745
    target_grad_block.desc.append_op().copy_from(op_desc)

    for block_idx in son_parent_block_idx_dict:
        block = program.block(block_idx)

        block_no_grad_set = set(
            map(_strip_grad_suffix_, no_grad_dict[block_idx]))
1746 1747 1748 1749

        op_path_dict = dict()
        op_path = _find_op_path_(block, [loss], [], block_no_grad_set,
                                 op_path_dict)
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761

        no_grad_vars = _find_no_grad_vars(block, op_path, [loss],
                                          block_no_grad_set)

        block_no_grad_set.update(no_grad_vars)
        no_grad_dict[block_idx].update(
            list(map(_append_grad_suffix_, block_no_grad_set)))

        input_grad_names_set = None
        # For double backward, input_grad_names is used for filtering
        # some non-used gradients op(s).

1762
        # TODO(liym27): need a better design.
1763 1764 1765 1766 1767
        # not support double grad in control flow sub-block now.
        if not is_in_control_flow:
            if program._appending_grad_times > 1:
                input_grad_names_set = set([_append_grad_suffix_(loss.name)])

1768
        # TODO: support _append_backward_ops_with_checkpoints_ in
1769
        #  sub-block (control flow)
J
JZ-LIANG 已提交
1770
        is_recompute = False
1771 1772 1773
        if checkpoints != None and \
                isinstance(checkpoints, list) and \
                len(checkpoints) > 0:
J
JZ-LIANG 已提交
1774
            is_recompute = True
1775
            program_stat, checkpoint_names, \
T
tangwei12 已提交
1776 1777
                vars_should_be_hold, \
                recompute_segments = \
1778 1779 1780
                _append_backward_ops_with_checkpoints_(
                    root_block,
                    op_path,
1781
                    [loss],
1782 1783 1784
                    root_block,
                    no_grad_dict,
                    grad_to_var,
1785 1786
                    checkpoints,
                    grad_op_id_to_fwd_op)
1787 1788 1789 1790
        else:
            _append_backward_ops_(
                block,  # the block where forward ops are in
                op_path,
1791
                [loss],
1792 1793 1794 1795
                target_grad_block,
                no_grad_dict,
                grad_to_var,
                callbacks,
1796
                input_grad_names_set=input_grad_names_set,
1797
                op_path_dict=op_path_dict,
1798
                distop_context=distop_context,
1799
                grad_op_id_to_fwd_op=grad_op_id_to_fwd_op)
1800 1801 1802 1803 1804 1805 1806 1807 1808

    grad_info_map = dict()

    # if in control flow, target_grad_block is a created new block which only contains grad ops,
    # so fwd_op_num is set to 0.
    fwd_op_num = block_fwd_op_num_dict[
        current_block_idx] if not is_in_control_flow else 0

    # Because append_backward may be called multiple times,
1809 1810
    # we need rename the internal gradient variables so that they have
    # different names.
1811
    _rename_grad_(target_grad_block, fwd_op_num, grad_to_var, {})
1812

1813 1814
    _append_backward_vars_(target_grad_block, fwd_op_num, grad_to_var,
                           grad_info_map)
F
fengjiayi 已提交
1815

F
fengjiayi 已提交
1816
    program.current_block_idx = current_block_idx
W
Wu Yi 已提交
1817
    program._sync_with_cpp()
F
fengjiayi 已提交
1818

1819 1820 1821 1822 1823 1824
    # for cuda graph, copy the cuda graph attr from forward op to backward op
    for op in target_grad_block.ops:
        if grad_op_id_to_fwd_op.get(op.desc.original_id(), None) is not None:
            fwd_op = grad_op_id_to_fwd_op[op.desc.original_id()]
            op._cuda_graph_attr = fwd_op._cuda_graph_attr

1825
    if parameter_list is not None:
1826 1827
        check_type(parameter_list, 'parameter_list', (list, tuple, set),
                   'fluid.backward.append_backward')
1828 1829
        parameters = []
        for i, param in enumerate(parameter_list):
1830 1831
            check_type(param, 'parameter_list[%s]' % i,
                       (framework.Variable, six.string_types),
1832
                       'fluid.backward.append_backward')
1833 1834 1835 1836
            if isinstance(param, framework.Variable):
                parameters.append(param.name)
            elif isinstance(param, six.string_types):
                parameters.append(param)
1837
    else:
F
fengjiayi 已提交
1838
        params = program.global_block().all_parameters()
C
chengduo 已提交
1839
        parameters = [param.name for param in params if param.trainable]
1840

1841
    params_and_grads = []
1842
    op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
1843
    for param in parameters:
M
minqiyang 已提交
1844
        if cpt.to_text(param) not in grad_info_map:
F
fengjiayi 已提交
1845
            continue
F
update  
fengjiayi 已提交
1846
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
1847
        grad_block = grad_info[1]
1848 1849 1850 1851
        if not grad_block.has_var(grad_info[0]):
            raise ValueError("grad block[{0}] did not have grad var {1}".format(
                grad_info[1], grad_info[0]))
        # Get the param var from the global block
F
fengjiayi 已提交
1852
        param_var = program.global_block().var(param)
1853
        grad_var = grad_block.var(grad_info[0])
1854 1855 1856 1857 1858
        if not is_in_control_flow:
            if loss.block.has_var(grad_info[0]):
                params_and_grads.append((param_var, grad_var))
            else:
                params_and_grads.append((param_var, None))
1859
        else:
1860
            params_and_grads.append((param_var, grad_var))
Y
yuyang18 已提交
1861 1862 1863 1864

    for p, g in params_and_grads:
        if g is None:
            continue
1865 1866 1867
        ops = grad_block.ops if is_in_control_flow else program.global_block(
        ).ops
        for op in reversed(ops):
Y
yuyang18 已提交
1868 1869 1870 1871 1872 1873 1874
            assert isinstance(op, framework.Operator)
            if g.name in op.output_arg_names:
                g.op = op
                break

        if g.op is None:
            raise ValueError("Unexpected branch")
Y
yuyang18 已提交
1875
        attr_val = [p.name, g.name]
Y
yuyang18 已提交
1876 1877
        if g.op.has_attr(op_role_var_attr_name):
            attr_val.extend(g.op.attr(op_role_var_attr_name))
W
Wu Yi 已提交
1878
        g.op._set_attr(op_role_var_attr_name, attr_val)
Y
yuyang18 已提交
1879

J
JZ-LIANG 已提交
1880 1881 1882 1883
    if is_recompute:
        return params_and_grads, checkpoint_names
    else:
        return params_and_grads
1884 1885 1886 1887 1888


def _as_list(x):
    if x is None:
        return []
1889
    return list(x) if isinstance(x, Sequence) else [x]
1890 1891


1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
def _is_ancestor_block(ancestor_block, block):
    prog = block.program
    ancestor_idx = ancestor_block.idx
    parent_idx = block.parent_idx

    while parent_idx != -1:
        if parent_idx == ancestor_idx:
            return True
        parent_idx = prog.block(parent_idx).parent_idx

    return False


def _get_output_names(cur_block, targets):
    """
    In `cur_block`, get output names those linked to targets.
    NOTE:
    1. `targets` can be in `cur_block`;
    Usually, `targets` is in `cur_block`. However, considering control flow,
    2. `targets` may be in sub-block but `cur_block` is an ancestor of `targets[0].block`;
    3. `targets` may be in the block which is ancestor of `cur_block`.
    """

    block = targets[0].block if targets else cur_block
    current_output_names = set([out.name for out in targets])

1918 1919 1920 1921 1922 1923
    # 1. If `targets` in cur_block or the ancestral block of `cur_block`
    if block.idx == cur_block.idx or _is_ancestor_block(block, cur_block):
        return current_output_names

    # 2. If `cur_block` is an ancestor of `targets[0].block`, run while loop
    prog = cur_block.program
1924 1925 1926 1927 1928 1929 1930 1931 1932
    while block.idx != cur_block.idx:
        assert block.parent_idx != -1
        parent_block = prog.block(block.parent_idx)

        parent_block_output_names = set()
        for op in reversed(block.ops):
            if _some_in_set_(op.desc.output_arg_names(), current_output_names):
                for name in op.desc.input_arg_names():
                    current_output_names.add(name)
1933 1934
                    if not block.desc.find_var(name.encode()) \
                            and parent_block.desc.find_var(name.encode()):
1935 1936 1937 1938 1939 1940 1941 1942
                        parent_block_output_names.add(name)

        block = parent_block
        current_output_names = parent_block_output_names

    return current_output_names


1943 1944 1945
def _find_no_grad_vars(block, op_path, targets, no_grad_set):
    """
    Find the vars which is not used in the program, and
1946
    those vars belong to no_grad_var.
1947
    """
1948
    output_names = _get_output_names(block, targets)
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
    no_grad_var = []
    for i, op in reversed(list(enumerate(op_path))):
        # If the op has sub_block, it is too complicated to find the correct no_grad_var.
        if not op.has_attr("sub_block"):
            for out_var in op.desc.output_arg_names():
                if out_var not in output_names and out_var not in op.desc.input_arg_names(
                ) and not block.vars[out_var].stop_gradient:
                    no_grad_var.append(out_var)
        for name in op.desc.input_arg_names():
            if name not in no_grad_set:
                output_names.add(name)
    return set(no_grad_var)


1963 1964 1965 1966 1967 1968
def _find_op_path_(block,
                   targets,
                   inputs,
                   no_grad_set,
                   op_path_dict=None,
                   is_while=False):
1969
    """
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
    It is used to find the grad path in `block`.

    Args:
        block(Block): The block in which to get op path.
        targets(list[Variable]): The target variables.
        inputs(list[Variable]): The input variables.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed. op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        is_while(bool): Whether or not `block` is while block
    Return:
        The forward op path of block corresponding to backward op.
1983
    """
1984

1985
    input_names = set([inp.name for inp in inputs])
1986 1987 1988
    output_names = _get_output_names(block, targets)
    if op_path_dict is None:
        op_path_dict = dict()
1989 1990 1991 1992 1993 1994

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
1995 1996 1997
            if _some_in_set_(op.desc.input_arg_names(),
                             input_names) and core.has_non_empty_grad_op_maker(
                                 op.type):
1998 1999 2000 2001 2002 2003 2004
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
2005 2006 2007 2008
        if op.has_attr("sub_block"):
            sub_block_id = op._block_attr_id("sub_block")
            sub_block = block.program.block(sub_block_id)
            sub_block_target_names = output_names & set(op.output_arg_names)
2009 2010
            sub_block_path = _get_sub_block_path(sub_block, op, set(),
                                                 op_path_dict,
2011 2012 2013
                                                 sub_block_target_names)
            op_path_dict[sub_block_id] = sub_block_path

2014 2015 2016
        if _some_in_set_(op.desc.output_arg_names(),
                         output_names) and core.has_non_empty_grad_op_maker(
                             op.type):
2017 2018 2019 2020 2021 2022
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

2023 2024 2025 2026 2027
    if is_while:
        # If block is while block, dealing with op specifically again.
        # TODO(liym27): Consider special types of ops.
        for i, op in reversed(list(enumerate(block.ops))):
            if relevant_op_flags[i] == False \
T
tangwei12 已提交
2028
                    and _some_in_set_(op.desc.output_arg_names(), output_names):
2029 2030
                relevant_op_flags[i] = True

2031 2032 2033 2034 2035 2036 2037
    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
2038
                if name not in input_names and block.vars[name].stop_gradient:
2039 2040 2041 2042 2043 2044 2045
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
2046
    Backpropagate the gradients of targets to inputs.
2047 2048

    Args:
2049 2050 2051
        targets(Tensor|list[Tensor]|tuple[Tensor]): The target Tensors
        inputs(Tensor|list[Tensor]|tuple[Tensor]): The input Tensors
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensors
2052 2053
            of targets which has the same shape with targets, If None, ones will
            be created for them.
2054 2055
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
2056 2057
                               `stop_gradient=True` from all blocks will
                               be automatically added into this set.
2058
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
2059
                               Default: None.
2060 2061

    Return:
2062 2063
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
2064 2065 2066 2067 2068 2069 2070 2071
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
2072 2073
    # increase appending gradients times
    prog._appending_grad_times += 1
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
            "Should have the same number of target_gradients as targets")

    if no_grad_set is None:
        no_grad_set = set()
2085 2086
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
2087
    no_grad_dict = _get_stop_gradients_(prog)
2088
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
2089 2090 2091

    fwd_op_num = block.desc.op_size()

2092 2093
    input_grad_names_set = set()

2094
    target_grad_map = {}
2095
    rename_var_map = {}
2096 2097
    for i, grad in enumerate(target_gradients):
        target = targets[i]
2098
        grad_name = _append_grad_suffix_(target.name)
2099
        if grad is None:
L
lvmengsi 已提交
2100 2101 2102 2103 2104
            target_shape = target.name + '_shape'
            block.desc.append_op().copy_from(
                _create_op_desc_("shape", {'Input': [target.name]},
                                 {"Out": [target_shape]}, {}))
            input_grad_names_set.add(target_shape)
L
liym27 已提交
2105
            op_desc = _create_op_desc_("fill_constant",
L
lvmengsi 已提交
2106
                                       {"ShapeTensor": [target_shape]},
2107
                                       {"Out": [grad_name]}, {
2108
                                           "shape": target.shape,
2109 2110 2111
                                           "value": 1.0,
                                           "dtype": target.dtype,
                                       })
L
liym27 已提交
2112

2113
            block.desc.append_op().copy_from(op_desc)
2114
            input_grad_names_set.add(grad_name)
2115 2116 2117 2118 2119
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
2120 2121
                    "The shapes of target and grad are different: %s %s" %
                    (target.name, grad.name))
2122
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name
2123
            input_grad_names_set.add(grad.name)
2124
            rename_var_map[grad_name] = grad.name
2125 2126

    # For double backward, input_grad_names is used for filter
2127 2128
    # some non-used gradients op. rename_var_map is used to
    # associate target_grad var name with first grad_op input name.
2129 2130
    if prog._appending_grad_times == 1:
        input_grad_names_set = None
2131
        rename_var_map = {}
2132 2133 2134 2135 2136 2137

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
2138 2139 2140 2141

    op_path_dict = dict()
    op_path = _find_op_path_(block, targets, inputs, block_no_grad_set,
                             op_path_dict)
2142 2143 2144 2145 2146 2147

    # find no grad var by op_path
    no_grad_vars = _find_no_grad_vars(block, op_path, targets,
                                      block_no_grad_set)
    block_no_grad_set.update(no_grad_vars)

2148
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
2149 2150
    grad_to_var = dict()
    grad_info_map = dict()
2151 2152
    _append_backward_ops_(block,
                          op_path,
2153
                          targets,
2154 2155 2156 2157 2158 2159
                          block,
                          no_grad_dict,
                          grad_to_var,
                          input_grad_names_set=input_grad_names_set,
                          op_path_dict=op_path_dict,
                          rename_var_map=rename_var_map)
2160 2161 2162 2163 2164 2165 2166

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
W
Wu Yi 已提交
2167
    prog._sync_with_cpp()
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars
2183 2184


2185
@framework.static_only
2186 2187
def gradients(targets, inputs, target_gradients=None, no_grad_set=None):
    """
T
tangwei12 已提交
2188

2189 2190 2191
    Backpropagate the gradients of targets to inputs.

    Args:
2192 2193 2194
        targets (Tensor|list[Tensor]|tuple[Tensor]): The target Tensors.
        inputs (Tensor|list[Tensor]|tuple[Tensor]): The input Tensors.
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensor
2195 2196
            of targets which has the same shape with targets, If None, ones will
            be created for them.
2197 2198 2199
        no_grad_set (set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
            should be ignored. All Tensors with ``stop_gradient=True`` from all blocks will
            be automatically added into this set. If this parameter is not None, the Tensors or Tensor.names
2200
            in this set will be added to the default set. Default: None.
2201 2202

    Return:
2203 2204
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
2205 2206 2207
        will be None.

    Examples:
2208

2209
        .. code-block:: python
2210
          :name: code-example
2211 2212 2213 2214
            import paddle
            import paddle.nn.functional as F

            paddle.enable_static()
2215

2216
            x = paddle.static.data(name='x', shape=[None, 2, 8, 8], dtype='float32')
2217
            x.stop_gradient=False
2218 2219 2220
            y = paddle.static.nn.conv2d(x, 4, 1, bias_attr=False)
            y = F.relu(y)
            z = paddle.static.gradients([y], x)
2221
            print(z) # [var x@GRAD : LOD_TENSOR.shape(-1, 2, 8, 8).dtype(float32).stop_gradient(False)]
2222
    """
2223
    check_type(targets, 'targets', (framework.Variable, list, tuple),
2224
               'paddle.static.gradients')
2225
    check_type(inputs, 'inputs', (framework.Variable, list, tuple),
2226
               'paddle.static.gradients')
2227 2228 2229
    check_type(target_gradients, 'target_gradients',
               (framework.Variable, list, tuple, type(None)),
               'paddle.static.gradients')
2230 2231
    outs = calc_gradient(targets, inputs, target_gradients, no_grad_set)
    return _as_list(outs)
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294


@framework.static_only
def gradients_with_optimizer(program, optimizer, inputs=None, outputs=None):
    """
    :api_attr: Static Graph

    Backpropagate the gradients of the program and apply the gradients with the given optimizer.

    Args:
        program (Program): The input program.
        optimizer (Optimizer): The optimizer to apply the gradients.
        inputs (Tensor|list[Tensor]|tuple[Tensor], optional): The input Tensors.
            If None, the inputs will be created from the input variables in the given program. Default:None.
        outputs (Tensor|list[Tensor]|tuple[Tensor], optional): The output Tensors.
            If None, the outputs will be created from the output variables in the given program. Default: None.

    Return:
        tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by gradients_with_optimizer and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
            ``fetch_list`` before run, see details in ``Executor``.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
            pred = static.nn.fc(x=img, size=10, activation='relu')
            loss = paddle.mean(pred)
            opt_ops, pram_grads = paddle.fluid.backward.gradients_with_optimizer(static.default_main_program(), opt)
            print(opt_ops)

    """
    check_type(program, 'program', paddle.fluid.Program,
               'paddle.static.gradients_with_optimizer')
    check_type(optimizer, 'optimizer', paddle.optimizer.Optimizer,
               'paddle.static.gradients_with_optimizer')

    if inputs is None or outputs is None:
        in_set = set()
        out_set = set()
        for block in program.blocks:
            for op in block.ops:
                for name in op.input_arg_names:
                    in_set.add(block.vars[name])
                for name in op.output_arg_names:
                    out_set.add(block.vars[name])
        if inputs is None:
            inputs = list(in_set.difference(out_set))
        if outputs is None:
            outputs = list(out_set.difference(in_set))

    grads = gradients(outputs, inputs)

    with program_guard(program, None):
        pram_grads = [(pram, grad) for pram, grad in zip(inputs, grads)
2295 2296
                      if isinstance(pram, paddle.fluid.framework.Parameter)
                      and grad is not None]
2297 2298 2299 2300

        optimize_ops = optimizer.apply_gradients(pram_grads)

    return optimize_ops, pram_grads