backward.py 82.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
T
tangwei12 已提交
16
from .proto import framework_pb2
17

18
from paddle.fluid import framework as framework
F
update  
fengjiayi 已提交
19
from . import core
F
update  
fengjiayi 已提交
20
import collections
21
import copy
22
import six
23
import logging
M
minqiyang 已提交
24
from .. import compat as cpt
25
from . import unique_name
26
from . import log_helper
L
liym27 已提交
27
import paddle.fluid
28
from .data_feeder import check_type
M
mapingshuo 已提交
29 30 31 32 33
__all__ = [
    'append_backward',
    'gradients',
]

34 35 36
_logger = log_helper.get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')

M
mapingshuo 已提交
37 38 39 40 41 42 43 44 45 46 47

class ProgramStats(object):
    def __init__(self, block, ops):
        self.block = block
        self.ops = ops
        self.op_deps = {}  # op-> in_ops, out_ops
        self.var_op_deps = {}  # var as input op, var as output op

    def get_input_nodes(self):
        input_names = []
        for name in self.var_op_deps:
48
            if len(self.var_op_deps[name]["var_as_output_ops"]) == 0 and \
T
tangwei12 已提交
49
                    len(self.var_op_deps[name]["var_as_input_ops"]) > 0:
M
mapingshuo 已提交
50 51 52 53 54 55 56 57 58 59 60
                if self.block.var(name).persistable:
                    continue
                input_names.append(name)
        for op in self.ops:
            if op.desc.type() == "read":
                input_names.extend(op.desc.output_arg_names())
        return input_names

    def get_reserved_vars(self):
        var_name = []
        for op in self.ops:
M
mapingshuo 已提交
61
            if op.desc.type() == "seed":
M
mapingshuo 已提交
62 63 64 65 66 67 68 69 70 71 72
                var_name.extend(op.desc.output_arg_names())
        return var_name

    def get_out_of_subgraph_vars(self, begin_op_idx, end_op_idx):
        var_name = []
        for i in range(begin_op_idx, end_op_idx, 1):
            for name in self.ops[i].desc.output_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_input_ops"]:
                        if idx >= end_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
73 74 75 76 77
            for name in self.ops[i].desc.input_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_output_ops"]:
                        if idx < begin_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        return var_name

    def is_subgraph(self, var_group1, var_group2):
        # should traverse from var_group1 to var_group2
        # max op idx in var_group2
        # min op idx in var_group1
        min_op_idx = len(self.ops)
        max_op_idx = -1
        for name in var_group1:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group2:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group1:
            op_idx = self.var_op_deps[name]["var_as_input_ops"]
            for idx in op_idx:
                min_op_idx = min(min_op_idx, idx)
        for name in var_group2:
            op_idx = self.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if min_op_idx >= max_op_idx:
            return False, min_op_idx, max_op_idx
J
JZ-LIANG 已提交
102

M
mapingshuo 已提交
103 104
        return True, min_op_idx, max_op_idx

J
JZ-LIANG 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117
    def _update_segment_start(self, min_idx, pre_segment_end_idx):
        """
        persist vars of amp-related cast should be included in recompute segment
        """

        def is_amp_cast(op):
            return op.desc.type() == 'cast' and self.block.var(
                op.desc.input_arg_names()[0]).persistable

        idx_ = min_idx - 1
        updated_min_idx = min_idx
        while idx_ > pre_segment_end_idx:
            if is_amp_cast(self.ops[idx_]):
118
                _logger.info("found amp-cast op: {}, : {}".format(self.ops[
J
JZ-LIANG 已提交
119 120 121 122 123 124 125 126 127
                    idx_].desc.type(), self.ops[idx_].desc.input_arg_names()[
                        0]))
                updated_min_idx = idx_
                idx_ -= 1
            else:
                break

        return updated_min_idx

M
mapingshuo 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    def build_stats(self):
        for i, op in enumerate(self.ops):
            self.op_deps[i] = {"in_ops": [], "out_ops": []}
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.op_deps[i]["in_ops"].extend(self.var_op_deps[name][
                        "var_as_output_ops"])
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_input_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = [i]
                    self.var_op_deps[name]["var_as_output_ops"] = []

            for j, name in enumerate(op.desc.output_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_output_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = []
                    self.var_op_deps[name]["var_as_output_ops"] = [i]

            for op_idx in self.op_deps[i]["in_ops"]:
                self.op_deps[op_idx]["out_ops"].extend([i])

154 155 156 157
    def sort_checkpoints(self, checkpoints_name):
        sorted_checkpoints = []
        for name in checkpoints_name:
            if name not in self.var_op_deps:
158
                _logger.info(
159 160 161 162 163 164 165 166 167 168 169
                    "Recompute Optimizer: deleted %s from checkpoints, because it is not used in paddle program."
                    % name)
            elif self.var_op_deps[name]["var_as_output_ops"] == []:
                # input nodes
                sorted_checkpoints.append((name, -1))
            else:
                sorted_checkpoints.append(
                    (name, max(self.var_op_deps[name]["var_as_output_ops"])))
        sorted_checkpoints = sorted(sorted_checkpoints, key=lambda x: x[1])
        return [x[0] for x in sorted_checkpoints]

M
mapingshuo 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    def modify_forward_desc_for_recompute(self):
        op_types = [op.desc.type() for op in self.ops]
        if "dropout" not in op_types:
            return

        op_idx = 0
        while (op_idx < len(self.ops)):
            op = self.ops[op_idx]
            if op.desc.type() != "dropout":
                op_idx += 1
                continue
            # add a seed op so that the two dropout op can generate same output
            op_unique_name = unique_name.generate("seed")
            var_unique_name = unique_name.generate_with_ignorable_key(".".join(
                [op_unique_name, 'tmp']))
            added_var = self.block.create_var(
                name=var_unique_name,
                dtype='int32',
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=False)
            seed = 0 if op.attr("fix_seed") is False else int(op.attr("seed"))
192 193 194 195 196 197 198

            op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
            )
            op_device = ""
            if op.desc.has_attr(op_device_attr_name):
                op_device = op.desc.attr(op_device_attr_name)

M
mapingshuo 已提交
199 200 201 202 203
            added_op = self.block._insert_op(
                index=op.idx,
                type='seed',
                inputs={},
                outputs={'Out': [added_var]},
204 205
                attrs={'seed': seed,
                       'op_device': op_device})
M
mapingshuo 已提交
206 207 208 209 210 211 212 213
            self.ops.insert(op_idx, added_op)
            # modify dropout op desc so that it accept a seed var as input
            op.desc.set_input("Seed", [var_unique_name])
            op.desc.remove_attr("fix_seed")
            op.desc.remove_attr("seed")
            self.block._sync_with_cpp()
            op_idx += 2

M
mapingshuo 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226

def _pretty_op_desc_(op_desc, prefix):
    out_s = "%s\tname:[%s]\n%s    \tinputs:[%s]\n%s    \toutputs:[%s]" % \
            (prefix + "_op", str(op_desc.type()), prefix + "_input", " ".join(op_desc.input_arg_names()),
             prefix + "_output", " ".join(op_desc.output_arg_names()))
    return out_s


def _add_needed_descs_to_block(descs, block, main_block, in_memory_vars):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
T
tangwei12 已提交
227
        core.op_proto_and_checker_maker.kOpRoleAttrName()
M
mapingshuo 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        is_needed = False
        for name in desc.output_arg_names():
            if main_block.has_var(name) and main_block.var(name).persistable:
                continue
            if name not in in_memory_vars:
                is_needed = True
        if is_needed:
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(desc)
            new_op_desc._set_attr(op_role_attr_name, backward)
244 245
            if desc.has_attr('op_device'):
                new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
            result_descs.append(new_op_desc)
    return result_descs


def _add_descs_to_block(descs, block):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
        core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        new_op_desc = block.desc.append_op()
        new_op_desc.copy_from(desc)
        new_op_desc._set_attr(op_role_attr_name, backward)
265 266
        if desc.has_attr('op_device'):
            new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279
        result_descs.append(new_op_desc)
    return result_descs


def _find_loss_op_(loss):
    for op in reversed(loss.block.ops):
        assert isinstance(op, framework.Operator)
        if len(op.output_arg_names) == 1 and op.output_arg_names[
                0] == loss.name:
            loss.op = op
            break
    if loss.op is None:
        raise ValueError("loss.op is None. Should not happend")
280 281


282 283
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
284
    Traverse all ops in op_descs[begin_idx : end_idx],
285 286
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
287 288 289
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
290
        end_idx = len(op_descs)
291 292 293 294 295 296 297 298 299 300 301 302 303
    if isinstance(op_descs, (list, tuple)):
        for i in range(begin_idx, end_idx):
            op_desc = op_descs[i]
            if isinstance(op_desc, tuple):
                op_desc = op_desc[0]
            op_desc._rename_input(old_name, new_name)
            op_desc._rename_output(old_name, new_name)
    if isinstance(op_descs, collections.OrderedDict):
        for key, value in op_descs.items():
            if isinstance(value, (list, tuple)):
                for op_desc in value:
                    op_desc._rename_input(old_name, new_name)
                    op_desc._rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
304 305


F
fengjiayi 已提交
306
def _create_op_desc_(op_type, inputs, outputs, attrs):
307 308 309
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
310 311
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
M
minqiyang 已提交
312
    for para, args in six.iteritems(inputs):
313 314 315 316 317
        op_desc.set_input(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
M
minqiyang 已提交
318
    for para, args in six.iteritems(outputs):
319 320 321 322 323
        op_desc.set_output(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
Y
yuyang18 已提交
324 325

    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
326
    op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
Y
yuyang18 已提交
327 328 329 330

    if op_role_attr_name not in attrs:
        attrs[
            op_role_attr_name] = core.op_proto_and_checker_maker.OpRole.Backward
331 332
    if op_device_attr_name not in attrs:
        attrs[op_device_attr_name] = ""
M
minqiyang 已提交
333
    for name, val in six.iteritems(attrs):
F
fengjiayi 已提交
334 335 336
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
W
Wu Yi 已提交
337
            op_desc._set_attr(name, val)
F
fengjiayi 已提交
338 339 340
    return op_desc


M
mapingshuo 已提交
341 342 343 344 345 346 347 348 349 350
def _create_loss_op_desc_(loss):
    op_desc = _create_op_desc_(
        "fill_constant", {}, {"Out": [_append_grad_suffix_(loss.name)]}, {
            "shape": [1],
            "value": 1.0,
            "dtype": loss.dtype,
            "force_cpu": False,
            core.op_proto_and_checker_maker.kOpRoleAttrName():
            int(core.op_proto_and_checker_maker.OpRole.Backward) |
            int(core.op_proto_and_checker_maker.OpRole.Loss),
351 352
            core.op_proto_and_checker_maker.kOpDeviceAttrName():
            loss.op.attr(core.op_proto_and_checker_maker.kOpDeviceAttrName())
M
mapingshuo 已提交
353 354 355 356
        })
    return op_desc


357
def _infer_var_data_type_shape_(grad_var_name, block):
358
    """
359
    Infer the data type and shape of given grad variable
360
    """
M
minqiyang 已提交
361 362 363 364
    grad_var = block.desc.find_var(cpt.to_bytes(grad_var_name))
    fwd_name = _strip_grad_suffix_(grad_var_name)
    if block.desc.has_var_recursive(cpt.to_bytes(fwd_name)):
        fwd_var = block.desc.find_var_recursive(cpt.to_bytes(fwd_name))
F
fengjiayi 已提交
365
        grad_var.set_dtype(fwd_var.dtype())
366
        grad_var.set_shape(fwd_var.shape())
F
fengjiayi 已提交
367
    else:
368
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
369 370


F
fengjiayi 已提交
371
def _all_in_set_(cands, s):
372 373 374
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
375 376
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
377 378 379 380 381 382
    for c in cands:
        if not c in s:
            return False
    return True


383 384 385 386 387 388
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
M
minqiyang 已提交
389 390
    literal_set = cpt.to_text(s)
    literal_cands = cpt.to_text(cands)
M
minqiyang 已提交
391 392
    for c in literal_cands:
        if c in literal_set:
393 394 395 396
            return True
    return False


F
fengjiayi 已提交
397
def _strip_grad_suffix_(name):
398
    """
M
mapingshuo 已提交
399
    Strip the grad suffix from the given variable name
400 401 402
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
M
minqiyang 已提交
403
    name = cpt.to_text(name)
M
minqiyang 已提交
404
    pos = name.find(core.grad_var_suffix())
F
fengjiayi 已提交
405
    return name[:pos] if pos != -1 else name
F
fengjiayi 已提交
406 407 408


def _append_grad_suffix_(name):
409 410 411 412
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
M
minqiyang 已提交
413
    return cpt.to_text(name) + core.grad_var_suffix()
F
fengjiayi 已提交
414 415


T
tangwei12 已提交
416 417 418 419 420
def _accumulate_gradients_by_sum_op_(var_name,
                                     renamed_vars,
                                     pending_sum_ops,
                                     op_idx,
                                     op_device=""):
421 422 423 424 425 426
    """
    Use sum op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    pending_sum_ops[op_idx].append(
T
tangwei12 已提交
427 428 429 430
        _create_op_desc_("sum", {"X": renamed_vars[var_name]}, {
            "Out": [var_name]
        }, {"use_mkldnn": False,
            "op_device": op_device}))
431 432 433
    renamed_vars[var_name] = [var_name]


T
tangwei12 已提交
434 435 436 437 438
def _accumulate_gradients_by_add_ops_(var_name,
                                      renamed_vars,
                                      pending_sum_ops,
                                      op_idx,
                                      op_device=""):
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
    """
    Use several inplace add op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    out_name = renamed_vars[var_name][0]
    for i in range(1, len(renamed_vars[var_name])):
        x_name = out_name
        y_name = renamed_vars[var_name][i]
        if i != len(renamed_vars[var_name]) - 1:
            out_name = var_name + '@ADD@' + str(i)
        else:
            out_name = var_name
        pending_sum_ops[op_idx].append(
            _create_op_desc_("grad_add", {"X": [x_name],
                                          "Y": [y_name]}, {"Out": [out_name]},
T
tangwei12 已提交
455 456
                             {"use_mkldnn": False,
                              "op_device": op_device}))
457 458 459
    renamed_vars[var_name] = [var_name]


460
def _addup_repetitive_outputs_(op_descs, block_idx):
461 462
    """
    In backward part, an variable may be the output of more than one ops.
F
fengjiayi 已提交
463 464
    And one op may yield its multiple outputs to the same variable.
    In these cases, the variable should be the accumulation of all the outputs.
465 466
    `sum_op`s are added to implement the accumulate.
    """
467
    _MAX_ADD_NUM_ = framework._global_flags()['FLAGS_max_inplace_grad_add']
468 469
    #pending_sum_ops = []
    pending_sum_ops = collections.OrderedDict()
F
update  
fengjiayi 已提交
470
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
471
    renamed_vars = collections.defaultdict(list)
472
    renamed_var_start_idx = collections.defaultdict(list)
473
    var_device = collections.defaultdict(str)
F
fengjiayi 已提交
474
    for idx, op_desc in enumerate(op_descs):
T
tangwei12 已提交
475 476 477 478 479
        op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
        )
        op_device = ""
        if op_desc.has_attr(op_device_attr_name):
            op_device = op_desc.attr(op_device_attr_name)
F
update  
fengjiayi 已提交
480
        for var_name in op_desc.input_arg_names():
M
mapingshuo 已提交
481 482
            if "@GRAD" not in var_name:
                continue
F
fengjiayi 已提交
483
            if len(renamed_vars[var_name]) > 1:
484
                if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
W
WangXi 已提交
485 486 487
                    _accumulate_gradients_by_sum_op_(var_name, renamed_vars,
                                                     pending_sum_ops, idx,
                                                     var_device[var_name])
488
                else:
W
WangXi 已提交
489 490 491
                    _accumulate_gradients_by_add_ops_(var_name, renamed_vars,
                                                      pending_sum_ops, idx,
                                                      var_device[var_name])
492

F
update  
fengjiayi 已提交
493
        for param_idx, param_name in enumerate(op_desc.output_names()):
F
fengjiayi 已提交
494 495
            arg_names = op_desc.output(param_name)
            for arg_idx, var_name in enumerate(arg_names):
M
mapingshuo 已提交
496 497
                if "@GRAD" not in var_name:
                    continue
T
tangwei12 已提交
498
                # if "@RENAME@" in var_name:
M
mapingshuo 已提交
499
                #    continue
F
fengjiayi 已提交
500 501 502 503 504 505 506
                if var_name == core.empty_var_name(
                ) or var_name in op_desc.input_arg_names():
                    # empty variable or inplace op
                    continue
                if len(renamed_vars[var_name]) == 0:
                    # it's the first time we get the variable
                    renamed_vars[var_name] = [var_name]
507
                    renamed_var_start_idx[var_name] = idx
F
fengjiayi 已提交
508 509
                else:
                    if len(renamed_vars[var_name]) == 1:
510
                        new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
F
fengjiayi 已提交
511 512 513 514
                            str(var_rename_count[var_name])
                        var_rename_count[var_name] += 1
                        # rename original var_name
                        renamed_vars[var_name][0] = new_name
515 516 517 518 519 520
                        # before change: _rename_arg_(op_descs, var_name,
                        #                             new_name, 0, idx)
                        # rename arg from idx of the first appearance
                        # in backward, not always from 0
                        _rename_arg_(op_descs, var_name, new_name,
                                     renamed_var_start_idx[var_name], idx)
F
fengjiayi 已提交
521 522
                        _rename_arg_(pending_sum_ops, var_name, new_name)

F
update  
fengjiayi 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535
                        for p in op_desc.output_names()[:param_idx]:
                            p_arg_names = op_desc.output(p)
                            if var_name in p_arg_names:
                                op_desc.set_output(p, [
                                    new_name if x == var_name else x
                                    for x in p_arg_names
                                ])

                        arg_names = [
                            new_name if x == var_name else x
                            for x in arg_names[:arg_idx]
                        ] + arg_names[arg_idx:]

536
                    new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
T
tangwei12 已提交
537
                        str(var_rename_count[var_name])
F
fengjiayi 已提交
538
                    var_rename_count[var_name] += 1
F
fengjiayi 已提交
539 540 541
                    arg_names[arg_idx] = new_name
                    op_desc.set_output(param_name, arg_names)
                    renamed_vars[var_name].append(new_name)
W
WangXi 已提交
542
                    # record the latest device
543
                    var_device[var_name] = op_device
F
update  
fengjiayi 已提交
544

M
minqiyang 已提交
545
    for var_name, inputs in six.iteritems(renamed_vars):
546 547
        if len(renamed_vars[var_name]) > 1:
            if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
548 549 550
                _accumulate_gradients_by_sum_op_(
                    var_name, renamed_vars, pending_sum_ops,
                    len(op_descs), var_device[var_name])
551
            else:
552 553 554
                _accumulate_gradients_by_add_ops_(
                    var_name, renamed_vars, pending_sum_ops,
                    len(op_descs), var_device[var_name])
555

F
fengjiayi 已提交
556
    # sum_op descs are sorted according to their insert position
557 558 559 560 561 562 563 564 565 566
    for key, value in collections.OrderedDict(
            reversed(list(pending_sum_ops.items()))).items():

        # NOTE(zhiqiu): Since reversed, the idx of op_descs to be inserted will remains correct.
        # For example, [0, 1, 2], and we want to insert 'a' at idx 1, 'b' at idx 2, and the expected result is [0, 1, 'a', 2, 'b'].
        # If reversed, we first insert 'b' at idx 2, it becomes [0, 1, 2, 'b'], and then insert 'a' at idx 1, it becomes [0, 1, 'a', 2, 'b'].
        # If not reverse, we first insert 'a' at idx 1, it becomes [0, 1, 'a', 2], and then insert 'b' at idx 2, it becomes [0, 1, 'a', 'b', 2].
        idx = key
        for i, op in enumerate(value):
            op_descs.insert(idx + i, op)
F
fengjiayi 已提交
567 568 569 570 571

    return op_descs


def _remove_no_grad_branch_(op_descs, no_grad_set):
572 573 574 575
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
576
        2. all grad inputs of the grad op are in 'no_grad_set'
577
    """
F
fengjiayi 已提交
578 579

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
580 581
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
582
            return True
583 584 585 586
        if _all_in_set_([
                name for name in op_desc.input_arg_names()
                if name.find(core.grad_var_suffix()) != -1
        ], no_grad_set):
F
fengjiayi 已提交
587
            no_grad_set.update(out_arg_names)
F
fengjiayi 已提交
588 589 590
            return True
        return False

F
fengjiayi 已提交
591
    # Remove ops whose outputs are all in no_grad_dict
592 593 594 595
    op_descs = [
        op_desc for op_desc in op_descs
        if not _op_can_be_removed_(op_desc, no_grad_set)
    ]
F
fengjiayi 已提交
596 597
    # Insert fill_zeros_like_op
    to_insert = []
F
fengjiayi 已提交
598
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
599
        for arg in op_desc.input_arg_names():
M
mapingshuo 已提交
600
            # arg is a gradient var name and arg should not have gradient
F
fengjiayi 已提交
601
            if core.grad_var_suffix() in arg and arg in no_grad_set:
602
                x_in = _strip_grad_suffix_(arg)
M
mapingshuo 已提交
603 604
                # the reason should be: arg can be input of another grad op
                # and the op is a not-to-remove op
605 606
                to_insert.append((_create_op_desc_(
                    "fill_zeros_like", {"X": [x_in]}, {"Out": [arg]}, {}), idx))
F
fengjiayi 已提交
607

608
    list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
F
fengjiayi 已提交
609 610 611 612

    return op_descs


C
chengduo 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
def _find_not_need_ops(grad_op_descs, forward_ops, input_grad_names_set):
    """
    Pruning Program with Structural Analysis Method of Computational Graph.
    The nodes of the computational graph composed of backward OPS should be
    interconnected. If there are unconnected sub-graphs in the computational graph,
    these sub-graphs should be cut off.

    Args:
        grad_op_descs(list[core.OpDesc]): The candidate backward OpDescs.
        forward_ops(list[Operator]): The forward ops.
        input_grad_names_set(set): this set is used to store the gradients' name
            which is generated by backward ops, and input_grad_names_set can help
            to prune the unnecessary backward ops.

    Return:
628
        (set[core.OpDesc]): A set of OpDescs which should be pruned.
C
chengduo 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
    """

    class Var(object):
        def __init__(self, var_name):
            self.var_name = var_name
            self.gen_op = None
            self.pendding_ops = []

        def set_gen_op(self, gen_op):
            assert isinstance(gen_op, Op)
            assert self.gen_op is None
            self.gen_op = gen_op

        def add_pending_op(self, op):
            assert isinstance(op, Op)
            self.pendding_ops.append(op)

    class Op(object):
        def __init__(self, op_desc):
            self.op_desc = op_desc
            self.inputs = []
            self.outputs = []

        def insert_input(self, var):
            assert isinstance(var, Var)
            self.inputs.append(var)

        def insert_output(self, var):
            assert isinstance(var, Var)
            self.outputs.append(var)

    var_versions = dict()

    def _create_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        else:
            var_versions[name].append(Var(name))
        return var_versions[name][-1]

    def _create_or_get_last_version_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        return var_versions[name][-1]

    def _create_op_node(op_desc):
        op_node = Op(op_desc)
        for input in op_desc.input_arg_names():
            var = _create_or_get_last_version_node(name=input)
            var.add_pending_op(op_node)
            op_node.insert_input(var)
        for output in op_desc.output_arg_names():
            var = _create_node(name=output)
            var.set_gen_op(op_node)
            op_node.insert_output(var)
        return op_node

    # Record the forward vars
    forward_vars_set = set() if input_grad_names_set is None else set(
        input_grad_names_set)
    for op in forward_ops:
        forward_vars_set.update(op.desc.input_arg_names())
        forward_vars_set.update(op.desc.output_arg_names())

    # Record the vars which are created during backward and is not generated by op.
    backward_vars_set = set()
    # special_op_nodes is the candidate sub-graph head node.
    special_op_nodes = set()
    for op_desc in grad_op_descs:
        input_set = set(op_desc.input_arg_names())
        # The new_vars are created during backward and is not generated by op.
        new_vars = input_set - forward_vars_set - backward_vars_set
        backward_vars_set.update(op_desc.output_arg_names())

        op_node = _create_op_node(op_desc)
        if len(new_vars) == len(input_set):
            special_op_nodes.add(op_node)

    not_need_op_descs = []
    # Start traversing all candidate sub-graph headers to check whether
    # they are connected to backward computational graphs, and if they are
    # not, list them in not_need_op_descs
    for special_op_node in special_op_nodes:
        op_list = [special_op_node]
        ready_vars = set(special_op_node.inputs)
        remove_ops = True
        candidate_ops = [special_op_node]
        while len(candidate_ops) > 0:
            op_node = candidate_ops.pop(0)
            if _all_in_set_(op_node.inputs, ready_vars):
                for out_var in op_node.outputs:
                    candidate_ops.extend(out_var.pendding_ops)
                    op_list.extend(out_var.pendding_ops)
                ready_vars.update(op_node.outputs)
            else:
                remove_ops = False
                break
        if remove_ops:
            not_need_op_descs.extend([node.op_desc for node in op_list])
728 729 730
    not_need_op_descs_set = set(not_need_op_descs)
    grad_op_descs_set = set(grad_op_descs)
    # If a backward computational graph is simply one sub-graph header, the
731
    # not_need_op_descs will be whole graph, this IF clause avoids it.
732 733 734
    if grad_op_descs_set == not_need_op_descs_set:
        return set()
    return not_need_op_descs_set
C
chengduo 已提交
735 736


Y
Yang Yang 已提交
737 738
def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
M
minqiyang 已提交
739
    proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang 已提交
740 741 742
    return proto.__str__()


M
mapingshuo 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
def _append_backward_ops_with_checkpoints_(
        block, ops, target_block, no_grad_dict, grad_to_var, checkpoints):
    """
    Create grad ops with forward ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
        ops(Op): the forward operators whose forward recomputation backward ops need to be added
        target_block(Block): the block which is going to hold new generated grad ops
        no_grad_dict(dict):
            key(int) block index
            val(str): corresponding forward variable name
        checkpoints: variables that a user defined as checkpoint for forward recomputation

    Algorithms:
M
mapingshuo 已提交
758
        0) deal with forward recomputing program descs
M
mapingshuo 已提交
759 760 761 762 763
        1) find ops between checkpoints, i.e. recompute_segments
        2) go through all forward ops and induct all variables that will be hold in memory
            a. variables that are used across segments will be held in memory
            b. output of dropout op will be held in memory
            c. input variables will be held in memory
M
mapingshuo 已提交
764 765 766
        3) go through each recompute_segments, add backward ops with forward recomputation
            a. add ops in current recompute_segment as forward recomputation ops
            b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
767 768
            c. add backward ops of current recomputation ops
            d. add sum op for repetitive_outputs
M
mapingshuo 已提交
769 770
        4) remove no grad branch as it is in _remove_no_grad_branch_
        5) Note1: all appended ops' OpRole are Backward
M
mapingshuo 已提交
771 772
        6) Note2: all variables with new name should be returned so that _append_backward_vars_ can be called
        7) Note3: current forward recomputation backpropagation does not handle programs with subblock
M
mapingshuo 已提交
773
    """
M
mapingshuo 已提交
774 775

    checkpoints_name = [x.name for x in checkpoints]
776
    checkpoints_name = list(set(checkpoints_name))
M
mapingshuo 已提交
777 778
    local_block = block.program._create_block()
    buffer_block = block.program._create_block()
779
    # 0) deal with forward recomputing program descs
M
mapingshuo 已提交
780
    program_stat = ProgramStats(block, ops)
M
mapingshuo 已提交
781
    program_stat.modify_forward_desc_for_recompute()
M
mapingshuo 已提交
782
    program_stat.build_stats()
M
mapingshuo 已提交
783 784

    # 1) find ops between checkpoints, i.e. recompute_segments
785
    checkpoints_name = program_stat.sort_checkpoints(checkpoints_name)
M
mapingshuo 已提交
786 787
    segments = []

788
    if len(checkpoints_name) == 1:
M
mapingshuo 已提交
789 790 791 792 793 794 795
        # only one checkpoint
        max_op_idx = -1
        var_group = [checkpoints_name[0]]
        for name in var_group:
            if name not in program_stat.var_op_deps:
                break
            op_idx = program_stat.var_op_deps[name]["var_as_output_ops"]
J
JZ-LIANG 已提交
796
            # only count the last generate op
M
mapingshuo 已提交
797 798 799 800 801 802
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if max_op_idx > 0:
            segments.append([0, max_op_idx + 1])
    else:
        start_idx = 0
J
JZ-LIANG 已提交
803
        pre_segment_end_idx = -1
M
mapingshuo 已提交
804 805 806
        while True:
            if start_idx >= len(checkpoints_name) - 1:
                break
J
JZ-LIANG 已提交
807 808
            # min_idx: checkpoint_1' s input op
            # max_idx: checkpoint_2' s output op
M
mapingshuo 已提交
809 810 811 812
            flag, min_idx, max_idx = program_stat.is_subgraph(
                [checkpoints_name[start_idx]],
                [checkpoints_name[start_idx + 1]])
            if flag:
J
JZ-LIANG 已提交
813 814 815
                # max_idx + 1 since the exact and used segment end idx is max_idx
                min_idx = program_stat._update_segment_start(
                    min_idx, pre_segment_end_idx)
M
mapingshuo 已提交
816
                segments.append([min_idx, max_idx + 1])
817 818 819
            else:
                _logger.info("Could not recompute op range [{}] - [{}] ".format(
                    min_idx, max_idx + 1))
J
JZ-LIANG 已提交
820

M
mapingshuo 已提交
821 822 823 824 825 826
            start_idx += 1

    if segments != [] and segments[0][0] != 0:
        recompute_segments = [[0, segments[0][0]]] + segments
    else:
        recompute_segments = segments
M
mapingshuo 已提交
827

J
JZ-LIANG 已提交
828
    for i, (idx1, idx2) in enumerate(recompute_segments):
829 830
        _logger.info("recompute segment[{}]".format(i))
        _logger.info("segment start op: [{}]: [{}]".format(ops[idx1].desc.type(
J
JZ-LIANG 已提交
831
        ), ops[idx1].desc.input_arg_names()))
832
        _logger.info("segment end op: [{}]: [{}]".format(ops[
J
JZ-LIANG 已提交
833
            idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()))
834 835
        _logger.info("recompute segment[{}]".format(i))
        _logger.info("segment start op: [{}]: [{}]".format(ops[idx1].desc.type(
J
JZ-LIANG 已提交
836
        ), ops[idx1].desc.input_arg_names()))
837
        _logger.info("segment end op: [{}]: [{}]".format(ops[
J
JZ-LIANG 已提交
838 839
            idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()))

M
mapingshuo 已提交
840
    # 2) go through all forward ops and induct all variables that will be hold in memory
M
mapingshuo 已提交
841
    vars_should_be_hold = []
842
    # a. variables that are used across segments will be held in memory
M
mapingshuo 已提交
843 844 845
    for segment in recompute_segments:
        vars_should_be_hold.extend(
            program_stat.get_out_of_subgraph_vars(segment[0], segment[1]))
J
JZ-LIANG 已提交
846 847

    cross_vars = set(vars_should_be_hold) - set(checkpoints_name)
848
    _logger.info("found [{}] vars which cross recompute segment: [{}], better checkpoints might be set to reduce those vars".format( \
J
JZ-LIANG 已提交
849 850
    len(cross_vars), cross_vars))

M
mapingshuo 已提交
851
    # b. output of seed op should be kept in memory
M
mapingshuo 已提交
852
    vars_should_be_hold.extend(program_stat.get_reserved_vars())
M
mapingshuo 已提交
853
    # c. input variables are checkpoints
M
mapingshuo 已提交
854 855 856
    vars_should_be_hold.extend(program_stat.get_input_nodes())
    vars_should_be_hold = list(set(vars_should_be_hold))

M
mapingshuo 已提交
857
    # 3) go through each recompute_segments, add backward ops with forward recomputation
M
mapingshuo 已提交
858 859 860 861 862 863
    grad_op_descs = []
    var_name_dict = {}

    vars_in_memory = vars_should_be_hold + checkpoints_name

    max_calculated_op_position = len(ops)
864
    device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
mapingshuo 已提交
865 866 867 868 869 870 871 872 873
    if recompute_segments == []:
        gap_ops = ops[0:max_calculated_op_position]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
874 875 876 877 878
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
M
mapingshuo 已提交
879 880 881 882 883 884 885 886 887 888 889 890 891 892
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

    for i, segment in enumerate(recompute_segments[::-1]):
        gap_ops = ops[segment[1]:max_calculated_op_position]
        max_calculated_op_position = segment[0]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
893 894 895 896 897
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
M
mapingshuo 已提交
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

        ff_ops = ops[segment[0]:segment[1]]
        var_suffix = ".subprog_%d" % i

        for op in ff_ops:
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            input_and_output_names = []
            input_and_output_names.extend(op.desc.input_arg_names())
            input_and_output_names.extend(op.desc.output_arg_names())
            for name in input_and_output_names:
                if block.var(name).persistable or name in checkpoints_name:
                    continue
                if name in vars_should_be_hold:
                    continue
                if name not in var_name_dict:
                    var_name_dict[name] = name + var_suffix
920 921 922 923 924 925 926 927 928 929 930

                    # we should create the rename var in subprog, otherwise its VarType will be BOOL
                    ref_var = block.program.global_block().var(name)
                    block.create_var(
                        name=var_name_dict[name],
                        shape=ref_var.shape,
                        dtype=ref_var.dtype,
                        type=ref_var.type,
                        persistable=ref_var.persistable,
                        stop_gradient=ref_var.stop_gradient)

M
mapingshuo 已提交
931
        # 3.a. add ops in current recompute_segment as forward recomputation ops
M
mapingshuo 已提交
932 933 934 935
        buffer_descs = _add_needed_descs_to_block(ff_ops, buffer_block, block,
                                                  vars_in_memory)
        added_descs = _add_descs_to_block(ff_ops, local_block)

M
mapingshuo 已提交
936
        # 3.b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
937 938 939 940 941 942
        for key in var_name_dict:
            _rename_arg_(buffer_descs, key, var_name_dict[key])

        # added_descs should be in grad_op_descs because it is backward op desc
        grad_op_descs.extend(buffer_descs)

J
JZ-LIANG 已提交
943
        # 3.c. add backward ops for all ops in current segment 
M
mapingshuo 已提交
944 945 946 947 948 949 950 951
        for op_desc in reversed(added_descs):
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op_desc, cpt.to_text(no_grad_dict[block.idx]), [])
            for key in var_name_dict:
                _rename_arg_(grad_op_desc, key, var_name_dict[key])
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)

M
mapingshuo 已提交
952
    # 3.d. add sum op for repetitive_outputs
953
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs, block.idx)
M
mapingshuo 已提交
954
    # 4) remove no grad branch as it is in _remove_no_grad_branch_
M
mapingshuo 已提交
955 956 957 958 959 960
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
    added_descs = _add_descs_to_block(grad_op_descs, target_block)
    return program_stat, checkpoints_name, vars_should_be_hold, recompute_segments


961 962 963 964 965
def _get_sub_block_path(sub_block,
                        sub_block_op_desc,
                        no_grad_set,
                        op_path_dict,
                        sub_block_target_names=None):
966 967
    """
    Get output vars in subblock which will be assigned to parent block.
968 969 970 971 972 973 974 975 976 977 978 979
    It is used to find the grad path in subblock.

    Args:
        sub_block(Block): The sub-block in which to get op path.
        sub_block_op_desc: The op desc of the sub-block op such as 'while', 'conditional_block' and 'recurrent'.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        sub_block_target_names(set): Target var names of sub-block.
    Return:
        The forward op path of sub-block corresponding to backward op.
980
    """
981

982 983 984
    assert sub_block_op_desc.has_attr(
        "sub_block") and sub_block.idx == sub_block_op_desc._block_attr_id(
            "sub_block")
985 986 987 988 989 990 991 992 993 994 995 996
    assert isinstance(sub_block_target_names, (set, type(None)))

    if sub_block_target_names is None:
        sub_block_target_names = sub_block_op_desc.output_arg_names

    # TODO(huihuangzheng): add support for recurrent op.
    if sub_block_op_desc.type in ["conditional_block", "while"]:
        # Step1: get the output vars in sub-block
        sub_outputs = [
            sub_block._var_recursive(var) for var in sub_block_target_names
        ]
        for var in sub_block_target_names:
997
            for op_desc in sub_block.ops:
998
                if var in op_desc.output_arg_names:
999
                    for name in op_desc.input_arg_names:
1000
                        sub_outputs.append(sub_block._var_recursive(name))
1001

1002 1003
        # Step2: find op path of sub-block
        is_while = sub_block_op_desc.type in ["while"]
1004
        sub_block_op_path = _find_op_path_(sub_block, sub_outputs, [],
1005
                                           no_grad_set, op_path_dict, is_while)
1006 1007 1008 1009
        return sub_block_op_path
    return sub_block.ops


1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
def _is_grad_op_(op):
    op_maker = core.op_proto_and_checker_maker
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    if op_maker.kOpRoleVarAttrName() in op.attr_names and \
            int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
        return True
    return False


def _rename_grad_name_(name, grad_order):
    return 'grad/' * grad_order + name


1023 1024
def _append_backward_ops_(block,
                          ops,
F
fengjiayi 已提交
1025 1026 1027
                          target_block,
                          no_grad_dict,
                          grad_to_var,
1028
                          callbacks=None,
1029 1030
                          input_grad_names_set=None,
                          op_path_dict=None):
1031 1032 1033 1034 1035
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
1036
        ops(Op): the forward operators whose backward ops need to be added
1037
        target_block(Block): the block which is going to hold new generated grad ops
1038
        no_grad_dict(dict):
1039
            key(int)  block index
T
tianshuo78520a 已提交
1040
            val(set) a set of variable names. These variables have no gradient
1041 1042 1043
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
C
chengduo 已提交
1044 1045 1046 1047
        callbacks(callable object): a callable object used to decorate new generated grad ops
        input_grad_names_set(set): this set is used to store the gradients' name which is
            generated by backward ops, and input_grad_names_set can help to prune the unnecessary
            backward ops.
1048 1049 1050
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
1051
    """
Y
Yang Yang 已提交
1052
    if callbacks is not None:
1053
        assert (isinstance(callbacks, (list, tuple)))
Y
Yang Yang 已提交
1054 1055 1056
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
1057

F
fengjiayi 已提交
1058
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
1059 1060
    grad_op_descs = []
    program = block.program
1061

1062 1063
    rename_var_map = {}

1064
    # add grad_op_desc by reversed ops
1065
    for op in reversed(ops):
F
fengjiayi 已提交
1066 1067 1068
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
W
Wu Yi 已提交
1069
            sub_block = program.block(op._block_attr_id("sub_block"))
W
Wu Yi 已提交
1070
            grad_sub_block = program._create_block()
W
Wu Yi 已提交
1071
            grad_sub_block._set_forward_block_idx(sub_block.idx)
1072 1073 1074
            # see follwing comments for why set None here.
            pre_input_grad_names_set = copy.copy(input_grad_names_set)
            input_grad_names_set = None
1075
            sub_block_path = op_path_dict[op._block_attr_id("sub_block")]
1076
            _append_backward_ops_(sub_block, sub_block_path, grad_sub_block,
1077
                                  no_grad_dict, grad_to_var, callbacks,
1078
                                  input_grad_names_set, op_path_dict)
1079
            input_grad_names_set = pre_input_grad_names_set
Y
Yu Yang 已提交
1080

W
Wu Yi 已提交
1081
            program._rollback()
F
fengjiayi 已提交
1082 1083
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
1084
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
1085
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
M
minqiyang 已提交
1086
            op.desc, cpt.to_text(no_grad_dict[block.idx]), grad_sub_block_list)
Y
Yang Yu 已提交
1087

1088 1089
        # Set device for grad_op according to forward Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
1090 1091 1092 1093
        if op.desc.has_attr(device_attr_name):
            op_device = op.desc.attr(device_attr_name)
            for op_desc in grad_op_desc:
                op_desc._set_attr(device_attr_name, op_device)
1094

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
        # Rename internal gradient variables in multiple backward
        # so that they have different names with previous backward.
        # For example:
        #  y = x * x, grad = fluid.gradients(fluid.gradients(y, x) + y * y, x)
        # In second-time backward, gradient variable names of partial
        # forward network (y * y) may be have same names with first-time
        # fluid.gradients(y, x).
        # So rename here before _addup_repetitive_outputs_.
        if program._appending_grad_times > 1:
            for op_desc in grad_op_desc:
                if not _is_grad_op_(op):
                    for name in op_desc.input_arg_names():
                        if name in rename_var_map:
                            op_desc._rename_input(name, rename_var_map[name])
                for name in op_desc.output_arg_names():
                    if "@GRAD" not in name:
                        continue
                    if block.desc.find_var(name.encode("ascii")):
                        new_name = _rename_grad_name_(
                            name, program._appending_grad_times)
                        op_desc._rename_output(name, new_name)
                        rename_var_map[name] = new_name

                        if name in op_grad_to_var:
                            op_grad_to_var[new_name] = op_grad_to_var[name]
                            op_grad_to_var.pop(name)

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
        # If input_grad_names_set is not None, extend grad_op_descs only when
        # any input grad in outputs of previous grad ops.
        # But this strategy is not suited for while op for some control flow,
        # for example, for while op, the grads maybe generated in next loop.
        if input_grad_names_set is not None:
            is_append_grad = False
            for op_desc in grad_op_desc:
                input_grad_names = [
                    name for name in op_desc.input_arg_names()
                    if name.find(core.grad_var_suffix()) != -1
                ]
                # some code of gradient ops, like increment, are not very
                # standard, there is no @GRAD in these ops' inputs.
                if len(input_grad_names) == 0:
                    is_append_grad = True
                    break

                if _some_in_set_(input_grad_names, input_grad_names_set):
                    grad_op_descs.append(op_desc)
                    is_append_grad = True
                    for name in op_desc.output_arg_names():
                        input_grad_names_set.add(name)
            if is_append_grad:
                grad_to_var.update(op_grad_to_var)
        else:
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)
F
fengjiayi 已提交
1149

M
mapingshuo 已提交
1150
    # sum parameter's gradients' var given multiple var gradient
1151
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs, block.idx)
F
fengjiayi 已提交
1152

M
mapingshuo 已提交
1153 1154
    # if all outputs of the grad op are in no_grad_set, then just remove and fill zero
    # if all inputs of the grad op are in no_grad_set, just remove this op
F
fengjiayi 已提交
1155 1156
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
F
fengjiayi 已提交
1157

M
mapingshuo 已提交
1158
    # remove some backward ops
C
chengduo 已提交
1159
    not_need_ops = _find_not_need_ops(grad_op_descs, ops, input_grad_names_set)
M
mapingshuo 已提交
1160

C
chengduo 已提交
1161 1162 1163
    grad_op_descs = [
        op_desc for op_desc in grad_op_descs if op_desc not in not_need_ops
    ]
1164

F
fengjiayi 已提交
1165
    # append op_desc in grad_op_descs to target_block
Y
yuyang18 已提交
1166 1167
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
F
update  
fengjiayi 已提交
1168
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
1169 1170
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
W
Wu Yi 已提交
1171
        new_op_desc._set_attr(op_role_attr_name, backward)
Y
Yang Yang 已提交
1172
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
1173
        if callbacks is not None:
1174
            assert (isinstance(callbacks, (list, tuple)))
Y
Yang Yang 已提交
1175 1176
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
1177

F
fengjiayi 已提交
1178

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
def _is_grad_var_(var_name):
    return core.grad_var_suffix() in var_name


# Find the op who holds the sub_block as its "sub_block" attr
def _find_parent_op_(sub_block):
    sub_block_id = sub_block.idx

    if sub_block_id == 0:
        return None

    program = sub_block.program
    for block_id in six.moves.range(program.num_blocks):
        block_desc = program.block(block_id).desc
        for op_idx in six.moves.range(block_desc.op_size()):
            op = block_desc.op(op_idx)
            if op.has_attr("sub_block") and op._block_attr_id(
                    "sub_block") == sub_block_id:
                return op

1199
    # NOTE(paddle-dev): When optimizer is added in conditional block,
1200 1201 1202 1203
    # sub_block may not be found.
    return None


F
fengjiayi 已提交
1204
def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
1217
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
1218
    """
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
    ops_to_remove = []
    '''
    NOTE(paddle-dev): while_grad op may hold some inputs which are not found 
    in the parent/forward block, and they are also the outputs of while_grad 
    op. These kinds of inputs are the recursive outputs inside while_grad op. 
    They should be considered as "already created" when scanning the inner 
    ops of while_grad ops.  
    '''
    parent_op = _find_parent_op_(block)
    parent_op_vars = []
    if parent_op is not None:
        input_args = parent_op.input_arg_names()
        output_args = parent_op.output_arg_names()
        for in_arg in input_args:
            if in_arg in output_args:
                parent_op_vars.append(in_arg)

F
fengjiayi 已提交
1236 1237 1238
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
W
Wu Yi 已提交
1239
            sub_block = block.program.block(op_desc._block_attr_id("sub_block"))
F
fengjiayi 已提交
1240
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

        grad_var_ins = [
            var for var in op_desc.input_arg_names() if _is_grad_var_(var)
        ]
        grad_var_outs = [
            var for var in op_desc.output_arg_names() if _is_grad_var_(var)
        ]

        inputs = [
            var for var in op_desc.input_arg_names()
            if var != core.empty_var_name()
        ]
        outputs = [
            var for var in op_desc.output_arg_names()
            if var != core.empty_var_name()
        ]

1258
        # If the outputs of grad op is empty, just remove it
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
        if not outputs:
            ops_to_remove.append(op_idx)
            continue
        else:
            '''
            If the output is not empty and there is any grad input, find 
            whether there is any existing input. If not, just remove it.
            '''
            if grad_var_ins:
                existing_grad_var_ins = [
                    var for var in grad_var_ins
                    if block.desc.has_var_recursive(cpt.to_bytes(var)) or var in
                    parent_op_vars
                ]
                if not existing_grad_var_ins:
                    '''
                    FIXME(paddle-dev, zengjinle): rnn_memory_helper_grad is used
                    in recurrent op. The input of this op does not even exist in 
                    the program! Therefore, any dependency analysis would not 
                    work to this op! If I do not add the following code, this op
                    would be pruned, and the calculation result would be wrong. 
                    Maybe we should re-design this op later...  
                    '''
                    if op_desc.type() not in ['rnn_memory_helper_grad']:
                        ops_to_remove.append(op_idx)
1284
                        continue
1285

F
fengjiayi 已提交
1286 1287 1288
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
M
minqiyang 已提交
1289 1290
            if block.desc.has_var_recursive(cpt.to_bytes(
                    grad_var_name)) or grad_var_name == core.empty_var_name():
F
fengjiayi 已提交
1291
                continue
M
minqiyang 已提交
1292
            block.desc.var(cpt.to_bytes(grad_var_name))
F
fengjiayi 已提交
1293
            new_vars.add(grad_var_name)
1294
            if grad_var_name not in grad_to_var:
F
fengjiayi 已提交
1295 1296 1297 1298 1299
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
1300

F
fengjiayi 已提交
1301 1302
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
1303
                _infer_var_data_type_shape_(arg, block)
F
update  
fengjiayi 已提交
1304

1305 1306 1307
    for op_idx in reversed(ops_to_remove):
        block.desc._remove_op(op_idx, op_idx + 1)

F
update  
fengjiayi 已提交
1308

1309 1310 1311 1312 1313 1314
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
W
Wu Yi 已提交
1315
                op_desc._rename_input(name, var_map[name])
1316 1317

        for name in op_desc.output_arg_names():
M
mapingshuo 已提交
1318 1319
            if "@GRAD" not in name:
                continue
1320
            if block.desc.find_var(name.encode("ascii")):
Y
Yu Yang 已提交
1321
                new_name = unique_name.generate(name)
W
Wu Yi 已提交
1322
                op_desc._rename_output(name, new_name)
1323 1324
                var_map[name] = new_name

M
minqiyang 已提交
1325
    for g, ng in six.iteritems(var_map):
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
1337
        for var in list(block.vars.values()):
1338 1339 1340 1341 1342 1343 1344
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
def _get_son_parent_block_idx_dict(program, current_block_idx):

    son_parent_block_idx_dict = collections.OrderedDict()
    while current_block_idx >= 0:
        parent_block_idx = program.block(current_block_idx).parent_idx
        son_parent_block_idx_dict[current_block_idx] = parent_block_idx
        current_block_idx = parent_block_idx

    return son_parent_block_idx_dict


1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
def _get_no_grad_set_name(no_grad_set):
    no_grad_set_name = set()
    if no_grad_set is not None:
        if isinstance(no_grad_set, (set, list, tuple)):
            for i, no_grad_var in enumerate(no_grad_set):
                if isinstance(no_grad_var, framework.Variable):
                    no_grad_set_name.add(no_grad_var.name)
                elif isinstance(no_grad_var, six.string_types):
                    no_grad_set_name.add(no_grad_var)
                else:
                    raise TypeError(
                        "The type of no_grad_set's member must be paddle.fluid.Variable or str, but received %s."
                        % (type(no_grad_var)))
        else:
            raise TypeError(
                "The type of no_grad_set should be set or list or tuple, but received {}".
                format(type(no_grad_set)))
    return no_grad_set_name


1376
@framework.static_only
M
mapingshuo 已提交
1377 1378 1379 1380 1381
def append_backward(loss,
                    parameter_list=None,
                    no_grad_set=None,
                    callbacks=None,
                    checkpoints=None):
1382
    """
1383 1384
    :api_attr: Static Graph

1385
    This function appends backward part to main_program.
F
fengjiayi 已提交
1386

1387 1388
    A complete neural network training is made up of forward and backward
    propagation. However, when we configure a network, we only need to
1389 1390
    specify its forward part. This function uses the chain rule to automatically
    generate the backward part according to the forward part.
F
fengjiayi 已提交
1391

1392 1393
    In most cases, users do not need to invoke this function manually.
    It will be automatically invoked by the optimizer's `minimize` function.
F
fengjiayi 已提交
1394

1395
    Parameters:
1396
        loss(Tensor): The loss Tensor of the network.
1397
        parameter_list(list[Tensor|str]|tuple[Tensor|str], optional): List/Tuple of Parameters or Parameter.names
1398
                                           that need to be updated by optimizers.
1399
                                           If it is None, all parameters
F
fengjiayi 已提交
1400
                                           will be updated.
1401
                                           Default: None.
1402 1403
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1404
                               `stop_gradient=True` from all blocks will
F
fengjiayi 已提交
1405
                               be automatically added into this set.
1406
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1407
                               Default: None.
1408
        callbacks(list[callable object]|tuple[callable object], optional): List/Tuple of callback functions.
1409
                                               The callbacks are used for
1410 1411 1412 1413 1414 1415
                                               doing some custom jobs during
                                               backward part building. All
                                               callable objects in it will
                                               be invoked once each time a
                                               new gradient operator is added
                                               into the program. The callable
Z
zhangchunle 已提交
1416
                                               object must have two input
1417 1418
                                               parameters: ``block`` and ``context`` .
                                               The ``block`` is the :ref:`api_guide_Block_en` which
1419
                                               the new gradient operator will
1420
                                               be added to. The ``context`` is a
1421
                                               map, whose keys are gradient
1422 1423 1424
                                               Tensor names and values are
                                               corresponding original :ref:`api_guide_tensor_en` .
                                               In addition to this, the ``context``
1425
                                               has another special key-value pair:
1426
                                               the key is string ``__current_op_desc__``
1427 1428 1429
                                               and the value is the op_desc of the
                                               gradient operator who has just
                                               triggered the callable object.
1430
                                               Default: None.
F
fengjiayi 已提交
1431 1432

    Returns:
1433 1434
        list of tuple ( :ref:`api_guide_tensor_en` , :ref:`api_guide_tensor_en` ): Pairs of parameter and its corresponding gradients.
        The key is the parameter and the value is gradient Tensor.
F
fengjiayi 已提交
1435 1436

    Raises:
1437
        AssertionError: If ``loss`` is not an instance of Tensor.
F
fengjiayi 已提交
1438 1439 1440 1441

    Examples:
        .. code-block:: python

1442 1443
            import paddle
            import paddle.nn.functional as F
L
lujun 已提交
1444

1445 1446 1447 1448 1449
            paddle.enable_static()

            x = paddle.static.data(name='x', shape=[None, 13], dtype='int64')
            y = paddle.static.data(name='y', shape=[None, 1], dtype='float32')
            x_emb = paddle.static.nn.embedding(x, size=[100, 256])
1450
            y_predict = paddle.static.nn.fc(x=x_emb, size=1, activation=None, name='my_fc')
1451 1452
            loss = F.square_error_cost(input=y_predict, label=y)
            avg_loss = paddle.mean(loss)
1453 1454

            # Get all weights in main_program, not include bias.
1455
            all_weights = [param for param in paddle.static.default_main_program().block(0).all_parameters() if 'w_' in param.name]
1456 1457 1458
            all_weights_name = [w.name for w in all_weights]

            # return all param_grads needed to be updated if parameter_list set default None.
1459
            p_g_list1 = paddle.static.append_backward(loss=avg_loss)
1460 1461
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1462 1463
            # return the param_grads corresponding to parameter_list that can be list of param (Tensor).
            p_g_list2 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights)
1464 1465 1466
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # parameter_list can be list of param.name (str).
1467
            p_g_list3 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights_name)
1468 1469
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

1470 1471
            # no_grad_set can be set of Tensors that means grad will be cut off from these Tensors.
            p_g_list4 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set([x_emb]))
1472 1473
            # output: [(my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1474 1475
            # no_grad_set can be set of Tensor.name when the Tensor is created inside layers and can't be specified explicitly.
            p_g_list5 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set(['my_fc.b_0']))
1476 1477 1478
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # return [] because all param_grads are filtered by no_grad_set.
1479
            p_g_list6 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights, no_grad_set=set(all_weights))
1480

1481
    """
1482
    check_type(loss, 'loss', framework.Variable,
1483
               'paddle.static.append_backward')
Y
yuyang18 已提交
1484

Y
Fix bug  
yuyang18 已提交
1485 1486
    if loss.op is None:
        # the loss is from a cloned program. Find loss op manually.
M
mapingshuo 已提交
1487
        _find_loss_op_(loss)
Y
Fix bug  
yuyang18 已提交
1488

W
Wu Yi 已提交
1489 1490 1491
    loss.op._set_attr(core.op_proto_and_checker_maker.kOpRoleAttrName(),
                      int(core.op_proto_and_checker_maker.OpRole.Forward) |
                      int(core.op_proto_and_checker_maker.OpRole.Loss))
Y
yuyang18 已提交
1492

Y
Yang Yang 已提交
1493
    if callbacks is not None:
1494
        check_type(callbacks, 'callbacks', (list, tuple),
1495
                   'paddle.static.append_backward')
Y
Yu Yang 已提交
1496

F
fengjiayi 已提交
1497
    program = loss.block.program
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
    root_block = program.block(0)
    current_block_idx = program.current_block_idx
    current_block = program.block(current_block_idx)

    is_in_control_flow = current_block_idx != 0

    # Double grad is not supported in sub-block (control flow)
    if not is_in_control_flow:
        # _appending_grad_times used for double grad
        program._appending_grad_times += 1
1508

F
fengjiayi 已提交
1509
    if no_grad_set is None:
1510
        no_grad_set = set()
1511 1512
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1513
    no_grad_dict = _get_stop_gradients_(program)
1514 1515
    # no_grad_set only contains vars in block 0
    # Todo(liym27): support vars in sub block
1516
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
Y
Yu Yang 已提交
1517

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
    # Currently it is only to support the optimizer.minimize
    # in a switch branch, which can append_backward in a sub_block.
    # Note: while_loop is in control flow, but it makes no sense to call optimizer in while.
    # Todo: report error when it is in while_loop
    if is_in_control_flow:
        # create grad block if in switch control flow.
        target_grad_block = program._create_block(
            parent_idx=current_block.parent_idx)
        target_grad_block._set_forward_block_idx(current_block_idx)
        # after _create_block, program.current_block changes
    else:
        target_grad_block = root_block

    son_parent_block_idx_dict = _get_son_parent_block_idx_dict(
        program, current_block_idx)

    block_fwd_op_num_dict = {}  # block_id: fwd_op_num
    for idx in son_parent_block_idx_dict:
        block_fwd_op_num_dict[idx] = program.block(idx).desc.op_size()
F
fengjiayi 已提交
1537

F
fengjiayi 已提交
1538 1539
    grad_to_var = dict()

M
mapingshuo 已提交
1540
    op_desc = _create_loss_op_desc_(loss)
1541 1542 1543 1544 1545 1546 1547
    target_grad_block.desc.append_op().copy_from(op_desc)

    for block_idx in son_parent_block_idx_dict:
        block = program.block(block_idx)

        block_no_grad_set = set(
            map(_strip_grad_suffix_, no_grad_dict[block_idx]))
1548 1549 1550 1551

        op_path_dict = dict()
        op_path = _find_op_path_(block, [loss], [], block_no_grad_set,
                                 op_path_dict)
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563

        no_grad_vars = _find_no_grad_vars(block, op_path, [loss],
                                          block_no_grad_set)

        block_no_grad_set.update(no_grad_vars)
        no_grad_dict[block_idx].update(
            list(map(_append_grad_suffix_, block_no_grad_set)))

        input_grad_names_set = None
        # For double backward, input_grad_names is used for filtering
        # some non-used gradients op(s).

1564
        # TODO(liym27): need a better design.
1565 1566 1567 1568 1569
        # not support double grad in control flow sub-block now.
        if not is_in_control_flow:
            if program._appending_grad_times > 1:
                input_grad_names_set = set([_append_grad_suffix_(loss.name)])

1570
        # TODO: support _append_backward_ops_with_checkpoints_ in
1571
        #  sub-block (control flow)
J
JZ-LIANG 已提交
1572
        is_recompute = False
1573 1574 1575
        if checkpoints != None and \
                isinstance(checkpoints, list) and \
                len(checkpoints) > 0:
J
JZ-LIANG 已提交
1576
            is_recompute = True
1577
            program_stat, checkpoint_names, \
T
tangwei12 已提交
1578 1579
                vars_should_be_hold, \
                recompute_segments = \
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
                _append_backward_ops_with_checkpoints_(
                    root_block,
                    op_path,
                    root_block,
                    no_grad_dict,
                    grad_to_var,
                    checkpoints)
        else:
            _append_backward_ops_(
                block,  # the block where forward ops are in
                op_path,
                target_grad_block,
                no_grad_dict,
                grad_to_var,
                callbacks,
1595 1596
                input_grad_names_set=input_grad_names_set,
                op_path_dict=op_path_dict)
1597 1598 1599 1600 1601 1602 1603 1604 1605

    grad_info_map = dict()

    # if in control flow, target_grad_block is a created new block which only contains grad ops,
    # so fwd_op_num is set to 0.
    fwd_op_num = block_fwd_op_num_dict[
        current_block_idx] if not is_in_control_flow else 0

    # Because append_backward may be called multiple times,
1606 1607
    # we need rename the internal gradient variables so that they have
    # different names.
1608
    _rename_grad_(target_grad_block, fwd_op_num, grad_to_var, {})
1609

1610 1611
    _append_backward_vars_(target_grad_block, fwd_op_num, grad_to_var,
                           grad_info_map)
F
fengjiayi 已提交
1612

F
fengjiayi 已提交
1613
    program.current_block_idx = current_block_idx
W
Wu Yi 已提交
1614
    program._sync_with_cpp()
F
fengjiayi 已提交
1615

1616
    if parameter_list is not None:
1617 1618
        check_type(parameter_list, 'parameter_list', (list, tuple, set),
                   'fluid.backward.append_backward')
1619 1620
        parameters = []
        for i, param in enumerate(parameter_list):
1621 1622 1623
            check_type(param, 'parameter_list[%s]' % i, (framework.Variable,
                                                         six.string_types),
                       'fluid.backward.append_backward')
1624 1625 1626 1627
            if isinstance(param, framework.Variable):
                parameters.append(param.name)
            elif isinstance(param, six.string_types):
                parameters.append(param)
1628
    else:
F
fengjiayi 已提交
1629
        params = program.global_block().all_parameters()
C
chengduo 已提交
1630
        parameters = [param.name for param in params if param.trainable]
1631

1632
    params_and_grads = []
1633
    op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
1634
    for param in parameters:
M
minqiyang 已提交
1635
        if cpt.to_text(param) not in grad_info_map:
F
fengjiayi 已提交
1636
            continue
F
update  
fengjiayi 已提交
1637
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
1638
        grad_block = grad_info[1]
1639 1640 1641 1642
        if not grad_block.has_var(grad_info[0]):
            raise ValueError("grad block[{0}] did not have grad var {1}".format(
                grad_info[1], grad_info[0]))
        # Get the param var from the global block
F
fengjiayi 已提交
1643
        param_var = program.global_block().var(param)
1644
        grad_var = grad_block.var(grad_info[0])
1645 1646 1647 1648 1649
        if not is_in_control_flow:
            if loss.block.has_var(grad_info[0]):
                params_and_grads.append((param_var, grad_var))
            else:
                params_and_grads.append((param_var, None))
1650
        else:
1651
            params_and_grads.append((param_var, grad_var))
Y
yuyang18 已提交
1652 1653 1654 1655

    for p, g in params_and_grads:
        if g is None:
            continue
1656 1657 1658
        ops = grad_block.ops if is_in_control_flow else program.global_block(
        ).ops
        for op in reversed(ops):
Y
yuyang18 已提交
1659 1660 1661 1662 1663 1664 1665
            assert isinstance(op, framework.Operator)
            if g.name in op.output_arg_names:
                g.op = op
                break

        if g.op is None:
            raise ValueError("Unexpected branch")
Y
yuyang18 已提交
1666
        attr_val = [p.name, g.name]
Y
yuyang18 已提交
1667 1668
        if g.op.has_attr(op_role_var_attr_name):
            attr_val.extend(g.op.attr(op_role_var_attr_name))
W
Wu Yi 已提交
1669
        g.op._set_attr(op_role_var_attr_name, attr_val)
Y
yuyang18 已提交
1670

J
JZ-LIANG 已提交
1671 1672 1673 1674
    if is_recompute:
        return params_and_grads, checkpoint_names
    else:
        return params_and_grads
1675 1676 1677 1678 1679 1680 1681 1682


def _as_list(x):
    if x is None:
        return []
    return list(x) if isinstance(x, collections.Sequence) else [x]


1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
def _is_ancestor_block(ancestor_block, block):
    prog = block.program
    ancestor_idx = ancestor_block.idx
    parent_idx = block.parent_idx

    while parent_idx != -1:
        if parent_idx == ancestor_idx:
            return True
        parent_idx = prog.block(parent_idx).parent_idx

    return False


def _get_output_names(cur_block, targets):
    """
    In `cur_block`, get output names those linked to targets.
    NOTE:
    1. `targets` can be in `cur_block`;
    Usually, `targets` is in `cur_block`. However, considering control flow,
    2. `targets` may be in sub-block but `cur_block` is an ancestor of `targets[0].block`;
    3. `targets` may be in the block which is ancestor of `cur_block`.
    """

    block = targets[0].block if targets else cur_block
    current_output_names = set([out.name for out in targets])

1709 1710 1711 1712 1713 1714
    # 1. If `targets` in cur_block or the ancestral block of `cur_block`
    if block.idx == cur_block.idx or _is_ancestor_block(block, cur_block):
        return current_output_names

    # 2. If `cur_block` is an ancestor of `targets[0].block`, run while loop
    prog = cur_block.program
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
    while block.idx != cur_block.idx:
        assert block.parent_idx != -1
        parent_block = prog.block(block.parent_idx)

        parent_block_output_names = set()
        for op in reversed(block.ops):
            if _some_in_set_(op.desc.output_arg_names(), current_output_names):
                for name in op.desc.input_arg_names():
                    current_output_names.add(name)
                    if not block.desc.find_var(cpt.to_bytes(name)) \
                            and parent_block.desc.find_var(cpt.to_bytes(name)):
                        parent_block_output_names.add(name)

        block = parent_block
        current_output_names = parent_block_output_names

    return current_output_names


1734 1735 1736
def _find_no_grad_vars(block, op_path, targets, no_grad_set):
    """
    Find the vars which is not used in the program, and
1737
    those vars belong to no_grad_var.
1738
    """
1739
    output_names = _get_output_names(block, targets)
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
    no_grad_var = []
    for i, op in reversed(list(enumerate(op_path))):
        # If the op has sub_block, it is too complicated to find the correct no_grad_var.
        if not op.has_attr("sub_block"):
            for out_var in op.desc.output_arg_names():
                if out_var not in output_names and out_var not in op.desc.input_arg_names(
                ) and not block.vars[out_var].stop_gradient:
                    no_grad_var.append(out_var)
        for name in op.desc.input_arg_names():
            if name not in no_grad_set:
                output_names.add(name)
    return set(no_grad_var)


1754 1755 1756 1757 1758 1759
def _find_op_path_(block,
                   targets,
                   inputs,
                   no_grad_set,
                   op_path_dict=None,
                   is_while=False):
1760
    """
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
    It is used to find the grad path in `block`.

    Args:
        block(Block): The block in which to get op path.
        targets(list[Variable]): The target variables.
        inputs(list[Variable]): The input variables.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed. op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        is_while(bool): Whether or not `block` is while block
    Return:
        The forward op path of block corresponding to backward op.
1774
    """
1775

1776
    input_names = set([inp.name for inp in inputs])
1777 1778 1779
    output_names = _get_output_names(block, targets)
    if op_path_dict is None:
        op_path_dict = dict()
1780 1781 1782 1783 1784 1785

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
1786 1787 1788
            if _some_in_set_(
                    op.desc.input_arg_names(),
                    input_names) and core.has_non_empty_grad_op_maker(op.type):
1789 1790 1791 1792 1793 1794 1795
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
1796 1797 1798 1799 1800 1801 1802 1803 1804
        if op.has_attr("sub_block"):
            sub_block_id = op._block_attr_id("sub_block")
            sub_block = block.program.block(sub_block_id)
            sub_block_target_names = output_names & set(op.output_arg_names)
            sub_block_path = _get_sub_block_path(sub_block, op,
                                                 set(), op_path_dict,
                                                 sub_block_target_names)
            op_path_dict[sub_block_id] = sub_block_path

1805 1806 1807
        if _some_in_set_(
                op.desc.output_arg_names(),
                output_names) and core.has_non_empty_grad_op_maker(op.type):
1808 1809 1810 1811 1812 1813
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

1814 1815 1816 1817 1818
    if is_while:
        # If block is while block, dealing with op specifically again.
        # TODO(liym27): Consider special types of ops.
        for i, op in reversed(list(enumerate(block.ops))):
            if relevant_op_flags[i] == False \
T
tangwei12 已提交
1819
                    and _some_in_set_(op.desc.output_arg_names(), output_names):
1820 1821
                relevant_op_flags[i] = True

1822 1823 1824 1825 1826 1827 1828
    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
1829
                if name not in input_names and block.vars[name].stop_gradient:
1830 1831 1832 1833 1834 1835 1836
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
1837
    Backpropagate the gradients of targets to inputs.
1838 1839

    Args:
1840 1841 1842
        targets(Tensor|list[Tensor]|tuple[Tensor]): The target Tensors
        inputs(Tensor|list[Tensor]|tuple[Tensor]): The input Tensors
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensors
1843 1844
            of targets which has the same shape with targets, If None, ones will
            be created for them.
1845 1846
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1847 1848
                               `stop_gradient=True` from all blocks will
                               be automatically added into this set.
1849
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1850
                               Default: None.
1851 1852

    Return:
1853 1854
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
1855 1856 1857 1858 1859 1860 1861 1862
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
1863 1864
    # increase appending gradients times
    prog._appending_grad_times += 1
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
            "Should have the same number of target_gradients as targets")

    if no_grad_set is None:
        no_grad_set = set()
1876 1877
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1878
    no_grad_dict = _get_stop_gradients_(prog)
1879
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
1880 1881 1882

    fwd_op_num = block.desc.op_size()

1883 1884
    input_grad_names_set = set()

1885 1886 1887 1888 1889
    target_grad_map = {}
    for i, grad in enumerate(target_gradients):
        target = targets[i]
        if grad is None:
            grad_name = _append_grad_suffix_(target.name)
L
lvmengsi 已提交
1890 1891 1892 1893 1894
            target_shape = target.name + '_shape'
            block.desc.append_op().copy_from(
                _create_op_desc_("shape", {'Input': [target.name]},
                                 {"Out": [target_shape]}, {}))
            input_grad_names_set.add(target_shape)
L
liym27 已提交
1895
            op_desc = _create_op_desc_("fill_constant",
L
lvmengsi 已提交
1896
                                       {"ShapeTensor": [target_shape]},
1897
                                       {"Out": [grad_name]}, {
1898
                                           "shape": target.shape,
1899 1900 1901
                                           "value": 1.0,
                                           "dtype": target.dtype,
                                       })
L
liym27 已提交
1902

1903
            block.desc.append_op().copy_from(op_desc)
1904
            input_grad_names_set.add(grad_name)
1905 1906 1907 1908 1909 1910 1911 1912
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
                    "The shapes of target and grad are different: %s %s" % (
                        target.name, grad.name))
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name
1913 1914 1915 1916 1917 1918
            input_grad_names_set.add(grad.name)

    # For double backward, input_grad_names is used for filter
    # some non-used gradients op.
    if prog._appending_grad_times == 1:
        input_grad_names_set = None
1919 1920 1921 1922 1923 1924

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
1925 1926 1927 1928

    op_path_dict = dict()
    op_path = _find_op_path_(block, targets, inputs, block_no_grad_set,
                             op_path_dict)
1929 1930 1931 1932 1933 1934

    # find no grad var by op_path
    no_grad_vars = _find_no_grad_vars(block, op_path, targets,
                                      block_no_grad_set)
    block_no_grad_set.update(no_grad_vars)

1935
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
1936 1937
    grad_to_var = dict()
    grad_info_map = dict()
1938 1939 1940 1941 1942 1943
    _append_backward_ops_(
        block,
        op_path,
        block,
        no_grad_dict,
        grad_to_var,
1944 1945
        input_grad_names_set=input_grad_names_set,
        op_path_dict=op_path_dict)
1946 1947 1948 1949 1950 1951 1952

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
W
Wu Yi 已提交
1953
    prog._sync_with_cpp()
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars
1969 1970


1971
@framework.static_only
1972 1973
def gradients(targets, inputs, target_gradients=None, no_grad_set=None):
    """
1974
    :api_attr: Static Graph
T
tangwei12 已提交
1975

1976 1977 1978
    Backpropagate the gradients of targets to inputs.

    Args:
1979 1980 1981
        targets (Tensor|list[Tensor]|tuple[Tensor]): The target Tensors.
        inputs (Tensor|list[Tensor]|tuple[Tensor]): The input Tensors.
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensor
1982 1983
            of targets which has the same shape with targets, If None, ones will
            be created for them.
1984 1985 1986
        no_grad_set (set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
            should be ignored. All Tensors with ``stop_gradient=True`` from all blocks will
            be automatically added into this set. If this parameter is not None, the Tensors or Tensor.names
1987
            in this set will be added to the default set. Default: None.
1988 1989

    Return:
1990 1991
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
1992 1993 1994 1995 1996
        will be None.

    Examples:
        .. code-block:: python

1997 1998 1999 2000
            import paddle
            import paddle.nn.functional as F

            paddle.enable_static()
2001

2002
            x = paddle.static.data(name='x', shape=[None, 2, 8, 8], dtype='float32')
2003
            x.stop_gradient=False
2004 2005 2006 2007
            y = paddle.static.nn.conv2d(x, 4, 1, bias_attr=False)
            y = F.relu(y)
            z = paddle.static.gradients([y], x)
            print(z) # [var x@GRAD : fluid.VarType.LOD_TENSOR.shape(-1L, 2L, 8L, 8L).astype(VarType.FP32)]
2008
    """
2009
    check_type(targets, 'targets', (framework.Variable, list, tuple),
2010
               'paddle.static.gradients')
2011
    check_type(inputs, 'inputs', (framework.Variable, list, tuple),
2012
               'paddle.static.gradients')
2013
    check_type(target_gradients, 'target_gradients', (
2014
        framework.Variable, list, tuple, type(None)), 'paddle.static.gradients')
2015

2016 2017
    outs = calc_gradient(targets, inputs, target_gradients, no_grad_set)
    return _as_list(outs)