backward.py 88.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
T
tangwei12 已提交
16
from .proto import framework_pb2
17

18
from paddle.fluid import framework as framework
19
from paddle.fluid import program_guard
F
update  
fengjiayi 已提交
20
from . import core
F
update  
fengjiayi 已提交
21
import collections
22
import copy
23
import six
24
import logging
M
minqiyang 已提交
25
from .. import compat as cpt
26
from . import unique_name
27
from . import log_helper
L
liym27 已提交
28
import paddle.fluid
29
from .data_feeder import check_type
30
import warnings
31 32 33 34
try:
    from collections.abc import Sequence
except:
    from collections import Sequence
M
mapingshuo 已提交
35 36 37 38 39
__all__ = [
    'append_backward',
    'gradients',
]

40 41 42
_logger = log_helper.get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')

M
mapingshuo 已提交
43 44 45 46 47 48 49 50 51 52 53

class ProgramStats(object):
    def __init__(self, block, ops):
        self.block = block
        self.ops = ops
        self.op_deps = {}  # op-> in_ops, out_ops
        self.var_op_deps = {}  # var as input op, var as output op

    def get_input_nodes(self):
        input_names = []
        for name in self.var_op_deps:
54
            if len(self.var_op_deps[name]["var_as_output_ops"]) == 0 and \
T
tangwei12 已提交
55
                    len(self.var_op_deps[name]["var_as_input_ops"]) > 0:
M
mapingshuo 已提交
56 57 58 59 60 61 62 63 64 65 66
                if self.block.var(name).persistable:
                    continue
                input_names.append(name)
        for op in self.ops:
            if op.desc.type() == "read":
                input_names.extend(op.desc.output_arg_names())
        return input_names

    def get_reserved_vars(self):
        var_name = []
        for op in self.ops:
M
mapingshuo 已提交
67
            if op.desc.type() == "seed":
M
mapingshuo 已提交
68 69 70 71 72 73 74 75 76 77 78
                var_name.extend(op.desc.output_arg_names())
        return var_name

    def get_out_of_subgraph_vars(self, begin_op_idx, end_op_idx):
        var_name = []
        for i in range(begin_op_idx, end_op_idx, 1):
            for name in self.ops[i].desc.output_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_input_ops"]:
                        if idx >= end_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
79 80 81 82 83
            for name in self.ops[i].desc.input_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_output_ops"]:
                        if idx < begin_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
        return var_name

    def is_subgraph(self, var_group1, var_group2):
        # should traverse from var_group1 to var_group2
        # max op idx in var_group2
        # min op idx in var_group1
        min_op_idx = len(self.ops)
        max_op_idx = -1
        for name in var_group1:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group2:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group1:
            op_idx = self.var_op_deps[name]["var_as_input_ops"]
            for idx in op_idx:
                min_op_idx = min(min_op_idx, idx)
        for name in var_group2:
            op_idx = self.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if min_op_idx >= max_op_idx:
            return False, min_op_idx, max_op_idx
J
JZ-LIANG 已提交
108

M
mapingshuo 已提交
109 110
        return True, min_op_idx, max_op_idx

J
JZ-LIANG 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123
    def _update_segment_start(self, min_idx, pre_segment_end_idx):
        """
        persist vars of amp-related cast should be included in recompute segment
        """

        def is_amp_cast(op):
            return op.desc.type() == 'cast' and self.block.var(
                op.desc.input_arg_names()[0]).persistable

        idx_ = min_idx - 1
        updated_min_idx = min_idx
        while idx_ > pre_segment_end_idx:
            if is_amp_cast(self.ops[idx_]):
124
                _logger.info("found amp-cast op: {}, : {}".format(self.ops[
J
JZ-LIANG 已提交
125 126 127 128 129 130 131 132 133
                    idx_].desc.type(), self.ops[idx_].desc.input_arg_names()[
                        0]))
                updated_min_idx = idx_
                idx_ -= 1
            else:
                break

        return updated_min_idx

M
mapingshuo 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    def build_stats(self):
        for i, op in enumerate(self.ops):
            self.op_deps[i] = {"in_ops": [], "out_ops": []}
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.op_deps[i]["in_ops"].extend(self.var_op_deps[name][
                        "var_as_output_ops"])
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_input_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = [i]
                    self.var_op_deps[name]["var_as_output_ops"] = []

            for j, name in enumerate(op.desc.output_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_output_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = []
                    self.var_op_deps[name]["var_as_output_ops"] = [i]

            for op_idx in self.op_deps[i]["in_ops"]:
                self.op_deps[op_idx]["out_ops"].extend([i])

160 161 162 163
    def sort_checkpoints(self, checkpoints_name):
        sorted_checkpoints = []
        for name in checkpoints_name:
            if name not in self.var_op_deps:
164
                _logger.info(
165 166 167 168 169 170 171 172 173 174 175
                    "Recompute Optimizer: deleted %s from checkpoints, because it is not used in paddle program."
                    % name)
            elif self.var_op_deps[name]["var_as_output_ops"] == []:
                # input nodes
                sorted_checkpoints.append((name, -1))
            else:
                sorted_checkpoints.append(
                    (name, max(self.var_op_deps[name]["var_as_output_ops"])))
        sorted_checkpoints = sorted(sorted_checkpoints, key=lambda x: x[1])
        return [x[0] for x in sorted_checkpoints]

M
mapingshuo 已提交
176 177 178 179 180 181
    def modify_forward_desc_for_recompute(self):
        op_types = [op.desc.type() for op in self.ops]
        if "dropout" not in op_types:
            return

        op_idx = 0
182
        while op_idx < len(self.ops):
M
mapingshuo 已提交
183 184 185 186
            op = self.ops[op_idx]
            if op.desc.type() != "dropout":
                op_idx += 1
                continue
187 188 189 190
            # already insert seed op before dropout
            if op.input('Seed') is not None and len(op.input('Seed')) == 1:
                op_idx += 1
                continue
M
mapingshuo 已提交
191 192 193 194 195 196 197 198 199 200 201
            # add a seed op so that the two dropout op can generate same output
            op_unique_name = unique_name.generate("seed")
            var_unique_name = unique_name.generate_with_ignorable_key(".".join(
                [op_unique_name, 'tmp']))
            added_var = self.block.create_var(
                name=var_unique_name,
                dtype='int32',
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=False)
            seed = 0 if op.attr("fix_seed") is False else int(op.attr("seed"))
202 203 204 205 206 207 208

            op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
            )
            op_device = ""
            if op.desc.has_attr(op_device_attr_name):
                op_device = op.desc.attr(op_device_attr_name)

209
            # Setting the force_cpu of seed to true will make the output of seed in cpu memory,
210
            # reduce the synchronous copy from GPU to CPU in dropout, and reduce the communication hang
M
mapingshuo 已提交
211 212 213 214 215
            added_op = self.block._insert_op(
                index=op.idx,
                type='seed',
                inputs={},
                outputs={'Out': [added_var]},
216 217 218 219 220
                attrs={
                    'seed': seed,
                    'op_device': op_device,
                    'force_cpu': True
                })
M
mapingshuo 已提交
221 222 223 224 225 226 227 228
            self.ops.insert(op_idx, added_op)
            # modify dropout op desc so that it accept a seed var as input
            op.desc.set_input("Seed", [var_unique_name])
            op.desc.remove_attr("fix_seed")
            op.desc.remove_attr("seed")
            self.block._sync_with_cpp()
            op_idx += 2

M
mapingshuo 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241

def _pretty_op_desc_(op_desc, prefix):
    out_s = "%s\tname:[%s]\n%s    \tinputs:[%s]\n%s    \toutputs:[%s]" % \
            (prefix + "_op", str(op_desc.type()), prefix + "_input", " ".join(op_desc.input_arg_names()),
             prefix + "_output", " ".join(op_desc.output_arg_names()))
    return out_s


def _add_needed_descs_to_block(descs, block, main_block, in_memory_vars):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
T
tangwei12 已提交
242
        core.op_proto_and_checker_maker.kOpRoleAttrName()
M
mapingshuo 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        is_needed = False
        for name in desc.output_arg_names():
            if main_block.has_var(name) and main_block.var(name).persistable:
                continue
            if name not in in_memory_vars:
                is_needed = True
        if is_needed:
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(desc)
            new_op_desc._set_attr(op_role_attr_name, backward)
259 260
            if desc.has_attr('op_device'):
                new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
            result_descs.append(new_op_desc)
    return result_descs


def _add_descs_to_block(descs, block):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
        core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        new_op_desc = block.desc.append_op()
        new_op_desc.copy_from(desc)
        new_op_desc._set_attr(op_role_attr_name, backward)
280 281
        if desc.has_attr('op_device'):
            new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294
        result_descs.append(new_op_desc)
    return result_descs


def _find_loss_op_(loss):
    for op in reversed(loss.block.ops):
        assert isinstance(op, framework.Operator)
        if len(op.output_arg_names) == 1 and op.output_arg_names[
                0] == loss.name:
            loss.op = op
            break
    if loss.op is None:
        raise ValueError("loss.op is None. Should not happend")
295 296


297 298
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
299
    Traverse all ops in op_descs[begin_idx : end_idx],
300 301
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
302 303 304
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
305
        end_idx = len(op_descs)
306 307 308 309 310 311 312 313 314 315 316 317 318
    if isinstance(op_descs, (list, tuple)):
        for i in range(begin_idx, end_idx):
            op_desc = op_descs[i]
            if isinstance(op_desc, tuple):
                op_desc = op_desc[0]
            op_desc._rename_input(old_name, new_name)
            op_desc._rename_output(old_name, new_name)
    if isinstance(op_descs, collections.OrderedDict):
        for key, value in op_descs.items():
            if isinstance(value, (list, tuple)):
                for op_desc in value:
                    op_desc._rename_input(old_name, new_name)
                    op_desc._rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
319 320


F
fengjiayi 已提交
321
def _create_op_desc_(op_type, inputs, outputs, attrs):
322 323 324
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
325 326
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
M
minqiyang 已提交
327
    for para, args in six.iteritems(inputs):
328 329 330 331 332
        op_desc.set_input(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
M
minqiyang 已提交
333
    for para, args in six.iteritems(outputs):
334 335 336 337 338
        op_desc.set_output(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
Y
yuyang18 已提交
339 340

    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
341
    op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
Y
yuyang18 已提交
342 343 344 345

    if op_role_attr_name not in attrs:
        attrs[
            op_role_attr_name] = core.op_proto_and_checker_maker.OpRole.Backward
346 347
    if op_device_attr_name not in attrs:
        attrs[op_device_attr_name] = ""
M
minqiyang 已提交
348
    for name, val in six.iteritems(attrs):
F
fengjiayi 已提交
349 350 351
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
W
Wu Yi 已提交
352
            op_desc._set_attr(name, val)
F
fengjiayi 已提交
353 354 355
    return op_desc


M
mapingshuo 已提交
356 357 358 359 360 361 362 363 364 365
def _create_loss_op_desc_(loss):
    op_desc = _create_op_desc_(
        "fill_constant", {}, {"Out": [_append_grad_suffix_(loss.name)]}, {
            "shape": [1],
            "value": 1.0,
            "dtype": loss.dtype,
            "force_cpu": False,
            core.op_proto_and_checker_maker.kOpRoleAttrName():
            int(core.op_proto_and_checker_maker.OpRole.Backward) |
            int(core.op_proto_and_checker_maker.OpRole.Loss),
366 367
            core.op_proto_and_checker_maker.kOpDeviceAttrName():
            loss.op.attr(core.op_proto_and_checker_maker.kOpDeviceAttrName())
M
mapingshuo 已提交
368 369 370 371
        })
    return op_desc


372
def _infer_var_data_type_shape_(grad_var_name, block):
373
    """
374
    Infer the data type and shape of given grad variable
375
    """
M
minqiyang 已提交
376 377 378 379
    grad_var = block.desc.find_var(cpt.to_bytes(grad_var_name))
    fwd_name = _strip_grad_suffix_(grad_var_name)
    if block.desc.has_var_recursive(cpt.to_bytes(fwd_name)):
        fwd_var = block.desc.find_var_recursive(cpt.to_bytes(fwd_name))
F
fengjiayi 已提交
380
        grad_var.set_dtype(fwd_var.dtype())
381
        grad_var.set_shape(fwd_var.shape())
F
fengjiayi 已提交
382
    else:
383 384 385 386
        # TODO(jiabin): Maybe we should not to this to cause some unexpected error on dtype
        warnings.warn(
            "Set grad var: {} dtype to default FP32, since we can't find its related forward var".
            format(grad_var_name))
387
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
388 389


F
fengjiayi 已提交
390
def _all_in_set_(cands, s):
391 392 393
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
394 395
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
396 397 398 399 400 401
    for c in cands:
        if not c in s:
            return False
    return True


402 403 404 405 406 407
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
M
minqiyang 已提交
408 409
    literal_set = cpt.to_text(s)
    literal_cands = cpt.to_text(cands)
M
minqiyang 已提交
410 411
    for c in literal_cands:
        if c in literal_set:
412 413 414 415
            return True
    return False


F
fengjiayi 已提交
416
def _strip_grad_suffix_(name):
417
    """
M
mapingshuo 已提交
418
    Strip the grad suffix from the given variable name
419 420 421
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
M
minqiyang 已提交
422
    name = cpt.to_text(name)
M
minqiyang 已提交
423
    pos = name.find(core.grad_var_suffix())
424 425 426
    new_name = name[:pos] if pos != -1 else name
    new_pos = name.rfind('grad/')
    return new_name[new_pos + 5:] if new_pos != -1 else new_name
F
fengjiayi 已提交
427 428 429


def _append_grad_suffix_(name):
430 431 432 433
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
M
minqiyang 已提交
434
    return cpt.to_text(name) + core.grad_var_suffix()
F
fengjiayi 已提交
435 436


T
tangwei12 已提交
437 438 439 440 441
def _accumulate_gradients_by_sum_op_(var_name,
                                     renamed_vars,
                                     pending_sum_ops,
                                     op_idx,
                                     op_device=""):
442 443 444 445 446 447
    """
    Use sum op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    pending_sum_ops[op_idx].append(
T
tangwei12 已提交
448 449 450 451
        _create_op_desc_("sum", {"X": renamed_vars[var_name]}, {
            "Out": [var_name]
        }, {"use_mkldnn": False,
            "op_device": op_device}))
452 453 454
    renamed_vars[var_name] = [var_name]


T
tangwei12 已提交
455 456 457 458 459
def _accumulate_gradients_by_add_ops_(var_name,
                                      renamed_vars,
                                      pending_sum_ops,
                                      op_idx,
                                      op_device=""):
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
    """
    Use several inplace add op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    out_name = renamed_vars[var_name][0]
    for i in range(1, len(renamed_vars[var_name])):
        x_name = out_name
        y_name = renamed_vars[var_name][i]
        if i != len(renamed_vars[var_name]) - 1:
            out_name = var_name + '@ADD@' + str(i)
        else:
            out_name = var_name
        pending_sum_ops[op_idx].append(
            _create_op_desc_("grad_add", {"X": [x_name],
                                          "Y": [y_name]}, {"Out": [out_name]},
T
tangwei12 已提交
476 477
                             {"use_mkldnn": False,
                              "op_device": op_device}))
478 479 480
    renamed_vars[var_name] = [var_name]


481
def _addup_repetitive_outputs_(op_descs, block_idx):
482 483
    """
    In backward part, an variable may be the output of more than one ops.
F
fengjiayi 已提交
484 485
    And one op may yield its multiple outputs to the same variable.
    In these cases, the variable should be the accumulation of all the outputs.
486 487
    `sum_op`s are added to implement the accumulate.
    """
488
    _MAX_ADD_NUM_ = framework._global_flags()['FLAGS_max_inplace_grad_add']
489 490
    #pending_sum_ops = []
    pending_sum_ops = collections.OrderedDict()
F
update  
fengjiayi 已提交
491
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
492
    renamed_vars = collections.defaultdict(list)
493
    renamed_var_start_idx = collections.defaultdict(list)
494
    var_device = collections.defaultdict(str)
F
fengjiayi 已提交
495
    for idx, op_desc in enumerate(op_descs):
T
tangwei12 已提交
496 497 498 499 500
        op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
        )
        op_device = ""
        if op_desc.has_attr(op_device_attr_name):
            op_device = op_desc.attr(op_device_attr_name)
F
update  
fengjiayi 已提交
501
        for var_name in op_desc.input_arg_names():
M
mapingshuo 已提交
502 503
            if "@GRAD" not in var_name:
                continue
F
fengjiayi 已提交
504
            if len(renamed_vars[var_name]) > 1:
505
                if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
W
WangXi 已提交
506 507 508
                    _accumulate_gradients_by_sum_op_(var_name, renamed_vars,
                                                     pending_sum_ops, idx,
                                                     var_device[var_name])
509
                else:
W
WangXi 已提交
510 511 512
                    _accumulate_gradients_by_add_ops_(var_name, renamed_vars,
                                                      pending_sum_ops, idx,
                                                      var_device[var_name])
513

F
update  
fengjiayi 已提交
514
        for param_idx, param_name in enumerate(op_desc.output_names()):
F
fengjiayi 已提交
515 516
            arg_names = op_desc.output(param_name)
            for arg_idx, var_name in enumerate(arg_names):
M
mapingshuo 已提交
517 518
                if "@GRAD" not in var_name:
                    continue
T
tangwei12 已提交
519
                # if "@RENAME@" in var_name:
M
mapingshuo 已提交
520
                #    continue
F
fengjiayi 已提交
521 522 523 524 525 526 527
                if var_name == core.empty_var_name(
                ) or var_name in op_desc.input_arg_names():
                    # empty variable or inplace op
                    continue
                if len(renamed_vars[var_name]) == 0:
                    # it's the first time we get the variable
                    renamed_vars[var_name] = [var_name]
528
                    renamed_var_start_idx[var_name] = idx
F
fengjiayi 已提交
529 530
                else:
                    if len(renamed_vars[var_name]) == 1:
531
                        new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
F
fengjiayi 已提交
532 533 534 535
                            str(var_rename_count[var_name])
                        var_rename_count[var_name] += 1
                        # rename original var_name
                        renamed_vars[var_name][0] = new_name
536 537 538 539 540 541
                        # before change: _rename_arg_(op_descs, var_name,
                        #                             new_name, 0, idx)
                        # rename arg from idx of the first appearance
                        # in backward, not always from 0
                        _rename_arg_(op_descs, var_name, new_name,
                                     renamed_var_start_idx[var_name], idx)
F
fengjiayi 已提交
542 543
                        _rename_arg_(pending_sum_ops, var_name, new_name)

F
update  
fengjiayi 已提交
544 545 546 547 548 549 550 551 552 553 554 555 556
                        for p in op_desc.output_names()[:param_idx]:
                            p_arg_names = op_desc.output(p)
                            if var_name in p_arg_names:
                                op_desc.set_output(p, [
                                    new_name if x == var_name else x
                                    for x in p_arg_names
                                ])

                        arg_names = [
                            new_name if x == var_name else x
                            for x in arg_names[:arg_idx]
                        ] + arg_names[arg_idx:]

557
                    new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
T
tangwei12 已提交
558
                        str(var_rename_count[var_name])
F
fengjiayi 已提交
559
                    var_rename_count[var_name] += 1
F
fengjiayi 已提交
560 561 562
                    arg_names[arg_idx] = new_name
                    op_desc.set_output(param_name, arg_names)
                    renamed_vars[var_name].append(new_name)
W
WangXi 已提交
563
                    # record the latest device
564
                    var_device[var_name] = op_device
F
update  
fengjiayi 已提交
565

M
minqiyang 已提交
566
    for var_name, inputs in six.iteritems(renamed_vars):
567 568
        if len(renamed_vars[var_name]) > 1:
            if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
569 570 571
                _accumulate_gradients_by_sum_op_(
                    var_name, renamed_vars, pending_sum_ops,
                    len(op_descs), var_device[var_name])
572
            else:
573 574 575
                _accumulate_gradients_by_add_ops_(
                    var_name, renamed_vars, pending_sum_ops,
                    len(op_descs), var_device[var_name])
576

F
fengjiayi 已提交
577
    # sum_op descs are sorted according to their insert position
578 579 580 581 582 583 584 585 586 587
    for key, value in collections.OrderedDict(
            reversed(list(pending_sum_ops.items()))).items():

        # NOTE(zhiqiu): Since reversed, the idx of op_descs to be inserted will remains correct.
        # For example, [0, 1, 2], and we want to insert 'a' at idx 1, 'b' at idx 2, and the expected result is [0, 1, 'a', 2, 'b'].
        # If reversed, we first insert 'b' at idx 2, it becomes [0, 1, 2, 'b'], and then insert 'a' at idx 1, it becomes [0, 1, 'a', 2, 'b'].
        # If not reverse, we first insert 'a' at idx 1, it becomes [0, 1, 'a', 2], and then insert 'b' at idx 2, it becomes [0, 1, 'a', 'b', 2].
        idx = key
        for i, op in enumerate(value):
            op_descs.insert(idx + i, op)
F
fengjiayi 已提交
588 589 590 591 592

    return op_descs


def _remove_no_grad_branch_(op_descs, no_grad_set):
593 594 595 596
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
597
        2. all grad inputs of the grad op are in 'no_grad_set'
598
    """
F
fengjiayi 已提交
599 600

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
601 602
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
603
            return True
604 605 606 607
        if _all_in_set_([
                name for name in op_desc.input_arg_names()
                if name.find(core.grad_var_suffix()) != -1
        ], no_grad_set):
F
fengjiayi 已提交
608
            no_grad_set.update(out_arg_names)
F
fengjiayi 已提交
609 610 611
            return True
        return False

F
fengjiayi 已提交
612
    # Remove ops whose outputs are all in no_grad_dict
613 614 615 616
    op_descs = [
        op_desc for op_desc in op_descs
        if not _op_can_be_removed_(op_desc, no_grad_set)
    ]
F
fengjiayi 已提交
617 618
    # Insert fill_zeros_like_op
    to_insert = []
F
fengjiayi 已提交
619
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
620
        for arg in op_desc.input_arg_names():
M
mapingshuo 已提交
621
            # arg is a gradient var name and arg should not have gradient
F
fengjiayi 已提交
622
            if core.grad_var_suffix() in arg and arg in no_grad_set:
623
                x_in = _strip_grad_suffix_(arg)
M
mapingshuo 已提交
624 625
                # the reason should be: arg can be input of another grad op
                # and the op is a not-to-remove op
626 627
                to_insert.append((_create_op_desc_(
                    "fill_zeros_like", {"X": [x_in]}, {"Out": [arg]}, {}), idx))
F
fengjiayi 已提交
628

629
    list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
F
fengjiayi 已提交
630 631 632 633

    return op_descs


C
chengduo 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
def _find_not_need_ops(grad_op_descs, forward_ops, input_grad_names_set):
    """
    Pruning Program with Structural Analysis Method of Computational Graph.
    The nodes of the computational graph composed of backward OPS should be
    interconnected. If there are unconnected sub-graphs in the computational graph,
    these sub-graphs should be cut off.

    Args:
        grad_op_descs(list[core.OpDesc]): The candidate backward OpDescs.
        forward_ops(list[Operator]): The forward ops.
        input_grad_names_set(set): this set is used to store the gradients' name
            which is generated by backward ops, and input_grad_names_set can help
            to prune the unnecessary backward ops.

    Return:
649
        (set[core.OpDesc]): A set of OpDescs which should be pruned.
C
chengduo 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
    """

    class Var(object):
        def __init__(self, var_name):
            self.var_name = var_name
            self.gen_op = None
            self.pendding_ops = []

        def set_gen_op(self, gen_op):
            assert isinstance(gen_op, Op)
            assert self.gen_op is None
            self.gen_op = gen_op

        def add_pending_op(self, op):
            assert isinstance(op, Op)
            self.pendding_ops.append(op)

    class Op(object):
        def __init__(self, op_desc):
            self.op_desc = op_desc
            self.inputs = []
            self.outputs = []

        def insert_input(self, var):
            assert isinstance(var, Var)
            self.inputs.append(var)

        def insert_output(self, var):
            assert isinstance(var, Var)
            self.outputs.append(var)

    var_versions = dict()

    def _create_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        else:
            var_versions[name].append(Var(name))
        return var_versions[name][-1]

    def _create_or_get_last_version_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        return var_versions[name][-1]

    def _create_op_node(op_desc):
        op_node = Op(op_desc)
        for input in op_desc.input_arg_names():
            var = _create_or_get_last_version_node(name=input)
            var.add_pending_op(op_node)
            op_node.insert_input(var)
        for output in op_desc.output_arg_names():
            var = _create_node(name=output)
            var.set_gen_op(op_node)
            op_node.insert_output(var)
        return op_node

    # Record the forward vars
    forward_vars_set = set() if input_grad_names_set is None else set(
        input_grad_names_set)
    for op in forward_ops:
        forward_vars_set.update(op.desc.input_arg_names())
        forward_vars_set.update(op.desc.output_arg_names())

    # Record the vars which are created during backward and is not generated by op.
    backward_vars_set = set()
    # special_op_nodes is the candidate sub-graph head node.
    special_op_nodes = set()
    for op_desc in grad_op_descs:
        input_set = set(op_desc.input_arg_names())
        # The new_vars are created during backward and is not generated by op.
        new_vars = input_set - forward_vars_set - backward_vars_set
        backward_vars_set.update(op_desc.output_arg_names())

        op_node = _create_op_node(op_desc)
        if len(new_vars) == len(input_set):
            special_op_nodes.add(op_node)

    not_need_op_descs = []
    # Start traversing all candidate sub-graph headers to check whether
    # they are connected to backward computational graphs, and if they are
    # not, list them in not_need_op_descs
    for special_op_node in special_op_nodes:
        op_list = [special_op_node]
        ready_vars = set(special_op_node.inputs)
        remove_ops = True
        candidate_ops = [special_op_node]
        while len(candidate_ops) > 0:
            op_node = candidate_ops.pop(0)
            if _all_in_set_(op_node.inputs, ready_vars):
                for out_var in op_node.outputs:
                    candidate_ops.extend(out_var.pendding_ops)
                    op_list.extend(out_var.pendding_ops)
                ready_vars.update(op_node.outputs)
            else:
                remove_ops = False
                break
        if remove_ops:
            not_need_op_descs.extend([node.op_desc for node in op_list])
749 750 751
    not_need_op_descs_set = set(not_need_op_descs)
    grad_op_descs_set = set(grad_op_descs)
    # If a backward computational graph is simply one sub-graph header, the
752
    # not_need_op_descs will be whole graph, this IF clause avoids it.
753 754 755
    if grad_op_descs_set == not_need_op_descs_set:
        return set()
    return not_need_op_descs_set
C
chengduo 已提交
756 757


Y
Yang Yang 已提交
758 759
def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
M
minqiyang 已提交
760
    proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang 已提交
761 762 763
    return proto.__str__()


M
mapingshuo 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
def _append_backward_ops_with_checkpoints_(
        block, ops, target_block, no_grad_dict, grad_to_var, checkpoints):
    """
    Create grad ops with forward ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
        ops(Op): the forward operators whose forward recomputation backward ops need to be added
        target_block(Block): the block which is going to hold new generated grad ops
        no_grad_dict(dict):
            key(int) block index
            val(str): corresponding forward variable name
        checkpoints: variables that a user defined as checkpoint for forward recomputation

    Algorithms:
M
mapingshuo 已提交
779
        0) deal with forward recomputing program descs
M
mapingshuo 已提交
780 781 782 783 784
        1) find ops between checkpoints, i.e. recompute_segments
        2) go through all forward ops and induct all variables that will be hold in memory
            a. variables that are used across segments will be held in memory
            b. output of dropout op will be held in memory
            c. input variables will be held in memory
M
mapingshuo 已提交
785 786 787
        3) go through each recompute_segments, add backward ops with forward recomputation
            a. add ops in current recompute_segment as forward recomputation ops
            b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
788 789
            c. add backward ops of current recomputation ops
            d. add sum op for repetitive_outputs
M
mapingshuo 已提交
790 791
        4) remove no grad branch as it is in _remove_no_grad_branch_
        5) Note1: all appended ops' OpRole are Backward
M
mapingshuo 已提交
792 793
        6) Note2: all variables with new name should be returned so that _append_backward_vars_ can be called
        7) Note3: current forward recomputation backpropagation does not handle programs with subblock
M
mapingshuo 已提交
794
    """
M
mapingshuo 已提交
795 796

    checkpoints_name = [x.name for x in checkpoints]
797
    checkpoints_name = list(set(checkpoints_name))
M
mapingshuo 已提交
798 799
    local_block = block.program._create_block()
    buffer_block = block.program._create_block()
800
    # 0) deal with forward recomputing program descs
M
mapingshuo 已提交
801
    program_stat = ProgramStats(block, ops)
M
mapingshuo 已提交
802
    program_stat.modify_forward_desc_for_recompute()
M
mapingshuo 已提交
803
    program_stat.build_stats()
M
mapingshuo 已提交
804 805

    # 1) find ops between checkpoints, i.e. recompute_segments
806
    checkpoints_name = program_stat.sort_checkpoints(checkpoints_name)
M
mapingshuo 已提交
807 808
    segments = []

809
    if len(checkpoints_name) == 1:
M
mapingshuo 已提交
810 811 812 813 814 815 816
        # only one checkpoint
        max_op_idx = -1
        var_group = [checkpoints_name[0]]
        for name in var_group:
            if name not in program_stat.var_op_deps:
                break
            op_idx = program_stat.var_op_deps[name]["var_as_output_ops"]
J
JZ-LIANG 已提交
817
            # only count the last generate op
M
mapingshuo 已提交
818 819 820 821 822 823
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if max_op_idx > 0:
            segments.append([0, max_op_idx + 1])
    else:
        start_idx = 0
J
JZ-LIANG 已提交
824
        pre_segment_end_idx = -1
M
mapingshuo 已提交
825 826 827
        while True:
            if start_idx >= len(checkpoints_name) - 1:
                break
J
JZ-LIANG 已提交
828 829
            # min_idx: checkpoint_1' s input op
            # max_idx: checkpoint_2' s output op
M
mapingshuo 已提交
830 831 832 833
            flag, min_idx, max_idx = program_stat.is_subgraph(
                [checkpoints_name[start_idx]],
                [checkpoints_name[start_idx + 1]])
            if flag:
J
JZ-LIANG 已提交
834 835 836
                # max_idx + 1 since the exact and used segment end idx is max_idx
                min_idx = program_stat._update_segment_start(
                    min_idx, pre_segment_end_idx)
M
mapingshuo 已提交
837
                segments.append([min_idx, max_idx + 1])
838 839 840
            else:
                _logger.info("Could not recompute op range [{}] - [{}] ".format(
                    min_idx, max_idx + 1))
J
JZ-LIANG 已提交
841

M
mapingshuo 已提交
842 843 844 845 846 847
            start_idx += 1

    if segments != [] and segments[0][0] != 0:
        recompute_segments = [[0, segments[0][0]]] + segments
    else:
        recompute_segments = segments
M
mapingshuo 已提交
848

J
JZ-LIANG 已提交
849
    for i, (idx1, idx2) in enumerate(recompute_segments):
850 851
        _logger.info("recompute segment[{}]".format(i))
        _logger.info("segment start op: [{}]: [{}]".format(ops[idx1].desc.type(
J
JZ-LIANG 已提交
852
        ), ops[idx1].desc.input_arg_names()))
853
        _logger.info("segment end op: [{}]: [{}]".format(ops[
J
JZ-LIANG 已提交
854
            idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()))
855 856
        _logger.info("recompute segment[{}]".format(i))
        _logger.info("segment start op: [{}]: [{}]".format(ops[idx1].desc.type(
J
JZ-LIANG 已提交
857
        ), ops[idx1].desc.input_arg_names()))
858
        _logger.info("segment end op: [{}]: [{}]".format(ops[
J
JZ-LIANG 已提交
859 860
            idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()))

M
mapingshuo 已提交
861
    # 2) go through all forward ops and induct all variables that will be hold in memory
M
mapingshuo 已提交
862
    vars_should_be_hold = []
863
    # a. variables that are used across segments will be held in memory
M
mapingshuo 已提交
864 865 866
    for segment in recompute_segments:
        vars_should_be_hold.extend(
            program_stat.get_out_of_subgraph_vars(segment[0], segment[1]))
J
JZ-LIANG 已提交
867 868

    cross_vars = set(vars_should_be_hold) - set(checkpoints_name)
869
    _logger.info("found [{}] vars which cross recompute segment: [{}], better checkpoints might be set to reduce those vars".format( \
J
JZ-LIANG 已提交
870 871
    len(cross_vars), cross_vars))

M
mapingshuo 已提交
872
    # b. output of seed op should be kept in memory
M
mapingshuo 已提交
873
    vars_should_be_hold.extend(program_stat.get_reserved_vars())
M
mapingshuo 已提交
874
    # c. input variables are checkpoints
M
mapingshuo 已提交
875 876 877
    vars_should_be_hold.extend(program_stat.get_input_nodes())
    vars_should_be_hold = list(set(vars_should_be_hold))

M
mapingshuo 已提交
878
    # 3) go through each recompute_segments, add backward ops with forward recomputation
M
mapingshuo 已提交
879 880 881 882 883 884
    grad_op_descs = []
    var_name_dict = {}

    vars_in_memory = vars_should_be_hold + checkpoints_name

    max_calculated_op_position = len(ops)
885
    device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
mapingshuo 已提交
886 887 888 889 890 891 892 893 894
    if recompute_segments == []:
        gap_ops = ops[0:max_calculated_op_position]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
895 896 897 898 899
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
M
mapingshuo 已提交
900 901 902 903 904 905 906 907 908 909 910 911 912 913
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

    for i, segment in enumerate(recompute_segments[::-1]):
        gap_ops = ops[segment[1]:max_calculated_op_position]
        max_calculated_op_position = segment[0]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
914 915 916 917 918
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
M
mapingshuo 已提交
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

        ff_ops = ops[segment[0]:segment[1]]
        var_suffix = ".subprog_%d" % i

        for op in ff_ops:
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            input_and_output_names = []
            input_and_output_names.extend(op.desc.input_arg_names())
            input_and_output_names.extend(op.desc.output_arg_names())
            for name in input_and_output_names:
                if block.var(name).persistable or name in checkpoints_name:
                    continue
                if name in vars_should_be_hold:
                    continue
                if name not in var_name_dict:
                    var_name_dict[name] = name + var_suffix
941 942 943 944 945 946 947 948 949 950 951

                    # we should create the rename var in subprog, otherwise its VarType will be BOOL
                    ref_var = block.program.global_block().var(name)
                    block.create_var(
                        name=var_name_dict[name],
                        shape=ref_var.shape,
                        dtype=ref_var.dtype,
                        type=ref_var.type,
                        persistable=ref_var.persistable,
                        stop_gradient=ref_var.stop_gradient)

M
mapingshuo 已提交
952
        # 3.a. add ops in current recompute_segment as forward recomputation ops
M
mapingshuo 已提交
953 954 955 956
        buffer_descs = _add_needed_descs_to_block(ff_ops, buffer_block, block,
                                                  vars_in_memory)
        added_descs = _add_descs_to_block(ff_ops, local_block)

M
mapingshuo 已提交
957
        # 3.b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
958 959 960 961 962 963
        for key in var_name_dict:
            _rename_arg_(buffer_descs, key, var_name_dict[key])

        # added_descs should be in grad_op_descs because it is backward op desc
        grad_op_descs.extend(buffer_descs)

964
        # 3.c. add backward ops for all ops in current segment
M
mapingshuo 已提交
965 966 967
        for op_desc in reversed(added_descs):
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op_desc, cpt.to_text(no_grad_dict[block.idx]), [])
968 969 970 971 972 973 974

            # Set device for grad_op according to forward Op
            if op_desc.has_attr(device_attr_name):
                op_device = op_desc.attr(device_attr_name)
                for g_op_desc in grad_op_desc:
                    g_op_desc._set_attr(device_attr_name, op_device)

M
mapingshuo 已提交
975 976 977 978 979
            for key in var_name_dict:
                _rename_arg_(grad_op_desc, key, var_name_dict[key])
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)

M
mapingshuo 已提交
980
    # 3.d. add sum op for repetitive_outputs
981
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs, block.idx)
M
mapingshuo 已提交
982
    # 4) remove no grad branch as it is in _remove_no_grad_branch_
M
mapingshuo 已提交
983 984 985 986 987 988
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
    added_descs = _add_descs_to_block(grad_op_descs, target_block)
    return program_stat, checkpoints_name, vars_should_be_hold, recompute_segments


989 990 991 992 993
def _get_sub_block_path(sub_block,
                        sub_block_op_desc,
                        no_grad_set,
                        op_path_dict,
                        sub_block_target_names=None):
994 995
    """
    Get output vars in subblock which will be assigned to parent block.
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
    It is used to find the grad path in subblock.

    Args:
        sub_block(Block): The sub-block in which to get op path.
        sub_block_op_desc: The op desc of the sub-block op such as 'while', 'conditional_block' and 'recurrent'.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        sub_block_target_names(set): Target var names of sub-block.
    Return:
        The forward op path of sub-block corresponding to backward op.
1008
    """
1009

1010 1011 1012
    assert sub_block_op_desc.has_attr(
        "sub_block") and sub_block.idx == sub_block_op_desc._block_attr_id(
            "sub_block")
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
    assert isinstance(sub_block_target_names, (set, type(None)))

    if sub_block_target_names is None:
        sub_block_target_names = sub_block_op_desc.output_arg_names

    # TODO(huihuangzheng): add support for recurrent op.
    if sub_block_op_desc.type in ["conditional_block", "while"]:
        # Step1: get the output vars in sub-block
        sub_outputs = [
            sub_block._var_recursive(var) for var in sub_block_target_names
        ]
        for var in sub_block_target_names:
1025
            for op_desc in sub_block.ops:
1026
                if var in op_desc.output_arg_names:
1027
                    for name in op_desc.input_arg_names:
1028
                        sub_outputs.append(sub_block._var_recursive(name))
1029

1030 1031
        # Step2: find op path of sub-block
        is_while = sub_block_op_desc.type in ["while"]
1032
        sub_block_op_path = _find_op_path_(sub_block, sub_outputs, [],
1033
                                           no_grad_set, op_path_dict, is_while)
1034 1035 1036 1037
        return sub_block_op_path
    return sub_block.ops


1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
def _is_grad_op_(op):
    op_maker = core.op_proto_and_checker_maker
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    if op_maker.kOpRoleVarAttrName() in op.attr_names and \
            int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
        return True
    return False


def _rename_grad_name_(name, grad_order):
    return 'grad/' * grad_order + name


1051 1052
def _append_backward_ops_(block,
                          ops,
F
fengjiayi 已提交
1053 1054 1055
                          target_block,
                          no_grad_dict,
                          grad_to_var,
1056
                          callbacks=None,
1057
                          input_grad_names_set=None,
1058
                          op_path_dict=None,
1059 1060
                          distop_context=None,
                          rename_var_map=None):
1061 1062 1063 1064 1065
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
1066
        ops(Op): the forward operators whose backward ops need to be added
1067
        target_block(Block): the block which is going to hold new generated grad ops
1068
        no_grad_dict(dict):
1069
            key(int)  block index
T
tianshuo78520a 已提交
1070
            val(set) a set of variable names. These variables have no gradient
1071 1072 1073
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
C
chengduo 已提交
1074 1075 1076 1077
        callbacks(callable object): a callable object used to decorate new generated grad ops
        input_grad_names_set(set): this set is used to store the gradients' name which is
            generated by backward ops, and input_grad_names_set can help to prune the unnecessary
            backward ops.
1078 1079 1080
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
1081 1082
        rename_var_map(dict): used to associate target_grad var name with first grad_op input name.
            Only used in for high order gradient.
1083
    """
Y
Yang Yang 已提交
1084
    if callbacks is not None:
1085
        assert (isinstance(callbacks, (list, tuple)))
Y
Yang Yang 已提交
1086 1087 1088
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
1089

F
fengjiayi 已提交
1090
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
1091 1092
    grad_op_descs = []
    program = block.program
1093

1094 1095 1096
    if rename_var_map is None:
        rename_var_map = {}
    assert isinstance(rename_var_map, dict)
1097

1098
    # add grad_op_desc by reversed ops
1099
    for op in reversed(ops):
F
fengjiayi 已提交
1100 1101 1102
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
W
Wu Yi 已提交
1103
            sub_block = program.block(op._block_attr_id("sub_block"))
W
Wu Yi 已提交
1104
            grad_sub_block = program._create_block()
W
Wu Yi 已提交
1105
            grad_sub_block._set_forward_block_idx(sub_block.idx)
1106 1107 1108
            # see follwing comments for why set None here.
            pre_input_grad_names_set = copy.copy(input_grad_names_set)
            input_grad_names_set = None
1109
            sub_block_path = op_path_dict[op._block_attr_id("sub_block")]
1110
            _append_backward_ops_(sub_block, sub_block_path, grad_sub_block,
1111
                                  no_grad_dict, grad_to_var, callbacks,
1112
                                  input_grad_names_set, op_path_dict)
1113
            input_grad_names_set = pre_input_grad_names_set
Y
Yu Yang 已提交
1114

W
Wu Yi 已提交
1115
            program._rollback()
F
fengjiayi 已提交
1116 1117
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
1118
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
1119
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
M
minqiyang 已提交
1120
            op.desc, cpt.to_text(no_grad_dict[block.idx]), grad_sub_block_list)
1121
        # Build the mapping between the forward op and backward op (Only for auto parallel)
1122 1123
        if distop_context is not None:
            for op_desc in grad_op_desc:
1124 1125
                assert op_desc.id() not in distop_context.grad_op_id_to_op_id
                distop_context.grad_op_id_to_op_id[op_desc.id()] = op.desc.id()
Y
Yang Yu 已提交
1126

1127 1128
        # Set device for grad_op according to forward Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
1129 1130 1131 1132
        if op.desc.has_attr(device_attr_name):
            op_device = op.desc.attr(device_attr_name)
            for op_desc in grad_op_desc:
                op_desc._set_attr(device_attr_name, op_device)
1133

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
        # Rename internal gradient variables in multiple backward
        # so that they have different names with previous backward.
        # For example:
        #  y = x * x, grad = fluid.gradients(fluid.gradients(y, x) + y * y, x)
        # In second-time backward, gradient variable names of partial
        # forward network (y * y) may be have same names with first-time
        # fluid.gradients(y, x).
        # So rename here before _addup_repetitive_outputs_.
        if program._appending_grad_times > 1:
            for op_desc in grad_op_desc:
T
Tongxin Bai 已提交
1144 1145 1146 1147
                forward_op_inputs = op.desc.input_arg_names()
                for name in op_desc.input_arg_names():
                    if name in rename_var_map and name not in forward_op_inputs:
                        op_desc._rename_input(name, rename_var_map[name])
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
                for name in op_desc.output_arg_names():
                    if "@GRAD" not in name:
                        continue
                    if block.desc.find_var(name.encode("ascii")):
                        new_name = _rename_grad_name_(
                            name, program._appending_grad_times)
                        op_desc._rename_output(name, new_name)
                        rename_var_map[name] = new_name

                        if name in op_grad_to_var:
                            op_grad_to_var[new_name] = op_grad_to_var[name]
                            op_grad_to_var.pop(name)

1161 1162 1163 1164 1165
        # If input_grad_names_set is not None, extend grad_op_descs only when
        # any input grad in outputs of previous grad ops.
        # But this strategy is not suited for while op for some control flow,
        # for example, for while op, the grads maybe generated in next loop.
        if input_grad_names_set is not None:
1166
            is_grad_name = lambda name: name.find(core.grad_var_suffix()) != -1 or name in input_grad_names_set
1167 1168 1169 1170
            is_append_grad = False
            for op_desc in grad_op_desc:
                input_grad_names = [
                    name for name in op_desc.input_arg_names()
1171
                    if is_grad_name(name)
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
                ]
                # some code of gradient ops, like increment, are not very
                # standard, there is no @GRAD in these ops' inputs.
                if len(input_grad_names) == 0:
                    is_append_grad = True
                    break

                if _some_in_set_(input_grad_names, input_grad_names_set):
                    grad_op_descs.append(op_desc)
                    is_append_grad = True
                    for name in op_desc.output_arg_names():
                        input_grad_names_set.add(name)
            if is_append_grad:
                grad_to_var.update(op_grad_to_var)
        else:
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)
F
fengjiayi 已提交
1189

M
mapingshuo 已提交
1190
    # sum parameter's gradients' var given multiple var gradient
1191
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs, block.idx)
F
fengjiayi 已提交
1192

M
mapingshuo 已提交
1193 1194
    # if all outputs of the grad op are in no_grad_set, then just remove and fill zero
    # if all inputs of the grad op are in no_grad_set, just remove this op
F
fengjiayi 已提交
1195 1196
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
F
fengjiayi 已提交
1197

M
mapingshuo 已提交
1198
    # remove some backward ops
C
chengduo 已提交
1199
    not_need_ops = _find_not_need_ops(grad_op_descs, ops, input_grad_names_set)
M
mapingshuo 已提交
1200

C
chengduo 已提交
1201 1202 1203
    grad_op_descs = [
        op_desc for op_desc in grad_op_descs if op_desc not in not_need_ops
    ]
1204

F
fengjiayi 已提交
1205
    # append op_desc in grad_op_descs to target_block
Y
yuyang18 已提交
1206 1207
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
F
update  
fengjiayi 已提交
1208
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
1209 1210
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
1211 1212 1213 1214 1215 1216
        # Rebuild the mapping because new_op_desc has a differnt id (Only for auto parallel)
        if distop_context is not None:
            if op_desc.id() in distop_context.grad_op_id_to_op_id:
                distop_context.grad_op_id_to_op_id[new_op_desc.id(
                )] = distop_context.grad_op_id_to_op_id[op_desc.id()]
                distop_context.grad_op_id_to_op_id.pop(op_desc.id())
W
Wu Yi 已提交
1217
        new_op_desc._set_attr(op_role_attr_name, backward)
Y
Yang Yang 已提交
1218
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
1219
        if callbacks is not None:
1220
            assert (isinstance(callbacks, (list, tuple)))
Y
Yang Yang 已提交
1221 1222
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
1223

F
fengjiayi 已提交
1224

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
def _is_grad_var_(var_name):
    return core.grad_var_suffix() in var_name


# Find the op who holds the sub_block as its "sub_block" attr
def _find_parent_op_(sub_block):
    sub_block_id = sub_block.idx

    if sub_block_id == 0:
        return None

    program = sub_block.program
    for block_id in six.moves.range(program.num_blocks):
        block_desc = program.block(block_id).desc
        for op_idx in six.moves.range(block_desc.op_size()):
            op = block_desc.op(op_idx)
            if op.has_attr("sub_block") and op._block_attr_id(
                    "sub_block") == sub_block_id:
                return op

1245
    # NOTE(paddle-dev): When optimizer is added in conditional block,
1246 1247 1248 1249
    # sub_block may not be found.
    return None


F
fengjiayi 已提交
1250
def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
1263
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
1264
    """
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
    ops_to_remove = []
    '''
    NOTE(paddle-dev): while_grad op may hold some inputs which are not found 
    in the parent/forward block, and they are also the outputs of while_grad 
    op. These kinds of inputs are the recursive outputs inside while_grad op. 
    They should be considered as "already created" when scanning the inner 
    ops of while_grad ops.  
    '''
    parent_op = _find_parent_op_(block)
    parent_op_vars = []
    if parent_op is not None:
        input_args = parent_op.input_arg_names()
        output_args = parent_op.output_arg_names()
        for in_arg in input_args:
            if in_arg in output_args:
                parent_op_vars.append(in_arg)

F
fengjiayi 已提交
1282 1283 1284
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
W
Wu Yi 已提交
1285
            sub_block = block.program.block(op_desc._block_attr_id("sub_block"))
F
fengjiayi 已提交
1286
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303

        grad_var_ins = [
            var for var in op_desc.input_arg_names() if _is_grad_var_(var)
        ]
        grad_var_outs = [
            var for var in op_desc.output_arg_names() if _is_grad_var_(var)
        ]

        inputs = [
            var for var in op_desc.input_arg_names()
            if var != core.empty_var_name()
        ]
        outputs = [
            var for var in op_desc.output_arg_names()
            if var != core.empty_var_name()
        ]

1304
        # If the outputs of grad op is empty, just remove it
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
        if not outputs:
            ops_to_remove.append(op_idx)
            continue
        else:
            '''
            If the output is not empty and there is any grad input, find 
            whether there is any existing input. If not, just remove it.
            '''
            if grad_var_ins:
                existing_grad_var_ins = [
                    var for var in grad_var_ins
                    if block.desc.has_var_recursive(cpt.to_bytes(var)) or var in
                    parent_op_vars
                ]
                if not existing_grad_var_ins:
                    '''
                    FIXME(paddle-dev, zengjinle): rnn_memory_helper_grad is used
                    in recurrent op. The input of this op does not even exist in 
                    the program! Therefore, any dependency analysis would not 
                    work to this op! If I do not add the following code, this op
                    would be pruned, and the calculation result would be wrong. 
                    Maybe we should re-design this op later...  
                    '''
                    if op_desc.type() not in ['rnn_memory_helper_grad']:
                        ops_to_remove.append(op_idx)
1330
                        continue
1331

F
fengjiayi 已提交
1332 1333 1334
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
M
minqiyang 已提交
1335 1336
            if block.desc.has_var_recursive(cpt.to_bytes(
                    grad_var_name)) or grad_var_name == core.empty_var_name():
F
fengjiayi 已提交
1337
                continue
M
minqiyang 已提交
1338
            block.desc.var(cpt.to_bytes(grad_var_name))
F
fengjiayi 已提交
1339
            new_vars.add(grad_var_name)
1340
            if grad_var_name not in grad_to_var:
F
fengjiayi 已提交
1341 1342 1343
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
H
hong 已提交
1344
        op_desc.check_attrs()
F
fengjiayi 已提交
1345 1346
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
1347

F
fengjiayi 已提交
1348 1349
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
1350
                _infer_var_data_type_shape_(arg, block)
F
update  
fengjiayi 已提交
1351

1352 1353 1354
    for op_idx in reversed(ops_to_remove):
        block.desc._remove_op(op_idx, op_idx + 1)

F
update  
fengjiayi 已提交
1355

1356 1357 1358 1359 1360 1361
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
W
Wu Yi 已提交
1362
                op_desc._rename_input(name, var_map[name])
1363 1364

        for name in op_desc.output_arg_names():
M
mapingshuo 已提交
1365 1366
            if "@GRAD" not in name:
                continue
1367
            if block.desc.find_var(name.encode("ascii")):
Y
Yu Yang 已提交
1368
                new_name = unique_name.generate(name)
W
Wu Yi 已提交
1369
                op_desc._rename_output(name, new_name)
1370 1371
                var_map[name] = new_name

M
minqiyang 已提交
1372
    for g, ng in six.iteritems(var_map):
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
1384
        for var in list(block.vars.values()):
1385 1386 1387 1388 1389 1390 1391
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
def _get_son_parent_block_idx_dict(program, current_block_idx):

    son_parent_block_idx_dict = collections.OrderedDict()
    while current_block_idx >= 0:
        parent_block_idx = program.block(current_block_idx).parent_idx
        son_parent_block_idx_dict[current_block_idx] = parent_block_idx
        current_block_idx = parent_block_idx

    return son_parent_block_idx_dict


1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
def _get_no_grad_set_name(no_grad_set):
    no_grad_set_name = set()
    if no_grad_set is not None:
        if isinstance(no_grad_set, (set, list, tuple)):
            for i, no_grad_var in enumerate(no_grad_set):
                if isinstance(no_grad_var, framework.Variable):
                    no_grad_set_name.add(no_grad_var.name)
                elif isinstance(no_grad_var, six.string_types):
                    no_grad_set_name.add(no_grad_var)
                else:
                    raise TypeError(
                        "The type of no_grad_set's member must be paddle.fluid.Variable or str, but received %s."
                        % (type(no_grad_var)))
        else:
            raise TypeError(
                "The type of no_grad_set should be set or list or tuple, but received {}".
                format(type(no_grad_set)))
    return no_grad_set_name


1423
@framework.static_only
M
mapingshuo 已提交
1424 1425 1426 1427
def append_backward(loss,
                    parameter_list=None,
                    no_grad_set=None,
                    callbacks=None,
1428 1429
                    checkpoints=None,
                    distop_context=None):
1430
    """
1431 1432
    :api_attr: Static Graph

1433
    This function appends backward part to main_program.
F
fengjiayi 已提交
1434

1435 1436
    A complete neural network training is made up of forward and backward
    propagation. However, when we configure a network, we only need to
1437 1438
    specify its forward part. This function uses the chain rule to automatically
    generate the backward part according to the forward part.
F
fengjiayi 已提交
1439

1440 1441
    In most cases, users do not need to invoke this function manually.
    It will be automatically invoked by the optimizer's `minimize` function.
F
fengjiayi 已提交
1442

1443
    Parameters:
1444
        loss(Tensor): The loss Tensor of the network.
1445
        parameter_list(list[Tensor|str]|tuple[Tensor|str], optional): List/Tuple of Parameters or Parameter.names
1446
                                           that need to be updated by optimizers.
1447
                                           If it is None, all parameters
F
fengjiayi 已提交
1448
                                           will be updated.
1449
                                           Default: None.
1450 1451
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1452
                               `stop_gradient=True` from all blocks will
F
fengjiayi 已提交
1453
                               be automatically added into this set.
1454
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1455
                               Default: None.
1456
        callbacks(list[callable object]|tuple[callable object], optional): List/Tuple of callback functions.
1457
                                               The callbacks are used for
1458 1459 1460 1461 1462 1463
                                               doing some custom jobs during
                                               backward part building. All
                                               callable objects in it will
                                               be invoked once each time a
                                               new gradient operator is added
                                               into the program. The callable
Z
zhangchunle 已提交
1464
                                               object must have two input
1465 1466
                                               parameters: ``block`` and ``context`` .
                                               The ``block`` is the :ref:`api_guide_Block_en` which
1467
                                               the new gradient operator will
1468
                                               be added to. The ``context`` is a
1469
                                               map, whose keys are gradient
1470 1471 1472
                                               Tensor names and values are
                                               corresponding original :ref:`api_guide_tensor_en` .
                                               In addition to this, the ``context``
1473
                                               has another special key-value pair:
1474
                                               the key is string ``__current_op_desc__``
1475 1476 1477
                                               and the value is the op_desc of the
                                               gradient operator who has just
                                               triggered the callable object.
1478
                                               Default: None.
F
fengjiayi 已提交
1479 1480

    Returns:
1481 1482
        list of tuple ( :ref:`api_guide_tensor_en` , :ref:`api_guide_tensor_en` ): Pairs of parameter and its corresponding gradients.
        The key is the parameter and the value is gradient Tensor.
F
fengjiayi 已提交
1483 1484

    Raises:
1485
        AssertionError: If ``loss`` is not an instance of Tensor.
F
fengjiayi 已提交
1486 1487 1488 1489

    Examples:
        .. code-block:: python

1490 1491
            import paddle
            import paddle.nn.functional as F
L
lujun 已提交
1492

1493 1494 1495 1496 1497
            paddle.enable_static()

            x = paddle.static.data(name='x', shape=[None, 13], dtype='int64')
            y = paddle.static.data(name='y', shape=[None, 1], dtype='float32')
            x_emb = paddle.static.nn.embedding(x, size=[100, 256])
1498
            y_predict = paddle.static.nn.fc(x=x_emb, size=1, activation=None, name='my_fc')
1499 1500
            loss = F.square_error_cost(input=y_predict, label=y)
            avg_loss = paddle.mean(loss)
1501 1502

            # Get all weights in main_program, not include bias.
1503
            all_weights = [param for param in paddle.static.default_main_program().block(0).all_parameters() if 'w_' in param.name]
1504 1505 1506
            all_weights_name = [w.name for w in all_weights]

            # return all param_grads needed to be updated if parameter_list set default None.
1507
            p_g_list1 = paddle.static.append_backward(loss=avg_loss)
1508 1509
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1510 1511
            # return the param_grads corresponding to parameter_list that can be list of param (Tensor).
            p_g_list2 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights)
1512 1513 1514
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # parameter_list can be list of param.name (str).
1515
            p_g_list3 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights_name)
1516 1517
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

1518 1519
            # no_grad_set can be set of Tensors that means grad will be cut off from these Tensors.
            p_g_list4 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set([x_emb]))
1520 1521
            # output: [(my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1522 1523
            # no_grad_set can be set of Tensor.name when the Tensor is created inside layers and can't be specified explicitly.
            p_g_list5 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set(['my_fc.b_0']))
1524 1525 1526
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # return [] because all param_grads are filtered by no_grad_set.
1527
            p_g_list6 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights, no_grad_set=set(all_weights))
1528

1529
    """
1530
    check_type(loss, 'loss', framework.Variable,
1531
               'paddle.static.append_backward')
Y
yuyang18 已提交
1532

Y
Fix bug  
yuyang18 已提交
1533 1534
    if loss.op is None:
        # the loss is from a cloned program. Find loss op manually.
M
mapingshuo 已提交
1535
        _find_loss_op_(loss)
Y
Fix bug  
yuyang18 已提交
1536

W
Wu Yi 已提交
1537 1538 1539
    loss.op._set_attr(core.op_proto_and_checker_maker.kOpRoleAttrName(),
                      int(core.op_proto_and_checker_maker.OpRole.Forward) |
                      int(core.op_proto_and_checker_maker.OpRole.Loss))
Y
yuyang18 已提交
1540

Y
Yang Yang 已提交
1541
    if callbacks is not None:
1542
        check_type(callbacks, 'callbacks', (list, tuple),
1543
                   'paddle.static.append_backward')
Y
Yu Yang 已提交
1544

F
fengjiayi 已提交
1545
    program = loss.block.program
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
    root_block = program.block(0)
    current_block_idx = program.current_block_idx
    current_block = program.block(current_block_idx)

    is_in_control_flow = current_block_idx != 0

    # Double grad is not supported in sub-block (control flow)
    if not is_in_control_flow:
        # _appending_grad_times used for double grad
        program._appending_grad_times += 1
1556

F
fengjiayi 已提交
1557
    if no_grad_set is None:
1558
        no_grad_set = set()
1559 1560
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1561
    no_grad_dict = _get_stop_gradients_(program)
1562 1563
    # no_grad_set only contains vars in block 0
    # Todo(liym27): support vars in sub block
1564
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
Y
Yu Yang 已提交
1565

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
    # Currently it is only to support the optimizer.minimize
    # in a switch branch, which can append_backward in a sub_block.
    # Note: while_loop is in control flow, but it makes no sense to call optimizer in while.
    # Todo: report error when it is in while_loop
    if is_in_control_flow:
        # create grad block if in switch control flow.
        target_grad_block = program._create_block(
            parent_idx=current_block.parent_idx)
        target_grad_block._set_forward_block_idx(current_block_idx)
        # after _create_block, program.current_block changes
    else:
        target_grad_block = root_block

    son_parent_block_idx_dict = _get_son_parent_block_idx_dict(
        program, current_block_idx)

    block_fwd_op_num_dict = {}  # block_id: fwd_op_num
    for idx in son_parent_block_idx_dict:
        block_fwd_op_num_dict[idx] = program.block(idx).desc.op_size()
F
fengjiayi 已提交
1585

F
fengjiayi 已提交
1586 1587
    grad_to_var = dict()

M
mapingshuo 已提交
1588
    op_desc = _create_loss_op_desc_(loss)
1589 1590 1591 1592 1593 1594 1595
    target_grad_block.desc.append_op().copy_from(op_desc)

    for block_idx in son_parent_block_idx_dict:
        block = program.block(block_idx)

        block_no_grad_set = set(
            map(_strip_grad_suffix_, no_grad_dict[block_idx]))
1596 1597 1598 1599

        op_path_dict = dict()
        op_path = _find_op_path_(block, [loss], [], block_no_grad_set,
                                 op_path_dict)
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611

        no_grad_vars = _find_no_grad_vars(block, op_path, [loss],
                                          block_no_grad_set)

        block_no_grad_set.update(no_grad_vars)
        no_grad_dict[block_idx].update(
            list(map(_append_grad_suffix_, block_no_grad_set)))

        input_grad_names_set = None
        # For double backward, input_grad_names is used for filtering
        # some non-used gradients op(s).

1612
        # TODO(liym27): need a better design.
1613 1614 1615 1616 1617
        # not support double grad in control flow sub-block now.
        if not is_in_control_flow:
            if program._appending_grad_times > 1:
                input_grad_names_set = set([_append_grad_suffix_(loss.name)])

1618
        # TODO: support _append_backward_ops_with_checkpoints_ in
1619
        #  sub-block (control flow)
J
JZ-LIANG 已提交
1620
        is_recompute = False
1621 1622 1623
        if checkpoints != None and \
                isinstance(checkpoints, list) and \
                len(checkpoints) > 0:
J
JZ-LIANG 已提交
1624
            is_recompute = True
1625
            program_stat, checkpoint_names, \
T
tangwei12 已提交
1626 1627
                vars_should_be_hold, \
                recompute_segments = \
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
                _append_backward_ops_with_checkpoints_(
                    root_block,
                    op_path,
                    root_block,
                    no_grad_dict,
                    grad_to_var,
                    checkpoints)
        else:
            _append_backward_ops_(
                block,  # the block where forward ops are in
                op_path,
                target_grad_block,
                no_grad_dict,
                grad_to_var,
                callbacks,
1643
                input_grad_names_set=input_grad_names_set,
1644 1645
                op_path_dict=op_path_dict,
                distop_context=distop_context, )
1646 1647 1648 1649 1650 1651 1652 1653 1654

    grad_info_map = dict()

    # if in control flow, target_grad_block is a created new block which only contains grad ops,
    # so fwd_op_num is set to 0.
    fwd_op_num = block_fwd_op_num_dict[
        current_block_idx] if not is_in_control_flow else 0

    # Because append_backward may be called multiple times,
1655 1656
    # we need rename the internal gradient variables so that they have
    # different names.
1657
    _rename_grad_(target_grad_block, fwd_op_num, grad_to_var, {})
1658

1659 1660
    _append_backward_vars_(target_grad_block, fwd_op_num, grad_to_var,
                           grad_info_map)
F
fengjiayi 已提交
1661

F
fengjiayi 已提交
1662
    program.current_block_idx = current_block_idx
W
Wu Yi 已提交
1663
    program._sync_with_cpp()
F
fengjiayi 已提交
1664

1665
    if parameter_list is not None:
1666 1667
        check_type(parameter_list, 'parameter_list', (list, tuple, set),
                   'fluid.backward.append_backward')
1668 1669
        parameters = []
        for i, param in enumerate(parameter_list):
1670 1671 1672
            check_type(param, 'parameter_list[%s]' % i, (framework.Variable,
                                                         six.string_types),
                       'fluid.backward.append_backward')
1673 1674 1675 1676
            if isinstance(param, framework.Variable):
                parameters.append(param.name)
            elif isinstance(param, six.string_types):
                parameters.append(param)
1677
    else:
F
fengjiayi 已提交
1678
        params = program.global_block().all_parameters()
C
chengduo 已提交
1679
        parameters = [param.name for param in params if param.trainable]
1680

1681
    params_and_grads = []
1682
    op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
1683
    for param in parameters:
M
minqiyang 已提交
1684
        if cpt.to_text(param) not in grad_info_map:
F
fengjiayi 已提交
1685
            continue
F
update  
fengjiayi 已提交
1686
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
1687
        grad_block = grad_info[1]
1688 1689 1690 1691
        if not grad_block.has_var(grad_info[0]):
            raise ValueError("grad block[{0}] did not have grad var {1}".format(
                grad_info[1], grad_info[0]))
        # Get the param var from the global block
F
fengjiayi 已提交
1692
        param_var = program.global_block().var(param)
1693
        grad_var = grad_block.var(grad_info[0])
1694 1695 1696 1697 1698
        if not is_in_control_flow:
            if loss.block.has_var(grad_info[0]):
                params_and_grads.append((param_var, grad_var))
            else:
                params_and_grads.append((param_var, None))
1699
        else:
1700
            params_and_grads.append((param_var, grad_var))
Y
yuyang18 已提交
1701 1702 1703 1704

    for p, g in params_and_grads:
        if g is None:
            continue
1705 1706 1707
        ops = grad_block.ops if is_in_control_flow else program.global_block(
        ).ops
        for op in reversed(ops):
Y
yuyang18 已提交
1708 1709 1710 1711 1712 1713 1714
            assert isinstance(op, framework.Operator)
            if g.name in op.output_arg_names:
                g.op = op
                break

        if g.op is None:
            raise ValueError("Unexpected branch")
Y
yuyang18 已提交
1715
        attr_val = [p.name, g.name]
Y
yuyang18 已提交
1716 1717
        if g.op.has_attr(op_role_var_attr_name):
            attr_val.extend(g.op.attr(op_role_var_attr_name))
W
Wu Yi 已提交
1718
        g.op._set_attr(op_role_var_attr_name, attr_val)
Y
yuyang18 已提交
1719

J
JZ-LIANG 已提交
1720 1721 1722 1723
    if is_recompute:
        return params_and_grads, checkpoint_names
    else:
        return params_and_grads
1724 1725 1726 1727 1728


def _as_list(x):
    if x is None:
        return []
1729
    return list(x) if isinstance(x, Sequence) else [x]
1730 1731


1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
def _is_ancestor_block(ancestor_block, block):
    prog = block.program
    ancestor_idx = ancestor_block.idx
    parent_idx = block.parent_idx

    while parent_idx != -1:
        if parent_idx == ancestor_idx:
            return True
        parent_idx = prog.block(parent_idx).parent_idx

    return False


def _get_output_names(cur_block, targets):
    """
    In `cur_block`, get output names those linked to targets.
    NOTE:
    1. `targets` can be in `cur_block`;
    Usually, `targets` is in `cur_block`. However, considering control flow,
    2. `targets` may be in sub-block but `cur_block` is an ancestor of `targets[0].block`;
    3. `targets` may be in the block which is ancestor of `cur_block`.
    """

    block = targets[0].block if targets else cur_block
    current_output_names = set([out.name for out in targets])

1758 1759 1760 1761 1762 1763
    # 1. If `targets` in cur_block or the ancestral block of `cur_block`
    if block.idx == cur_block.idx or _is_ancestor_block(block, cur_block):
        return current_output_names

    # 2. If `cur_block` is an ancestor of `targets[0].block`, run while loop
    prog = cur_block.program
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
    while block.idx != cur_block.idx:
        assert block.parent_idx != -1
        parent_block = prog.block(block.parent_idx)

        parent_block_output_names = set()
        for op in reversed(block.ops):
            if _some_in_set_(op.desc.output_arg_names(), current_output_names):
                for name in op.desc.input_arg_names():
                    current_output_names.add(name)
                    if not block.desc.find_var(cpt.to_bytes(name)) \
                            and parent_block.desc.find_var(cpt.to_bytes(name)):
                        parent_block_output_names.add(name)

        block = parent_block
        current_output_names = parent_block_output_names

    return current_output_names


1783 1784 1785
def _find_no_grad_vars(block, op_path, targets, no_grad_set):
    """
    Find the vars which is not used in the program, and
1786
    those vars belong to no_grad_var.
1787
    """
1788
    output_names = _get_output_names(block, targets)
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
    no_grad_var = []
    for i, op in reversed(list(enumerate(op_path))):
        # If the op has sub_block, it is too complicated to find the correct no_grad_var.
        if not op.has_attr("sub_block"):
            for out_var in op.desc.output_arg_names():
                if out_var not in output_names and out_var not in op.desc.input_arg_names(
                ) and not block.vars[out_var].stop_gradient:
                    no_grad_var.append(out_var)
        for name in op.desc.input_arg_names():
            if name not in no_grad_set:
                output_names.add(name)
    return set(no_grad_var)


1803 1804 1805 1806 1807 1808
def _find_op_path_(block,
                   targets,
                   inputs,
                   no_grad_set,
                   op_path_dict=None,
                   is_while=False):
1809
    """
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
    It is used to find the grad path in `block`.

    Args:
        block(Block): The block in which to get op path.
        targets(list[Variable]): The target variables.
        inputs(list[Variable]): The input variables.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed. op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        is_while(bool): Whether or not `block` is while block
    Return:
        The forward op path of block corresponding to backward op.
1823
    """
1824

1825
    input_names = set([inp.name for inp in inputs])
1826 1827 1828
    output_names = _get_output_names(block, targets)
    if op_path_dict is None:
        op_path_dict = dict()
1829 1830 1831 1832 1833 1834

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
1835 1836 1837
            if _some_in_set_(
                    op.desc.input_arg_names(),
                    input_names) and core.has_non_empty_grad_op_maker(op.type):
1838 1839 1840 1841 1842 1843 1844
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
1845 1846 1847 1848 1849 1850 1851 1852 1853
        if op.has_attr("sub_block"):
            sub_block_id = op._block_attr_id("sub_block")
            sub_block = block.program.block(sub_block_id)
            sub_block_target_names = output_names & set(op.output_arg_names)
            sub_block_path = _get_sub_block_path(sub_block, op,
                                                 set(), op_path_dict,
                                                 sub_block_target_names)
            op_path_dict[sub_block_id] = sub_block_path

1854 1855 1856
        if _some_in_set_(
                op.desc.output_arg_names(),
                output_names) and core.has_non_empty_grad_op_maker(op.type):
1857 1858 1859 1860 1861 1862
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

1863 1864 1865 1866 1867
    if is_while:
        # If block is while block, dealing with op specifically again.
        # TODO(liym27): Consider special types of ops.
        for i, op in reversed(list(enumerate(block.ops))):
            if relevant_op_flags[i] == False \
T
tangwei12 已提交
1868
                    and _some_in_set_(op.desc.output_arg_names(), output_names):
1869 1870
                relevant_op_flags[i] = True

1871 1872 1873 1874 1875 1876 1877
    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
1878
                if name not in input_names and block.vars[name].stop_gradient:
1879 1880 1881 1882 1883 1884 1885
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
1886
    Backpropagate the gradients of targets to inputs.
1887 1888

    Args:
1889 1890 1891
        targets(Tensor|list[Tensor]|tuple[Tensor]): The target Tensors
        inputs(Tensor|list[Tensor]|tuple[Tensor]): The input Tensors
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensors
1892 1893
            of targets which has the same shape with targets, If None, ones will
            be created for them.
1894 1895
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1896 1897
                               `stop_gradient=True` from all blocks will
                               be automatically added into this set.
1898
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1899
                               Default: None.
1900 1901

    Return:
1902 1903
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
1904 1905 1906 1907 1908 1909 1910 1911
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
1912 1913
    # increase appending gradients times
    prog._appending_grad_times += 1
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
            "Should have the same number of target_gradients as targets")

    if no_grad_set is None:
        no_grad_set = set()
1925 1926
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1927
    no_grad_dict = _get_stop_gradients_(prog)
1928
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
1929 1930 1931

    fwd_op_num = block.desc.op_size()

1932 1933
    input_grad_names_set = set()

1934
    target_grad_map = {}
1935
    rename_var_map = {}
1936 1937
    for i, grad in enumerate(target_gradients):
        target = targets[i]
1938
        grad_name = _append_grad_suffix_(target.name)
1939
        if grad is None:
L
lvmengsi 已提交
1940 1941 1942 1943 1944
            target_shape = target.name + '_shape'
            block.desc.append_op().copy_from(
                _create_op_desc_("shape", {'Input': [target.name]},
                                 {"Out": [target_shape]}, {}))
            input_grad_names_set.add(target_shape)
L
liym27 已提交
1945
            op_desc = _create_op_desc_("fill_constant",
L
lvmengsi 已提交
1946
                                       {"ShapeTensor": [target_shape]},
1947
                                       {"Out": [grad_name]}, {
1948
                                           "shape": target.shape,
1949 1950 1951
                                           "value": 1.0,
                                           "dtype": target.dtype,
                                       })
L
liym27 已提交
1952

1953
            block.desc.append_op().copy_from(op_desc)
1954
            input_grad_names_set.add(grad_name)
1955 1956 1957 1958 1959 1960 1961 1962
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
                    "The shapes of target and grad are different: %s %s" % (
                        target.name, grad.name))
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name
1963
            input_grad_names_set.add(grad.name)
1964
            rename_var_map[grad_name] = grad.name
1965 1966

    # For double backward, input_grad_names is used for filter
1967 1968
    # some non-used gradients op. rename_var_map is used to
    # associate target_grad var name with first grad_op input name.
1969 1970
    if prog._appending_grad_times == 1:
        input_grad_names_set = None
1971
        rename_var_map = {}
1972 1973 1974 1975 1976 1977

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
1978 1979 1980 1981

    op_path_dict = dict()
    op_path = _find_op_path_(block, targets, inputs, block_no_grad_set,
                             op_path_dict)
1982 1983 1984 1985 1986 1987

    # find no grad var by op_path
    no_grad_vars = _find_no_grad_vars(block, op_path, targets,
                                      block_no_grad_set)
    block_no_grad_set.update(no_grad_vars)

1988
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
1989 1990
    grad_to_var = dict()
    grad_info_map = dict()
1991 1992 1993 1994 1995 1996
    _append_backward_ops_(
        block,
        op_path,
        block,
        no_grad_dict,
        grad_to_var,
1997
        input_grad_names_set=input_grad_names_set,
1998 1999
        op_path_dict=op_path_dict,
        rename_var_map=rename_var_map)
2000 2001 2002 2003 2004 2005 2006

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
W
Wu Yi 已提交
2007
    prog._sync_with_cpp()
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars
2023 2024


2025
@framework.static_only
2026 2027
def gradients(targets, inputs, target_gradients=None, no_grad_set=None):
    """
T
tangwei12 已提交
2028

2029 2030 2031
    Backpropagate the gradients of targets to inputs.

    Args:
2032 2033 2034
        targets (Tensor|list[Tensor]|tuple[Tensor]): The target Tensors.
        inputs (Tensor|list[Tensor]|tuple[Tensor]): The input Tensors.
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensor
2035 2036
            of targets which has the same shape with targets, If None, ones will
            be created for them.
2037 2038 2039
        no_grad_set (set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
            should be ignored. All Tensors with ``stop_gradient=True`` from all blocks will
            be automatically added into this set. If this parameter is not None, the Tensors or Tensor.names
2040
            in this set will be added to the default set. Default: None.
2041 2042

    Return:
2043 2044
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
2045 2046 2047
        will be None.

    Examples:
2048
    
2049
        .. code-block:: python
2050
          :name: code-example
2051 2052 2053 2054
            import paddle
            import paddle.nn.functional as F

            paddle.enable_static()
2055

2056
            x = paddle.static.data(name='x', shape=[None, 2, 8, 8], dtype='float32')
2057
            x.stop_gradient=False
2058 2059 2060
            y = paddle.static.nn.conv2d(x, 4, 1, bias_attr=False)
            y = F.relu(y)
            z = paddle.static.gradients([y], x)
2061
            print(z) # [var x@GRAD : LOD_TENSOR.shape(-1, 2, 8, 8).dtype(float32).stop_gradient(False)]
2062
    """
2063
    check_type(targets, 'targets', (framework.Variable, list, tuple),
2064
               'paddle.static.gradients')
2065
    check_type(inputs, 'inputs', (framework.Variable, list, tuple),
2066
               'paddle.static.gradients')
2067
    check_type(target_gradients, 'target_gradients', (
2068
        framework.Variable, list, tuple, type(None)), 'paddle.static.gradients')
2069

2070 2071
    outs = calc_gradient(targets, inputs, target_gradients, no_grad_set)
    return _as_list(outs)
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140


@framework.static_only
def gradients_with_optimizer(program, optimizer, inputs=None, outputs=None):
    """
    :api_attr: Static Graph

    Backpropagate the gradients of the program and apply the gradients with the given optimizer.

    Args:
        program (Program): The input program.
        optimizer (Optimizer): The optimizer to apply the gradients.
        inputs (Tensor|list[Tensor]|tuple[Tensor], optional): The input Tensors.
            If None, the inputs will be created from the input variables in the given program. Default:None.
        outputs (Tensor|list[Tensor]|tuple[Tensor], optional): The output Tensors.
            If None, the outputs will be created from the output variables in the given program. Default: None.

    Return:
        tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by gradients_with_optimizer and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
            ``fetch_list`` before run, see details in ``Executor``.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
            pred = static.nn.fc(x=img, size=10, activation='relu')
            loss = paddle.mean(pred)
            opt_ops, pram_grads = paddle.fluid.backward.gradients_with_optimizer(static.default_main_program(), opt)
            print(opt_ops)

    """
    check_type(program, 'program', paddle.fluid.Program,
               'paddle.static.gradients_with_optimizer')
    check_type(optimizer, 'optimizer', paddle.optimizer.Optimizer,
               'paddle.static.gradients_with_optimizer')

    if inputs is None or outputs is None:
        in_set = set()
        out_set = set()
        for block in program.blocks:
            for op in block.ops:
                for name in op.input_arg_names:
                    in_set.add(block.vars[name])
                for name in op.output_arg_names:
                    out_set.add(block.vars[name])
        if inputs is None:
            inputs = list(in_set.difference(out_set))
        if outputs is None:
            outputs = list(out_set.difference(in_set))

    grads = gradients(outputs, inputs)

    with program_guard(program, None):
        pram_grads = [(pram, grad) for pram, grad in zip(inputs, grads)
                      if isinstance(pram, paddle.fluid.framework.Parameter) and
                      grad is not None]

        optimize_ops = optimizer.apply_gradients(pram_grads)

    return optimize_ops, pram_grads