Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e0d8c6ac
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
e0d8c6ac
编写于
7月 02, 2019
作者:
C
chengduo
提交者:
GitHub
7月 02, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add find_no_grad_vars in backward.py (#17942)
* add not_been_used_vars to no_grad_set test=develop
上级
449c7a9f
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
122 addition
and
9 deletion
+122
-9
paddle/fluid/op_use_default_grad_op_maker.spec
paddle/fluid/op_use_default_grad_op_maker.spec
+0
-1
paddle/fluid/operators/hierarchical_sigmoid_op.cc
paddle/fluid/operators/hierarchical_sigmoid_op.cc
+42
-7
python/paddle/fluid/backward.py
python/paddle/fluid/backward.py
+23
-1
python/paddle/fluid/tests/unittests/test_backward_find_no_grad_vars.py
.../fluid/tests/unittests/test_backward_find_no_grad_vars.py
+57
-0
未找到文件。
paddle/fluid/op_use_default_grad_op_maker.spec
浏览文件 @
e0d8c6ac
...
...
@@ -15,7 +15,6 @@ fusion_seqexpand_concat_fc
fusion_seqpool_concat
fusion_squared_mat_sub
gru
hierarchical_sigmoid
lrn
lstm_unit
max_pool2d_with_index
...
...
paddle/fluid/operators/hierarchical_sigmoid_op.cc
浏览文件 @
e0d8c6ac
...
...
@@ -86,6 +86,10 @@ class HierarchicalSigmoidOp : public framework::OperatorWithKernel {
}
};
/*
* Inputs: X, W, Label, PathTable, PathCode, Bias
* Outputs: Out, PreOut, W_out
*/
template
<
typename
AttrType
>
class
HierarchicalSigmoidOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
...
...
@@ -162,6 +166,37 @@ Hierarchical Probabilistic Neural Network Language Model."
}
};
/*
* Inputs: X, W, Label, PathTable, PathCode, PreOut, Out@GRAD
* Outputs: X@GRAD, W@GRAD, Bias@GRAD
*/
class
HierarchicalSigmoidGradMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
op
=
new
framework
::
OpDesc
();
op
->
SetType
(
this
->
ForwardOpType
()
+
"_grad"
);
// Inputs: X, W, Label, PathTable, PathCode, PreOut, Out@GRAD
op
->
SetInput
(
"X"
,
Input
(
"X"
));
op
->
SetInput
(
"W"
,
Input
(
"W"
));
op
->
SetInput
(
"Bias"
,
Input
(
"Bias"
));
op
->
SetInput
(
"Label"
,
Input
(
"Label"
));
op
->
SetInput
(
"PathTable"
,
Input
(
"PathTable"
));
op
->
SetInput
(
"PathCode"
,
Input
(
"PathCode"
));
op
->
SetInput
(
"PreOut"
,
Output
(
"PreOut"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
// Outputs: X@GRAD, W@GRAD, Bias@GRAD
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"W"
),
InputGrad
(
"W"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"Bias"
),
InputGrad
(
"Bias"
));
op
->
SetAttrMap
(
Attrs
());
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
op
);
}
};
class
HierarchicalSigmoidGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -209,17 +244,17 @@ class HierarchicalSigmoidGradOpGradVarTypeInference
auto
attr
=
ctx
->
GetAttr
(
"is_sparse"
);
bool
is_sparse
=
boost
::
get
<
bool
>
(
attr
);
if
(
is_sparse
)
{
VLOG
(
3
0
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to SelectedRows"
;
VLOG
(
3
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to SelectedRows"
;
ctx
->
SetType
(
w_grad_var_name
,
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
else
{
VLOG
(
3
0
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to LoDTensor"
;
VLOG
(
3
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to LoDTensor"
;
ctx
->
SetType
(
w_grad_var_name
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
if
(
hasBias
)
{
VLOG
(
3
0
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"Bias"
)
<<
" is set to LoDTensor"
;
VLOG
(
3
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"Bias"
)
<<
" is set to LoDTensor"
;
ctx
->
SetType
(
bias_grad_var_name
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
ctx
->
SetDataType
(
w_grad_var_name
,
ctx
->
GetDataType
(
ctx
->
Input
(
"W"
)[
0
]));
...
...
@@ -232,7 +267,7 @@ class HierarchicalSigmoidGradOpGradVarTypeInference
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
hierarchical_sigmoid
,
ops
::
HierarchicalSigmoidOp
,
ops
::
HierarchicalSigmoidOpMaker
<
int
>
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
ops
::
HierarchicalSigmoidGradMaker
);
REGISTER_OPERATOR
(
hierarchical_sigmoid_grad
,
ops
::
HierarchicalSigmoidGradOp
,
ops
::
HierarchicalSigmoidGradOpGradVarTypeInference
);
REGISTER_OP_CPU_KERNEL
(
...
...
python/paddle/fluid/backward.py
浏览文件 @
e0d8c6ac
...
...
@@ -552,7 +552,9 @@ def append_backward(loss, parameter_list=None, no_grad_set=None,
block_no_grad_set
=
set
(
map
(
_strip_grad_suffix_
,
no_grad_dict
[
0
]))
op_path
=
_find_op_path_
(
root_block
,
[
loss
],
[],
block_no_grad_set
)
no_grad_vars
=
_find_no_grad_vars
(
root_block
,
op_path
,
[
loss
],
block_no_grad_set
)
block_no_grad_set
.
update
(
no_grad_vars
)
no_grad_dict
[
0
].
update
(
list
(
map
(
_append_grad_suffix_
,
block_no_grad_set
)))
input_grad_names_set
=
None
...
...
@@ -630,6 +632,26 @@ def _as_list(x):
return
list
(
x
)
if
isinstance
(
x
,
collections
.
Sequence
)
else
[
x
]
def
_find_no_grad_vars
(
block
,
op_path
,
targets
,
no_grad_set
):
"""
Find the vars which is not used in the program, and
those var belong to no_grad_var.
"""
output_names
=
set
([
out
.
name
for
out
in
targets
])
no_grad_var
=
[]
for
i
,
op
in
reversed
(
list
(
enumerate
(
op_path
))):
# If the op has sub_block, it is too complicated to find the correct no_grad_var.
if
not
op
.
has_attr
(
"sub_block"
):
for
out_var
in
op
.
desc
.
output_arg_names
():
if
out_var
not
in
output_names
and
out_var
not
in
op
.
desc
.
input_arg_names
(
)
and
not
block
.
vars
[
out_var
].
stop_gradient
:
no_grad_var
.
append
(
out_var
)
for
name
in
op
.
desc
.
input_arg_names
():
if
name
not
in
no_grad_set
:
output_names
.
add
(
name
)
return
set
(
no_grad_var
)
def
_find_op_path_
(
block
,
outputs
,
inputs
,
no_grad_set
):
"""
no_grad_set will also be changed
...
...
python/paddle/fluid/tests/unittests/test_backward_find_no_grad_vars.py
0 → 100644
浏览文件 @
e0d8c6ac
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
paddle.fluid
as
fluid
from
simple_nets
import
init_data
def
simple_net1
():
x
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
784
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
feature
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
20
,
act
=
None
)
part1
,
part2
=
fluid
.
layers
.
split
(
feature
,
num_or_sections
=
[
10
,
10
],
dim
=
1
)
# Note that: part2 is not used.
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
part1
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
class
TestBackward
(
unittest
.
TestCase
):
def
check_backward
(
self
,
model
):
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
batch_size
=
2
with
fluid
.
program_guard
(
main
,
startup
):
loss
=
model
()
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.1
)
optimizer
.
minimize
(
loss
)
exe
.
run
(
fluid
.
default_startup_program
())
img
,
label
=
init_data
(
batch_size
,
img_shape
=
[
784
],
label_range
=
9
)
exe
.
run
(
feed
=
{
'image'
:
img
,
'label'
:
label
})
def
test_backward
(
self
):
self
.
check_backward
(
simple_net1
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录