op_test.py 107.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import functools
B
baojun 已提交
16
import os
17 18
import random
import struct
19
import sys
20
import unittest
21
import warnings
M
minqiyang 已提交
22
from collections import defaultdict
23
from copy import copy
24

25 26
import numpy as np

27
import paddle
28 29
import paddle.fluid as fluid
import paddle.fluid.core as core
30
from paddle.fluid import unique_name
31 32
from paddle.fluid.backward import append_backward
from paddle.fluid.executor import Executor
33 34 35 36
from paddle.fluid.framework import (
    OpProtoHolder,
    Program,
    _current_expected_place,
37 38 39 40
    _disable_legacy_dygraph,
    _enable_legacy_dygraph,
    _in_eager_without_dygraph_check,
    _test_eager_guard,
姜永久 已提交
41
    in_dygraph_mode,
42
)
43
from paddle.fluid.op import Operator
44 45

sys.path.append(os.path.abspath(os.path.dirname(__file__)))
46
from prim_op_test import OpTestUtils, PrimForwardChecker, PrimGradChecker
47
from testsuite import append_input_output, append_loss_ops, create_op, set_input
48
from white_list import (
49 50 51
    check_shape_white_list,
    compile_vs_runtime_white_list,
    no_check_set_white_list,
52
    no_grad_set_white_list,
53 54
    op_accuracy_white_list,
    op_threshold_white_list,
55
)
56

57 58
# For switch new eager mode globally
g_is_in_eager = _in_eager_without_dygraph_check()
59 60 61 62 63 64
g_enable_legacy_dygraph = (
    _enable_legacy_dygraph if g_is_in_eager else lambda: None
)
g_disable_legacy_dygraph = (
    _disable_legacy_dygraph if g_is_in_eager else lambda: None
)
65

66

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
def check_out_dtype(api_fn, in_specs, expect_dtypes, target_index=0, **configs):
    """
    Determines whether dtype of output tensor is as expected.

    Args:
        api_fn(callable):  paddle api function
        in_specs(list[tuple]): list of shape and dtype information for constructing input tensor of api_fn, such as [(shape, dtype), (shape, dtype)].
        expected_dtype(list[str]): expected dtype of output tensor.
        target_index(int): indicate which one from in_specs to infer the dtype of output.
        config(dict): other arguments of paddle api function

    Example:
        check_out_dtype(fluid.layers.pad_constant_like, [([2,3,2,3], 'float64'), ([1, 3, 1,3], )], ['float32', 'float64', 'int64'], target_index=1, pad_value=0.)

    """
    paddle.enable_static()
    for i, expect_dtype in enumerate(expect_dtypes):
        with paddle.static.program_guard(paddle.static.Program()):
            input_t = []
            for index, spec in enumerate(in_specs):
                if len(spec) == 1:
                    shape = spec[0]
                    dtype = expect_dtype if target_index == index else 'float32'
                elif len(spec) == 2:
                    shape, dtype = spec
                else:
                    raise ValueError(
94 95 96 97
                        "Value of in_specs[{}] should contains two elements: [shape, dtype]".format(
                            index
                        )
                    )
98
                input_t.append(
99 100 101 102
                    paddle.static.data(
                        name='data_%s' % index, shape=shape, dtype=dtype
                    )
                )
103 104 105 106 107 108 109

            out = api_fn(*input_t, **configs)
            out_dtype = fluid.data_feeder.convert_dtype(out.dtype)

            if out_dtype != expect_dtype:
                raise ValueError(
                    "Expected out.dtype is {}, but got {} from {}.".format(
110 111 112
                        expect_dtype, out_dtype, api_fn.__name__
                    )
                )
113 114


115 116 117 118 119 120 121 122
def _set_use_system_allocator(value=None):
    USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
    old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
    value = old_value if value is None else value
    core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
    return old_value


123
def randomize_probability(batch_size, class_num, dtype='float32'):
124 125 126
    prob = np.random.uniform(0.1, 1.0, size=(batch_size, class_num)).astype(
        dtype
    )
127
    prob_sum = prob.sum(axis=1)
128
    for i in range(len(prob)):
129 130 131 132
        prob[i] /= prob_sum[i]
    return prob


133 134 135 136 137 138 139 140 141 142
def get_numeric_gradient(
    place,
    scope,
    op,
    inputs,
    input_to_check,
    output_names,
    delta=0.005,
    in_place=False,
):
Y
Yu Yang 已提交
143
    # FIXME: change this method by compile time concepts
144
    set_input(scope, op, inputs, place)
145 146

    def product(dim):
147
        return functools.reduce(lambda a, b: a * b, dim, 1)
148 149

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
150 151
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
152
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
153
        tensor_to_check_dtype = np.float32
154
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
155
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
156 157 158 159
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
160 161
    elif tensor_to_check_dtype == core.VarDesc.VarType.BF16:
        tensor_to_check_dtype = np.float32
L
Lijunhui 已提交
162 163 164
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX64:
        tensor_to_check_dtype = np.complex64
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX128:
165
        tensor_to_check_dtype = np.complex128
166
    else:
167 168 169 170 171 172
        raise ValueError(
            "Not supported data type "
            + str(tensor_to_check_dtype)
            + ", tensor name : "
            + str(input_to_check)
        )
173

C
chengduo 已提交
174 175 176 177
    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
178
            output_numpy = np.array(scope.find_var(output_name).get_tensor())
Y
Yiqun Liu 已提交
179 180 181
            # numpy.dtype does not have bfloat16, thus we use numpy.uint16 to
            # store bfloat16 data, and need to be converted to float to check
            # the floating precision.
182 183 184
            if tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
                output_numpy = convert_uint16_to_float(output_numpy)
            sum.append(output_numpy.astype(tensor_to_check_dtype).mean())
C
chengduo 已提交
185 186
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

187
    gradient_flat = np.zeros(shape=(tensor_size,), dtype=tensor_to_check_dtype)
188 189

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
190 191 192 193
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
194 195 196
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            numpy_tensor = numpy_tensor.flatten()
197 198
            return struct.unpack(
                '<f',
199 200
                struct.pack('<I', np.uint32(numpy_tensor[i]) << np.uint32(16)),
            )[0]
D
dzhwinter 已提交
201
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
202
            return tensor._get_float_element(i)
203
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
204
            return tensor._get_double_element(i)
205
        else:
206 207 208
            raise TypeError(
                "Unsupported test data type %s." % tensor_to_check_dtype
            )
209 210

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
211 212 213 214 215
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
216
            numpy_tensor = numpy_tensor.reshape(shape)
D
dzhwinter 已提交
217
            tensor.set(numpy_tensor, place)
218 219 220 221 222 223 224
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = np.uint16(copy_bits_from_float_to_uint16(e))
            numpy_tensor = numpy_tensor.reshape(shape)
            tensor.set(numpy_tensor, place)
D
dzhwinter 已提交
225
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
226
            tensor._set_float_element(i, e)
227
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
228
            tensor._set_double_element(i, e)
229
        else:
230 231 232
            raise TypeError(
                "Unsupported test data type %s." % tensor_to_check_dtype
            )
233

234 235
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
236
    for i in range(tensor_size):
237
        if in_place:
238
            set_input(scope, op, inputs, place)
239 240

        # get one input element throw it's index i.
241
        origin = __get_elem__(tensor_to_check, i)
242 243
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
244
        __set_elem__(tensor_to_check, i, x_pos)
245 246 247
        y_pos = get_output()

        if in_place:
248
            set_input(scope, op, inputs, place)
249 250

        x_neg = origin - delta
251
        __set_elem__(tensor_to_check, i, x_neg)
252 253
        y_neg = get_output()

254
        __set_elem__(tensor_to_check, i, origin)
255 256
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
257
    return gradient_flat.reshape(tensor_to_check.shape())
258 259


260 261
def skip_check_grad_ci(reason=None):
    """Decorator to skip check_grad CI.
C
cc 已提交
262

263 264 265
    Check_grad is required for Op test cases. However, there are some special
    cases that do not need to do check_grad. This decorator is used to skip the
    check_grad of the above cases.
C
cc 已提交
266

267 268
    Note: the execution of unit test will not be skipped. It just avoids check_grad
    checking in tearDownClass method by setting a `no_need_check_grad` flag.
269

270 271 272
    Example:
        @skip_check_grad_ci(reason="For inference, check_grad is not required.")
        class TestInference(OpTest):
273 274 275 276 277 278 279 280 281 282 283
    """
    if not isinstance(reason, str):
        raise AssertionError("The reason for skipping check_grad is required.")

    def wrapper(cls):
        cls.no_need_check_grad = True
        return cls

    return wrapper


284 285 286
def skip_check_inplace_ci(reason=None):
    if not isinstance(reason, str):
        raise AssertionError(
287 288
            "The reason for skipping check_inplace is required."
        )
289 290 291 292 293 294 295 296

    def wrapper(cls):
        cls.no_need_check_inplace = True
        return cls

    return wrapper


297 298 299 300
def copy_bits_from_float_to_uint16(f):
    return struct.unpack('<I', struct.pack('<f', f))[0] >> 16


301 302 303 304
def convert_float_to_uint16(float_list, data_format="NCHW"):
    if data_format == "NHWC":
        float_list = np.transpose(float_list, [0, 3, 1, 2])

305 306 307
    new_output = []
    for x in np.nditer(float_list):
        new_output.append(np.uint16(copy_bits_from_float_to_uint16(x)))
308
    new_output = np.reshape(new_output, float_list.shape).view(np.uint16)
309

310 311 312
    if data_format == "NHWC":
        new_output = np.transpose(new_output, [0, 2, 3, 1])
    return new_output
313 314


315 316
def convert_uint16_to_float(in_list):
    in_list = np.asarray(in_list)
317 318 319 320 321 322
    out = np.vectorize(
        lambda x: struct.unpack(
            '<f', struct.pack('<I', np.uint32(x) << np.uint32(16))
        )[0],
        otypes=[np.float32],
    )(in_list.flat)
323
    return np.reshape(out, in_list.shape)
324 325


326
class OpTest(unittest.TestCase):
327 328 329 330 331
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
332
        cls.call_once = False
333
        cls.dtype = None
334
        cls.outputs = {}
335
        cls.input_shape_is_large = True
336
        cls.is_calc_ref = False
337
        cls.check_prim = False
338 339 340 341

        np.random.seed(123)
        random.seed(124)

342 343 344 345
        if paddle.is_compiled_with_npu():
            cls._use_system_allocator = _set_use_system_allocator(False)
        else:
            cls._use_system_allocator = _set_use_system_allocator(True)
346

347 348
    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
349
        """Restore random seeds"""
350 351 352
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

353 354
        _set_use_system_allocator(cls._use_system_allocator)

C
Charles-hit 已提交
355 356 357
        if hasattr(cls, 'check_prim') and os.getenv('FLAGS_prim_test_log'):
            print("check prim end!")

358 359 360 361
        def is_empty_grad_op(op_type):
            all_op_kernels = core._get_all_register_op_kernels()
            grad_op = op_type + '_grad'
            if grad_op in all_op_kernels.keys():
J
juncaipeng 已提交
362
                if is_mkldnn_op_test():
363 364 365 366 367 368 369 370
                    grad_op_kernels = all_op_kernels[grad_op]
                    for grad_op_kernel in grad_op_kernels:
                        if 'MKLDNN' in grad_op_kernel:
                            return False
                else:
                    return False
            return True

371
        def is_xpu_op_test():
372
            return hasattr(cls, "use_xpu") and cls.use_xpu
373

J
juncaipeng 已提交
374
        def is_mkldnn_op_test():
375
            return hasattr(cls, "use_mkldnn") and cls.use_mkldnn
J
juncaipeng 已提交
376

377 378 379
        def is_rocm_op_test():
            return core.is_compiled_with_rocm()

380
        def is_npu_op_test():
381
            return hasattr(cls, "use_npu") and cls.use_npu
382

383
        def is_mlu_op_test():
384
            return hasattr(cls, "use_mlu") and cls.use_mlu
385

386
        def is_custom_device_op_test():
387
            return hasattr(cls, "use_custom_device") and cls.use_custom_device
388

389 390
        if not hasattr(cls, "op_type"):
            raise AssertionError(
391
                "This test do not have op_type in class attrs, "
392 393
                "please set self.__class__.op_type=the_real_op_type manually."
            )
394

J
juncaipeng 已提交
395
        # case in NO_FP64_CHECK_GRAD_CASES and op in NO_FP64_CHECK_GRAD_OP_LIST should be fixed
396 397 398 399 400 401 402 403 404 405 406 407
        if not hasattr(cls, "no_need_check_grad") and not is_empty_grad_op(
            cls.op_type
        ):
            if cls.dtype is None or (
                cls.dtype == np.float16
                and cls.op_type
                not in op_accuracy_white_list.NO_FP16_CHECK_GRAD_OP_LIST
                and not hasattr(cls, "exist_check_grad")
            ):
                raise AssertionError(
                    "This test of %s op needs check_grad." % cls.op_type
                )
J
juncaipeng 已提交
408

409
            # check for op test with fp64 precision, but not check mkldnn op test for now
410 411 412 413 414 415 416 417 418 419 420
            if (
                cls.dtype in [np.float32, np.float64]
                and cls.op_type
                not in op_accuracy_white_list.NO_FP64_CHECK_GRAD_OP_LIST
                and not hasattr(cls, 'exist_fp64_check_grad')
                and not is_xpu_op_test()
                and not is_mkldnn_op_test()
                and not is_rocm_op_test()
                and not is_npu_op_test()
                and not is_mlu_op_test()
                and not is_custom_device_op_test()
421
                and not cls.check_prim
422
            ):
J
juncaipeng 已提交
423
                raise AssertionError(
424 425 426 427 428 429 430 431 432
                    "This test of %s op needs check_grad with fp64 precision."
                    % cls.op_type
                )

            if (
                not cls.input_shape_is_large
                and cls.op_type
                not in check_shape_white_list.NEED_TO_FIX_OP_LIST
            ):
433
                raise AssertionError(
434 435 436 437
                    "Input's shape should be large than or equal to 100 for "
                    + cls.op_type
                    + " Op."
                )
438

439 440 441 442 443
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

444
    def is_bfloat16_op(self):
Y
Yiqun Liu 已提交
445 446
        # self.dtype is the dtype of inputs, and is set in infer_dtype_from_inputs_outputs.
        # Make sure this function is called after calling infer_dtype_from_inputs_outputs.
447 448 449 450 451 452
        return (
            self.dtype == np.uint16
            or (
                hasattr(self, 'output_dtype') and self.output_dtype == np.uint16
            )
            or (
453
                hasattr(self, 'mkldnn_data_type')
454 455 456 457 458 459 460 461
                and getattr(self, 'mkldnn_data_type') == "bfloat16"
            )
            or (
                hasattr(self, 'attrs')
                and 'mkldnn_data_type' in self.attrs
                and self.attrs['mkldnn_data_type'] == 'bfloat16'
            )
        )
Y
Yiqun Liu 已提交
462

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
    def is_float16_op(self):
        # self.dtype is the dtype of inputs, and is set in infer_dtype_from_inputs_outputs.
        # Make sure this function is called after calling infer_dtype_from_inputs_outputs.
        return (
            self.dtype == np.float16
            or (
                hasattr(self, 'output_dtype')
                and self.output_dtype == np.float16
            )
            or (
                hasattr(self, 'mkldnn_data_type')
                and getattr(self, 'mkldnn_data_type') == "float16"
            )
            or (
                hasattr(self, 'attrs')
                and 'mkldnn_data_type' in self.attrs
                and self.attrs['mkldnn_data_type'] == 'float16'
            )
        )

Y
Yiqun Liu 已提交
483
    def is_mkldnn_op(self):
484
        return (hasattr(self, "use_mkldnn") and self.use_mkldnn) or (
485 486
            hasattr(self, "attrs")
            and "use_mkldnn" in self.attrs
487
            and self.attrs["use_mkldnn"]
488
        )
Y
Yiqun Liu 已提交
489 490

    def is_xpu_op(self):
491
        return (hasattr(self, "use_xpu") and self.use_xpu) or (
492 493
            hasattr(self, "attrs")
            and "use_xpu" in self.attrs
494
            and self.attrs["use_xpu"]
495
        )
496

497 498 499 500 501 502 503 504 505 506 507 508
    def is_fp16_compared_with_fp32(self):
        return self.is_float16_op() and (
            self.op_type
            not in op_accuracy_white_list.NO_FP16_COMPARED_WITH_FP32_OP_LIST
        )

    def enable_cal_ref_output(self):
        self.is_calc_ref = self.is_fp16_compared_with_fp32()

    def disable_cal_ref_output(self):
        self.is_calc_ref = False

509
    # set the self.output_dtype .
510
    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
J
juncaipeng 已提交
511 512 513 514
        def is_np_data(input):
            return isinstance(input, (np.ndarray, np.generic))

        def infer_dtype(numpy_dict, dtype_set):
515
            assert isinstance(
516 517
                numpy_dict, dict
            ), "self.inputs, self.outputs must be numpy_dict"
J
juncaipeng 已提交
518 519 520 521 522 523
            # the inputs are as follows:
            # case 1: inputs = {'X': x}
            # case 2: inputs = {'X': (x, x_lod)}
            # case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
            # case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
            # TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
524
            for _, var_value in numpy_dict.items():
J
juncaipeng 已提交
525 526 527 528 529 530 531
                if is_np_data(var_value):  # case 1
                    dtype_set.add(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):  # case 2, 3, 4
                    for sub_val_value in var_value:
                        if is_np_data(sub_val_value):  # case 2
                            dtype_set.add(sub_val_value.dtype)
                        elif len(sub_val_value) > 1 and is_np_data(
532 533
                            sub_val_value[1]
                        ):  # case 3
J
juncaipeng 已提交
534
                            dtype_set.add(sub_val_value[1].dtype)
535 536 537 538 539
                        elif (
                            len(sub_val_value) > 1
                            and isinstance(sub_val_value[1], (list, tuple))
                            and is_np_data(sub_val_value[1][0])
                        ):  # case 4
J
juncaipeng 已提交
540 541 542 543
                            dtype_set.add(sub_val_value[1][0].dtype)

        # infer dtype from inputs, and dtype means the precision of the test
        # collect dtype of all inputs
Y
Yiqun Liu 已提交
544 545
        input_dtype_set = set()
        infer_dtype(inputs, input_dtype_set)
J
juncaipeng 已提交
546
        dtype_list = [
547 548 549 550 551 552 553 554 555
            np.dtype(np.float64),
            np.dtype(np.float32),
            np.dtype(np.float16),
            np.dtype(np.int64),
            np.dtype(np.int32),
            np.dtype(np.uint16),
            np.dtype(np.int16),
            np.dtype(np.int8),
            np.dtype(np.uint8),
556
            np.dtype(np.bool_),
J
juncaipeng 已提交
557 558 559
        ]
        # check the dtype in dtype_list in order, select the first dtype that in dtype_set
        for dtype in dtype_list:
Y
Yiqun Liu 已提交
560
            if dtype in input_dtype_set:
J
juncaipeng 已提交
561 562
                self.dtype = dtype
                break
Y
Yiqun Liu 已提交
563
        # save input dtype in class attr
564
        self.__class__.dtype = self.dtype
565

Y
Yiqun Liu 已提交
566 567 568 569 570 571 572 573
        # infer dtype of outputs
        output_dtype_set = set()
        infer_dtype(outputs, output_dtype_set)
        for dtype in dtype_list:
            if dtype in output_dtype_set:
                self.output_dtype = dtype
                break

Y
Yang Yang(Tony) 已提交
574 575 576 577 578 579
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
580
                    if isinstance(np_value, tuple):
581
                        tensor.set(np_value[0], place)
582 583 584 585 586 587 588 589 590 591 592 593
                        dtype = np.array(np_value[1]).dtype
                        if self.is_calc_ref and dtype == np.float16:
                            if isinstance(np_value[1], list):
                                tensor.set_recursive_sequence_lengths(
                                    np.array(np_value[1]).astype(np.float32)
                                )
                            else:
                                tensor.set_recursive_sequence_lengths(
                                    np_value[1].astype(np.float32)
                                )
                        else:
                            tensor.set_recursive_sequence_lengths(np_value[1])
594
                    else:
595 596 597 598
                        if self.is_calc_ref and np_value.dtype == np.float16:
                            tensor.set(np_value.astype(np.float32), place)
                        else:
                            tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
599 600 601 602
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
603
                    tensor.set(self.inputs[var_name][0], place)
604 605 606 607 608 609 610 611 612 613 614
                    if (
                        self.is_calc_ref
                        and self.inputs[var_name][1].dtype == np.float16
                    ):
                        tensor.set_recursive_sequence_lengths(
                            self.inputs[var_name][1].astype(np.float32)
                        )
                    else:
                        tensor.set_recursive_sequence_lengths(
                            self.inputs[var_name][1]
                        )
Y
Yang Yang(Tony) 已提交
615
                else:
616 617 618 619 620 621 622 623 624
                    if (
                        self.is_calc_ref
                        and self.inputs[var_name].dtype == np.float16
                    ):
                        tensor.set(
                            self.inputs[var_name].astype(np.float32), place
                        )
                    else:
                        tensor.set(self.inputs[var_name], place)
Y
Yang Yang(Tony) 已提交
625
                feed_map[var_name] = tensor
626

Y
Yang Yang(Tony) 已提交
627 628
        return feed_map

629
    def _append_ops(self, block):
630 631 632
        self.__class__.op_type = (
            self.op_type
        )  # for ci check, please not delete it for now
Y
Yiqun Liu 已提交
633
        if self.is_mkldnn_op():
634
            self.__class__.use_mkldnn = True
C
cc 已提交
635

Y
Yiqun Liu 已提交
636
        if self.is_xpu_op():
637 638
            self.__class__.use_xpu = True

Y
Yang Yang(Tony) 已提交
639
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
640
        "infer datatype from inputs and outputs for this test case"
641 642 643 644 645 646
        if self.is_bfloat16_op():
            self.dtype = np.uint16
            self.__class__.dtype = self.dtype
            self.output_dtype = np.uint16
        else:
            self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
647
        inputs = append_input_output(
648
            block, op_proto, self.inputs, True, self.dtype, self.is_calc_ref
649 650
        )
        outputs = append_input_output(
651
            block, op_proto, self.outputs, False, self.dtype, self.is_calc_ref
652
        )
P
phlrain 已提交
653 654 655

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
656 657 658 659 660 661
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True,
                )
P
phlrain 已提交
662

Y
Yang Yang(Tony) 已提交
663 664 665 666
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
667 668
            attrs=copy(self.attrs) if hasattr(self, "attrs") else dict(),
        )
C
cc 已提交
669
        # infer variable type and infer shape in compile-time
Q
QI JUN 已提交
670 671
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
672

673 674
        return op

675 676
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
677
        for name, value in numpy_inputs.items():
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

M
minqiyang 已提交
697 698 699 700
    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
L
lujun 已提交
701
            v = fluid.dygraph.base.to_variable(value=data)
702
            v.value().get_tensor().set_recursive_sequence_lengths(lod)
M
minqiyang 已提交
703 704
            return v
        else:
L
lujun 已提交
705
            return fluid.dygraph.base.to_variable(value)
M
minqiyang 已提交
706

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
    def get_sequence_batch_size_1_input(self, lod=None, shape=None):
        """Get LoD input data whose batch size is 1.
        All sequence related OP unittests should call this function to contain the case of batch size = 1.
        Args:
            lod (list[list of int], optional): Length-based LoD, length of lod[0] should be 1. Default: [[13]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod) : LoD input data whose batch size is 1.
        """
        if lod is None:
            lod = [[13]]
        if shape is None:
            shape = [13, 23]
        assert len(lod[0]) == 1
        assert lod[0][0] == shape[0]
        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

725 726 727 728 729 730 731 732
    def lod_has_single_zero(self, lod):
        for i in range(len(lod) - 2):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] != 0:
                return True
        return False

    def lod_has_continuous_zero(self, lod):
        for i in range(len(lod) - 3):
733 734 735 736 737 738
            if (
                lod[i] != 0
                and lod[i + 1] == 0
                and lod[i + 2] == 0
                and lod[i + 3] != 0
            ):
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
                return True
        return False

    def get_sequence_instance_size_0_input(self, lod=None, shape=None):
        """Get LoD input data whose instance size is 0.
        All sequence related OP unittests should call this function to contain the case of instance size is 0.
        Args:
            lod (list[list of int], optional): Length-based LoD, lod[0]'s size must at least eight, lod[0] must at least two zeros at the beginning and at least two zeros at the end, the middle position of lod[0] contains a single zero and multiple zero. Default: [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod): LoD input data whose instance size is 0.
        """
        if lod is None:
            lod = [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]]
        if shape is None:
            shape = [12, 10]
        assert len(lod[0]) >= 8
756 757 758 759 760 761
        assert (
            lod[0][0] == 0
            and lod[0][1] == 0
            and lod[0][-1] == 0
            and lod[0][-2] == 0
        )
762 763 764 765 766 767 768
        assert self.lod_has_single_zero(lod[0]) is True
        assert self.lod_has_continuous_zero(lod[0]) is True
        assert sum(lod[0]) == shape[0]

        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

769 770 771
    def append_input_output_for_dygraph(
        self, op_proto, np_list, is_input, if_return_inputs_grad_dict, block
    ):
772 773 774 775 776 777 778
        def create_var(
            np_value,
            name,
            is_input,
            if_return_inputs_grad_dict,
            is_calc_ref=False,
        ):
779 780 781 782 783 784 785 786 787
            np_value_temp = np_value
            has_lod = False
            lod_temp = None
            if isinstance(np_value, tuple):
                np_value_temp = np_value[0]
                has_lod = True
                lod_temp = np_value[1]

            if is_input:
788 789 790 791 792 793
                if is_calc_ref and np_value_temp.dtype == np.float16:
                    v = self._create_var_from_numpy(
                        np_value_temp.astype(np.float32)
                    )
                else:
                    v = self._create_var_from_numpy(np_value_temp)
794

795 796
                if if_return_inputs_grad_dict:
                    v.stop_gradient = False
姜永久 已提交
797
                    if hasattr(v, "retain_grads"):
798 799
                        v.retain_grads()

800
                if has_lod:
801
                    v.value().get_tensor().set_recursive_sequence_lengths(
802 803
                        lod_temp
                    )
804
            else:
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
                if is_calc_ref and np_value_temp.dtype == np.float16:
                    v = block.create_var(
                        name=name,
                        dtype=np.float32,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                    )
                else:
                    v = block.create_var(
                        name=name,
                        dtype=np_value_temp.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                    )
821 822 823 824 825 826 827 828 829 830 831 832 833
            return v

        # prepare variable for input or output
        var_dict = defaultdict(list)
        if if_return_inputs_grad_dict:
            inputs_grad_dict = defaultdict()
        proto_list = op_proto.inputs if is_input else op_proto.outputs
        for var_proto in proto_list:
            name = var_proto.name
            if (name not in np_list) and var_proto.dispensable:
                continue
            if name not in np_list:
                assert var_proto.intermediate, "{} not found".format(name)
834 835 836
                v = block.create_var(
                    dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR
                )
837 838 839 840 841 842
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v
                continue
            if var_proto.duplicable:
                assert isinstance(
843 844
                    np_list[name], list
                ), "Duplicable {} should be set as list".format(name)
845 846 847
                var_list = []
                slot_name = name
                for (name, np_value) in np_list[name]:
848
                    v = create_var(
849 850 851 852 853
                        np_value,
                        name,
                        is_input,
                        if_return_inputs_grad_dict,
                        self.is_calc_ref,
854
                    )
855 856 857 858 859 860 861 862 863 864 865 866 867
                    var_list.append(v)
                    if if_return_inputs_grad_dict:
                        inputs_grad_dict[name] = v
                var_dict[slot_name] = var_list
            else:
                nplist_value_temp = None
                name_temp = None
                if isinstance(np_list[name], list):
                    nplist_value_temp = np_list[name][0]
                    name_temp = name
                else:
                    nplist_value_temp = np_list[name]
                    name_temp = unique_name.generate("%s_out" % (name))
868 869 870 871 872
                v = create_var(
                    nplist_value_temp,
                    name_temp,
                    is_input,
                    if_return_inputs_grad_dict,
873
                    self.is_calc_ref,
874
                )
875 876 877 878 879 880 881 882 883
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v

        if if_return_inputs_grad_dict:
            return var_dict, inputs_grad_dict
        else:
            return var_dict

884
    def _check_api_outs_by_dygraph_outs(self, api_outs, dygraph_outs, place):
885 886 887 888
        """for quick verify, here we take a simplest strategy:
        1. we only check variable in api_outs.
        2. we simply check the numpy (tensor) .
        3. we set atol and rtol as 1e-5, because they are unrelated to dtype.
889 890 891 892
        """
        for name in api_outs:
            np_api = np.array(api_outs[name])
            np_dyg = np.array(dygraph_outs[name])
893 894 895 896 897
            np.testing.assert_allclose(
                np_api,
                np_dyg,
                rtol=1e-05,
                equal_nan=False,
898 899 900 901 902 903 904 905 906 907 908 909
                err_msg='Output ('
                + name
                + ') has diff at '
                + str(place)
                + '\nExpect '
                + str(np_dyg)
                + '\n'
                + 'But Got'
                + str(np_api)
                + ' in class '
                + self.__class__.__name__,
            )
910

911
    def _calc_python_api_output(self, place, egr_inps=None, egr_oups=None):
912
        """set egr_inps and egr_oups = None if you want to create it by yourself."""
913

914
        def construct_output_dict_by_kernel_sig(ret_tuple, output_sig):
X
xiongkun 已提交
915 916
            if hasattr(self, "python_out_sig"):
                output_sig = self.python_out_sig
917 918
            if not isinstance(ret_tuple, (tuple, list)):
                ret_tuple = [ret_tuple]
919 920 921 922 923
            if len(output_sig) == len(ret_tuple):
                # [assumption]: we assume {"Out": [Tensor]}
                return {a: [b] for a, b in zip(output_sig, ret_tuple)}
            else:
                # [assumption]: return multi-Tensor in a single output. such as paddle.split()
924 925 926
                assert (
                    len(output_sig) == 1
                ), "Don't support multi-output with multi-tensor output. (May be you can use set `python_out_sig`, see `test_squeeze2_op` as a example.)"
927
                return {output_sig[0]: ret_tuple}
928

929
        def cal_python_api(python_api, args, kernel_sig):
930
            inputs_sig, attrs_sig, outputs_sig = kernel_sig
931 932 933
            args = OpTestUtils.assumption_assert_and_transform(
                args, len(inputs_sig)
            )
934
            ret_tuple = python_api(*args)
935 936 937 938 939 940
            return construct_output_dict_by_kernel_sig(ret_tuple, outputs_sig)

        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
            # prepare input variable
941 942 943 944 945 946 947
            eager_tensor_inputs = (
                egr_inps
                if egr_inps
                else self.append_input_output_for_dygraph(
                    op_proto, self.inputs, True, False, block
                )
            )
948
            # prepare output variable
949 950 951 952 953 954 955
            eager_tensor_outputs = (
                egr_oups
                if egr_oups
                else self.append_input_output_for_dygraph(
                    op_proto, self.outputs, False, False, block
                )
            )
956
            # prepare attributes
957 958 959 960 961 962
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]

963 964 965 966 967
            kernel_sig = OpTestUtils._get_kernel_signature(
                self.op_type,
                eager_tensor_inputs,
                eager_tensor_outputs,
                attrs_outputs,
968
            )
969 970
            if not kernel_sig:
                return None
971 972 973 974
            assert hasattr(self, "python_api"), (
                "Detect there is KernelSignature for `%s` op, please set the `self.python_api` if you set check_eager = True"
                % self.op_type
            )
975
            args = OpTestUtils.prepare_python_api_arguments(
976 977
                self.python_api, eager_tensor_inputs, attrs_outputs, kernel_sig
            )
978
            """ we directly return the cal_python_api value because the value is already tensor.
979
            """
980
            return cal_python_api(self.python_api, args, kernel_sig)
981

L
lujun 已提交
982
    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
983 984 985
        self.__class__.op_type = (
            self.op_type
        )  # for ci check, please not delete it for now
L
lujun 已提交
986
        with fluid.dygraph.base.guard(place=place):
M
minqiyang 已提交
987 988
            block = fluid.default_main_program().global_block()

989
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
M
minqiyang 已提交
990

991
            # prepare input variable
992
            inputs = self.append_input_output_for_dygraph(
993 994
                op_proto, self.inputs, True, False, block
            )
M
minqiyang 已提交
995
            # prepare output variable
996
            outputs = self.append_input_output_for_dygraph(
997 998
                op_proto, self.outputs, False, False, block
            )
999

1000
            # prepare attributes
1001 1002 1003 1004 1005
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
1006

M
minqiyang 已提交
1007 1008 1009 1010
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
1011 1012
                attrs=attrs_outputs if hasattr(self, "attrs") else None,
            )
M
minqiyang 已提交
1013
            return outputs
1014

1015 1016 1017 1018 1019 1020 1021 1022 1023
    def _calc_output(
        self,
        place,
        parallel=False,
        no_check_set=None,
        loss=None,
        enable_inplace=None,
        for_inplace_test=None,
    ):
C
Charles-hit 已提交
1024
        with paddle.fluid.framework._static_guard():
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
            program = Program()
            block = program.global_block()
            op = self._append_ops(block)

            inputs = self._get_inputs(block)
            outputs = self._get_outputs(block)
            feed_map = self.feed_var(inputs, place)

            if for_inplace_test:
                # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
                # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
                # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
                # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
                for out_name in op.output_arg_names:
                    var = block.var(out_name)
                    if 0 in var.shape:
                        var.persistable = True
            original_program = program
            if parallel:
                use_cuda = False
                if isinstance(place, fluid.CUDAPlace):
                    use_cuda = True
1047
                compiled_prog = fluid.CompiledProgram(program)
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
                program = compiled_prog
            fetch_list = getattr(self, "fetch_list", [])
            # if the fetch_list is customized by user, we use it directly.
            # if not, fill the fetch_list by the user configured outputs in test.
            if len(fetch_list) == 0:
                for var_name, var in outputs.items():
                    if no_check_set is not None and var_name in no_check_set:
                        continue
                    if isinstance(var, list):
                        for v in var:
                            fetch_list.append(v.name)
                    else:
                        fetch_list.append(var.name)
            # if the fetch_list still empty, fill the fetch_list by the operator output.
            if len(fetch_list) == 0:
                for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                    fetch_list.append(str(out_name))
1065

1066 1067 1068
            if enable_inplace is not None:
                build_strategy = fluid.BuildStrategy()
                build_strategy.enable_inplace = enable_inplace
1069

1070
                compiled_prog = fluid.CompiledProgram(
1071
                    program, build_strategy=build_strategy
1072 1073 1074 1075 1076 1077 1078 1079 1080
                )
                program = compiled_prog

            executor = Executor(place)
            outs = executor.run(
                program,
                feed=feed_map,
                fetch_list=fetch_list,
                return_numpy=False,
1081
            )
1082 1083
            self.op = op
            self.program = original_program
1084 1085 1086 1087
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list
Y
Yang Yang(Tony) 已提交
1088

1089 1090 1091
    def _compare_expect_and_actual_outputs(
        self, place, fetch_list, expect_outs, actual_outs, inplace_atol=None
    ):
1092 1093 1094
        """Compare expect outs and actual outs of an tested op.

        Args:
C
cc 已提交
1095
            place (CPUPlace | CUDAPlace): The place where the op runs.
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
C
cc 已提交
1106
            # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
1107 1108 1109
            # computational consistency.
            # When inplace_atol is not None, the inplace check uses numpy.allclose
            # to check inplace result instead of numpy.array_equal.
1110 1111
            expect_out = np.array(expect_outs[i])
            actual_out = np.array(actual_outs[i])
1112
            if inplace_atol is not None:
1113 1114 1115 1116 1117
                np.testing.assert_allclose(
                    expect_out,
                    actual_out,
                    rtol=1e-05,
                    atol=inplace_atol,
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
                    err_msg='Output ('
                    + name
                    + ') has diff at '
                    + str(place)
                    + ' when using and not using inplace'
                    + '\nExpect '
                    + str(expect_out)
                    + '\n'
                    + 'But Got'
                    + str(actual_out)
                    + ' in class '
                    + self.__class__.__name__,
                )
1131
            else:
1132 1133 1134
                np.testing.assert_array_equal(
                    expect_out,
                    actual_out,
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
                    err_msg='Output ('
                    + name
                    + ') has diff at '
                    + str(place)
                    + ' when using and not using inplace'
                    + '\nExpect '
                    + str(expect_out)
                    + '\n'
                    + 'But Got'
                    + str(actual_out)
                    + ' in class '
                    + self.__class__.__name__
                    + '\n',
                )

    def _construct_grad_program_from_forward(
        self, fwd_program, grad_op_desc, op_grad_to_var
    ):
1153 1154 1155 1156 1157
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
1158
            op_grad_to_var (dict): The relation of variables in grad op and its forward op.
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
1170 1171 1172
        for arg in (
            grad_op_desc.input_arg_names() + grad_op_desc.output_arg_names()
        ):
1173 1174 1175 1176 1177
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
1178 1179 1180 1181 1182 1183 1184 1185 1186
                fwd_var_name
            )
            grad_var = grad_block.create_var(
                name=arg,
                dtype=fwd_var.dtype,
                shape=fwd_var.shape,
                type=fwd_var.type,
                persistable=False,
            )
1187

C
cc 已提交
1188 1189
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
1190 1191 1192 1193 1194 1195 1196
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

1197 1198 1199
    def _construct_grad_feed_map_from_forward(
        self, place, fwd_res, grad_op_desc, op_grad_to_var
    ):
1200 1201 1202 1203 1204 1205
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
1206
            place (CPUPlace | CUDAPlace): The place where the op runs.
1207 1208 1209
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
1210
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op.
1211 1212 1213 1214

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
1215 1216 1217 1218 1219 1220 1221
        (
            fwd_outs,
            fwd_fetch_list,
            fwd_feed_map,
            fwd_program,
            fwd_op_desc,
        ) = fwd_res
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)
1241

1242 1243 1244 1245 1246 1247 1248
        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
C
cc 已提交
1249

1250
        Args:
C
cc 已提交
1251 1252
            op_desc (OpDesc): The op_desc of current op.
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op.
1253
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
C
cc 已提交
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
C
cc 已提交
1269
                # get grad_op_desc
1270
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
1271 1272
                    op_desc, set(), []
                )
1273 1274 1275 1276
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
1277 1278 1279 1280
                        if (
                            grad_op_desc.type() not in visited_ops
                            and _dfs_grad_op(grad_op_desc, fwd_op_desc=op_desc)
                        ):
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

1291 1292 1293
    def _check_forward_inplace(
        self, place, no_check_set=None, inplace_atol=None
    ):
1294
        """Check the inplace correctness of given op (self.op_type).
1295
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
C
cc 已提交
1296

1297
        Args:
C
cc 已提交
1298
            place (CPUPlace | CUDAPlace): The place where the op runs.
1299 1300 1301 1302
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1303 1304
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1305 1306
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
        expect_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=False,
            for_inplace_test=True,
        )
        actual_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=True,
            for_inplace_test=True,
        )
1319
        # compare expect_outs and actual_outs
1320 1321 1322 1323 1324 1325 1326
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol,
        )
1327 1328
        return expect_res

1329 1330 1331
    def _calc_grad_output(
        self, place, fwd_res, grad_op_desc, enable_inplace=None
    ):
1332 1333 1334 1335 1336 1337
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
1338
            place (CPUPlace | CUDAPlace): The place where the op runs.
1339 1340 1341 1342 1343 1344 1345 1346
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
C
Charles-hit 已提交
1347
        with paddle.fluid.framework._static_guard():
1348 1349 1350 1351 1352 1353 1354 1355 1356
            (
                fwd_outs,
                fwd_fetch_list,
                fwd_feed_map,
                fwd_program,
                fwd_op_desc,
            ) = fwd_res
            grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                fwd_op_desc, set(), []
1357
            )
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
            grad_program = self._construct_grad_program_from_forward(
                fwd_program, grad_op_desc, op_grad_to_var
            )
            grad_feed_map = self._construct_grad_feed_map_from_forward(
                place, fwd_res, grad_op_desc, op_grad_to_var
            )
            grad_fetch_list = grad_op_desc.output_arg_names()
            exe = Executor(place)
            program = grad_program
            if enable_inplace is not None:
                build_strategy = fluid.BuildStrategy()
                build_strategy.enable_inplace = enable_inplace
                compiled_program = fluid.CompiledProgram(
1371
                    grad_program, build_strategy=build_strategy
1372 1373
                )
                program = compiled_program
1374

1375 1376 1377 1378 1379 1380
            outs = exe.run(
                program,
                feed=grad_feed_map,
                fetch_list=grad_fetch_list,
                return_numpy=False,
            )
1381 1382
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

1383 1384 1385
    def _check_grad_inplace(
        self, place, fwd_res, grad_op_desc, inplace_atol=None
    ):
1386
        """Check the inplace correctness of given grad_op_desc.
1387 1388 1389 1390 1391 1392

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
C
cc 已提交
1393
            place (CPUPlace | CUDAPlace): The place where the op runs.
1394 1395 1396 1397 1398 1399
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1400 1401
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1402
        """
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
        expect_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=False
        )
        actual_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=True
        )

        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol,
        )
1417
        return expect_res
1418

1419 1420 1421
    def check_inplace_output_with_place(
        self, place, no_check_set=None, inplace_atol=None
    ):
1422 1423 1424 1425 1426 1427
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
C
cc 已提交
1428
            place (CPUPlace | CUDAPlace): The place where the op runs.
1429 1430 1431 1432 1433 1434
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
1435 1436 1437
        if getattr(self, "no_need_check_inplace", False):
            return

1438 1439 1440
        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)

1441 1442 1443
        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True
        )
1444 1445 1446 1447
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
1448 1449
        if hasattr(self, 'attrs') and bool(self.attrs.get('use_xpu', False)):
            return
1450 1451 1452 1453 1454 1455 1456 1457
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
1458 1459
                        inplace_atol=inplace_atol,
                    )
1460
                else:
1461 1462 1463
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True
                    )
1464
            else:
1465 1466
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn
                # skip op that use_mkldnn currently
1467
                flags_use_mkldnn = fluid.core.globals()["FLAGS_use_mkldnn"]
1468
                attrs_use_mkldnn = hasattr(self, 'attrs') and bool(
1469 1470
                    self.attrs.get('use_mkldnn', False)
                )
1471 1472 1473 1474 1475 1476 1477 1478
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
1479 1480
                        place, fwd_res, op_desc, inplace_atol=inplace_atol
                    )
1481
                else:
1482
                    res[op_desc] = self._calc_grad_output(
1483 1484
                        place, fwd_res, op_desc
                    )
1485

1486 1487 1488 1489 1490 1491 1492 1493 1494
    def check_output_with_place(
        self,
        place,
        atol=0,
        no_check_set=None,
        equal_nan=False,
        check_dygraph=True,
        inplace_atol=None,
        check_eager=False,
1495
        check_prim=False,
1496
    ):
1497 1498 1499 1500 1501 1502 1503
        core._set_prim_all_enabled(False)
        if check_prim:
            prim_checker = PrimForwardChecker(self, place)
            prim_checker.check()
            # Support operators which not in the NO_FP64_CHECK_GRAD_OP_LIST list can be test prim with fp32
            setattr(self.__class__, 'check_prim', True)
            self.__class__.op_type = self.op_type
1504
        # disable legacy dygraph check when check_eager is True
1505
        if check_eager:
1506 1507
            check_dygraph = False

1508 1509 1510 1511 1512 1513 1514 1515
        def find_imperative_actual(target_name, dygraph_outs, place):
            for name in dygraph_outs:
                if name == target_name:
                    return dygraph_outs[name][0]
                var_list = dygraph_outs[name]
                for i, var in enumerate(var_list):
                    if var.name == target_name:
                        return dygraph_outs[name][i]
1516
            self.assertTrue(
1517 1518 1519
                False,
                "Found failed {} {}".format(dygraph_outs.keys(), target_name),
            )
1520

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
        def find_imperative_expect(target_name, dygraph_outs, place):
            for name in dygraph_outs:
                if name == target_name:
                    return dygraph_outs[name][0]
                var_list = dygraph_outs[name]
                for i, var in enumerate(var_list):
                    if var.name == target_name:
                        return dygraph_outs[name][i]
            self.assertTrue(
                False,
                "Found failed {} {}".format(dygraph_outs.keys(), target_name),
            )

1534 1535
        def find_actual(target_name, fetch_list):
            found = [
1536 1537
                i
                for i, var_name in enumerate(fetch_list)
1538 1539 1540
                if var_name == target_name
            ]
            self.assertTrue(
1541 1542
                len(found) == 1, "Found {} {}".format(len(found), target_name)
            )
1543 1544
            return found[0]

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
        def find_expect(target_name, fetch_list):
            found = [
                i
                for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            self.assertTrue(
                len(found) == 1, "Found {} {}".format(len(found), target_name)
            )
            return found[0]

1556
        class Checker:
1557 1558
            """base class for check with self.outputs.
            currently don't support check between checkers.
1559 1560 1561
            """

            def __init__(self, op_test, expect_dict):
1562 1563
                """expect_dict is the self.outputs
                support : {str: [numpy]} and {str: [(str, numpy), (str, numpy)]}
1564 1565 1566 1567 1568 1569
                """
                self.expects = expect_dict
                self.checker_name = "checker"
                self.op_test = op_test  # stop the op_test object.
                self.op_type = op_test.op_type

1570 1571 1572
            def init(self):
                pass

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
            def convert_uint16_to_float(self, actual_np, expect_np):
                raise NotImplementedError("base class, not implement!")

            def calculate_output(self):
                """
                judge whether convert current output and expect to uint16.
                return True | False
                """

            def _is_skip_name(self, name):
                if name not in self.expects:
                    return True
                if no_check_set is not None and name in no_check_set:
                    return True
                return False

            def find_actual_value(self, name):
1590
                """return: (actual_tensor(var_base), actual_numpy)"""
1591 1592
                raise NotImplementedError("base class, not implement!")

1593 1594 1595 1596
            def find_expect_value(self, name):
                """return: (expect_tensor(var_base), actual_numpy)"""
                raise NotImplementedError("base class, not implement!")

1597 1598 1599 1600 1601 1602 1603
            def _compare_numpy(self, name, actual_np, expect_np):
                self.op_test.assertTrue(
                    np.allclose(
                        actual_np,
                        expect_np,
                        atol=atol,
                        rtol=self.rtol if hasattr(self, 'rtol') else 1e-5,
1604 1605 1606 1607 1608 1609 1610 1611 1612
                        equal_nan=equal_nan,
                    ),
                    "Output ("
                    + name
                    + ") has diff at "
                    + str(place)
                    + " in "
                    + self.checker_name,
                )
1613 1614

            def _compare_list(self, name, actual, expect):
1615
                """if expect is a tuple, we need to compare list."""
1616 1617 1618 1619
                raise NotImplementedError("base class, not implement!")

            def compare_single_output_with_expect(self, name, expect):
                actual, actual_np = self.find_actual_value(name)
1620 1621 1622 1623 1624 1625
                if self.op_test.is_fp16_compared_with_fp32():
                    expect, expect_np = self.find_expect_value(name)
                else:
                    expect_np = (
                        expect[0] if isinstance(expect, tuple) else expect
                    )
1626
                actual_np, expect_np = self.convert_uint16_to_float_ifneed(
1627 1628
                    actual_np, expect_np
                )
1629 1630
                # modify there for fp32 check

1631 1632 1633
                # NOTE(zhiqiu): np.allclose([], [1.]) returns True
                # see details: https://stackoverflow.com/questions/38331703/why-does-numpys-broadcasting-sometimes-allow-comparing-arrays-of-different-leng
                if expect_np.size == 0:
1634
                    self.op_test.assertTrue(actual_np.size == 0)
1635 1636 1637 1638 1639 1640
                self._compare_numpy(name, actual_np, expect_np)
                if isinstance(expect, tuple):
                    self._compare_list(name, actual, expect)

            def compare_outputs_with_expects(self):
                for out_name, out_dup in Operator.get_op_outputs(self.op_type):
1641 1642
                    if self._is_skip_name(out_name):
                        continue
1643 1644 1645 1646
                    if out_dup:
                        # if self.output = {'name': [(subname, Tensor), (subname, Tensor)]}
                        sub_out = self.expects[out_name]
                        if not isinstance(sub_out, list):
1647 1648 1649
                            raise AssertionError(
                                "sub_out type %s is not list", type(sub_out)
                            )
1650 1651
                        for item in sub_out:
                            sub_out_name, expect = item[0], item[1]
1652
                            self.compare_single_output_with_expect(
1653 1654
                                sub_out_name, expect
                            )
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
                    else:
                        expect = self.expects[out_name]
                        self.compare_single_output_with_expect(out_name, expect)

            def check(self):
                """
                return None means ok, raise Error means failed.

                the main enter point of Checker class
                """
1665
                self.init()
1666 1667 1668 1669
                self.calculate_output()
                self.compare_outputs_with_expects()

        class StaticChecker(Checker):
1670 1671 1672
            def init(self):
                self.checker_name = "static checker"

1673 1674
            def calculate_output(self):
                outs, fetch_list = self.op_test._calc_output(
1675 1676
                    place, no_check_set=no_check_set
                )
1677 1678
                self.outputs = outs
                self.fetch_list = fetch_list
1679 1680 1681 1682 1683 1684 1685 1686
                if self.op_test.is_fp16_compared_with_fp32():
                    self.op_test.enable_cal_ref_output()
                    ref_outs, ref_fetch_list = self.op_test._calc_output(
                        place, no_check_set=no_check_set
                    )
                    self.op_test.disable_cal_ref_output()
                    self.ref_outputs = ref_outs
                    self.ref_fetch_list = ref_fetch_list
1687 1688 1689 1690 1691 1692 1693

            def find_actual_value(self, name):
                idx = find_actual(name, self.fetch_list)
                actual = self.outputs[idx]
                actual_t = np.array(actual)
                return actual, actual_t

1694 1695 1696 1697 1698 1699
            def find_expect_value(self, name):
                idx = find_expect(name, self.ref_fetch_list)
                expect = self.ref_outputs[idx]
                expect_t = np.array(expect)
                return expect, expect_t

1700 1701 1702 1703 1704 1705
            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
                """
                judge whether convert current output and expect to uint16.
                return True | False
                """
                if actual_np.dtype == np.uint16 and expect_np.dtype in [
1706 1707
                    np.float32,
                    np.float64,
1708 1709
                ]:
                    actual_np = convert_uint16_to_float(actual_np)
1710
                    self.rtol = 1.0e-2
1711 1712
                elif actual_np.dtype == np.float16:
                    self.rtol = 1.0e-3
1713
                else:
1714 1715 1716 1717 1718
                    self.rtol = 1.0e-5
                if (
                    expect_np.dtype == np.uint16
                    and actual_np.dtype == np.uint16
                ):
1719 1720 1721 1722 1723 1724 1725
                    nonlocal atol
                    expect_np = convert_uint16_to_float(expect_np)
                    actual_np = convert_uint16_to_float(actual_np)
                    atol = max(atol, 0.03)
                return actual_np, expect_np

            def _compare_list(self, name, actual, expect):
1726
                """if expect is a tuple, we need to compare list."""
1727
                self.op_test.assertListEqual(
1728 1729 1730 1731
                    actual.recursive_sequence_lengths(),
                    expect[1],
                    "Output (" + name + ") has different lod at " + str(place),
                )
1732 1733

        class DygraphChecker(Checker):
1734 1735 1736
            def init(self):
                self.checker_name = "dygraph checker"

1737 1738
            def calculate_output(self):
                self.outputs = self.op_test._calc_dygraph_output(
1739 1740
                    place, no_check_set=no_check_set
                )
1741 1742 1743 1744 1745 1746
                if self.op_test.is_fp16_compared_with_fp32():
                    self.op_test.enable_cal_ref_output()
                    self.ref_outputs = self.op_test._calc_dygraph_output(
                        place, no_check_set=no_check_set
                    )
                    self.op_test.disable_cal_ref_output()
1747 1748 1749 1750

            def find_actual_value(self, name):
                with fluid.dygraph.base.guard(place=place):
                    imperative_actual = find_imperative_actual(
1751 1752
                        name, self.outputs, place
                    )
1753
                    imperative_actual_t = np.array(
1754 1755
                        imperative_actual.value().get_tensor()
                    )
1756 1757
                    return imperative_actual, imperative_actual_t

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
            def find_expect_value(self, name):
                with fluid.dygraph.base.guard(place=place):
                    imperative_expect = find_imperative_expect(
                        name, self.ref_outputs, place
                    )
                    imperative_expect_t = np.array(
                        imperative_expect.value().get_tensor()
                    )
                    return imperative_expect, imperative_expect_t

1768
            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
1769
                if actual_np.dtype == np.uint16 and expect_np.dtype in [
1770 1771
                    np.float32,
                    np.float64,
1772
                ]:
1773
                    self.rtol = 1.0e-2
1774 1775
                elif actual_np.dtype == np.float16:
                    self.rtol = 1.0e-3
1776
                else:
1777
                    self.rtol = 1.0e-5
1778 1779 1780 1781
                if self.op_test.is_bfloat16_op():
                    if actual_np.dtype == np.uint16:
                        actual_np = convert_uint16_to_float(actual_np)
                    if expect_np.dtype == np.uint16:
X
xiongkun 已提交
1782
                        expect_np = convert_uint16_to_float(expect_np)
1783 1784 1785
                return actual_np, expect_np

            def _compare_list(self, name, actual, expect):
1786
                """if expect is a tuple, we need to compare list."""
1787 1788
                with fluid.dygraph.base.guard(place=place):
                    self.op_test.assertListEqual(
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
                        actual.value()
                        .get_tensor()
                        .recursive_sequence_lengths(),
                        expect[1],
                        "Output ("
                        + name
                        + ") has different lod at "
                        + str(place)
                        + " in dygraph mode",
                    )
1799 1800

            def _compare_numpy(self, name, actual_np, expect_np):
1801 1802 1803 1804 1805 1806
                if (
                    functools.reduce(lambda x, y: x * y, actual_np.shape, 1)
                    == 0
                    and functools.reduce(lambda x, y: x * y, expect_np.shape, 1)
                    == 0
                ):
1807 1808 1809 1810 1811 1812 1813 1814
                    pass
                else:
                    self.op_test.assertTrue(
                        np.allclose(
                            actual_np,
                            expect_np,
                            atol=atol,
                            rtol=self.rtol if hasattr(self, 'rtol') else 1e-5,
1815 1816 1817 1818 1819 1820 1821 1822 1823
                            equal_nan=equal_nan,
                        ),
                        "Output ("
                        + name
                        + ") has diff at "
                        + str(place)
                        + " in "
                        + self.checker_name,
                    )
1824 1825

        class EagerChecker(DygraphChecker):
1826 1827 1828
            def init(self):
                self.checker_name = "eager checker"

1829 1830 1831
            def calculate_output(self):
                # we only check end2end api when check_eager=True
                with _test_eager_guard():
1832
                    self.is_python_api_test = True
1833
                    eager_dygraph_outs = self.op_test._calc_python_api_output(
1834 1835
                        place
                    )
1836
                    if eager_dygraph_outs is None:
X
xiongkun 已提交
1837
                        self.is_python_api_test = False
1838
                        # missing KernelSignature, fall back to eager middle output.
1839
                        eager_dygraph_outs = self.op_test._calc_dygraph_output(
1840 1841
                            place, no_check_set=no_check_set
                        )
1842 1843
                self.outputs = eager_dygraph_outs

1844 1845 1846 1847 1848 1849 1850
                if self.op_test.is_fp16_compared_with_fp32():
                    self.op_test.enable_cal_ref_output()
                    with _test_eager_guard():
                        self.is_python_api_test = True
                        ref_eager_dygraph_outs = (
                            self.op_test._calc_python_api_output(place)
                        )
1851
                        if ref_eager_dygraph_outs is None:
1852 1853 1854 1855 1856 1857 1858 1859 1860
                            self.is_python_api_test = False
                            ref_eager_dygraph_outs = (
                                self.op_test._calc_dygraph_output(
                                    place, no_check_set=no_check_set
                                )
                            )
                    self.op_test.disable_cal_ref_output()
                    self.ref_outputs = ref_eager_dygraph_outs

1861 1862 1863 1864 1865 1866
            def _compare_numpy(self, name, actual_np, expect_np):
                with _test_eager_guard():
                    super()._compare_numpy(name, actual_np, expect_np)

            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
                with _test_eager_guard():
1867
                    return super().convert_uint16_to_float_ifneed(
1868 1869
                        actual_np, expect_np
                    )
1870 1871 1872 1873 1874

            def find_actual_value(self, name):
                with _test_eager_guard():
                    return super().find_actual_value(name)

1875 1876 1877 1878
            def find_expect_valur(self, name):
                with _test_eager_guard():
                    return super().find_expect_value(name)

1879
            def _compare_list(self, name, actual, expect):
1880
                """if expect is a tuple, we need to compare list."""
1881 1882 1883
                with _test_eager_guard():
                    super()._compare_list(name, actual, expect)

X
xiongkun 已提交
1884 1885
            def _is_skip_name(self, name):
                # if in final state and kernel signature don't have name, then skip it.
1886 1887 1888 1889 1890
                if (
                    self.is_python_api_test
                    and hasattr(self.op_test, "python_out_sig")
                    and name not in self.op_test.python_out_sig
                ):
X
xiongkun 已提交
1891 1892
                    return True
                return super()._is_skip_name(name)
1893

1894
        # set some flags by the combination of arguments.
X
xiongkun 已提交
1895
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
1896 1897 1898 1899 1900
        if (
            self.dtype == np.float64
            and self.op_type
            not in op_threshold_white_list.NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST
        ):
1901 1902
            atol = 0

1903
        if self.is_bfloat16_op():
Y
Yiqun Liu 已提交
1904 1905
            if self.is_mkldnn_op():
                check_dygraph = False
1906
                check_eager = False
Y
Yiqun Liu 已提交
1907
                if hasattr(self, 'force_fp32_output') and getattr(
1908 1909
                    self, 'force_fp32_output'
                ):
Y
Yiqun Liu 已提交
1910 1911 1912
                    atol = 1e-2
                else:
                    atol = 2
1913
            else:
1914
                atol = 1e-1
1915

1916 1917 1918
        if self.is_float16_op():
            atol = 1e-3

1919
        if no_check_set is not None:
1920 1921 1922 1923
            if (
                self.op_type
                not in no_check_set_white_list.no_check_set_white_list
            ):
1924
                raise AssertionError(
1925 1926
                    "no_check_set of op %s must be set to None." % self.op_type
                )
1927 1928 1929
        static_checker = StaticChecker(self, self.outputs)
        static_checker.check()
        outs, fetch_list = static_checker.outputs, static_checker.fetch_list
L
lujun 已提交
1930
        if check_dygraph:
1931 1932
            # always enable legacy dygraph
            g_enable_legacy_dygraph()
1933 1934 1935
            dygraph_checker = DygraphChecker(self, self.outputs)
            dygraph_checker.check()
            dygraph_outs = dygraph_checker.outputs
1936 1937
            # yield the original state
            g_disable_legacy_dygraph()
1938
        if check_eager:
1939 1940 1941
            eager_checker = EagerChecker(self, self.outputs)
            eager_checker.check()
            eager_dygraph_outs = eager_checker.outputs
1942

C
cc 已提交
1943
        # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
1944 1945
        # computational consistency.
        # For example, group_norm uses AtomicAdd on CUDAPlace, which do not ensure
C
cc 已提交
1946
        # computation order when multiple threads write the same address. So the
L
Leo Chen 已提交
1947 1948 1949
        # result of group_norm is non-deterministic when datatype is float.
        # When inplace_atol is not None, the inplace check uses numpy.allclose
        # to check inplace result instead of numpy.array_equal.
1950 1951
        if inplace_atol is not None:
            warnings.warn(
L
Leo Chen 已提交
1952 1953
                "inplace_atol should only be set when op doesn't ensure computational consistency, please check it!"
            )
1954
        # Check inplace for given op, its grad op, its grad_grad op, etc.
C
cc 已提交
1955
        # No effect on original OpTest
1956
        # Currently not support ParallelExecutor on XPUPlace.
1957 1958 1959 1960 1961 1962 1963 1964 1965
        if (
            not paddle.is_compiled_with_xpu()
            and not paddle.is_compiled_with_npu()
            and not paddle.is_compiled_with_mlu()
            and not isinstance(place, core.CustomPlace)
        ):
            self.check_inplace_output_with_place(
                place, no_check_set=no_check_set, inplace_atol=inplace_atol
            )
1966

1967
        if check_eager:
1968
            assert not check_dygraph
1969
            return outs, eager_dygraph_outs, fetch_list
1970
        elif check_dygraph:
1971 1972 1973 1974 1975 1976 1977
            return outs, dygraph_outs, fetch_list
        else:
            return outs, fetch_list

    def check_compile_vs_runtime(self, fetch_list, fetch_outs):
        def find_fetch_index(target_name, fetch_list):
            found = [
1978 1979
                i
                for i, var_name in enumerate(fetch_list)
1980 1981 1982 1983 1984 1985 1986
                if var_name == target_name
            ]
            if len(found) == 0:
                return -1
            else:
                self.assertTrue(
                    len(found) == 1,
1987 1988
                    "Found {} {}".format(len(found), target_name),
                )
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
                return found[0]

        for name in self.op.desc.output_names():
            var_names = self.op.desc.output(name)
            for var_name in var_names:
                i = find_fetch_index(var_name, fetch_list)
                if i == -1:
                    # The output is dispensiable or intermediate.
                    break
                out = fetch_outs[i]
                if isinstance(out, core.LoDTensor):
                    lod_level_runtime = len(out.lod())
                else:
                    if isinstance(out, core.LoDTensorArray):
                        warnings.warn(
                            "The check of LoDTensorArray's lod_level is not implemented now!"
                        )
                    lod_level_runtime = 0

                var = self.program.global_block().var(var_name)
                if var.type == core.VarDesc.VarType.LOD_TENSOR:
                    lod_level_compile = var.lod_level
                else:
                    lod_level_compile = 0
                self.assertEqual(
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
                    lod_level_compile,
                    lod_level_runtime,
                    "The lod_level of Output ("
                    + name
                    + ") is different between compile-time and runtime ("
                    + str(lod_level_compile)
                    + " vs "
                    + str(lod_level_runtime)
                    + ")",
                )
2024

2025
    def _get_places(self):
D
dzhwinter 已提交
2026 2027
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
2028 2029
                self.op_type
            ):
D
dzhwinter 已提交
2030 2031 2032
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
W
Wu Yi 已提交
2033 2034
                else:
                    return []
D
dzhwinter 已提交
2035 2036
            else:
                return []
2037
        places = [fluid.CPUPlace()]
2038
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
2039 2040 2041 2042 2043
        if (
            core.is_compiled_with_cuda()
            and core.op_support_gpu(self.op_type)
            and not cpu_only
        ):
D
dzhwinter 已提交
2044
            places.append(core.CUDAPlace(0))
2045 2046
        return places

2047 2048 2049 2050 2051 2052 2053 2054
    def check_output(
        self,
        atol=1e-5,
        no_check_set=None,
        equal_nan=False,
        check_dygraph=True,
        inplace_atol=None,
        check_eager=False,
2055
        check_prim=False,
2056
    ):
2057 2058

        # disable legacy dygraph check when check_eager is True
2059
        if check_eager:
2060 2061
            check_dygraph = False

2062
        self.__class__.op_type = self.op_type
Y
Yiqun Liu 已提交
2063
        if self.is_mkldnn_op():
2064
            self.__class__.use_mkldnn = True
C
cc 已提交
2065

Y
Yiqun Liu 已提交
2066
        if self.is_xpu_op():
2067 2068
            self.__class__.use_xpu = True

2069
        places = self._get_places()
Q
qijun 已提交
2070
        for place in places:
2071 2072 2073 2074 2075 2076 2077 2078
            res = self.check_output_with_place(
                place,
                atol,
                no_check_set,
                equal_nan,
                check_dygraph,
                inplace_atol,
                check_eager=check_eager,
2079
                check_prim=check_prim,
2080
            )
2081
            if check_eager:
2082
                assert not check_dygraph
2083
                outs, eager_dygraph_outs, fetch_list = res
2084
            elif check_dygraph:
2085 2086 2087
                outs, dygraph_outs, fetch_list = res
            else:
                outs, fetch_list = res
2088 2089 2090 2091
            if (
                self.op_type
                not in compile_vs_runtime_white_list.COMPILE_RUN_OP_WHITE_LIST
            ):
2092
                self.check_compile_vs_runtime(fetch_list, outs)
Q
qijun 已提交
2093

P
pangyoki 已提交
2094
    def check_output_customized(self, checker, custom_place=None):
2095
        self.__class__.op_type = self.op_type
2096
        places = self._get_places()
P
pangyoki 已提交
2097 2098
        if custom_place:
            places.append(custom_place)
2099 2100 2101
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
2102
            outs.sort(key=len)
2103 2104
            checker(outs)

2105 2106 2107 2108 2109 2110
    def check_output_with_place_customized(self, checker, place):
        outs = self.calc_output(place)
        outs = [np.array(out) for out in outs]
        outs.sort(key=len)
        checker(outs)

2111 2112 2113 2114 2115 2116 2117
    def _assert_is_close(
        self,
        numeric_grads,
        analytic_grads,
        names,
        max_relative_error,
        msg_prefix,
2118
        atol=1e-5,
2119
    ):
2120
        for a, b, name in zip(numeric_grads, analytic_grads, names):
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
            # Used by bfloat16 for now to solve precision problem
            if self.is_bfloat16_op():
                if a.size == 0:
                    self.assertTrue(b.size == 0)
                np.testing.assert_allclose(
                    b,
                    a,
                    rtol=max_relative_error,
                    atol=atol,
                    equal_nan=False,
                    err_msg=(
                        "Operator %s error, %s variable %s (shape: %s, dtype: %s) max gradient diff over limit"
                    )
                    % (
                        self.op_type,
                        msg_prefix,
                        name,
                        str(a.shape),
                        self.dtype,
                    ),
2141
                )
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
            else:
                # It asserts np.abs(a - b) / np.abs(a) < max_relative_error, in which
                # max_relative_error is 1e-7. According to the value of np.abs(a), we
                # change np.abs(a) to achieve dynamic threshold. For example, if
                # the value of np.abs(a) is between 1e-10 and 1e-8, we set np.abs(a)*=1e4.
                # Therefore, it asserts np.abs(a - b) / (np.abs(a)*1e4) < max_relative_error,
                # which is the same as np.abs(a - b) / np.abs(a) < max_relative_error*1e4.

                abs_a = np.abs(a)
                if abs_a.ndim > 0:
                    if (
                        self.dtype == np.float64
                        and self.op_type
                        not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST
                    ):
                        abs_a[abs_a < 1e-10] = 1e-3
                        abs_a[
                            np.logical_and(abs_a > 1e-10, abs_a <= 1e-8)
                        ] *= 1e4
                        abs_a[
                            np.logical_and(abs_a > 1e-8, abs_a <= 1e-6)
                        ] *= 1e2
                    elif self.is_bfloat16_op():
                        abs_a[abs_a < 1e-2] = 1
                    else:
                        abs_a[abs_a < 1e-3] = 1
                elif abs_a.ndim == 0:
                    if (
                        self.dtype == np.float64
                        and self.op_type
                        not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST
                    ):
                        if abs_a < 1e-10:
                            abs_a = 1e-3
                        elif abs_a > 1e-10 and abs_a <= 1e-8:
                            abs_a = abs_a * 1e4
                        elif abs_a > 1e-8 and abs_a <= 1e-6:
                            abs_a = abs_a * 1e2
                    elif self.is_bfloat16_op():
                        abs_a = 1 if abs_a < 1e-2 else abs_a
                    else:
                        abs_a = 1 if abs_a < 1e-3 else abs_a
2184

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
                if self.dtype == np.bool:
                    diff_mat = np.abs(a ^ b) / abs_a
                else:
                    diff_mat = np.abs(a - b) / abs_a
                max_diff = np.max(diff_mat)

                def err_msg():
                    offset = np.argmax(diff_mat > max_relative_error)
                    return (
                        "Operator %s error, %s variable %s (shape: %s, dtype: %s) max gradient diff %e over limit %e, "
                        "the first error element is %d, expected %e, but got %e."
                    ) % (
                        self.op_type,
                        msg_prefix,
                        name,
                        str(a.shape),
                        self.dtype,
                        max_diff,
                        max_relative_error,
                        offset,
                        a.flatten()[offset],
                        b.flatten()[offset],
                    )

                self.assertLessEqual(max_diff, max_relative_error, err_msg())
2210

2211 2212 2213 2214 2215 2216 2217
    def _check_grad_helper(self):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        self.__class__.op_type = self.op_type
        self.__class__.exist_check_grad = True
        if self.dtype == np.float64:
            self.__class__.exist_fp64_check_grad = True

2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
    def check_grad(
        self,
        inputs_to_check,
        output_names,
        no_grad_set=None,
        numeric_grad_delta=0.005,
        in_place=False,
        max_relative_error=0.005,
        user_defined_grads=None,
        user_defined_grad_outputs=None,
        check_dygraph=True,
        check_eager=False,
2230
        check_prim=False,
2231
        only_check_prim=False,
2232
        atol=1e-5,
2233
    ):
2234
        # disable legacy dygraph check when check_eager is True
2235
        if check_eager:
2236 2237
            check_dygraph = False

2238
        self._check_grad_helper()
2239
        places = self._get_places()
2240
        for place in places:
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
            self.check_grad_with_place(
                place,
                inputs_to_check,
                output_names,
                no_grad_set,
                numeric_grad_delta,
                in_place,
                max_relative_error,
                user_defined_grads,
                user_defined_grad_outputs,
                check_dygraph,
                check_eager=check_eager,
2253
                check_prim=check_prim,
2254
                only_check_prim=only_check_prim,
2255
                atol=atol,
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
            )

    def check_grad_with_place(
        self,
        place,
        inputs_to_check,
        output_names,
        no_grad_set=None,
        numeric_grad_delta=0.005,
        in_place=False,
        max_relative_error=0.005,
        user_defined_grads=None,
        user_defined_grad_outputs=None,
        check_dygraph=True,
        numeric_place=None,
        check_eager=False,
2272
        check_prim=False,
2273
        only_check_prim=False,
2274
        atol=1e-5,
2275
    ):
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
        core._set_prim_all_enabled(False)
        if check_prim:
            prim_grad_checker = PrimGradChecker(
                self,
                place,
                inputs_to_check,
                output_names,
                no_grad_set,
                user_defined_grad_outputs,
            )
            prim_grad_checker.check()
            # Support operators which not in the NO_FP64_CHECK_GRAD_OP_LIST list can be test prim with fp32
            setattr(self.__class__, 'check_prim', True)
            self._check_grad_helper()
2290
            if only_check_prim:
2291
                return
2292
        # disable legacy dygraph check when check_eager is True
2293
        if check_eager:
2294 2295
            check_dygraph = False

2296
        self.scope = core.Scope()
Q
qijun 已提交
2297
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
2298
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
2299
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
P
phlrain 已提交
2300

Y
Yiqun Liu 已提交
2301
        self._check_grad_helper()
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
        if self.is_bfloat16_op():
            if self.is_mkldnn_op():
                check_dygraph = False
                check_eager = False
                atol = 1e-2 if atol < 1e-2 else atol
            else:
                atol = 1e-1 if atol < 1e-1 else atol

        if self.is_float16_op():
            atol = 1e-3 if atol < 1e-3 else atol
2312

2313 2314 2315 2316 2317
        if (
            self.dtype == np.float64
            and self.op_type
            not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST
        ):
2318 2319
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7
2320

P
phlrain 已提交
2321 2322 2323
        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
2324 2325 2326

        # oneDNN numeric gradient should use CPU kernel
        use_onednn = False
2327
        if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"]:
2328 2329 2330
            op_attrs["use_mkldnn"] = False
            use_onednn = True

2331 2332 2333 2334 2335 2336 2337 2338
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list,
        )
Y
Yu Yang 已提交
2339

2340 2341 2342
        if use_onednn:
            op_attrs["use_mkldnn"] = True

2343 2344
        if no_grad_set is None:
            no_grad_set = set()
2345
        else:
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
            if (
                (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST)
                and (
                    self.op_type not in no_grad_set_white_list.NOT_CHECK_OP_LIST
                )
                and (not self.is_bfloat16_op())
            ):
                raise AssertionError(
                    "no_grad_set must be None, op_type is "
                    + self.op_type
                    + " Op."
                )
2358

2359 2360 2361
        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)
            tensor_to_check = self.scope.find_var(input_to_check).get_tensor()
2362 2363 2364
            tensor_size = functools.reduce(
                lambda a, b: a * b, tensor_to_check.shape(), 1
            )
2365 2366 2367
            tensor_ndim = len(tensor_to_check.shape())
            # for 0D Tensor, it's additional case for OP, so not raise error
            if tensor_ndim > 0 and tensor_size < 100:
2368 2369
                self.__class__.input_shape_is_large = False

Y
Yancey 已提交
2370 2371 2372
        if not type(output_names) is list:
            output_names = [output_names]

2373 2374 2375
        if numeric_place is None:
            numeric_place = place

Q
Qiao Longfei 已提交
2376
        numeric_grads = user_defined_grads or [
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
            get_numeric_gradient(
                numeric_place,
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
                output_names,
                delta=numeric_grad_delta,
                in_place=in_place,
            )
2387
            for input_to_check in inputs_to_check
2388
        ]
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400

        if self.is_fp16_compared_with_fp32():
            self.enable_cal_ref_output()
            numeric_grads = self._get_gradient(
                inputs_to_check,
                place,
                output_names,
                no_grad_set,
                user_defined_grad_outputs,
            )
            self.disable_cal_ref_output()

2401 2402 2403 2404 2405 2406 2407
        analytic_grads = self._get_gradient(
            inputs_to_check,
            place,
            output_names,
            no_grad_set,
            user_defined_grad_outputs,
        )
2408 2409
        # comparison of bf16 results will happen as fp32
        # loop over list of grads and convert bf16 to fp32
2410
        fp32_analytic_grads = []
2411 2412 2413
        for grad in analytic_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
2414 2415 2416
                max_relative_error = (
                    0.04 if max_relative_error < 0.04 else max_relative_error
                )
2417 2418 2419 2420 2421 2422 2423
            fp32_analytic_grads.append(grad)
        analytic_grads = fp32_analytic_grads

        fp32_numeric_grads = []
        for grad in numeric_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
2424 2425 2426
                max_relative_error = (
                    0.04 if max_relative_error < 0.04 else max_relative_error
                )
2427 2428
            fp32_numeric_grads.append(grad)
        numeric_grads = fp32_numeric_grads
2429

2430 2431 2432 2433 2434 2435
        self._assert_is_close(
            numeric_grads,
            analytic_grads,
            inputs_to_check,
            max_relative_error,
            "Gradient Check On %s" % str(place),
2436
            atol=atol,
2437
        )
Q
qijun 已提交
2438

2439
        if check_dygraph:
2440 2441 2442
            # ensure switch into legacy dygraph
            g_enable_legacy_dygraph()

2443 2444 2445 2446 2447 2448 2449 2450
            dygraph_grad = self._get_dygraph_grad(
                inputs_to_check,
                place,
                output_names,
                user_defined_grad_outputs,
                no_grad_set,
                False,
            )
2451 2452 2453 2454
            fp32_grads = []
            for grad in dygraph_grad:
                if grad.dtype == np.uint16:
                    grad = convert_uint16_to_float(grad)
2455 2456 2457 2458 2459
                    max_relative_error = (
                        0.03
                        if max_relative_error < 0.03
                        else max_relative_error
                    )
2460 2461
                fp32_grads.append(grad)
            dygraph_grad = fp32_grads
2462 2463 2464 2465 2466 2467
            self._assert_is_close(
                numeric_grads,
                dygraph_grad,
                inputs_to_check,
                max_relative_error,
                "Gradient Check On %s" % str(place),
2468
                atol=atol,
2469
            )
2470 2471
            # ensure switch back eager dygraph
            g_disable_legacy_dygraph()
2472

2473
        if check_eager:
J
Jiabin Yang 已提交
2474 2475 2476
            with fluid.dygraph.base.guard(place):
                with _test_eager_guard():
                    eager_dygraph_grad = self._get_dygraph_grad(
2477 2478 2479 2480 2481 2482 2483
                        inputs_to_check,
                        place,
                        output_names,
                        user_defined_grad_outputs,
                        no_grad_set,
                        check_eager,
                    )
J
Jiabin Yang 已提交
2484 2485 2486 2487
                    fp32_grads = []
                    for grad in eager_dygraph_grad:
                        if grad.dtype == np.uint16:
                            grad = convert_uint16_to_float(grad)
2488 2489 2490 2491 2492
                            max_relative_error = (
                                0.03
                                if max_relative_error < 0.03
                                else max_relative_error
                            )
J
Jiabin Yang 已提交
2493 2494
                        fp32_grads.append(grad)
                    eager_dygraph_grad = fp32_grads
2495 2496 2497 2498 2499 2500
                    self._assert_is_close(
                        numeric_grads,
                        eager_dygraph_grad,
                        inputs_to_check,
                        max_relative_error,
                        "Gradient Check On %s" % str(place),
2501
                        atol=atol,
2502
                    )
2503

2504 2505 2506 2507 2508 2509 2510 2511 2512
    def _find_var_in_dygraph(self, output_vars, name):
        if name in output_vars:
            return output_vars[name]
        else:
            for output_vars_index in output_vars:
                for output_vars_selected in output_vars[output_vars_index]:
                    if output_vars_selected.name == name:
                        return output_vars_selected

2513 2514 2515 2516 2517 2518 2519 2520 2521
    def _get_dygraph_grad(
        self,
        inputs_to_check,
        place,
        output_names,
        user_defined_grad_outputs=None,
        no_grad_set=None,
        check_eager=False,
    ):
2522 2523 2524 2525 2526 2527 2528
        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
2529 2530
                op_proto, self.inputs, True, True, block
            )
2531 2532 2533

            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
2534 2535
                op_proto, self.outputs, False, False, block
            )
2536

2537
            # prepare attributes
2538 2539 2540 2541 2542
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
2543

2544
            if check_eager:
2545
                eager_outputs = self._calc_python_api_output(
2546 2547
                    place, inputs, outputs
                )
2548
            # if outputs is None, kernel sig is empty or other error is happens.
X
xiongkun 已提交
2549
            if not check_eager or eager_outputs is None:
2550 2551 2552 2553
                block.append_op(
                    type=self.op_type,
                    inputs=inputs,
                    outputs=outputs,
2554 2555
                    attrs=attrs_outputs if hasattr(self, "attrs") else None,
                )
X
xiongkun 已提交
2556 2557
            else:
                outputs = eager_outputs
2558

2559
            if self.dtype == np.uint16:
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
                cast_inputs = self._find_var_in_dygraph(
                    outputs, output_names[0]
                )
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape
                )
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32,
                    },
                )
2575 2576
                outputs = {output_names[0]: cast_outputs}

2577 2578 2579
            outputs_valid = {}
            for output_name in output_names:
                outputs_valid[output_name] = self._find_var_in_dygraph(
2580 2581
                    outputs, output_name
                )
2582

2583 2584 2585 2586 2587 2588 2589
            if user_defined_grad_outputs is None:
                if len(outputs_valid) == 1:
                    loss = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
2590 2591
                        shape=[1],
                    )
2592 2593 2594 2595 2596
                    for outputs_valid_key in outputs_valid:
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[outputs_valid_key]},
                            outputs={"Out": [loss]},
2597 2598
                            attrs=None,
                        )
2599 2600 2601 2602 2603 2604 2605
                else:
                    avg_sum = []
                    for cur_loss in outputs_valid:
                        cur_avg_loss = block.create_var(
                            dtype=self.dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
2606 2607 2608 2609 2610 2611 2612 2613
                            stop_gradient=False,
                        )
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[cur_loss]},
                            outputs={"Out": [cur_avg_loss]},
                            attrs=None,
                        )
2614 2615 2616 2617 2618 2619
                        avg_sum.append(cur_avg_loss)
                    loss_sum = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
2620 2621 2622 2623 2624 2625 2626 2627
                        shape=[1],
                    )
                    block.append_op(
                        type='sum',
                        inputs={"X": avg_sum},
                        outputs={"Out": loss_sum},
                        attrs=None,
                    )
2628
                    loss = block.create_var(
2629 2630 2631
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
2632
                        stop_gradient=False,
2633 2634 2635 2636 2637 2638 2639 2640
                        shape=[1],
                    )
                    block.append_op(
                        type='scale',
                        inputs={"X": loss_sum},
                        outputs={"Out": loss},
                        attrs={'scale': 1.0 / float(len(avg_sum))},
                    )
2641
                loss.backward()
2642

2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
                fetch_list_grad = []
                for inputs_to_check_name in inputs_to_check:
                    a = inputs_grad_dict[inputs_to_check_name].gradient()
                    fetch_list_grad.append(a)
                return fetch_list_grad
            else:
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                grad_outputs = []
                for grad_out_value in user_defined_grad_outputs:
                    grad_outputs.append(paddle.to_tensor(grad_out_value))
2655
                # delete the inputs which no need to calculate grad
C
chentianyu03 已提交
2656
                for no_grad_val in no_grad_set:
2657
                    del inputs[no_grad_val]
C
chentianyu03 已提交
2658

姜永久 已提交
2659
                if in_dygraph_mode():
2660
                    core.eager.run_backward(
2661 2662 2663
                        paddle.utils.flatten(outputs),
                        grad_outputs,
                        False,
2664
                    )
2665 2666 2667 2668 2669 2670 2671
                    grad_inputs = []
                    for inputs_list in inputs.values():
                        for inp in inputs_list:
                            grad_inputs.append(inp.grad.numpy())
                    return grad_inputs
                else:
                    grad_inputs = paddle.grad(
2672 2673
                        outputs=paddle.utils.flatten(outputs),
                        inputs=paddle.utils.flatten(inputs),
2674 2675
                        grad_outputs=grad_outputs,
                    )
2676
                    return [grad.numpy() for grad in grad_inputs]
2677

Y
Yu Yang 已提交
2678 2679 2680 2681 2682
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
2683
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
2684 2685
        return tensor

K
Kexin Zhao 已提交
2686
    @staticmethod
K
Kexin Zhao 已提交
2687 2688
    def np_dtype_to_fluid_dtype(input):
        return input
K
Kexin Zhao 已提交
2689

D
dzhwinter 已提交
2690 2691 2692 2693 2694 2695 2696 2697
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

2698 2699 2700 2701 2702 2703 2704 2705 2706
    def _get_gradient(
        self,
        input_to_check,
        place,
        output_names,
        no_grad_set,
        user_defined_grad_outputs=None,
        parallel=False,
    ):
C
Charles-hit 已提交
2707
        with paddle.fluid.framework._static_guard():
2708 2709 2710 2711
            prog = Program()
            scope = core.Scope()
            block = prog.global_block()
            self._append_ops(block)
Y
Yu Yang 已提交
2712

2713 2714 2715
            inputs = self._get_inputs(block)
            outputs = self._get_outputs(block)
            feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
2716

2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
            if user_defined_grad_outputs is None:
                if self.dtype == np.uint16:
                    cast_inputs = list(map(block.var, output_names))
                    cast_outputs = block.create_var(
                        dtype="float32", shape=cast_inputs[0].shape
                    )
                    cast_op = block.append_op(
                        inputs={"X": cast_inputs},
                        outputs={"Out": cast_outputs},
                        type="cast",
                        attrs={
                            "in_dtype": core.VarDesc.VarType.BF16,
                            "out_dtype": core.VarDesc.VarType.FP32,
                        },
                    )
                    cast_op.desc.infer_var_type(block.desc)
                    cast_op.desc.infer_shape(block.desc)
                    output_names = [cast_outputs.name]
                loss = append_loss_ops(block, output_names)
                param_grad_list = append_backward(
                    loss=loss,
                    parameter_list=input_to_check,
                    no_grad_set=no_grad_set,
2740
                )
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
                fetch_list = [g for p, g in param_grad_list]
            else:
                assert (
                    parallel is False
                ), "unsupported parallel mode when giving custom grad outputs."
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                grad_outputs = []
                for grad_out_value in user_defined_grad_outputs:
                    # `presistable` is used to avoid executor create new var in local scope
                    var = block.create_var(
                        shape=grad_out_value.shape,
                        dtype=grad_out_value.dtype,
                        persistable=True,
                    )
                    true_var = scope.var(var.name)
                    tensor = true_var.get_tensor()
                    tensor.set(grad_out_value, place)
                    grad_outputs.append(var)
                targets = [
                    outputs[name] for name in outputs if name in output_names
                ]
                inputs = [
                    inputs[name] for name in input_to_check if name in inputs
                ]
                grad_inputs = paddle.static.gradients(
                    targets, inputs, grad_outputs, no_grad_set
2769
                )
2770 2771 2772 2773 2774 2775
                fetch_list = grad_inputs

            if parallel:
                use_cuda = False
                if isinstance(place, fluid.CUDAPlace):
                    use_cuda = True
2776
                compiled_prog = fluid.CompiledProgram(prog)
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
                prog = compiled_prog
            executor = fluid.Executor(place)
            res = list(
                map(
                    np.array,
                    executor.run(
                        prog,
                        feed_dict,
                        fetch_list,
                        scope=scope,
                        return_numpy=False,
                    ),
2789 2790
                )
            )
2791
        return res
A
arlesniak 已提交
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801


class OpTestTool:
    @classmethod
    def skip_if(cls, condition: object, reason: str):
        return unittest.skipIf(condition, reason)

    @classmethod
    def skip_if_not_cpu_bf16(cls):
        return OpTestTool.skip_if(
2802 2803 2804 2805 2806 2807
            not (
                isinstance(_current_expected_place(), core.CPUPlace)
                and core.supports_bfloat16()
            ),
            "Place does not support BF16 evaluation",
        )
2808 2809 2810 2811 2812

    @classmethod
    def skip_if_not_cpu(cls):
        return OpTestTool.skip_if(
            not isinstance(_current_expected_place(), core.CPUPlace),
2813 2814
            "OneDNN supports only CPU for now",
        )