op_test.py 97.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

B
baojun 已提交
17
import os
18
import unittest
19
import warnings
20
import numpy as np
21
import random
M
minqiyang 已提交
22
import six
23
import struct
24
import time
25
import itertools
Y
Yu Yang 已提交
26
import collections
M
minqiyang 已提交
27
from collections import defaultdict
28
from copy import copy
29

30
import paddle
31
import paddle.fluid as fluid
32
from paddle.fluid.framework import _dygraph_tracer
33
import paddle.fluid.core as core
J
Jiabin Yang 已提交
34
from paddle.fluid.framework import _in_legacy_dygraph, _enable_legacy_dygraph, _in_eager_without_dygraph_check, _disable_legacy_dygraph
35
from paddle.fluid.framework import _test_eager_guard
36 37 38
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
A
arlesniak 已提交
39
from paddle.fluid.framework import Program, OpProtoHolder, Variable, _current_expected_place
40 41 42 43 44
from paddle.fluid.tests.unittests.testsuite import (
    create_op,
    set_input,
    append_input_output,
    append_loss_ops, )
45
from paddle.fluid import unique_name
46 47 48 49 50 51 52
from paddle.fluid.tests.unittests.white_list import (
    op_accuracy_white_list,
    check_shape_white_list,
    compile_vs_runtime_white_list,
    no_check_set_white_list,
    op_threshold_white_list,
    no_grad_set_white_list, )
53
from paddle.fluid.dygraph.dygraph_to_static.utils import parse_arg_and_kwargs
54

55 56 57 58 59
# For switch new eager mode globally
g_is_in_eager = _in_eager_without_dygraph_check()
g_enable_legacy_dygraph = _enable_legacy_dygraph if g_is_in_eager else lambda: None
g_disable_legacy_dygraph = _disable_legacy_dygraph if g_is_in_eager else lambda: None

60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
def check_out_dtype(api_fn, in_specs, expect_dtypes, target_index=0, **configs):
    """
    Determines whether dtype of output tensor is as expected.

    Args:
        api_fn(callable):  paddle api function
        in_specs(list[tuple]): list of shape and dtype information for constructing input tensor of api_fn, such as [(shape, dtype), (shape, dtype)].
        expected_dtype(list[str]): expected dtype of output tensor.
        target_index(int): indicate which one from in_specs to infer the dtype of output.
        config(dict): other arguments of paddle api function

    Example:
        check_out_dtype(fluid.layers.pad_constant_like, [([2,3,2,3], 'float64'), ([1, 3, 1,3], )], ['float32', 'float64', 'int64'], target_index=1, pad_value=0.)

    """
    paddle.enable_static()
    for i, expect_dtype in enumerate(expect_dtypes):
        with paddle.static.program_guard(paddle.static.Program()):
            input_t = []
            for index, spec in enumerate(in_specs):
                if len(spec) == 1:
                    shape = spec[0]
                    dtype = expect_dtype if target_index == index else 'float32'
                elif len(spec) == 2:
                    shape, dtype = spec
                else:
                    raise ValueError(
                        "Value of in_specs[{}] should contains two elements: [shape, dtype]".
                        format(index))
                input_t.append(
                    paddle.static.data(
                        name='data_%s' % index, shape=shape, dtype=dtype))

            out = api_fn(*input_t, **configs)
            out_dtype = fluid.data_feeder.convert_dtype(out.dtype)

            if out_dtype != expect_dtype:
                raise ValueError(
                    "Expected out.dtype is {}, but got {} from {}.".format(
                        expect_dtype, out_dtype, api_fn.__name__))


103 104 105 106 107 108 109 110
def _set_use_system_allocator(value=None):
    USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
    old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
    value = old_value if value is None else value
    core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
    return old_value


111 112 113 114
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
M
minqiyang 已提交
115
    for i in six.moves.xrange(len(prob)):
116 117 118 119
        prob[i] /= prob_sum[i]
    return prob


120 121
def get_numeric_gradient(place,
                         scope,
122 123 124
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
125
                         output_names,
126
                         delta=0.005,
C
chengduo 已提交
127
                         in_place=False):
Y
Yu Yang 已提交
128
    # FIXME: change this method by compile time concepts
129
    set_input(scope, op, inputs, place)
130 131

    def product(dim):
M
minqiyang 已提交
132
        return six.moves.reduce(lambda a, b: a * b, dim, 1)
133 134

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
135 136
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
137
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
138
        tensor_to_check_dtype = np.float32
139
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
140
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
141 142 143 144
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
145 146
    elif tensor_to_check_dtype == core.VarDesc.VarType.BF16:
        tensor_to_check_dtype = np.float32
L
Lijunhui 已提交
147 148 149 150
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX64:
        tensor_to_check_dtype = np.complex64
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX128:
        tensor_tp_check_dtype = np.complex128
151
    else:
152 153
        raise ValueError("Not supported data type " + str(tensor_to_check_dtype)
                         + ", tensor name : " + str(input_to_check))
154

C
chengduo 已提交
155 156 157 158
    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
159
            output_numpy = np.array(scope.find_var(output_name).get_tensor())
Y
Yiqun Liu 已提交
160 161 162
            # numpy.dtype does not have bfloat16, thus we use numpy.uint16 to
            # store bfloat16 data, and need to be converted to float to check
            # the floating precision.
163 164 165
            if tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
                output_numpy = convert_uint16_to_float(output_numpy)
            sum.append(output_numpy.astype(tensor_to_check_dtype).mean())
C
chengduo 已提交
166 167
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

168 169 170
    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
171 172 173 174
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
175 176 177
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            numpy_tensor = numpy_tensor.flatten()
178 179 180 181
            return struct.unpack('<f',
                                 struct.pack('<I',
                                             np.uint32(numpy_tensor[i])
                                             << np.uint32(16)))[0]
D
dzhwinter 已提交
182
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
183
            return tensor._get_float_element(i)
184
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
185
            return tensor._get_double_element(i)
186 187 188
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
189 190

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
191 192 193 194 195
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
196
            numpy_tensor = numpy_tensor.reshape(shape)
D
dzhwinter 已提交
197
            tensor.set(numpy_tensor, place)
198 199 200 201 202 203 204
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = np.uint16(copy_bits_from_float_to_uint16(e))
            numpy_tensor = numpy_tensor.reshape(shape)
            tensor.set(numpy_tensor, place)
D
dzhwinter 已提交
205
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
206
            tensor._set_float_element(i, e)
207
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
208
            tensor._set_double_element(i, e)
209 210 211
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
212

213 214
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
M
minqiyang 已提交
215
    for i in six.moves.xrange(tensor_size):
216
        if in_place:
217
            set_input(scope, op, inputs, place)
218 219

        # get one input element throw it's index i.
220
        origin = __get_elem__(tensor_to_check, i)
221 222
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
223
        __set_elem__(tensor_to_check, i, x_pos)
224 225 226
        y_pos = get_output()

        if in_place:
227
            set_input(scope, op, inputs, place)
228 229

        x_neg = origin - delta
230
        __set_elem__(tensor_to_check, i, x_neg)
231 232
        y_neg = get_output()

233
        __set_elem__(tensor_to_check, i, origin)
234 235
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
236
    return gradient_flat.reshape(tensor_to_check.shape())
237 238


239 240
def skip_check_grad_ci(reason=None):
    """Decorator to skip check_grad CI.
C
cc 已提交
241

242
       Check_grad is required for Op test cases. However, there are some special
C
cc 已提交
243
       cases that do not need to do check_grad. This decorator is used to skip the
244
       check_grad of the above cases.
C
cc 已提交
245 246

       Note: the execution of unit test will not be skipped. It just avoids check_grad
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
       checking in tearDownClass method by setting a `no_need_check_grad` flag.

       Example:
           @skip_check_grad_ci(reason="For inference, check_grad is not required.")
           class TestInference(OpTest):
    """
    if not isinstance(reason, str):
        raise AssertionError("The reason for skipping check_grad is required.")

    def wrapper(cls):
        cls.no_need_check_grad = True
        return cls

    return wrapper


263 264 265 266
def copy_bits_from_float_to_uint16(f):
    return struct.unpack('<I', struct.pack('<f', f))[0] >> 16


267 268 269 270
def convert_float_to_uint16(float_list, data_format="NCHW"):
    if data_format == "NHWC":
        float_list = np.transpose(float_list, [0, 3, 1, 2])

271 272 273
    new_output = []
    for x in np.nditer(float_list):
        new_output.append(np.uint16(copy_bits_from_float_to_uint16(x)))
274
    new_output = np.reshape(new_output, float_list.shape).view(np.uint16)
275

276 277 278
    if data_format == "NHWC":
        new_output = np.transpose(new_output, [0, 2, 3, 1])
    return new_output
279 280


281 282 283
def convert_uint16_to_float(in_list):
    in_list = np.asarray(in_list)
    out = np.vectorize(
284
        lambda x: struct.unpack('<f', struct.pack('<I', np.uint32(x) << np.uint32(16)))[0],
285 286
        otypes=[np.float32])(in_list.flat)
    return np.reshape(out, in_list.shape)
287 288


289
class OpTest(unittest.TestCase):
290 291 292 293 294
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
295
        cls.call_once = False
296
        cls.dtype = None
297
        cls.outputs = {}
298
        cls.input_shape_is_large = True
299 300 301 302

        np.random.seed(123)
        random.seed(124)

303 304 305 306
        if paddle.is_compiled_with_npu():
            cls._use_system_allocator = _set_use_system_allocator(False)
        else:
            cls._use_system_allocator = _set_use_system_allocator(True)
307

308 309
    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
310
        """Restore random seeds"""
311 312 313
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

314 315
        _set_use_system_allocator(cls._use_system_allocator)

316 317 318 319
        def is_empty_grad_op(op_type):
            all_op_kernels = core._get_all_register_op_kernels()
            grad_op = op_type + '_grad'
            if grad_op in all_op_kernels.keys():
J
juncaipeng 已提交
320
                if is_mkldnn_op_test():
321 322 323 324 325 326 327 328
                    grad_op_kernels = all_op_kernels[grad_op]
                    for grad_op_kernel in grad_op_kernels:
                        if 'MKLDNN' in grad_op_kernel:
                            return False
                else:
                    return False
            return True

329 330 331
        def is_xpu_op_test():
            return hasattr(cls, "use_xpu") and cls.use_xpu == True

J
juncaipeng 已提交
332
        def is_mkldnn_op_test():
333
            return hasattr(cls, "use_mkldnn") and cls.use_mkldnn == True
J
juncaipeng 已提交
334

335 336 337
        def is_rocm_op_test():
            return core.is_compiled_with_rocm()

338 339 340
        def is_npu_op_test():
            return hasattr(cls, "use_npu") and cls.use_npu == True

341 342 343
        def is_mlu_op_test():
            return hasattr(cls, "use_mlu") and cls.use_mlu == True

344 345
        if not hasattr(cls, "op_type"):
            raise AssertionError(
346 347
                "This test do not have op_type in class attrs, "
                "please set self.__class__.op_type=the_real_op_type manually.")
348

J
juncaipeng 已提交
349 350
        # case in NO_FP64_CHECK_GRAD_CASES and op in NO_FP64_CHECK_GRAD_OP_LIST should be fixed
        if not hasattr(cls, "no_need_check_grad") \
351
            and not is_empty_grad_op(cls.op_type):
J
juncaipeng 已提交
352
            if cls.dtype is None or \
353 354
                (cls.dtype == np.float16 \
                    and cls.op_type not in op_accuracy_white_list.NO_FP16_CHECK_GRAD_OP_LIST \
J
juncaipeng 已提交
355 356 357 358
                    and not hasattr(cls, "exist_check_grad")):
                raise AssertionError("This test of %s op needs check_grad." %
                                     cls.op_type)

359
            # check for op test with fp64 precision, but not check mkldnn op test for now
J
juncaipeng 已提交
360 361
            if cls.dtype in [np.float32, np.float64] \
                and cls.op_type not in op_accuracy_white_list.NO_FP64_CHECK_GRAD_OP_LIST \
362
                and not hasattr(cls, 'exist_fp64_check_grad') \
363
                and not is_xpu_op_test() \
364
                and not is_mkldnn_op_test() \
365
                and not is_rocm_op_test() \
366 367
                and not is_npu_op_test() \
                and not is_mlu_op_test():
J
juncaipeng 已提交
368 369 370 371
                raise AssertionError(
                    "This test of %s op needs check_grad with fp64 precision." %
                    cls.op_type)

372
            if not cls.input_shape_is_large \
373 374 375 376
                and cls.op_type not in check_shape_white_list.NEED_TO_FIX_OP_LIST:
                raise AssertionError(
                    "Input's shape should be large than or equal to 100 for " +
                    cls.op_type + " Op.")
377

378 379 380 381 382
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

383
    def is_bfloat16_op(self):
Y
Yiqun Liu 已提交
384 385
        # self.dtype is the dtype of inputs, and is set in infer_dtype_from_inputs_outputs.
        # Make sure this function is called after calling infer_dtype_from_inputs_outputs.
386
        return self.dtype == np.uint16 or (
Y
Yiqun Liu 已提交
387 388 389
            hasattr(self, 'output_dtype') and
            self.output_dtype == np.uint16) or (
                hasattr(self, 'mkldnn_data_type') and
390
                getattr(self, 'mkldnn_data_type') == "bfloat16") or (
Y
Yiqun Liu 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403
                    hasattr(self, 'attrs') and
                    'mkldnn_data_type' in self.attrs and
                    self.attrs['mkldnn_data_type'] == 'bfloat16')

    def is_mkldnn_op(self):
        return (hasattr(self, "use_mkldnn") and self.use_mkldnn == True) or (
            hasattr(self, "attrs") and "use_mkldnn" in self.attrs and
            self.attrs["use_mkldnn"] == True)

    def is_xpu_op(self):
        return (hasattr(self, "use_xpu") and self.use_xpu == True) or (
            hasattr(self, "attrs") and "use_xpu" in self.attrs and
            self.attrs["use_xpu"] == True)
404

405
    # set the self.output_dtype .
406
    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
J
juncaipeng 已提交
407 408 409 410
        def is_np_data(input):
            return isinstance(input, (np.ndarray, np.generic))

        def infer_dtype(numpy_dict, dtype_set):
411 412 413
            assert isinstance(
                numpy_dict,
                dict), "self.inputs, self.outputs must be numpy_dict"
J
juncaipeng 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
            # the inputs are as follows:
            # case 1: inputs = {'X': x}
            # case 2: inputs = {'X': (x, x_lod)}
            # case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
            # case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
            # TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
            for _, var_value in six.iteritems(numpy_dict):
                if is_np_data(var_value):  # case 1
                    dtype_set.add(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):  # case 2, 3, 4
                    for sub_val_value in var_value:
                        if is_np_data(sub_val_value):  # case 2
                            dtype_set.add(sub_val_value.dtype)
                        elif len(sub_val_value) > 1 and is_np_data(
                                sub_val_value[1]):  # case 3
                            dtype_set.add(sub_val_value[1].dtype)
                        elif len(sub_val_value) > 1 and isinstance(sub_val_value[1], (list, tuple)) \
                            and is_np_data(sub_val_value[1][0]): # case 4
                            dtype_set.add(sub_val_value[1][0].dtype)

        # infer dtype from inputs, and dtype means the precision of the test
        # collect dtype of all inputs
Y
Yiqun Liu 已提交
436 437
        input_dtype_set = set()
        infer_dtype(inputs, input_dtype_set)
J
juncaipeng 已提交
438 439
        dtype_list = [
            np.dtype(np.float64), np.dtype(np.float32), np.dtype(np.float16),
440 441 442
            np.dtype(np.int64), np.dtype(np.int32), np.dtype(np.uint16),
            np.dtype(np.int16), np.dtype(np.int8), np.dtype(np.uint8),
            np.dtype(np.bool)
J
juncaipeng 已提交
443 444 445
        ]
        # check the dtype in dtype_list in order, select the first dtype that in dtype_set
        for dtype in dtype_list:
Y
Yiqun Liu 已提交
446
            if dtype in input_dtype_set:
J
juncaipeng 已提交
447 448
                self.dtype = dtype
                break
Y
Yiqun Liu 已提交
449
        # save input dtype in class attr
450
        self.__class__.dtype = self.dtype
451

Y
Yiqun Liu 已提交
452 453 454 455 456 457 458 459
        # infer dtype of outputs
        output_dtype_set = set()
        infer_dtype(outputs, output_dtype_set)
        for dtype in dtype_list:
            if dtype in output_dtype_set:
                self.output_dtype = dtype
                break

Y
Yang Yang(Tony) 已提交
460 461 462 463 464 465
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
466
                    if isinstance(np_value, tuple):
467
                        tensor.set(np_value[0], place)
468
                        tensor.set_recursive_sequence_lengths(np_value[1])
469
                    else:
470
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
471 472 473 474
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
475
                    tensor.set(self.inputs[var_name][0], place)
476 477
                    tensor.set_recursive_sequence_lengths(self.inputs[var_name][
                        1])
Y
Yang Yang(Tony) 已提交
478
                else:
479
                    tensor.set(self.inputs[var_name], place)
Y
Yang Yang(Tony) 已提交
480 481 482
                feed_map[var_name] = tensor
        return feed_map

483
    def _append_ops(self, block):
J
juncaipeng 已提交
484
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
Y
Yiqun Liu 已提交
485
        if self.is_mkldnn_op():
486
            self.__class__.use_mkldnn = True
C
cc 已提交
487

Y
Yiqun Liu 已提交
488
        if self.is_xpu_op():
489 490
            self.__class__.use_xpu = True

Y
Yang Yang(Tony) 已提交
491
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
492
        "infer datatype from inputs and outputs for this test case"
493 494 495 496 497 498
        if self.is_bfloat16_op():
            self.dtype = np.uint16
            self.__class__.dtype = self.dtype
            self.output_dtype = np.uint16
        else:
            self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
499 500 501 502
        inputs = append_input_output(block, op_proto, self.inputs, True,
                                     self.dtype)
        outputs = append_input_output(block, op_proto, self.outputs, False,
                                      self.dtype)
P
phlrain 已提交
503 504 505 506 507 508 509 510 511

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True)

Y
Yang Yang(Tony) 已提交
512 513 514 515
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
516
            attrs=copy(self.attrs) if hasattr(self, "attrs") else dict())
C
cc 已提交
517
        # infer variable type and infer shape in compile-time
Q
QI JUN 已提交
518 519
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
520

521 522
        return op

523 524
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
M
minqiyang 已提交
525
        for name, value in six.iteritems(numpy_inputs):
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

M
minqiyang 已提交
545 546 547 548
    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
L
lujun 已提交
549
            v = fluid.dygraph.base.to_variable(value=data)
550
            v.value().get_tensor().set_recursive_sequence_lengths(lod)
M
minqiyang 已提交
551 552
            return v
        else:
L
lujun 已提交
553
            return fluid.dygraph.base.to_variable(value)
M
minqiyang 已提交
554

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
    def get_sequence_batch_size_1_input(self, lod=None, shape=None):
        """Get LoD input data whose batch size is 1.
        All sequence related OP unittests should call this function to contain the case of batch size = 1.
        Args:
            lod (list[list of int], optional): Length-based LoD, length of lod[0] should be 1. Default: [[13]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod) : LoD input data whose batch size is 1.
        """
        if lod is None:
            lod = [[13]]
        if shape is None:
            shape = [13, 23]
        assert len(lod[0]) == 1
        assert lod[0][0] == shape[0]
        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
    def lod_has_single_zero(self, lod):
        for i in range(len(lod) - 2):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] != 0:
                return True
        return False

    def lod_has_continuous_zero(self, lod):
        for i in range(len(lod) - 3):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] == 0 and lod[
                    i + 3] != 0:
                return True
        return False

    def get_sequence_instance_size_0_input(self, lod=None, shape=None):
        """Get LoD input data whose instance size is 0.
        All sequence related OP unittests should call this function to contain the case of instance size is 0.
        Args:
            lod (list[list of int], optional): Length-based LoD, lod[0]'s size must at least eight, lod[0] must at least two zeros at the beginning and at least two zeros at the end, the middle position of lod[0] contains a single zero and multiple zero. Default: [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod): LoD input data whose instance size is 0.
        """
        if lod is None:
            lod = [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]]
        if shape is None:
            shape = [12, 10]
        assert len(lod[0]) >= 8
        assert lod[0][0] == 0 and lod[0][1] == 0 and lod[0][-1] == 0 and lod[0][
            -2] == 0
        assert self.lod_has_single_zero(lod[0]) is True
        assert self.lod_has_continuous_zero(lod[0]) is True
        assert sum(lod[0]) == shape[0]

        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

609 610 611 612 613 614 615 616 617 618 619 620 621
    def append_input_output_for_dygraph(self, op_proto, np_list, is_input,
                                        if_return_inputs_grad_dict, block):
        def create_var(np_value, name, is_input, if_return_inputs_grad_dict):
            np_value_temp = np_value
            has_lod = False
            lod_temp = None
            if isinstance(np_value, tuple):
                np_value_temp = np_value[0]
                has_lod = True
                lod_temp = np_value[1]

            if is_input:
                v = self._create_var_from_numpy(np_value_temp)
622

623 624
                if if_return_inputs_grad_dict:
                    v.stop_gradient = False
J
Jiabin Yang 已提交
625
                    if not _in_legacy_dygraph():
626 627
                        v.retain_grads()

628
                if has_lod:
629
                    v.value().get_tensor().set_recursive_sequence_lengths(
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
                        lod_temp)
            else:
                v = block.create_var(
                    name=name,
                    dtype=np_value_temp.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False)
            return v

        # prepare variable for input or output
        var_dict = defaultdict(list)
        if if_return_inputs_grad_dict:
            inputs_grad_dict = defaultdict()
        proto_list = op_proto.inputs if is_input else op_proto.outputs
        for var_proto in proto_list:
            name = var_proto.name
            if (name not in np_list) and var_proto.dispensable:
                continue
            if name not in np_list:
                assert var_proto.intermediate, "{} not found".format(name)
                v = block.create_var(
                    dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v
                continue
            if var_proto.duplicable:
                assert isinstance(
                    np_list[name],
                    list), "Duplicable {} should be set as list".format(name)
                var_list = []
                slot_name = name
                for (name, np_value) in np_list[name]:
                    v = create_var(np_value, name, is_input,
                                   if_return_inputs_grad_dict)
                    var_list.append(v)
                    if if_return_inputs_grad_dict:
                        inputs_grad_dict[name] = v
                var_dict[slot_name] = var_list
            else:
                nplist_value_temp = None
                name_temp = None
                if isinstance(np_list[name], list):
                    nplist_value_temp = np_list[name][0]
                    name_temp = name
                else:
                    nplist_value_temp = np_list[name]
                    name_temp = unique_name.generate("%s_out" % (name))
                v = create_var(nplist_value_temp, name_temp, is_input,
                               if_return_inputs_grad_dict)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v

        if if_return_inputs_grad_dict:
            return var_dict, inputs_grad_dict
        else:
            return var_dict

690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
    def _check_api_outs_by_dygraph_outs(self, api_outs, dygraph_outs, place):
        """ for quick verify, here we take a simplest strategy:
                1. we only check variable in api_outs.
                2. we simply check the numpy (tensor) .
                3. we set atol and rtol as 1e-5, because they are unrelated to dtype.
        """
        for name in api_outs:
            np_api = np.array(api_outs[name])
            np_dyg = np.array(dygraph_outs[name])
            self.assertTrue(
                np.allclose(
                    np_api, np_dyg, equal_nan=False),
                "Output (" + name + ") has diff at " + str(place) + "\nExpect "
                + str(np_dyg) + "\n" + "But Got" + str(np_api) + " in class " +
                self.__class__.__name__)

706 707 708 709
    def _calc_python_api_output(self, place, egr_inps=None, egr_oups=None):
        """ set egr_inps and egr_oups = None if you want to create it by yourself.
        """

710
        def prepare_python_api_arguments(api, op_proto_ins, op_proto_attrs,
711 712
                                         kernel_sig):
            """ map from `op proto inputs and attrs` to `api input list and api attrs dict`
Z
zyfncg 已提交
713 714
                
                NOTE: the op_proto_attrs and op_proto_ins is a default dict. default value is []
715
            """
716 717 718 719 720 721 722

            class Empty:
                pass

            def is_empty(a):
                return isinstance(a, Empty)

723 724 725 726 727
            def get_default(idx, defaults):
                assert not isinstance(
                    defaults[idx], Empty
                ), "%d-th params of python api don't have default value." % idx
                return defaults[idx]
728 729 730 731

            def to_defaults_list(params, defaults):
                return [defaults[p] for p in params if p in defaults]

732 733 734 735 736 737 738 739 740
            def parse_attri_value(name, op_inputs, op_attrs):
                """ parse true value from inputs and attrs, if there is no name passed by OpTest, return Empty
                    1. if the name in op_attrs, use the op_attrs[name]
                    2. if the name in op_inputs, convert the op_inputs to [type of default value]
                    3. if the name not in op_attrs ans op_inputs, return Empty. (this will use the default value from python api)
                """
                if name in op_proto_attrs:
                    return op_proto_attrs[name]
                elif name in op_inputs:
X
xiongkun 已提交
741 742 743 744 745 746 747 748
                    if len(op_inputs[name]) == 1:
                        # why don't use numpy().item() : if the Tensor is float64, we will change it to python.float32, where we loss accuracy: [allclose_op]
                        # why we reconstruct a tensor: because we want the tensor in cpu. 
                        return paddle.to_tensor(
                            op_inputs[name][0].numpy(), place='cpu')
                    else:
                        # if this is a list (test_unsqueeze2_op): we just pass it into the python api.
                        return op_inputs[name]
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
                else:
                    return Empty()

            # NOTE(xiongkun): the logic of constructing parameters: 
            # for example:  
            #    python api: cumprod(x, dim, dtype=None, name=None) 
            #    kernel sig: [["x"], ["dim"], ["out"]]"
            #
            # we will construct a lot of list with the same length : len == len(api_params), here is 4
            #    api_params = ["x", "dim", "dtype", "name"]
            #    api_defaults = [Empty, Empty, None, None]; empty means no defaults.
            #    inputs_and_attrs = ["x", "dim"] , the length may shorter or longer than api_params
            #    input_arguments = [RealValue in self.inputs and self.attrs]
            # then ,we will loop for the api_params, construct a result list: 
            #    if the name in ['name', 'dtype', 'out', 'output'], we will use the default value
            #    else, we will consume a input_arguments. (because the name is not corresponding, so we only use the order)

            api_params, api_defaults = parse_arg_and_kwargs(api)
767
            api_defaults = to_defaults_list(api_params, api_defaults)
768 769 770 771 772
            api_defaults = [
                Empty() for i in range(len(api_params) - len(api_defaults))
            ] + api_defaults
            assert len(api_defaults) == len(
                api_params), "Error happens. contack xiongkun03 to solve."
773
            inputs_sig, attrs_sig, outputs_sig = kernel_sig
774
            inputs_and_attrs = inputs_sig + attrs_sig
Z
zyfncg 已提交
775 776 777
            input_arguments = [
                op_proto_ins.get(name, Empty()) for name in inputs_sig
            ] + [
778
                parse_attri_value(name, op_proto_ins, op_proto_attrs)
779 780 781
                for name in attrs_sig
            ]
            results = []
782 783 784 785 786
            api_ignore_param_list = set(['name', 'dtype', 'out', 'output'])
            idx_of_op_proto_arguments = 0
            for idx, arg_name in enumerate(api_params):
                if arg_name in api_ignore_param_list:
                    results.append(get_default(idx, api_defaults))
787
                else:
788 789 790 791 792 793
                    if (idx_of_op_proto_arguments < len(input_arguments)):
                        tmp = input_arguments[idx_of_op_proto_arguments]
                        idx_of_op_proto_arguments += 1
                    else:
                        tmp = Empty()  # use the default value

794 795 796 797 798
                    if isinstance(tmp, Empty):
                        results.append(get_default(idx, api_defaults))
                    else:
                        results.append(tmp)
            assert len(results) == len(api_params)
799
            return results
800 801

        def construct_output_dict_by_kernel_sig(ret_tuple, output_sig):
X
xiongkun 已提交
802 803
            if hasattr(self, "python_out_sig"):
                output_sig = self.python_out_sig
804 805
            if not isinstance(ret_tuple, (tuple, list)):
                ret_tuple = [ret_tuple]
806 807 808 809 810 811 812
            if len(output_sig) == len(ret_tuple):
                # [assumption]: we assume {"Out": [Tensor]}
                return {a: [b] for a, b in zip(output_sig, ret_tuple)}
            else:
                # [assumption]: return multi-Tensor in a single output. such as paddle.split()
                assert len(
                    output_sig
X
xiongkun 已提交
813
                ) == 1, "Don't support multi-output with multi-tensor output. (May be you can use set `python_out_sig`, see `test_squeeze2_op` as a example.)"
814
                return {output_sig[0]: ret_tuple}
815

816
        def assumption_assert_and_transform(args, inp_num):
817
            """
818
            transform inputs by the following rules:
819 820
                1. [Tensor] -> Tensor
                2. [Tensor, Tensor, ...] -> list of Tensors
Z
zyfncg 已提交
821 822
                3. None -> None
                4. Others: raise Error
823 824

            only support "X" is list of Tensor, currently don't support other structure like dict.
825
            """
Z
zyfncg 已提交
826 827 828
            inp_args = [[inp] if inp is None else inp
                        for inp in args[:inp_num]]  # convert None -> [None]
            for inp in inp_args:
829 830 831
                assert isinstance(
                    inp, list
                ), "currently only support `X` is [Tensor], don't support other structure."
Z
zyfncg 已提交
832 833
            args = [inp[0] if len(inp) == 1 else inp
                    for inp in inp_args] + args[inp_num:]
834
            return args
835

836 837 838 839 840 841 842 843 844 845
        def _get_kernel_signature(eager_tensor_inputs, eager_tensor_outputs,
                                  attrs_outputs):
            try:
                kernel_sig = _dygraph_tracer()._get_kernel_signature(
                    self.op_type, eager_tensor_inputs, eager_tensor_outputs,
                    attrs_outputs)
            except RuntimeError as re:
                """ we think the kernel_sig is missing.
                """
                kernel_sig = None
X
xiongkun 已提交
846 847 848
                print(
                    "[Warning: op_test.py] Kernel Signature is not found for %s, fall back to intermediate state."
                    % self.op_type)
849 850
            return kernel_sig

851
        def cal_python_api(python_api, args, kernel_sig):
852
            inputs_sig, attrs_sig, outputs_sig = kernel_sig
853 854
            args = assumption_assert_and_transform(args, len(inputs_sig))
            ret_tuple = python_api(*args)
855 856 857 858 859 860
            return construct_output_dict_by_kernel_sig(ret_tuple, outputs_sig)

        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
            # prepare input variable
861
            eager_tensor_inputs = egr_inps if egr_inps else self.append_input_output_for_dygraph(
862
                op_proto, self.inputs, True, False, block)
863
            # prepare output variable
864
            eager_tensor_outputs = egr_oups if egr_oups else self.append_input_output_for_dygraph(
865 866 867 868 869 870 871 872 873
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]

874 875 876 877
            kernel_sig = _get_kernel_signature(
                eager_tensor_inputs, eager_tensor_outputs, attrs_outputs)
            if not kernel_sig:
                return None
878 879
            assert hasattr(
                self, "python_api"
880
            ), "Detect there is KernelSignature for `%s` op, please set the `self.python_api` if you set check_eager = True" % self.op_type
881 882
            args = prepare_python_api_arguments(
                self.python_api, eager_tensor_inputs, attrs_outputs, kernel_sig)
883 884
            """ we directly return the cal_python_api value because the value is already tensor. 
            """
885
            return cal_python_api(self.python_api, args, kernel_sig)
886

L
lujun 已提交
887
    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
J
juncaipeng 已提交
888
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
L
lujun 已提交
889
        with fluid.dygraph.base.guard(place=place):
M
minqiyang 已提交
890 891
            block = fluid.default_main_program().global_block()

892
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
M
minqiyang 已提交
893

894 895 896
            # prepare input variable
            inputs = self.append_input_output_for_dygraph(op_proto, self.inputs,
                                                          True, False, block)
M
minqiyang 已提交
897
            # prepare output variable
898 899 900 901 902 903 904 905 906
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
907

M
minqiyang 已提交
908 909 910 911
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
912
                attrs=attrs_outputs if hasattr(self, "attrs") else None)
M
minqiyang 已提交
913
            return outputs
914

915 916 917 918 919 920
    def _calc_output(self,
                     place,
                     parallel=False,
                     no_check_set=None,
                     loss=None,
                     enable_inplace=None,
921
                     for_inplace_test=None):
922 923
        program = Program()
        block = program.global_block()
924
        op = self._append_ops(block)
925 926 927 928 929

        inputs = self._get_inputs(block)
        outputs = self._get_outputs(block)
        feed_map = self.feed_var(inputs, place)

930
        if for_inplace_test:
C
cc 已提交
931 932
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
933 934
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
935 936
            for out_name in op.output_arg_names:
                var = block.var(out_name)
937 938
                if 0 in var.shape:
                    var.persistable = True
939
        original_program = program
940 941
        if parallel:
            use_cuda = False
942
            if isinstance(place, fluid.CUDAPlace):
943
                use_cuda = True
944 945 946
            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                loss_name=loss.name if loss else None, places=place)
            program = compiled_prog
947 948 949 950
        fetch_list = getattr(self, "fetch_list", [])
        # if the fetch_list is customized by user, we use it directly.
        # if not, fill the fetch_list by the user configured outputs in test.
        if len(fetch_list) == 0:
M
minqiyang 已提交
951
            for var_name, var in six.iteritems(outputs):
952 953
                if no_check_set is not None and var_name in no_check_set:
                    continue
Y
Yang Yang(Tony) 已提交
954 955
                if isinstance(var, list):
                    for v in var:
956
                        fetch_list.append(v.name)
Y
Yang Yang(Tony) 已提交
957
                else:
958
                    fetch_list.append(var.name)
959 960 961 962
        # if the fetch_list still empty, fill the fetch_list by the operator output.
        if len(fetch_list) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                fetch_list.append(str(out_name))
963 964 965 966 967 968 969 970 971

        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace

            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                build_strategy=build_strategy, places=place)
            program = compiled_prog

972
        executor = Executor(place)
973 974 975 976
        outs = executor.run(program,
                            feed=feed_map,
                            fetch_list=fetch_list,
                            return_numpy=False)
977 978
        self.op = op
        self.program = original_program
979 980 981 982
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list
Y
Yang Yang(Tony) 已提交
983

984 985 986 987 988 989 990 991 992
    def _compare_expect_and_actual_outputs(self,
                                           place,
                                           fetch_list,
                                           expect_outs,
                                           actual_outs,
                                           inplace_atol=None):
        """Compare expect outs and actual outs of an tested op.

        Args:
C
cc 已提交
993
            place (CPUPlace | CUDAPlace): The place where the op runs.
994 995 996 997 998 999 1000 1001 1002 1003
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
C
cc 已提交
1004
            # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
1005 1006 1007
            # computational consistency.
            # When inplace_atol is not None, the inplace check uses numpy.allclose
            # to check inplace result instead of numpy.array_equal.
1008 1009
            expect_out = np.array(expect_outs[i])
            actual_out = np.array(actual_outs[i])
1010 1011 1012
            if inplace_atol is not None:
                self.assertTrue(
                    np.allclose(
1013
                        expect_out, actual_out, atol=inplace_atol),
1014 1015
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
1016 1017
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__)
1018 1019
            else:
                self.assertTrue(
1020
                    np.array_equal(expect_out, actual_out),
1021 1022
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
1023 1024
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__ + '\n')
1025 1026 1027 1028 1029 1030 1031 1032

    def _construct_grad_program_from_forward(self, fwd_program, grad_op_desc,
                                             op_grad_to_var):
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
1033
            op_grad_to_var (dict): The relation of variables in grad op and its forward op.
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
        for arg in grad_op_desc.input_arg_names(
        ) + grad_op_desc.output_arg_names():
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
                fwd_var_name)
            grad_var = grad_block.create_var(
                name=arg,
                dtype=fwd_var.dtype,
                shape=fwd_var.shape,
                type=fwd_var.type,
                persistable=False)

C
cc 已提交
1060 1061
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

    def _construct_grad_feed_map_from_forward(self, place, fwd_res,
                                              grad_op_desc, op_grad_to_var):
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
1077
            place (CPUPlace | CUDAPlace): The place where the op runs.
1078 1079 1080
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
1081
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op.
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)
        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
C
cc 已提交
1113

1114
        Args:
C
cc 已提交
1115 1116
            op_desc (OpDesc): The op_desc of current op.
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op.
1117
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
C
cc 已提交
1118

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
C
cc 已提交
1133
                # get grad_op_desc
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                    op_desc, set(), [])
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
                        if grad_op_desc.type(
                        ) not in visited_ops and _dfs_grad_op(
                                grad_op_desc, fwd_op_desc=op_desc):
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

    def _check_forward_inplace(self,
                               place,
                               no_check_set=None,
                               inplace_atol=None):
1157
        """Check the inplace correctness of given op (self.op_type).
1158
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
C
cc 已提交
1159

1160
        Args:
C
cc 已提交
1161
            place (CPUPlace | CUDAPlace): The place where the op runs.
1162 1163 1164 1165
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1166 1167
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1168 1169
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
        expect_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=False,
            for_inplace_test=True)
        actual_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=True,
            for_inplace_test=True)
1180
        # compare expect_outs and actual_outs
1181 1182 1183 1184 1185 1186
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
        return expect_res

    def _calc_grad_output(self,
                          place,
                          fwd_res,
                          grad_op_desc,
                          enable_inplace=None):
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
1200
            place (CPUPlace | CUDAPlace): The place where the op runs.
1201 1202 1203 1204 1205 1206 1207 1208 1209
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
1210
        grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(fwd_op_desc,
1211
                                                                  set(), [])
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
        grad_program = self._construct_grad_program_from_forward(
            fwd_program, grad_op_desc, op_grad_to_var)
        grad_feed_map = self._construct_grad_feed_map_from_forward(
            place, fwd_res, grad_op_desc, op_grad_to_var)
        grad_fetch_list = grad_op_desc.output_arg_names()
        exe = Executor(place)
        program = grad_program
        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace
            compiled_program = fluid.CompiledProgram(
                grad_program).with_data_parallel(
                    loss_name="", build_strategy=build_strategy, places=place)
            program = compiled_program
        outs = exe.run(program,
                       feed=grad_feed_map,
                       fetch_list=grad_fetch_list,
                       return_numpy=False)
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

    def _check_grad_inplace(self,
                            place,
                            fwd_res,
                            grad_op_desc,
                            inplace_atol=None):
1237
        """Check the inplace correctness of given grad_op_desc.
1238 1239 1240 1241 1242 1243

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
C
cc 已提交
1244
            place (CPUPlace | CUDAPlace): The place where the op runs.
1245 1246 1247 1248 1249 1250
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1251 1252
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
        """
        expect_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=False)
        actual_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=True)
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
        return expect_res
1265

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
    def check_inplace_output_with_place(self,
                                        place,
                                        no_check_set=None,
                                        inplace_atol=None):
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
C
cc 已提交
1276
            place (CPUPlace | CUDAPlace): The place where the op runs.
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)

        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True)
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
1292 1293
        if hasattr(self, 'attrs') and bool(self.attrs.get('use_xpu', False)):
            return
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
                        inplace_atol=inplace_atol)
                else:
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True)
            else:
1307 1308
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn
                # skip op that use_mkldnn currently
1309
                flags_use_mkldnn = fluid.core.globals()["FLAGS_use_mkldnn"]
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
                attrs_use_mkldnn = hasattr(
                    self,
                    'attrs') and bool(self.attrs.get('use_mkldnn', False))
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
                        place, fwd_res, op_desc, inplace_atol=inplace_atol)
1322
                else:
1323 1324
                    res[op_desc] = self._calc_grad_output(place, fwd_res,
                                                          op_desc)
1325

1326 1327
    def check_output_with_place(self,
                                place,
1328
                                atol=0,
1329
                                no_check_set=None,
M
minqiyang 已提交
1330
                                equal_nan=False,
1331
                                check_dygraph=True,
1332 1333
                                inplace_atol=None,
                                check_eager=False):
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
        def find_imperative_actual(target_name, dygraph_outs, place):
            for name in dygraph_outs:
                if name == target_name:
                    return dygraph_outs[name][0]
                var_list = dygraph_outs[name]
                for i, var in enumerate(var_list):
                    if var.name == target_name:
                        return dygraph_outs[name][i]
            self.assertTrue(False, "Found failed {} {}".format(
                dygraph_outs.keys(), target_name))

        def find_actual(target_name, fetch_list):
            found = [
                i for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            self.assertTrue(
                len(found) == 1, "Found {} {}".format(len(found), target_name))
            return found[0]

        class Checker(object):
            """ base class for check with self.outputs.
                currently don't support check between checkers.
            """

            def __init__(self, op_test, expect_dict):
                """ expect_dict is the self.outputs
                    support : {str: [numpy]} and {str: [(str, numpy), (str, numpy)]}
                """
                self.expects = expect_dict
                self.checker_name = "checker"
                self.op_test = op_test  # stop the op_test object.
                self.op_type = op_test.op_type

1368 1369 1370
            def init(self):
                pass

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
            def convert_uint16_to_float(self, actual_np, expect_np):
                raise NotImplementedError("base class, not implement!")

            def calculate_output(self):
                """
                judge whether convert current output and expect to uint16.
                return True | False
                """
                pass

            def _is_skip_name(self, name):
                if name not in self.expects:
                    return True
                if no_check_set is not None and name in no_check_set:
                    return True
                return False

            def find_actual_value(self, name):
                """ return: (actual_tensor(var_base), actual_numpy)
                """
                raise NotImplementedError("base class, not implement!")

            def _compare_numpy(self, name, actual_np, expect_np):
                self.op_test.assertTrue(
                    np.allclose(
                        actual_np,
                        expect_np,
                        atol=atol,
                        rtol=self.rtol if hasattr(self, 'rtol') else 1e-5,
                        equal_nan=equal_nan),
                    "Output (" + name + ") has diff at " + str(place) + " in " +
1402
                    self.checker_name)
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417

            def _compare_list(self, name, actual, expect):
                """ if expect is a tuple, we need to compare list.
                """
                raise NotImplementedError("base class, not implement!")

            def compare_single_output_with_expect(self, name, expect):
                actual, actual_np = self.find_actual_value(name)
                expect_np = expect[0] \
                    if isinstance(expect, tuple) else expect
                actual_np, expect_np = self.convert_uint16_to_float_ifneed(
                    actual_np, expect_np)
                # NOTE(zhiqiu): np.allclose([], [1.]) returns True
                # see details: https://stackoverflow.com/questions/38331703/why-does-numpys-broadcasting-sometimes-allow-comparing-arrays-of-different-leng
                if expect_np.size == 0:
1418
                    self.op_test.assertTrue(actual_np.size == 0)  # }}}
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
                self._compare_numpy(name, actual_np, expect_np)
                if isinstance(expect, tuple):
                    self._compare_list(name, actual, expect)

            def compare_outputs_with_expects(self):
                for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                    if self._is_skip_name(out_name): continue
                    if out_dup:
                        # if self.output = {'name': [(subname, Tensor), (subname, Tensor)]}
                        sub_out = self.expects[out_name]
                        if not isinstance(sub_out, list):
                            raise AssertionError("sub_out type %s is not list",
                                                 type(sub_out))
                        for item in sub_out:
                            sub_out_name, expect = item[0], item[1]
                            self.compare_single_output_with_expect(sub_out_name,
                                                                   expect)
                    else:
                        expect = self.expects[out_name]
                        self.compare_single_output_with_expect(out_name, expect)

            def check(self):
                """
                return None means ok, raise Error means failed.

                the main enter point of Checker class
                """
1446
                self.init()
1447 1448 1449 1450
                self.calculate_output()
                self.compare_outputs_with_expects()

        class StaticChecker(Checker):
1451 1452 1453
            def init(self):
                self.checker_name = "static checker"

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
            def calculate_output(self):
                outs, fetch_list = self.op_test._calc_output(
                    place, no_check_set=no_check_set)
                self.outputs = outs
                self.fetch_list = fetch_list

            def find_actual_value(self, name):
                idx = find_actual(name, self.fetch_list)
                actual = self.outputs[idx]
                actual_t = np.array(actual)
                return actual, actual_t

            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
                """
                judge whether convert current output and expect to uint16.
                return True | False
                """
                if actual_np.dtype == np.uint16 and expect_np.dtype in [
                        np.float32, np.float64
                ]:
                    actual_np = convert_uint16_to_float(actual_np)
                    self.rtol = 1.e-2
                else:
                    self.rtol = 1.e-5
                if expect_np.dtype == np.uint16 and actual_np.dtype == np.uint16:
                    nonlocal atol
                    expect_np = convert_uint16_to_float(expect_np)
                    actual_np = convert_uint16_to_float(actual_np)
                    atol = max(atol, 0.03)
                return actual_np, expect_np

            def _compare_list(self, name, actual, expect):
                """ if expect is a tuple, we need to compare list.
                """
                self.op_test.assertListEqual(
                    actual.recursive_sequence_lengths(), expect[1],
                    "Output (" + name + ") has different lod at " + str(place))

        class DygraphChecker(Checker):
1493 1494 1495
            def init(self):
                self.checker_name = "dygraph checker"

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
            def calculate_output(self):
                self.outputs = self.op_test._calc_dygraph_output(
                    place, no_check_set=no_check_set)

            def find_actual_value(self, name):
                with fluid.dygraph.base.guard(place=place):
                    imperative_actual = find_imperative_actual(
                        name, self.outputs, place)
                    imperative_actual_t = np.array(imperative_actual.value()
                                                   .get_tensor())
                    return imperative_actual, imperative_actual_t

            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
                if self.op_test.is_bfloat16_op():
                    if actual_np.dtype == np.uint16:
                        actual_np = convert_uint16_to_float(actual_np)
                    if expect_np.dtype == np.uint16:
X
xiongkun 已提交
1513
                        expect_np = convert_uint16_to_float(expect_np)
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
                return actual_np, expect_np

            def _compare_list(self, name, actual, expect):
                """ if expect is a tuple, we need to compare list.
                """
                with fluid.dygraph.base.guard(place=place):
                    self.op_test.assertListEqual(
                        actual.value().get_tensor()
                        .recursive_sequence_lengths(), expect[1],
                        "Output (" + name + ") has different lod at " +
                        str(place) + " in dygraph mode")

            def _compare_numpy(self, name, actual_np, expect_np):
                if six.moves.reduce(lambda x, y: x * y, actual_np.shape,
                                    1) == 0 and six.moves.reduce(
                                        lambda x, y: x * y, expect_np.shape,
                                        1) == 0:
                    pass
                else:
                    self.op_test.assertTrue(
                        np.allclose(
                            actual_np,
                            expect_np,
                            atol=atol,
                            rtol=self.rtol if hasattr(self, 'rtol') else 1e-5,
                            equal_nan=equal_nan),
                        "Output (" + name + ") has diff at " + str(place) +
1541
                        " in " + self.checker_name)
1542 1543

        class EagerChecker(DygraphChecker):
1544 1545 1546
            def init(self):
                self.checker_name = "eager checker"

1547 1548 1549
            def calculate_output(self):
                # we only check end2end api when check_eager=True
                with _test_eager_guard():
1550
                    self.is_python_api_test = True
1551 1552 1553
                    eager_dygraph_outs = self.op_test._calc_python_api_output(
                        place)
                    if eager_dygraph_outs is None:
X
xiongkun 已提交
1554
                        self.is_python_api_test = False
1555
                        # missing KernelSignature, fall back to eager middle output.
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
                        eager_dygraph_outs = self.op_test._calc_dygraph_output(
                            place, no_check_set=no_check_set)
                self.outputs = eager_dygraph_outs

            def _compare_numpy(self, name, actual_np, expect_np):
                with _test_eager_guard():
                    super()._compare_numpy(name, actual_np, expect_np)

            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
                with _test_eager_guard():
                    return super().convert_uint16_to_float_ifneed(actual_np,
                                                                  expect_np)

            def find_actual_value(self, name):
                with _test_eager_guard():
                    return super().find_actual_value(name)

            def _compare_list(self, name, actual, expect):
                """ if expect is a tuple, we need to compare list.
                """
                with _test_eager_guard():
                    super()._compare_list(name, actual, expect)

X
xiongkun 已提交
1579 1580 1581 1582 1583 1584 1585
            def _is_skip_name(self, name):
                # if in final state and kernel signature don't have name, then skip it.
                if self.is_python_api_test and hasattr(
                        self.op_test, "python_out_sig"
                ) and name not in self.op_test.python_out_sig:
                    return True
                return super()._is_skip_name(name)
1586

X
xiongkun 已提交
1587 1588
        # set some flags by the combination of arguments. 
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
1589 1590 1591 1592
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST:
            atol = 0

1593
        if self.is_bfloat16_op():
Y
Yiqun Liu 已提交
1594 1595
            if self.is_mkldnn_op():
                check_dygraph = False
1596
                check_eager = False
Y
Yiqun Liu 已提交
1597 1598 1599 1600 1601
                if hasattr(self, 'force_fp32_output') and getattr(
                        self, 'force_fp32_output'):
                    atol = 1e-2
                else:
                    atol = 2
1602
            else:
1603
                atol = 1e-1
1604

1605 1606 1607
        if no_check_set is not None:
            if self.op_type not in no_check_set_white_list.no_check_set_white_list:
                raise AssertionError(
X
xiongkun 已提交
1608
                    "no_check_set of op %s must be set to None." % self.op_type)
1609 1610 1611
        static_checker = StaticChecker(self, self.outputs)
        static_checker.check()
        outs, fetch_list = static_checker.outputs, static_checker.fetch_list
L
lujun 已提交
1612
        if check_dygraph:
1613 1614 1615
            # always enable legacy dygraph
            g_enable_legacy_dygraph()

1616 1617 1618
            dygraph_checker = DygraphChecker(self, self.outputs)
            dygraph_checker.check()
            dygraph_outs = dygraph_checker.outputs
1619 1620
            # yield the original state
            g_disable_legacy_dygraph()
1621
        if check_eager:
1622 1623 1624
            eager_checker = EagerChecker(self, self.outputs)
            eager_checker.check()
            eager_dygraph_outs = eager_checker.outputs
1625

C
cc 已提交
1626
        # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
1627 1628
        # computational consistency.
        # For example, group_norm uses AtomicAdd on CUDAPlace, which do not ensure
C
cc 已提交
1629
        # computation order when multiple threads write the same address. So the
L
Leo Chen 已提交
1630 1631 1632
        # result of group_norm is non-deterministic when datatype is float.
        # When inplace_atol is not None, the inplace check uses numpy.allclose
        # to check inplace result instead of numpy.array_equal.
1633 1634
        if inplace_atol is not None:
            warnings.warn(
L
Leo Chen 已提交
1635 1636
                "inplace_atol should only be set when op doesn't ensure computational consistency, please check it!"
            )
1637
        # Check inplace for given op, its grad op, its grad_grad op, etc.
C
cc 已提交
1638
        # No effect on original OpTest
1639
        # Currently not support ParallelExecutor on XPUPlace.
1640
        if not paddle.is_compiled_with_xpu(
1641 1642
        ) and not paddle.is_compiled_with_npu(
        ) and not paddle.is_compiled_with_mlu():
1643 1644
            self.check_inplace_output_with_place(
                place, no_check_set=no_check_set, inplace_atol=inplace_atol)
1645

1646 1647 1648
        if check_eager:
            return outs, dygraph_outs, eager_dygraph_outs, fetch_list
        elif check_dygraph:
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
            return outs, dygraph_outs, fetch_list
        else:
            return outs, fetch_list

    def check_compile_vs_runtime(self, fetch_list, fetch_outs):
        def find_fetch_index(target_name, fetch_list):
            found = [
                i for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            if len(found) == 0:
                return -1
            else:
                self.assertTrue(
                    len(found) == 1,
                    "Found {} {}".format(len(found), target_name))
                return found[0]

        for name in self.op.desc.output_names():
            var_names = self.op.desc.output(name)
            for var_name in var_names:
                i = find_fetch_index(var_name, fetch_list)
                if i == -1:
                    # The output is dispensiable or intermediate.
                    break
                out = fetch_outs[i]
                if isinstance(out, core.LoDTensor):
                    lod_level_runtime = len(out.lod())
                else:
                    if isinstance(out, core.LoDTensorArray):
                        warnings.warn(
                            "The check of LoDTensorArray's lod_level is not implemented now!"
                        )
                    lod_level_runtime = 0

                var = self.program.global_block().var(var_name)
                if var.type == core.VarDesc.VarType.LOD_TENSOR:
                    lod_level_compile = var.lod_level
                else:
                    lod_level_compile = 0
                self.assertEqual(
                    lod_level_compile, lod_level_runtime,
                    "The lod_level of Output (" + name +
                    ") is different between compile-time and runtime (" +
                    str(lod_level_compile) + " vs " + str(lod_level_runtime) +
                    ")")

1696
    def _get_places(self):
D
dzhwinter 已提交
1697 1698 1699 1700 1701 1702
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
                    self.op_type):
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
W
Wu Yi 已提交
1703 1704
                else:
                    return []
D
dzhwinter 已提交
1705 1706
            else:
                return []
1707
        places = [fluid.CPUPlace()]
1708 1709 1710
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
        if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type)\
           and not cpu_only:
D
dzhwinter 已提交
1711
            places.append(core.CUDAPlace(0))
1712 1713
        return places

M
minqiyang 已提交
1714 1715 1716 1717
    def check_output(self,
                     atol=1e-5,
                     no_check_set=None,
                     equal_nan=False,
1718
                     check_dygraph=True,
1719 1720
                     inplace_atol=None,
                     check_eager=False):
1721
        self.__class__.op_type = self.op_type
Y
Yiqun Liu 已提交
1722
        if self.is_mkldnn_op():
1723
            self.__class__.use_mkldnn = True
C
cc 已提交
1724

Y
Yiqun Liu 已提交
1725
        if self.is_xpu_op():
1726 1727
            self.__class__.use_xpu = True

1728
        places = self._get_places()
Q
qijun 已提交
1729
        for place in places:
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
            res = self.check_output_with_place(
                place,
                atol,
                no_check_set,
                equal_nan,
                check_dygraph,
                inplace_atol,
                check_eager=check_eager)
            if check_eager:
                assert check_dygraph == True
                outs, dygraph_outs, eager_dygraph_outs, fetch_list = res
            elif check_dygraph:
1742 1743 1744
                outs, dygraph_outs, fetch_list = res
            else:
                outs, fetch_list = res
1745
            if self.op_type not in compile_vs_runtime_white_list.COMPILE_RUN_OP_WHITE_LIST:
1746
                self.check_compile_vs_runtime(fetch_list, outs)
Q
qijun 已提交
1747

P
pangyoki 已提交
1748
    def check_output_customized(self, checker, custom_place=None):
1749
        places = self._get_places()
P
pangyoki 已提交
1750 1751
        if custom_place:
            places.append(custom_place)
1752 1753 1754
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
1755
            outs.sort(key=len)
1756 1757
            checker(outs)

1758 1759 1760 1761 1762 1763
    def check_output_with_place_customized(self, checker, place):
        outs = self.calc_output(place)
        outs = [np.array(out) for out in outs]
        outs.sort(key=len)
        checker(outs)

D
Dun 已提交
1764 1765
    def _assert_is_close(self, numeric_grads, analytic_grads, names,
                         max_relative_error, msg_prefix):
M
minqiyang 已提交
1766
        for a, b, name in six.moves.zip(numeric_grads, analytic_grads, names):
1767 1768 1769 1770 1771 1772
            # It asserts np.abs(a - b) / np.abs(a) < max_relative_error, in which
            # max_relative_error is 1e-7. According to the value of np.abs(a), we
            # change np.abs(a) to achieve dynamic threshold. For example, if
            # the value of np.abs(a) is between 1e-10 and 1e-8, we set np.abs(a)*=1e4.
            # Therefore, it asserts np.abs(a - b) / (np.abs(a)*1e4) < max_relative_error,
            # which is the same as np.abs(a - b) / np.abs(a) < max_relative_error*1e4.
1773
            abs_a = np.abs(a)
1774 1775 1776 1777 1778
            if self.dtype == np.float64 and \
                self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
                abs_a[abs_a < 1e-10] = 1e-3
                abs_a[np.logical_and(abs_a > 1e-10, abs_a <= 1e-8)] *= 1e4
                abs_a[np.logical_and(abs_a > 1e-8, abs_a <= 1e-6)] *= 1e2
1779 1780
            elif self.is_bfloat16_op():
                abs_a[abs_a < 1e-2] = 1
1781 1782
            else:
                abs_a[abs_a < 1e-3] = 1
1783 1784 1785 1786 1787 1788

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
1789 1790 1791
                return ("Operator %s error, %s variable %s (shape: %s, dtype: %s) max gradient diff %e over limit %e, "
                    "the first error element is %d, expected %e, but got %e.") \
                    % (self.op_type, msg_prefix, name, str(a.shape), self.dtype, max_diff, max_relative_error,
1792
                    offset, a.flatten()[offset], b.flatten()[offset])
1793 1794 1795

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

1796 1797 1798 1799 1800 1801 1802
    def _check_grad_helper(self):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        self.__class__.op_type = self.op_type
        self.__class__.exist_check_grad = True
        if self.dtype == np.float64:
            self.__class__.exist_fp64_check_grad = True

1803 1804
    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
1805
                   output_names,
1806
                   no_grad_set=None,
1807
                   numeric_grad_delta=0.005,
1808
                   in_place=False,
Q
Qiao Longfei 已提交
1809
                   max_relative_error=0.005,
1810
                   user_defined_grads=None,
1811
                   user_defined_grad_outputs=None,
1812 1813
                   check_dygraph=True,
                   check_eager=False):
1814
        self._check_grad_helper()
1815
        places = self._get_places()
1816
        for place in places:
1817
            self.check_grad_with_place(
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
                place,
                inputs_to_check,
                output_names,
                no_grad_set,
                numeric_grad_delta,
                in_place,
                max_relative_error,
                user_defined_grads,
                user_defined_grad_outputs,
                check_dygraph,
                check_eager=check_eager)
1829 1830 1831 1832 1833 1834 1835 1836 1837

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
1838
                              user_defined_grads=None,
1839
                              user_defined_grad_outputs=None,
1840
                              check_dygraph=True,
1841 1842
                              numeric_place=None,
                              check_eager=False):
1843
        self.scope = core.Scope()
Q
qijun 已提交
1844
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
1845
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
1846
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
P
phlrain 已提交
1847

Y
Yiqun Liu 已提交
1848 1849
        self._check_grad_helper()
        if self.is_bfloat16_op() and self.is_mkldnn_op():
1850
            check_dygraph = False
1851
            check_eager = False
1852

1853 1854 1855 1856
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7
1857

P
phlrain 已提交
1858 1859 1860
        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
1861 1862 1863 1864 1865 1866 1867

        # oneDNN numeric gradient should use CPU kernel
        use_onednn = False
        if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"] == True:
            op_attrs["use_mkldnn"] = False
            use_onednn = True

P
phlrain 已提交
1868 1869 1870 1871 1872 1873 1874
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list)
Y
Yu Yang 已提交
1875

1876 1877 1878
        if use_onednn:
            op_attrs["use_mkldnn"] = True

1879 1880
        if no_grad_set is None:
            no_grad_set = set()
1881 1882
        else:
            if (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST
1883 1884 1885
                ) and (
                    self.op_type not in no_grad_set_white_list.NOT_CHECK_OP_LIST
                ) and (not self.is_bfloat16_op()):
1886 1887
                raise AssertionError("no_grad_set must be None, op_type is " +
                                     self.op_type + " Op.")
1888

1889 1890 1891 1892 1893 1894 1895 1896
        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)
            tensor_to_check = self.scope.find_var(input_to_check).get_tensor()
            tensor_size = six.moves.reduce(lambda a, b: a * b,
                                           tensor_to_check.shape(), 1)
            if tensor_size < 100:
                self.__class__.input_shape_is_large = False

Y
Yancey 已提交
1897 1898 1899
        if not type(output_names) is list:
            output_names = [output_names]

1900 1901 1902
        if numeric_place is None:
            numeric_place = place

Q
Qiao Longfei 已提交
1903
        numeric_grads = user_defined_grads or [
1904
            get_numeric_gradient(
1905
                numeric_place,
1906 1907 1908 1909
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
1910
                output_names,
1911
                delta=numeric_grad_delta,
C
chengduo 已提交
1912
                in_place=in_place) for input_to_check in inputs_to_check
1913
        ]
1914
        analytic_grads = self._get_gradient(inputs_to_check, place,
1915 1916
                                            output_names, no_grad_set,
                                            user_defined_grad_outputs)
1917 1918
        # comparison of bf16 results will happen as fp32
        # loop over list of grads and convert bf16 to fp32
1919
        fp32_analytic_grads = []
1920 1921 1922
        for grad in analytic_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
1923
                max_relative_error = 0.04 if max_relative_error < 0.04 else max_relative_error
1924 1925 1926 1927 1928 1929 1930
            fp32_analytic_grads.append(grad)
        analytic_grads = fp32_analytic_grads

        fp32_numeric_grads = []
        for grad in numeric_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
1931
                max_relative_error = 0.04 if max_relative_error < 0.04 else max_relative_error
1932 1933
            fp32_numeric_grads.append(grad)
        numeric_grads = fp32_numeric_grads
1934

D
Dun 已提交
1935 1936 1937
        self._assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                              max_relative_error,
                              "Gradient Check On %s" % str(place))
Q
qijun 已提交
1938

1939
        if check_dygraph:
1940 1941 1942
            # ensure switch into legacy dygraph
            g_enable_legacy_dygraph()

1943 1944
            dygraph_grad = self._get_dygraph_grad(
                inputs_to_check, place, output_names, user_defined_grad_outputs,
1945
                no_grad_set, False)
1946 1947 1948 1949
            fp32_grads = []
            for grad in dygraph_grad:
                if grad.dtype == np.uint16:
                    grad = convert_uint16_to_float(grad)
1950
                    max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
1951 1952
                fp32_grads.append(grad)
            dygraph_grad = fp32_grads
1953 1954 1955
            self._assert_is_close(numeric_grads, dygraph_grad, inputs_to_check,
                                  max_relative_error,
                                  "Gradient Check On %s" % str(place))
1956 1957
            # ensure switch back eager dygraph
            g_disable_legacy_dygraph()
1958

1959
        if check_eager:
J
Jiabin Yang 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
            with fluid.dygraph.base.guard(place):
                with _test_eager_guard():
                    eager_dygraph_grad = self._get_dygraph_grad(
                        inputs_to_check, place, output_names,
                        user_defined_grad_outputs, no_grad_set, check_eager)
                    fp32_grads = []
                    for grad in eager_dygraph_grad:
                        if grad.dtype == np.uint16:
                            grad = convert_uint16_to_float(grad)
                            max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
                        fp32_grads.append(grad)
                    eager_dygraph_grad = fp32_grads
                    self._assert_is_close(numeric_grads, eager_dygraph_grad,
                                          inputs_to_check, max_relative_error,
                                          "Gradient Check On %s" % str(place))
1975

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
    def _find_var_in_dygraph(self, output_vars, name):
        if name in output_vars:
            return output_vars[name]
        else:
            for output_vars_index in output_vars:
                for output_vars_selected in output_vars[output_vars_index]:
                    if output_vars_selected.name == name:
                        return output_vars_selected

    def _get_dygraph_grad(self,
                          inputs_to_check,
                          place,
                          output_names,
1989
                          user_defined_grad_outputs=None,
1990 1991
                          no_grad_set=None,
                          check_eager=False):
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
                op_proto, self.inputs, True, True, block)

            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
2011

2012
            if check_eager:
X
xiongkun 已提交
2013 2014
                eager_outputs = self._calc_python_api_output(place, inputs,
                                                             outputs)
2015
            # if outputs is None, kernel sig is empty or other error is happens.
X
xiongkun 已提交
2016
            if not check_eager or eager_outputs is None:
2017 2018 2019 2020 2021
                block.append_op(
                    type=self.op_type,
                    inputs=inputs,
                    outputs=outputs,
                    attrs=attrs_outputs if hasattr(self, "attrs") else None)
X
xiongkun 已提交
2022 2023
            else:
                outputs = eager_outputs
2024

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
            if self.dtype == np.uint16:
                cast_inputs = self._find_var_in_dygraph(outputs,
                                                        output_names[0])
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape)
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32
                    })
                outputs = {output_names[0]: cast_outputs}

2040 2041 2042 2043 2044
            outputs_valid = {}
            for output_name in output_names:
                outputs_valid[output_name] = self._find_var_in_dygraph(
                    outputs, output_name)

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
            if user_defined_grad_outputs is None:
                if len(outputs_valid) == 1:
                    loss = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
                    for outputs_valid_key in outputs_valid:
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[outputs_valid_key]},
                            outputs={"Out": [loss]},
                            attrs=None)
                else:
                    avg_sum = []
                    for cur_loss in outputs_valid:
                        cur_avg_loss = block.create_var(
                            dtype=self.dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
                            stop_gradient=False)
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[cur_loss]},
                            outputs={"Out": [cur_avg_loss]},
                            attrs=None)
                        avg_sum.append(cur_avg_loss)
                    loss_sum = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
2079
                    block.append_op(
2080 2081 2082
                        type='sum',
                        inputs={"X": avg_sum},
                        outputs={"Out": loss_sum},
2083
                        attrs=None)
2084
                    loss = block.create_var(
2085 2086 2087
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
2088 2089
                        stop_gradient=False,
                        shape=[1])
2090
                    block.append_op(
2091 2092 2093 2094 2095
                        type='scale',
                        inputs={"X": loss_sum},
                        outputs={"Out": loss},
                        attrs={'scale': 1.0 / float(len(avg_sum))})
                loss.backward()
2096

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
                fetch_list_grad = []
                for inputs_to_check_name in inputs_to_check:
                    a = inputs_grad_dict[inputs_to_check_name].gradient()
                    fetch_list_grad.append(a)
                return fetch_list_grad
            else:
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                grad_outputs = []
                for grad_out_value in user_defined_grad_outputs:
                    grad_outputs.append(paddle.to_tensor(grad_out_value))
H
hong 已提交
2109
                # delete the inputs which no need to calculate grad                
C
chentianyu03 已提交
2110 2111 2112
                for no_grad_val in no_grad_set:
                    del (inputs[no_grad_val])

J
Jiabin Yang 已提交
2113
                if not _in_legacy_dygraph():
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
                    core.eager.run_backward(
                        fluid.layers.utils.flatten(outputs), grad_outputs,
                        False)
                    grad_inputs = []
                    for inputs_list in inputs.values():
                        for inp in inputs_list:
                            grad_inputs.append(inp.grad.numpy())
                    return grad_inputs
                else:
                    grad_inputs = paddle.grad(
                        outputs=fluid.layers.utils.flatten(outputs),
                        inputs=fluid.layers.utils.flatten(inputs),
                        grad_outputs=grad_outputs)
                    return [grad.numpy() for grad in grad_inputs]
2128

Y
Yu Yang 已提交
2129 2130 2131 2132 2133
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
2134
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
2135 2136
        return tensor

K
Kexin Zhao 已提交
2137
    @staticmethod
K
Kexin Zhao 已提交
2138 2139
    def np_dtype_to_fluid_dtype(input):
        return input
K
Kexin Zhao 已提交
2140

D
dzhwinter 已提交
2141 2142 2143 2144 2145 2146 2147 2148
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

2149 2150 2151 2152 2153
    def _get_gradient(self,
                      input_to_check,
                      place,
                      output_names,
                      no_grad_set,
2154
                      user_defined_grad_outputs=None,
2155
                      parallel=False):
Y
Yu Yang 已提交
2156
        prog = Program()
2157
        scope = core.Scope()
Y
Yu Yang 已提交
2158
        block = prog.global_block()
2159
        self._append_ops(block)
Y
Yu Yang 已提交
2160

2161
        inputs = self._get_inputs(block)
2162
        outputs = self._get_outputs(block)
2163
        feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
2164

2165
        if user_defined_grad_outputs is None:
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
            if self.dtype == np.uint16:
                cast_inputs = list(map(block.var, output_names))
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape)
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32
                    })
                cast_op.desc.infer_var_type(block.desc)
                cast_op.desc.infer_shape(block.desc)
                output_names = [cast_outputs.name]
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
            loss = append_loss_ops(block, output_names)
            param_grad_list = append_backward(
                loss=loss,
                parameter_list=input_to_check,
                no_grad_set=no_grad_set)
            fetch_list = [g for p, g in param_grad_list]
        else:
            assert parallel is False, "unsupported parallel mode when giving custom grad outputs."
            # user_defined_grad_outputs here are numpy arrays
            if not isinstance(user_defined_grad_outputs, list):
                user_defined_grad_outputs = [user_defined_grad_outputs]
            grad_outputs = []
            for grad_out_value in user_defined_grad_outputs:
                # `presistable` is used to avoid executor create new var in local scope
                var = block.create_var(
                    shape=grad_out_value.shape,
                    dtype=grad_out_value.dtype,
                    persistable=True)
                true_var = scope.var(var.name)
                tensor = true_var.get_tensor()
                tensor.set(grad_out_value, place)
                grad_outputs.append(var)
            targets = [
                outputs[name] for name in outputs if name in output_names
            ]
2206
            inputs = [inputs[name] for name in input_to_check if name in inputs]
2207 2208 2209 2210
            grad_inputs = paddle.static.gradients(targets, inputs, grad_outputs,
                                                  no_grad_set)
            fetch_list = grad_inputs

2211 2212
        if parallel:
            use_cuda = False
2213
            if isinstance(place, fluid.CUDAPlace):
2214
                use_cuda = True
2215 2216 2217 2218
            compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
                loss_name=loss.name, places=place)
            prog = compiled_prog
        executor = fluid.Executor(place)
2219 2220
        return list(
            map(np.array,
2221 2222 2223 2224 2225
                executor.run(prog,
                             feed_dict,
                             fetch_list,
                             scope=scope,
                             return_numpy=False)))
A
arlesniak 已提交
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238


class OpTestTool:
    @classmethod
    def skip_if(cls, condition: object, reason: str):
        return unittest.skipIf(condition, reason)

    @classmethod
    def skip_if_not_cpu_bf16(cls):
        return OpTestTool.skip_if(
            not (isinstance(_current_expected_place(), core.CPUPlace) and
                 core.supports_bfloat16()),
            "Place does not support BF16 evaluation")
2239 2240 2241 2242 2243 2244

    @classmethod
    def skip_if_not_cpu(cls):
        return OpTestTool.skip_if(
            not isinstance(_current_expected_place(), core.CPUPlace),
            "OneDNN supports only CPU for now")