op_test.py 72.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

B
baojun 已提交
17
import os
18
import unittest
19
import warnings
20
import numpy as np
21
import random
M
minqiyang 已提交
22
import six
23
import struct
24
import time
25
import itertools
Y
Yu Yang 已提交
26
import collections
M
minqiyang 已提交
27
from collections import defaultdict
28

29
import paddle
30 31
import paddle.fluid as fluid
import paddle.fluid.core as core
32 33 34
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
35
from paddle.fluid.framework import Program, OpProtoHolder, Variable
36 37 38 39 40
from paddle.fluid.tests.unittests.testsuite import (
    create_op,
    set_input,
    append_input_output,
    append_loss_ops, )
41
from paddle.fluid import unique_name
42 43 44 45 46 47 48
from paddle.fluid.tests.unittests.white_list import (
    op_accuracy_white_list,
    check_shape_white_list,
    compile_vs_runtime_white_list,
    no_check_set_white_list,
    op_threshold_white_list,
    no_grad_set_white_list, )
49 50


51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
def check_out_dtype(api_fn, in_specs, expect_dtypes, target_index=0, **configs):
    """
    Determines whether dtype of output tensor is as expected.

    Args:
        api_fn(callable):  paddle api function
        in_specs(list[tuple]): list of shape and dtype information for constructing input tensor of api_fn, such as [(shape, dtype), (shape, dtype)].
        expected_dtype(list[str]): expected dtype of output tensor.
        target_index(int): indicate which one from in_specs to infer the dtype of output.
        config(dict): other arguments of paddle api function

    Example:
        check_out_dtype(fluid.layers.pad_constant_like, [([2,3,2,3], 'float64'), ([1, 3, 1,3], )], ['float32', 'float64', 'int64'], target_index=1, pad_value=0.)

    """
    paddle.enable_static()
    for i, expect_dtype in enumerate(expect_dtypes):
        with paddle.static.program_guard(paddle.static.Program()):
            input_t = []
            for index, spec in enumerate(in_specs):
                if len(spec) == 1:
                    shape = spec[0]
                    dtype = expect_dtype if target_index == index else 'float32'
                elif len(spec) == 2:
                    shape, dtype = spec
                else:
                    raise ValueError(
                        "Value of in_specs[{}] should contains two elements: [shape, dtype]".
                        format(index))
                input_t.append(
                    paddle.static.data(
                        name='data_%s' % index, shape=shape, dtype=dtype))

            out = api_fn(*input_t, **configs)
            out_dtype = fluid.data_feeder.convert_dtype(out.dtype)

            if out_dtype != expect_dtype:
                raise ValueError(
                    "Expected out.dtype is {}, but got {} from {}.".format(
                        expect_dtype, out_dtype, api_fn.__name__))


93 94 95 96 97 98 99 100
def _set_use_system_allocator(value=None):
    USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
    old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
    value = old_value if value is None else value
    core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
    return old_value


101 102 103 104
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
M
minqiyang 已提交
105
    for i in six.moves.xrange(len(prob)):
106 107 108 109
        prob[i] /= prob_sum[i]
    return prob


110 111
def get_numeric_gradient(place,
                         scope,
112 113 114
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
115
                         output_names,
116
                         delta=0.005,
C
chengduo 已提交
117
                         in_place=False):
Y
Yu Yang 已提交
118
    # FIXME: change this method by compile time concepts
119
    set_input(scope, op, inputs, place)
120 121

    def product(dim):
M
minqiyang 已提交
122
        return six.moves.reduce(lambda a, b: a * b, dim, 1)
123 124

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
125 126
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
127
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
128
        tensor_to_check_dtype = np.float32
129
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
130
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
131 132 133 134
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
135 136 137 138
    else:
        raise ValueError("Not supported data type " + str(
            tensor_to_check_dtype))

C
chengduo 已提交
139 140 141 142 143 144 145 146 147
    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
            sum.append(
                np.array(scope.find_var(output_name).get_tensor()).astype(
                    tensor_to_check_dtype).mean())
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

148 149 150
    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
151 152 153 154 155
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
156
            return tensor._get_float_element(i)
157
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
158
            return tensor._get_double_element(i)
159 160 161
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
162 163

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
164 165 166 167 168
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
169
            numpy_tensor = numpy_tensor.reshape(shape)
D
dzhwinter 已提交
170 171
            tensor.set(numpy_tensor, place)
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
172
            tensor._set_float_element(i, e)
173
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
174
            tensor._set_double_element(i, e)
175 176 177
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
178

179 180
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
M
minqiyang 已提交
181
    for i in six.moves.xrange(tensor_size):
182
        if in_place:
183
            set_input(scope, op, inputs, place)
184 185

        # get one input element throw it's index i.
186
        origin = __get_elem__(tensor_to_check, i)
187 188
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
189
        __set_elem__(tensor_to_check, i, x_pos)
190 191 192
        y_pos = get_output()

        if in_place:
193
            set_input(scope, op, inputs, place)
194 195

        x_neg = origin - delta
196
        __set_elem__(tensor_to_check, i, x_neg)
197 198
        y_neg = get_output()

199
        __set_elem__(tensor_to_check, i, origin)
200 201
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
202
    return gradient_flat.reshape(tensor_to_check.shape())
203 204


205 206
def skip_check_grad_ci(reason=None):
    """Decorator to skip check_grad CI.
C
cc 已提交
207

208
       Check_grad is required for Op test cases. However, there are some special
C
cc 已提交
209
       cases that do not need to do check_grad. This decorator is used to skip the
210
       check_grad of the above cases.
C
cc 已提交
211 212

       Note: the execution of unit test will not be skipped. It just avoids check_grad
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
       checking in tearDownClass method by setting a `no_need_check_grad` flag.

       Example:
           @skip_check_grad_ci(reason="For inference, check_grad is not required.")
           class TestInference(OpTest):
    """
    if not isinstance(reason, str):
        raise AssertionError("The reason for skipping check_grad is required.")

    def wrapper(cls):
        cls.no_need_check_grad = True
        return cls

    return wrapper


229 230 231 232
def copy_bits_from_float_to_uint16(f):
    return struct.unpack('<I', struct.pack('<f', f))[0] >> 16


233 234 235 236
def convert_float_to_uint16(float_list, data_format="NCHW"):
    if data_format == "NHWC":
        float_list = np.transpose(float_list, [0, 3, 1, 2])

237 238 239
    new_output = []
    for x in np.nditer(float_list):
        new_output.append(np.uint16(copy_bits_from_float_to_uint16(x)))
240
    new_output = np.reshape(new_output, float_list.shape).view(np.uint16)
241

242 243 244
    if data_format == "NHWC":
        new_output = np.transpose(new_output, [0, 2, 3, 1])
    return new_output
245 246


247 248 249 250 251 252 253 254 255 256 257 258 259
def copy_bits_from_uint16_to_float(i):
    i = np.uint32(i) << 16
    return struct.unpack('<f', struct.pack('<I', i))[0]


def convert_uint16_to_float(uint16_list):
    new_output = []
    for x in np.nditer(uint16_list):
        new_output.append(np.float32(copy_bits_from_uint16_to_float(x)))

    return np.reshape(new_output, uint16_list.shape).view(np.float32)


260
class OpTest(unittest.TestCase):
261 262 263 264 265
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
266
        cls.call_once = False
267
        cls.dtype = None
268
        cls.outputs = {}
269
        cls.input_shape_is_large = True
270 271 272 273

        np.random.seed(123)
        random.seed(124)

274 275
        cls._use_system_allocator = _set_use_system_allocator(True)

276 277
    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
278
        """Restore random seeds"""
279 280 281
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

282 283
        _set_use_system_allocator(cls._use_system_allocator)

284 285 286 287
        def is_empty_grad_op(op_type):
            all_op_kernels = core._get_all_register_op_kernels()
            grad_op = op_type + '_grad'
            if grad_op in all_op_kernels.keys():
J
juncaipeng 已提交
288
                if is_mkldnn_op_test():
289 290 291 292 293 294 295 296
                    grad_op_kernels = all_op_kernels[grad_op]
                    for grad_op_kernel in grad_op_kernels:
                        if 'MKLDNN' in grad_op_kernel:
                            return False
                else:
                    return False
            return True

297 298 299
        def is_xpu_op_test():
            return hasattr(cls, "use_xpu") and cls.use_xpu == True

J
juncaipeng 已提交
300
        def is_mkldnn_op_test():
301
            return hasattr(cls, "use_mkldnn") and cls.use_mkldnn == True
J
juncaipeng 已提交
302

303 304 305
        def is_rocm_op_test():
            return core.is_compiled_with_rocm()

306 307
        if not hasattr(cls, "op_type"):
            raise AssertionError(
308 309
                "This test do not have op_type in class attrs, "
                "please set self.__class__.op_type=the_real_op_type manually.")
310

J
juncaipeng 已提交
311 312
        # case in NO_FP64_CHECK_GRAD_CASES and op in NO_FP64_CHECK_GRAD_OP_LIST should be fixed
        if not hasattr(cls, "no_need_check_grad") \
313
            and not is_empty_grad_op(cls.op_type):
J
juncaipeng 已提交
314
            if cls.dtype is None or \
315 316
                (cls.dtype == np.float16 \
                    and cls.op_type not in op_accuracy_white_list.NO_FP16_CHECK_GRAD_OP_LIST \
J
juncaipeng 已提交
317 318 319 320
                    and not hasattr(cls, "exist_check_grad")):
                raise AssertionError("This test of %s op needs check_grad." %
                                     cls.op_type)

321
            # check for op test with fp64 precision, but not check mkldnn op test for now
J
juncaipeng 已提交
322 323
            if cls.dtype in [np.float32, np.float64] \
                and cls.op_type not in op_accuracy_white_list.NO_FP64_CHECK_GRAD_OP_LIST \
324
                and not hasattr(cls, 'exist_fp64_check_grad') \
325
                and not is_xpu_op_test() \
326 327
                and not is_mkldnn_op_test() \
                and not is_rocm_op_test():
J
juncaipeng 已提交
328 329 330 331
                raise AssertionError(
                    "This test of %s op needs check_grad with fp64 precision." %
                    cls.op_type)

332
            if not cls.input_shape_is_large \
333 334 335 336
                and cls.op_type not in check_shape_white_list.NEED_TO_FIX_OP_LIST:
                raise AssertionError(
                    "Input's shape should be large than or equal to 100 for " +
                    cls.op_type + " Op.")
337

338 339 340 341 342
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

343 344 345 346 347
    def is_bfloat16_op(self):
        return self.dtype == np.uint16 or (
            hasattr(self, 'mkldnn_data_type') and
            getattr(self, 'mkldnn_data_type') is "bfloat16")

348
    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
J
juncaipeng 已提交
349 350 351 352
        def is_np_data(input):
            return isinstance(input, (np.ndarray, np.generic))

        def infer_dtype(numpy_dict, dtype_set):
353 354 355
            assert isinstance(
                numpy_dict,
                dict), "self.inputs, self.outputs must be numpy_dict"
J
juncaipeng 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
            # the inputs are as follows:
            # case 1: inputs = {'X': x}
            # case 2: inputs = {'X': (x, x_lod)}
            # case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
            # case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
            # TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
            for _, var_value in six.iteritems(numpy_dict):
                if is_np_data(var_value):  # case 1
                    dtype_set.add(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):  # case 2, 3, 4
                    for sub_val_value in var_value:
                        if is_np_data(sub_val_value):  # case 2
                            dtype_set.add(sub_val_value.dtype)
                        elif len(sub_val_value) > 1 and is_np_data(
                                sub_val_value[1]):  # case 3
                            dtype_set.add(sub_val_value[1].dtype)
                        elif len(sub_val_value) > 1 and isinstance(sub_val_value[1], (list, tuple)) \
                            and is_np_data(sub_val_value[1][0]): # case 4
                            dtype_set.add(sub_val_value[1][0].dtype)

        # infer dtype from inputs, and dtype means the precision of the test
        # collect dtype of all inputs
        dtype_set = set()
        infer_dtype(inputs, dtype_set)
        dtype_list = [
            np.dtype(np.float64), np.dtype(np.float32), np.dtype(np.float16),
382 383 384
            np.dtype(np.int64), np.dtype(np.int32), np.dtype(np.uint16),
            np.dtype(np.int16), np.dtype(np.int8), np.dtype(np.uint8),
            np.dtype(np.bool)
J
juncaipeng 已提交
385 386 387 388 389 390
        ]
        # check the dtype in dtype_list in order, select the first dtype that in dtype_set
        for dtype in dtype_list:
            if dtype in dtype_set:
                self.dtype = dtype
                break
391 392
        # save dtype in class attr
        self.__class__.dtype = self.dtype
393

Y
Yang Yang(Tony) 已提交
394 395 396 397 398 399
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
400
                    if isinstance(np_value, tuple):
401
                        tensor.set(np_value[0], place)
402
                        tensor.set_recursive_sequence_lengths(np_value[1])
403
                    else:
404
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
405 406 407 408
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
409
                    tensor.set(self.inputs[var_name][0], place)
410 411
                    tensor.set_recursive_sequence_lengths(self.inputs[var_name][
                        1])
Y
Yang Yang(Tony) 已提交
412
                else:
413
                    tensor.set(self.inputs[var_name], place)
Y
Yang Yang(Tony) 已提交
414 415 416
                feed_map[var_name] = tensor
        return feed_map

417
    def _append_ops(self, block):
J
juncaipeng 已提交
418
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
419 420 421 422
        if (hasattr(self, "use_mkldnn") and self.use_mkldnn == True) or \
            (hasattr(self, "attrs") and "use_mkldnn" in self.attrs and \
                    self.attrs["use_mkldnn"] == True):
            self.__class__.use_mkldnn = True
C
cc 已提交
423

424 425 426 427 428
        if (hasattr(self, "use_xpu") and self.use_xpu == True) or \
            (hasattr(self, "attrs") and "use_xpu" in self.attrs and \
                    self.attrs["use_xpu"] == True):
            self.__class__.use_xpu = True

Y
Yang Yang(Tony) 已提交
429
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
430 431 432 433 434 435
        "infer datatype from inputs and outputs for this test case"
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        inputs = append_input_output(block, op_proto, self.inputs, True,
                                     self.dtype)
        outputs = append_input_output(block, op_proto, self.outputs, False,
                                      self.dtype)
P
phlrain 已提交
436 437 438 439 440 441 442 443 444

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True)

Y
Yang Yang(Tony) 已提交
445 446 447 448 449
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=self.attrs if hasattr(self, "attrs") else dict())
C
cc 已提交
450
        # infer variable type and infer shape in compile-time
Q
QI JUN 已提交
451 452
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
453

454 455
        return op

456 457
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
M
minqiyang 已提交
458
        for name, value in six.iteritems(numpy_inputs):
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

M
minqiyang 已提交
478 479 480 481
    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
L
lujun 已提交
482
            v = fluid.dygraph.base.to_variable(value=data)
483
            v.value().get_tensor().set_recursive_sequence_lengths(lod)
M
minqiyang 已提交
484 485
            return v
        else:
L
lujun 已提交
486
            return fluid.dygraph.base.to_variable(value)
M
minqiyang 已提交
487

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
    def get_sequence_batch_size_1_input(self, lod=None, shape=None):
        """Get LoD input data whose batch size is 1.
        All sequence related OP unittests should call this function to contain the case of batch size = 1.
        Args:
            lod (list[list of int], optional): Length-based LoD, length of lod[0] should be 1. Default: [[13]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod) : LoD input data whose batch size is 1.
        """
        if lod is None:
            lod = [[13]]
        if shape is None:
            shape = [13, 23]
        assert len(lod[0]) == 1
        assert lod[0][0] == shape[0]
        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
    def lod_has_single_zero(self, lod):
        for i in range(len(lod) - 2):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] != 0:
                return True
        return False

    def lod_has_continuous_zero(self, lod):
        for i in range(len(lod) - 3):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] == 0 and lod[
                    i + 3] != 0:
                return True
        return False

    def get_sequence_instance_size_0_input(self, lod=None, shape=None):
        """Get LoD input data whose instance size is 0.
        All sequence related OP unittests should call this function to contain the case of instance size is 0.
        Args:
            lod (list[list of int], optional): Length-based LoD, lod[0]'s size must at least eight, lod[0] must at least two zeros at the beginning and at least two zeros at the end, the middle position of lod[0] contains a single zero and multiple zero. Default: [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod): LoD input data whose instance size is 0.
        """
        if lod is None:
            lod = [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]]
        if shape is None:
            shape = [12, 10]
        assert len(lod[0]) >= 8
        assert lod[0][0] == 0 and lod[0][1] == 0 and lod[0][-1] == 0 and lod[0][
            -2] == 0
        assert self.lod_has_single_zero(lod[0]) is True
        assert self.lod_has_continuous_zero(lod[0]) is True
        assert sum(lod[0]) == shape[0]

        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
    def append_input_output_for_dygraph(self, op_proto, np_list, is_input,
                                        if_return_inputs_grad_dict, block):
        def create_var(np_value, name, is_input, if_return_inputs_grad_dict):
            np_value_temp = np_value
            has_lod = False
            lod_temp = None
            if isinstance(np_value, tuple):
                np_value_temp = np_value[0]
                has_lod = True
                lod_temp = np_value[1]

            if is_input:
                v = self._create_var_from_numpy(np_value_temp)
                if if_return_inputs_grad_dict:
                    v.stop_gradient = False
                if has_lod:
558
                    v.value().get_tensor().set_recursive_sequence_lengths(
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
                        lod_temp)
            else:
                v = block.create_var(
                    name=name,
                    dtype=np_value_temp.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False)

            return v

        # prepare variable for input or output
        var_dict = defaultdict(list)
        if if_return_inputs_grad_dict:
            inputs_grad_dict = defaultdict()
        proto_list = op_proto.inputs if is_input else op_proto.outputs
        for var_proto in proto_list:
            name = var_proto.name
            if (name not in np_list) and var_proto.dispensable:
                continue
            if name not in np_list:
                assert var_proto.intermediate, "{} not found".format(name)
                v = block.create_var(
                    dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v
                continue
            if var_proto.duplicable:
                assert isinstance(
                    np_list[name],
                    list), "Duplicable {} should be set as list".format(name)
                var_list = []
                slot_name = name
                for (name, np_value) in np_list[name]:
                    v = create_var(np_value, name, is_input,
                                   if_return_inputs_grad_dict)
                    var_list.append(v)
                    if if_return_inputs_grad_dict:
                        inputs_grad_dict[name] = v
                var_dict[slot_name] = var_list
            else:
                nplist_value_temp = None
                name_temp = None
                if isinstance(np_list[name], list):
                    nplist_value_temp = np_list[name][0]
                    name_temp = name
                else:
                    nplist_value_temp = np_list[name]
                    name_temp = unique_name.generate("%s_out" % (name))
                v = create_var(nplist_value_temp, name_temp, is_input,
                               if_return_inputs_grad_dict)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v

        if if_return_inputs_grad_dict:
            return var_dict, inputs_grad_dict
        else:
            return var_dict

L
lujun 已提交
620
    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
J
juncaipeng 已提交
621
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
L
lujun 已提交
622
        with fluid.dygraph.base.guard(place=place):
M
minqiyang 已提交
623 624
            block = fluid.default_main_program().global_block()

625
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
M
minqiyang 已提交
626

627 628 629
            # prepare input variable
            inputs = self.append_input_output_for_dygraph(op_proto, self.inputs,
                                                          True, False, block)
M
minqiyang 已提交
630 631

            # prepare output variable
632 633 634 635 636 637 638 639 640
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
M
minqiyang 已提交
641 642 643 644
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
645
                attrs=attrs_outputs if hasattr(self, "attrs") else None)
M
minqiyang 已提交
646
            return outputs
647

648 649 650 651 652 653
    def _calc_output(self,
                     place,
                     parallel=False,
                     no_check_set=None,
                     loss=None,
                     enable_inplace=None,
654
                     for_inplace_test=None):
655 656
        program = Program()
        block = program.global_block()
657
        op = self._append_ops(block)
658 659 660 661 662

        inputs = self._get_inputs(block)
        outputs = self._get_outputs(block)
        feed_map = self.feed_var(inputs, place)

663
        if for_inplace_test:
C
cc 已提交
664 665
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
666 667
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
668 669
            for out_name in op.output_arg_names:
                var = block.var(out_name)
670 671
                if 0 in var.shape:
                    var.persistable = True
672
        original_program = program
673 674
        if parallel:
            use_cuda = False
675
            if isinstance(place, fluid.CUDAPlace):
676
                use_cuda = True
677 678 679
            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                loss_name=loss.name if loss else None, places=place)
            program = compiled_prog
680 681 682 683
        fetch_list = getattr(self, "fetch_list", [])
        # if the fetch_list is customized by user, we use it directly.
        # if not, fill the fetch_list by the user configured outputs in test.
        if len(fetch_list) == 0:
M
minqiyang 已提交
684
            for var_name, var in six.iteritems(outputs):
685 686
                if no_check_set is not None and var_name in no_check_set:
                    continue
Y
Yang Yang(Tony) 已提交
687 688
                if isinstance(var, list):
                    for v in var:
689
                        fetch_list.append(v.name)
Y
Yang Yang(Tony) 已提交
690
                else:
691
                    fetch_list.append(var.name)
692 693 694 695
        # if the fetch_list still empty, fill the fetch_list by the operator output.
        if len(fetch_list) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                fetch_list.append(str(out_name))
696 697 698 699 700 701 702 703 704

        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace

            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                build_strategy=build_strategy, places=place)
            program = compiled_prog

705
        executor = Executor(place)
706 707 708 709
        outs = executor.run(program,
                            feed=feed_map,
                            fetch_list=fetch_list,
                            return_numpy=False)
710 711
        self.op = op
        self.program = original_program
712 713 714 715
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list
Y
Yang Yang(Tony) 已提交
716

717 718 719 720 721 722 723 724 725
    def _compare_expect_and_actual_outputs(self,
                                           place,
                                           fetch_list,
                                           expect_outs,
                                           actual_outs,
                                           inplace_atol=None):
        """Compare expect outs and actual outs of an tested op.

        Args:
C
cc 已提交
726
            place (CPUPlace | CUDAPlace): The place where the op runs.
727 728 729 730 731 732 733 734 735 736
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
C
cc 已提交
737
            # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
738 739 740
            # computational consistency.
            # When inplace_atol is not None, the inplace check uses numpy.allclose
            # to check inplace result instead of numpy.array_equal.
741 742
            expect_out = np.array(expect_outs[i])
            actual_out = np.array(actual_outs[i])
743 744 745
            if inplace_atol is not None:
                self.assertTrue(
                    np.allclose(
746
                        expect_out, actual_out, atol=inplace_atol),
747 748
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
749 750
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__)
751 752
            else:
                self.assertTrue(
753
                    np.array_equal(expect_out, actual_out),
754 755
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
756 757
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__ + '\n')
758 759 760 761 762 763 764 765

    def _construct_grad_program_from_forward(self, fwd_program, grad_op_desc,
                                             op_grad_to_var):
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
766
            op_grad_to_var (dict): The relation of variables in grad op and its forward op.
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
        for arg in grad_op_desc.input_arg_names(
        ) + grad_op_desc.output_arg_names():
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
                fwd_var_name)
            grad_var = grad_block.create_var(
                name=arg,
                dtype=fwd_var.dtype,
                shape=fwd_var.shape,
                type=fwd_var.type,
                persistable=False)

C
cc 已提交
793 794
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

    def _construct_grad_feed_map_from_forward(self, place, fwd_res,
                                              grad_op_desc, op_grad_to_var):
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
810
            place (CPUPlace | CUDAPlace): The place where the op runs.
811 812 813
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
814
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op.
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)
        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
C
cc 已提交
846

847
        Args:
C
cc 已提交
848 849
            op_desc (OpDesc): The op_desc of current op.
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op.
850
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
C
cc 已提交
851

852 853 854 855 856 857 858 859 860 861 862 863 864 865
        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
C
cc 已提交
866
                # get grad_op_desc
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                    op_desc, set(), [])
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
                        if grad_op_desc.type(
                        ) not in visited_ops and _dfs_grad_op(
                                grad_op_desc, fwd_op_desc=op_desc):
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

    def _check_forward_inplace(self,
                               place,
                               no_check_set=None,
                               inplace_atol=None):
890
        """Check the inplace correctness of given op (self.op_type).
891
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
C
cc 已提交
892

893
        Args:
C
cc 已提交
894
            place (CPUPlace | CUDAPlace): The place where the op runs.
895 896 897 898
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
899 900
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
901 902
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
903 904 905 906 907 908 909 910 911 912
        expect_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=False,
            for_inplace_test=True)
        actual_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=True,
            for_inplace_test=True)
913
        # compare expect_outs and actual_outs
914 915 916 917 918 919
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
920 921 922 923 924 925 926 927 928 929 930 931 932
        return expect_res

    def _calc_grad_output(self,
                          place,
                          fwd_res,
                          grad_op_desc,
                          enable_inplace=None):
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
933
            place (CPUPlace | CUDAPlace): The place where the op runs.
934 935 936 937 938 939 940 941 942
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
943
        grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(fwd_op_desc,
944
                                                                  set(), [])
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
        grad_program = self._construct_grad_program_from_forward(
            fwd_program, grad_op_desc, op_grad_to_var)
        grad_feed_map = self._construct_grad_feed_map_from_forward(
            place, fwd_res, grad_op_desc, op_grad_to_var)
        grad_fetch_list = grad_op_desc.output_arg_names()
        exe = Executor(place)
        program = grad_program
        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace
            compiled_program = fluid.CompiledProgram(
                grad_program).with_data_parallel(
                    loss_name="", build_strategy=build_strategy, places=place)
            program = compiled_program
        outs = exe.run(program,
                       feed=grad_feed_map,
                       fetch_list=grad_fetch_list,
                       return_numpy=False)
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

    def _check_grad_inplace(self,
                            place,
                            fwd_res,
                            grad_op_desc,
                            inplace_atol=None):
970
        """Check the inplace correctness of given grad_op_desc.
971 972 973 974 975 976

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
C
cc 已提交
977
            place (CPUPlace | CUDAPlace): The place where the op runs.
978 979 980 981 982 983
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
984 985
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
986 987 988 989 990 991 992 993 994 995 996 997
        """
        expect_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=False)
        actual_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=True)
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
        return expect_res
998

999 1000 1001 1002 1003 1004 1005 1006 1007 1008
    def check_inplace_output_with_place(self,
                                        place,
                                        no_check_set=None,
                                        inplace_atol=None):
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
C
cc 已提交
1009
            place (CPUPlace | CUDAPlace): The place where the op runs.
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)

        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True)
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
1025 1026
        if hasattr(self, 'attrs') and bool(self.attrs.get('use_xpu', False)):
            return
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
                        inplace_atol=inplace_atol)
                else:
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True)
            else:
1040 1041
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn
                # skip op that use_mkldnn currently
1042
                flags_use_mkldnn = fluid.core.globals()["FLAGS_use_mkldnn"]
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
                attrs_use_mkldnn = hasattr(
                    self,
                    'attrs') and bool(self.attrs.get('use_mkldnn', False))
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
                        place, fwd_res, op_desc, inplace_atol=inplace_atol)
1055
                else:
1056 1057
                    res[op_desc] = self._calc_grad_output(place, fwd_res,
                                                          op_desc)
1058

1059 1060
    def check_output_with_place(self,
                                place,
1061
                                atol=0,
1062
                                no_check_set=None,
M
minqiyang 已提交
1063
                                equal_nan=False,
1064
                                check_dygraph=True,
1065
                                inplace_atol=None):
1066 1067 1068 1069 1070
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST:
            atol = 0

1071 1072 1073 1074 1075 1076 1077 1078
        if self.is_bfloat16_op():
            check_dygraph = False
            if hasattr(self, 'force_fp32_output') and getattr(
                    self, 'force_fp32_output'):
                atol = 1e-2
            else:
                atol = 2

1079 1080 1081 1082
        if no_check_set is not None:
            if self.op_type not in no_check_set_white_list.no_check_set_white_list:
                raise AssertionError(
                    "no_check_set of op %s must be set to None." % self.op_type)
1083

L
lujun 已提交
1084 1085
        if check_dygraph:
            dygraph_outs = self._calc_dygraph_output(
M
minqiyang 已提交
1086
                place, no_check_set=no_check_set)
1087
        outs, fetch_list = self._calc_output(place, no_check_set=no_check_set)
Y
Yang Yang(Tony) 已提交
1088
        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
1089 1090
            if out_name not in self.outputs:
                continue
1091 1092
            if no_check_set is not None and out_name in no_check_set:
                continue
1093

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
            def find_imperative_actual(target_name, dygraph_outs, place):
                with fluid.dygraph.base.guard(place=place):
                    for name in dygraph_outs:
                        if name == target_name:
                            return dygraph_outs[name][0]
                        var_list = dygraph_outs[name]
                        for i, var in enumerate(var_list):
                            if var.name == target_name:
                                return dygraph_outs[name][i]
                    self.assertTrue(False, "Found failed {} {}".format(
                        dygraph_outs.keys(), target_name))

Y
Yang Yang(Tony) 已提交
1106 1107
            def find_actual(target_name, fetch_list):
                found = [
1108 1109
                    i for i, var_name in enumerate(fetch_list)
                    if var_name == target_name
Y
Yang Yang(Tony) 已提交
1110 1111 1112 1113 1114 1115
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

1116 1117
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
1118 1119 1120
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
1121 1122
                for item in sub_out:
                    sub_out_name, expect = item[0], item[1]
L
lujun 已提交
1123
                    if check_dygraph:
1124 1125
                        imperative_actual = find_imperative_actual(
                            sub_out_name, dygraph_outs, place)
1126 1127
                        imperative_actual_t = np.array(imperative_actual.value()
                                                       .get_tensor())
Y
Yang Yang(Tony) 已提交
1128
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
1129 1130
                    actual = outs[idx]
                    actual_t = np.array(actual)
1131 1132
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
1133 1134
                    self.assertTrue(
                        np.allclose(
1135
                            actual_t, expect_t, atol=atol, equal_nan=equal_nan),
Y
Yang Yang(Tony) 已提交
1136 1137
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
L
lujun 已提交
1138
                    if check_dygraph:
M
minqiyang 已提交
1139 1140 1141 1142 1143 1144 1145
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + sub_out_name + ") has diff at " +
L
lujun 已提交
1146
                            str(place) + " in dygraph mode")
1147 1148
                    if isinstance(expect, tuple):
                        self.assertListEqual(
1149 1150
                            actual.recursive_sequence_lengths(), expect[1],
                            "Output (" + sub_out_name +
Q
QI JUN 已提交
1151
                            ") has different lod at " + str(place))
1152 1153
                        if check_dygraph:
                            self.assertListEqual(
1154
                                imperative_actual.value().get_tensor()
1155 1156 1157 1158
                                .recursive_sequence_lengths(), expect[1],
                                "Output (" + out_name +
                                ") has different lod at " + str(place) +
                                " in dygraph mode")
1159
            else:
L
lujun 已提交
1160
                if check_dygraph:
1161 1162
                    imperative_actual = find_imperative_actual(
                        out_name, dygraph_outs, place)
1163 1164
                    imperative_actual_t = np.array(imperative_actual.value()
                                                   .get_tensor())
Y
Yang Yang(Tony) 已提交
1165
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
1166 1167
                actual = outs[idx]
                actual_t = np.array(actual)
1168

1169
                expect = self.outputs[out_name]
1170
                expect_t = expect[0] if isinstance(expect, tuple) else expect
1171 1172 1173 1174 1175

                if actual_t.dtype == np.uint16 and expect_t.dtype == np.float32:
                    actual_t = convert_uint16_to_float(actual_t)
                    atol = 0.03

1176 1177
                self.assertTrue(
                    np.allclose(
1178
                        actual_t, expect_t, atol=atol, equal_nan=equal_nan),
E
emailweixu 已提交
1179
                    "Output (" + out_name + ") has diff at " + str(place) +
D
dzhwinter 已提交
1180
                    "\nExpect " + str(expect_t) + "\n" + "But Got" +
1181
                    str(actual_t) + " in class " + self.__class__.__name__)
L
lujun 已提交
1182
                if check_dygraph:
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
                    if six.moves.reduce(
                            lambda x, y: x * y, imperative_actual_t.shape,
                            1) == 0 and six.moves.reduce(
                                lambda x, y: x * y, expect_t.shape, 1) == 0:
                        pass
                    else:
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + out_name + ") has diff at " +
                            str(place) + "\nExpect " + str(expect_t) + "\n" +
                            "But Got" + str(imperative_actual_t) + " in class "
                            + self.__class__.__name__)
1199
                if isinstance(expect, tuple):
1200 1201
                    self.assertListEqual(actual.recursive_sequence_lengths(),
                                         expect[1], "Output (" + out_name +
1202
                                         ") has different lod at " + str(place))
L
lujun 已提交
1203
                    if check_dygraph:
M
minqiyang 已提交
1204
                        self.assertListEqual(
1205
                            imperative_actual.value().get_tensor()
M
minqiyang 已提交
1206 1207
                            .recursive_sequence_lengths(), expect[1],
                            "Output (" + out_name + ") has different lod at " +
L
lujun 已提交
1208
                            str(place) + " in dygraph mode")
1209

C
cc 已提交
1210
        # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
1211 1212
        # computational consistency.
        # For example, group_norm uses AtomicAdd on CUDAPlace, which do not ensure
C
cc 已提交
1213
        # computation order when multiple threads write the same address. So the
L
Leo Chen 已提交
1214 1215 1216
        # result of group_norm is non-deterministic when datatype is float.
        # When inplace_atol is not None, the inplace check uses numpy.allclose
        # to check inplace result instead of numpy.array_equal.
1217 1218
        if inplace_atol is not None:
            warnings.warn(
L
Leo Chen 已提交
1219 1220
                "inplace_atol should only be set when op doesn't ensure computational consistency, please check it!"
            )
1221
        # Check inplace for given op, its grad op, its grad_grad op, etc.
C
cc 已提交
1222
        # No effect on original OpTest
1223 1224 1225 1226
        # Currently not support ParallelExecutor on XPUPlace.
        if not paddle.is_compiled_with_xpu():
            self.check_inplace_output_with_place(
                place, no_check_set=no_check_set, inplace_atol=inplace_atol)
1227

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
        if check_dygraph:
            return outs, dygraph_outs, fetch_list
        else:
            return outs, fetch_list

    def check_compile_vs_runtime(self, fetch_list, fetch_outs):
        def find_fetch_index(target_name, fetch_list):
            found = [
                i for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            if len(found) == 0:
                return -1
            else:
                self.assertTrue(
                    len(found) == 1,
                    "Found {} {}".format(len(found), target_name))
                return found[0]

        for name in self.op.desc.output_names():
            var_names = self.op.desc.output(name)
            for var_name in var_names:
                i = find_fetch_index(var_name, fetch_list)
                if i == -1:
                    # The output is dispensiable or intermediate.
                    break
                out = fetch_outs[i]
                if isinstance(out, core.LoDTensor):
                    lod_level_runtime = len(out.lod())
                else:
                    if isinstance(out, core.LoDTensorArray):
                        warnings.warn(
                            "The check of LoDTensorArray's lod_level is not implemented now!"
                        )
                    lod_level_runtime = 0

                var = self.program.global_block().var(var_name)
                if var.type == core.VarDesc.VarType.LOD_TENSOR:
                    lod_level_compile = var.lod_level
                else:
                    lod_level_compile = 0
                self.assertEqual(
                    lod_level_compile, lod_level_runtime,
                    "The lod_level of Output (" + name +
                    ") is different between compile-time and runtime (" +
                    str(lod_level_compile) + " vs " + str(lod_level_runtime) +
                    ")")

1276
    def _get_places(self):
D
dzhwinter 已提交
1277 1278 1279 1280 1281 1282
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
                    self.op_type):
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
W
Wu Yi 已提交
1283 1284
                else:
                    return []
D
dzhwinter 已提交
1285 1286
            else:
                return []
1287
        places = [fluid.CPUPlace()]
1288 1289 1290
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
        if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type)\
           and not cpu_only:
D
dzhwinter 已提交
1291
            places.append(core.CUDAPlace(0))
1292 1293
        return places

M
minqiyang 已提交
1294 1295 1296 1297
    def check_output(self,
                     atol=1e-5,
                     no_check_set=None,
                     equal_nan=False,
1298
                     check_dygraph=True,
1299
                     inplace_atol=None):
1300
        self.__class__.op_type = self.op_type
1301 1302 1303 1304
        if (hasattr(self, "use_mkldnn") and self.use_mkldnn == True) or \
            (hasattr(self, "attrs") and "use_mkldnn" in self.attrs and \
                    self.attrs["use_mkldnn"] == True):
            self.__class__.use_mkldnn = True
C
cc 已提交
1305

1306 1307 1308 1309 1310
        if (hasattr(self, "use_xpu") and self.use_xpu == True) or \
            (hasattr(self, "attrs") and "use_xpu" in self.attrs and \
                    self.attrs["use_xpu"] == True):
            self.__class__.use_xpu = True

1311
        places = self._get_places()
Q
qijun 已提交
1312
        for place in places:
1313 1314 1315 1316 1317 1318
            res = self.check_output_with_place(place, atol, no_check_set,
                                               equal_nan, check_dygraph)
            if check_dygraph:
                outs, dygraph_outs, fetch_list = res
            else:
                outs, fetch_list = res
1319
            if self.op_type not in compile_vs_runtime_white_list.COMPILE_RUN_OP_WHITE_LIST:
1320
                self.check_compile_vs_runtime(fetch_list, outs)
Q
qijun 已提交
1321

1322
    def check_output_customized(self, checker):
1323
        places = self._get_places()
1324 1325 1326
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
1327
            outs.sort(key=len)
1328 1329
            checker(outs)

D
Dun 已提交
1330 1331
    def _assert_is_close(self, numeric_grads, analytic_grads, names,
                         max_relative_error, msg_prefix):
M
minqiyang 已提交
1332
        for a, b, name in six.moves.zip(numeric_grads, analytic_grads, names):
1333 1334 1335 1336 1337 1338
            # It asserts np.abs(a - b) / np.abs(a) < max_relative_error, in which
            # max_relative_error is 1e-7. According to the value of np.abs(a), we
            # change np.abs(a) to achieve dynamic threshold. For example, if
            # the value of np.abs(a) is between 1e-10 and 1e-8, we set np.abs(a)*=1e4.
            # Therefore, it asserts np.abs(a - b) / (np.abs(a)*1e4) < max_relative_error,
            # which is the same as np.abs(a - b) / np.abs(a) < max_relative_error*1e4.
1339
            abs_a = np.abs(a)
1340 1341 1342 1343 1344 1345 1346
            if self.dtype == np.float64 and \
                self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
                abs_a[abs_a < 1e-10] = 1e-3
                abs_a[np.logical_and(abs_a > 1e-10, abs_a <= 1e-8)] *= 1e4
                abs_a[np.logical_and(abs_a > 1e-8, abs_a <= 1e-6)] *= 1e2
            else:
                abs_a[abs_a < 1e-3] = 1
1347 1348 1349 1350 1351 1352

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
1353 1354 1355
                return ("Operator %s error, %s variable %s (shape: %s, dtype: %s) max gradient diff %e over limit %e, "
                    "the first error element is %d, expected %e, but got %e.") \
                    % (self.op_type, msg_prefix, name, str(a.shape), self.dtype, max_diff, max_relative_error,
1356
                    offset, a.flatten()[offset], b.flatten()[offset])
1357 1358 1359

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

1360 1361 1362 1363 1364 1365 1366
    def _check_grad_helper(self):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        self.__class__.op_type = self.op_type
        self.__class__.exist_check_grad = True
        if self.dtype == np.float64:
            self.__class__.exist_fp64_check_grad = True

1367 1368
    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
1369
                   output_names,
1370
                   no_grad_set=None,
1371
                   numeric_grad_delta=0.005,
1372
                   in_place=False,
Q
Qiao Longfei 已提交
1373
                   max_relative_error=0.005,
1374
                   user_defined_grads=None,
1375
                   user_defined_grad_outputs=None,
1376
                   check_dygraph=True):
1377
        self._check_grad_helper()
1378
        places = self._get_places()
1379
        for place in places:
1380 1381 1382 1383
            self.check_grad_with_place(
                place, inputs_to_check, output_names, no_grad_set,
                numeric_grad_delta, in_place, max_relative_error,
                user_defined_grads, user_defined_grad_outputs, check_dygraph)
1384 1385 1386 1387 1388 1389 1390 1391 1392

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
1393
                              user_defined_grads=None,
1394
                              user_defined_grad_outputs=None,
1395
                              check_dygraph=True):
1396
        self.scope = core.Scope()
Q
qijun 已提交
1397
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
1398
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
1399
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
P
phlrain 已提交
1400

1401
        self._check_grad_helper()
1402 1403 1404 1405
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7
1406

P
phlrain 已提交
1407 1408 1409
        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
1410 1411 1412 1413 1414 1415 1416

        # oneDNN numeric gradient should use CPU kernel
        use_onednn = False
        if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"] == True:
            op_attrs["use_mkldnn"] = False
            use_onednn = True

P
phlrain 已提交
1417 1418 1419 1420 1421 1422 1423
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list)
Y
Yu Yang 已提交
1424

1425 1426 1427
        if use_onednn:
            op_attrs["use_mkldnn"] = True

1428 1429
        if no_grad_set is None:
            no_grad_set = set()
1430 1431
        else:
            if (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST
1432 1433 1434
                ) and (
                    self.op_type not in no_grad_set_white_list.NOT_CHECK_OP_LIST
                ) and (not self.is_bfloat16_op()):
1435 1436
                raise AssertionError("no_grad_set must be None, op_type is " +
                                     self.op_type + " Op.")
1437

1438 1439 1440 1441 1442 1443 1444 1445
        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)
            tensor_to_check = self.scope.find_var(input_to_check).get_tensor()
            tensor_size = six.moves.reduce(lambda a, b: a * b,
                                           tensor_to_check.shape(), 1)
            if tensor_size < 100:
                self.__class__.input_shape_is_large = False

Y
Yancey 已提交
1446 1447 1448
        if not type(output_names) is list:
            output_names = [output_names]

Q
Qiao Longfei 已提交
1449
        numeric_grads = user_defined_grads or [
1450
            get_numeric_gradient(
1451
                place,
1452 1453 1454 1455
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
1456
                output_names,
1457
                delta=numeric_grad_delta,
C
chengduo 已提交
1458
                in_place=in_place) for input_to_check in inputs_to_check
1459
        ]
1460

1461
        analytic_grads = self._get_gradient(inputs_to_check, place,
1462 1463
                                            output_names, no_grad_set,
                                            user_defined_grad_outputs)
1464

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
        # comparison of bf16 results will happen as fp32
        # loop over list of grads and convert bf16 to fp32
        fp32_grads = []
        for grad in analytic_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
                max_relative_error = 0.03
            fp32_grads.append(grad)
        analytic_grads = fp32_grads

D
Dun 已提交
1475 1476 1477
        self._assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                              max_relative_error,
                              "Gradient Check On %s" % str(place))
Q
qijun 已提交
1478

1479
        if check_dygraph:
1480 1481 1482
            dygraph_grad = self._get_dygraph_grad(
                inputs_to_check, place, output_names, user_defined_grad_outputs,
                no_grad_set)
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
            self._assert_is_close(numeric_grads, dygraph_grad, inputs_to_check,
                                  max_relative_error,
                                  "Gradient Check On %s" % str(place))

    def _find_var_in_dygraph(self, output_vars, name):
        if name in output_vars:
            return output_vars[name]
        else:
            for output_vars_index in output_vars:
                for output_vars_selected in output_vars[output_vars_index]:
                    if output_vars_selected.name == name:
                        return output_vars_selected

    def _get_dygraph_grad(self,
                          inputs_to_check,
                          place,
                          output_names,
1500
                          user_defined_grad_outputs=None,
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
                          no_grad_set=None):
        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
                op_proto, self.inputs, True, True, block)

            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs_outputs if hasattr(self, "attrs") else None)

            outputs_valid = {}
            for output_name in output_names:
                outputs_valid[output_name] = self._find_var_in_dygraph(
                    outputs, output_name)

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
            if user_defined_grad_outputs is None:
                if len(outputs_valid) == 1:
                    loss = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
                    for outputs_valid_key in outputs_valid:
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[outputs_valid_key]},
                            outputs={"Out": [loss]},
                            attrs=None)
                else:
                    avg_sum = []
                    for cur_loss in outputs_valid:
                        cur_avg_loss = block.create_var(
                            dtype=self.dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
                            stop_gradient=False)
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[cur_loss]},
                            outputs={"Out": [cur_avg_loss]},
                            attrs=None)
                        avg_sum.append(cur_avg_loss)
                    loss_sum = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
1566
                    block.append_op(
1567 1568 1569
                        type='sum',
                        inputs={"X": avg_sum},
                        outputs={"Out": loss_sum},
1570
                        attrs=None)
1571
                    loss = block.create_var(
1572 1573 1574
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
1575 1576
                        stop_gradient=False,
                        shape=[1])
1577
                    block.append_op(
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
                        type='scale',
                        inputs={"X": loss_sum},
                        outputs={"Out": loss},
                        attrs={'scale': 1.0 / float(len(avg_sum))})
                loss.backward()
                fetch_list_grad = []
                for inputs_to_check_name in inputs_to_check:
                    a = inputs_grad_dict[inputs_to_check_name].gradient()
                    fetch_list_grad.append(a)
                return fetch_list_grad
            else:
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                grad_outputs = []
                for grad_out_value in user_defined_grad_outputs:
                    grad_outputs.append(paddle.to_tensor(grad_out_value))
C
chentianyu03 已提交
1595 1596 1597 1598
                # delete the inputs which no need to calculate grad
                for no_grad_val in no_grad_set:
                    del (inputs[no_grad_val])

1599 1600 1601 1602 1603
                grad_inputs = paddle.grad(
                    outputs=fluid.layers.utils.flatten(outputs),
                    inputs=fluid.layers.utils.flatten(inputs),
                    grad_outputs=grad_outputs)
                return [grad.numpy() for grad in grad_inputs]
1604

Y
Yu Yang 已提交
1605 1606 1607 1608 1609
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
1610
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
1611 1612
        return tensor

K
Kexin Zhao 已提交
1613
    @staticmethod
K
Kexin Zhao 已提交
1614 1615
    def np_dtype_to_fluid_dtype(input):
        return input
K
Kexin Zhao 已提交
1616

D
dzhwinter 已提交
1617 1618 1619 1620 1621 1622 1623 1624
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

1625 1626 1627 1628 1629
    def _get_gradient(self,
                      input_to_check,
                      place,
                      output_names,
                      no_grad_set,
1630
                      user_defined_grad_outputs=None,
1631
                      parallel=False):
Y
Yu Yang 已提交
1632
        prog = Program()
1633
        scope = core.Scope()
Y
Yu Yang 已提交
1634
        block = prog.global_block()
1635
        self._append_ops(block)
Y
Yu Yang 已提交
1636

1637
        inputs = self._get_inputs(block)
1638
        outputs = self._get_outputs(block)
1639
        feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
1640

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
        if user_defined_grad_outputs is None:
            loss = append_loss_ops(block, output_names)
            param_grad_list = append_backward(
                loss=loss,
                parameter_list=input_to_check,
                no_grad_set=no_grad_set)
            fetch_list = [g for p, g in param_grad_list]
        else:
            assert parallel is False, "unsupported parallel mode when giving custom grad outputs."
            # user_defined_grad_outputs here are numpy arrays
            if not isinstance(user_defined_grad_outputs, list):
                user_defined_grad_outputs = [user_defined_grad_outputs]
            grad_outputs = []
            for grad_out_value in user_defined_grad_outputs:
                # `presistable` is used to avoid executor create new var in local scope
                var = block.create_var(
                    shape=grad_out_value.shape,
                    dtype=grad_out_value.dtype,
                    persistable=True)
                true_var = scope.var(var.name)
                tensor = true_var.get_tensor()
                tensor.set(grad_out_value, place)
                grad_outputs.append(var)
            targets = [
                outputs[name] for name in outputs if name in output_names
            ]
1667
            inputs = [inputs[name] for name in input_to_check if name in inputs]
1668 1669 1670 1671
            grad_inputs = paddle.static.gradients(targets, inputs, grad_outputs,
                                                  no_grad_set)
            fetch_list = grad_inputs

1672 1673
        if parallel:
            use_cuda = False
1674
            if isinstance(place, fluid.CUDAPlace):
1675
                use_cuda = True
1676 1677 1678 1679
            compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
                loss_name=loss.name, places=place)
            prog = compiled_prog
        executor = fluid.Executor(place)
1680 1681
        return list(
            map(np.array,
1682 1683 1684 1685 1686
                executor.run(prog,
                             feed_dict,
                             fetch_list,
                             scope=scope,
                             return_numpy=False)))