op_test.py 102.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import functools
B
baojun 已提交
16
import os
17 18
import random
import struct
19
import sys
20
import unittest
21
import warnings
M
minqiyang 已提交
22
from collections import defaultdict
23
from copy import copy
24

25 26
import numpy as np

27
import paddle
28 29
import paddle.fluid as fluid
import paddle.fluid.core as core
30
from paddle.fluid import unique_name
31 32
from paddle.fluid.backward import append_backward
from paddle.fluid.executor import Executor
33 34 35 36
from paddle.fluid.framework import (
    OpProtoHolder,
    Program,
    _current_expected_place,
37 38 39 40 41 42
    _disable_legacy_dygraph,
    _dygraph_tracer,
    _enable_legacy_dygraph,
    _in_eager_without_dygraph_check,
    _in_legacy_dygraph,
    _test_eager_guard,
43
)
44
from paddle.fluid.op import Operator
45
from paddle.jit.dy2static.utils import parse_arg_and_kwargs
46 47

sys.path.append(os.path.abspath(os.path.dirname(__file__)))
48
from testsuite import append_input_output, append_loss_ops, create_op, set_input
49
from white_list import (
50 51 52
    check_shape_white_list,
    compile_vs_runtime_white_list,
    no_check_set_white_list,
53
    no_grad_set_white_list,
54 55
    op_accuracy_white_list,
    op_threshold_white_list,
56
)
57

58 59
# For switch new eager mode globally
g_is_in_eager = _in_eager_without_dygraph_check()
60 61 62 63 64 65
g_enable_legacy_dygraph = (
    _enable_legacy_dygraph if g_is_in_eager else lambda: None
)
g_disable_legacy_dygraph = (
    _disable_legacy_dygraph if g_is_in_eager else lambda: None
)
66

67

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
def check_out_dtype(api_fn, in_specs, expect_dtypes, target_index=0, **configs):
    """
    Determines whether dtype of output tensor is as expected.

    Args:
        api_fn(callable):  paddle api function
        in_specs(list[tuple]): list of shape and dtype information for constructing input tensor of api_fn, such as [(shape, dtype), (shape, dtype)].
        expected_dtype(list[str]): expected dtype of output tensor.
        target_index(int): indicate which one from in_specs to infer the dtype of output.
        config(dict): other arguments of paddle api function

    Example:
        check_out_dtype(fluid.layers.pad_constant_like, [([2,3,2,3], 'float64'), ([1, 3, 1,3], )], ['float32', 'float64', 'int64'], target_index=1, pad_value=0.)

    """
    paddle.enable_static()
    for i, expect_dtype in enumerate(expect_dtypes):
        with paddle.static.program_guard(paddle.static.Program()):
            input_t = []
            for index, spec in enumerate(in_specs):
                if len(spec) == 1:
                    shape = spec[0]
                    dtype = expect_dtype if target_index == index else 'float32'
                elif len(spec) == 2:
                    shape, dtype = spec
                else:
                    raise ValueError(
95 96 97 98
                        "Value of in_specs[{}] should contains two elements: [shape, dtype]".format(
                            index
                        )
                    )
99
                input_t.append(
100 101 102 103
                    paddle.static.data(
                        name='data_%s' % index, shape=shape, dtype=dtype
                    )
                )
104 105 106 107 108 109 110

            out = api_fn(*input_t, **configs)
            out_dtype = fluid.data_feeder.convert_dtype(out.dtype)

            if out_dtype != expect_dtype:
                raise ValueError(
                    "Expected out.dtype is {}, but got {} from {}.".format(
111 112 113
                        expect_dtype, out_dtype, api_fn.__name__
                    )
                )
114 115


116 117 118 119 120 121 122 123
def _set_use_system_allocator(value=None):
    USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
    old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
    value = old_value if value is None else value
    core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
    return old_value


124
def randomize_probability(batch_size, class_num, dtype='float32'):
125 126 127
    prob = np.random.uniform(0.1, 1.0, size=(batch_size, class_num)).astype(
        dtype
    )
128
    prob_sum = prob.sum(axis=1)
129
    for i in range(len(prob)):
130 131 132 133
        prob[i] /= prob_sum[i]
    return prob


134 135 136 137 138 139 140 141 142 143
def get_numeric_gradient(
    place,
    scope,
    op,
    inputs,
    input_to_check,
    output_names,
    delta=0.005,
    in_place=False,
):
Y
Yu Yang 已提交
144
    # FIXME: change this method by compile time concepts
145
    set_input(scope, op, inputs, place)
146 147

    def product(dim):
148
        return functools.reduce(lambda a, b: a * b, dim, 1)
149 150

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
151 152
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
153
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
154
        tensor_to_check_dtype = np.float32
155
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
156
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
157 158 159 160
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
161 162
    elif tensor_to_check_dtype == core.VarDesc.VarType.BF16:
        tensor_to_check_dtype = np.float32
L
Lijunhui 已提交
163 164 165
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX64:
        tensor_to_check_dtype = np.complex64
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX128:
166
        tensor_to_check_dtype = np.complex128
167
    else:
168 169 170 171 172 173
        raise ValueError(
            "Not supported data type "
            + str(tensor_to_check_dtype)
            + ", tensor name : "
            + str(input_to_check)
        )
174

C
chengduo 已提交
175 176 177 178
    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
179
            output_numpy = np.array(scope.find_var(output_name).get_tensor())
Y
Yiqun Liu 已提交
180 181 182
            # numpy.dtype does not have bfloat16, thus we use numpy.uint16 to
            # store bfloat16 data, and need to be converted to float to check
            # the floating precision.
183 184 185
            if tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
                output_numpy = convert_uint16_to_float(output_numpy)
            sum.append(output_numpy.astype(tensor_to_check_dtype).mean())
C
chengduo 已提交
186 187
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

188
    gradient_flat = np.zeros(shape=(tensor_size,), dtype=tensor_to_check_dtype)
189 190

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
191 192 193 194
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
195 196 197
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            numpy_tensor = numpy_tensor.flatten()
198 199
            return struct.unpack(
                '<f',
200 201
                struct.pack('<I', np.uint32(numpy_tensor[i]) << np.uint32(16)),
            )[0]
D
dzhwinter 已提交
202
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
203
            return tensor._get_float_element(i)
204
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
205
            return tensor._get_double_element(i)
206
        else:
207 208 209
            raise TypeError(
                "Unsupported test data type %s." % tensor_to_check_dtype
            )
210 211

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
212 213 214 215 216
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
217
            numpy_tensor = numpy_tensor.reshape(shape)
D
dzhwinter 已提交
218
            tensor.set(numpy_tensor, place)
219 220 221 222 223 224 225
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = np.uint16(copy_bits_from_float_to_uint16(e))
            numpy_tensor = numpy_tensor.reshape(shape)
            tensor.set(numpy_tensor, place)
D
dzhwinter 已提交
226
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
227
            tensor._set_float_element(i, e)
228
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
229
            tensor._set_double_element(i, e)
230
        else:
231 232 233
            raise TypeError(
                "Unsupported test data type %s." % tensor_to_check_dtype
            )
234

235 236
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
237
    for i in range(tensor_size):
238
        if in_place:
239
            set_input(scope, op, inputs, place)
240 241

        # get one input element throw it's index i.
242
        origin = __get_elem__(tensor_to_check, i)
243 244
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
245
        __set_elem__(tensor_to_check, i, x_pos)
246 247 248
        y_pos = get_output()

        if in_place:
249
            set_input(scope, op, inputs, place)
250 251

        x_neg = origin - delta
252
        __set_elem__(tensor_to_check, i, x_neg)
253 254
        y_neg = get_output()

255
        __set_elem__(tensor_to_check, i, origin)
256 257
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
258
    return gradient_flat.reshape(tensor_to_check.shape())
259 260


261 262
def skip_check_grad_ci(reason=None):
    """Decorator to skip check_grad CI.
C
cc 已提交
263

264 265 266
    Check_grad is required for Op test cases. However, there are some special
    cases that do not need to do check_grad. This decorator is used to skip the
    check_grad of the above cases.
C
cc 已提交
267

268 269
    Note: the execution of unit test will not be skipped. It just avoids check_grad
    checking in tearDownClass method by setting a `no_need_check_grad` flag.
270

271 272 273
    Example:
        @skip_check_grad_ci(reason="For inference, check_grad is not required.")
        class TestInference(OpTest):
274 275 276 277 278 279 280 281 282 283 284
    """
    if not isinstance(reason, str):
        raise AssertionError("The reason for skipping check_grad is required.")

    def wrapper(cls):
        cls.no_need_check_grad = True
        return cls

    return wrapper


285 286 287
def skip_check_inplace_ci(reason=None):
    if not isinstance(reason, str):
        raise AssertionError(
288 289
            "The reason for skipping check_inplace is required."
        )
290 291 292 293 294 295 296 297

    def wrapper(cls):
        cls.no_need_check_inplace = True
        return cls

    return wrapper


298 299 300 301
def copy_bits_from_float_to_uint16(f):
    return struct.unpack('<I', struct.pack('<f', f))[0] >> 16


302 303 304 305
def convert_float_to_uint16(float_list, data_format="NCHW"):
    if data_format == "NHWC":
        float_list = np.transpose(float_list, [0, 3, 1, 2])

306 307 308
    new_output = []
    for x in np.nditer(float_list):
        new_output.append(np.uint16(copy_bits_from_float_to_uint16(x)))
309
    new_output = np.reshape(new_output, float_list.shape).view(np.uint16)
310

311 312 313
    if data_format == "NHWC":
        new_output = np.transpose(new_output, [0, 2, 3, 1])
    return new_output
314 315


316 317
def convert_uint16_to_float(in_list):
    in_list = np.asarray(in_list)
318 319 320 321 322 323
    out = np.vectorize(
        lambda x: struct.unpack(
            '<f', struct.pack('<I', np.uint32(x) << np.uint32(16))
        )[0],
        otypes=[np.float32],
    )(in_list.flat)
324
    return np.reshape(out, in_list.shape)
325 326


327
class OpTest(unittest.TestCase):
328 329 330 331 332
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
333
        cls.call_once = False
334
        cls.dtype = None
335
        cls.outputs = {}
336
        cls.input_shape_is_large = True
337 338 339 340

        np.random.seed(123)
        random.seed(124)

341 342 343 344
        if paddle.is_compiled_with_npu():
            cls._use_system_allocator = _set_use_system_allocator(False)
        else:
            cls._use_system_allocator = _set_use_system_allocator(True)
345

346 347
    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
348
        """Restore random seeds"""
349 350 351
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

352 353
        _set_use_system_allocator(cls._use_system_allocator)

354 355 356 357
        def is_empty_grad_op(op_type):
            all_op_kernels = core._get_all_register_op_kernels()
            grad_op = op_type + '_grad'
            if grad_op in all_op_kernels.keys():
J
juncaipeng 已提交
358
                if is_mkldnn_op_test():
359 360 361 362 363 364 365 366
                    grad_op_kernels = all_op_kernels[grad_op]
                    for grad_op_kernel in grad_op_kernels:
                        if 'MKLDNN' in grad_op_kernel:
                            return False
                else:
                    return False
            return True

367
        def is_xpu_op_test():
368
            return hasattr(cls, "use_xpu") and cls.use_xpu
369

J
juncaipeng 已提交
370
        def is_mkldnn_op_test():
371
            return hasattr(cls, "use_mkldnn") and cls.use_mkldnn
J
juncaipeng 已提交
372

373 374 375
        def is_rocm_op_test():
            return core.is_compiled_with_rocm()

376
        def is_npu_op_test():
377
            return hasattr(cls, "use_npu") and cls.use_npu
378

379
        def is_mlu_op_test():
380
            return hasattr(cls, "use_mlu") and cls.use_mlu
381

382
        def is_custom_device_op_test():
383
            return hasattr(cls, "use_custom_device") and cls.use_custom_device
384

385 386
        if not hasattr(cls, "op_type"):
            raise AssertionError(
387
                "This test do not have op_type in class attrs, "
388 389
                "please set self.__class__.op_type=the_real_op_type manually."
            )
390

J
juncaipeng 已提交
391
        # case in NO_FP64_CHECK_GRAD_CASES and op in NO_FP64_CHECK_GRAD_OP_LIST should be fixed
392 393 394 395 396 397 398 399 400 401 402 403
        if not hasattr(cls, "no_need_check_grad") and not is_empty_grad_op(
            cls.op_type
        ):
            if cls.dtype is None or (
                cls.dtype == np.float16
                and cls.op_type
                not in op_accuracy_white_list.NO_FP16_CHECK_GRAD_OP_LIST
                and not hasattr(cls, "exist_check_grad")
            ):
                raise AssertionError(
                    "This test of %s op needs check_grad." % cls.op_type
                )
J
juncaipeng 已提交
404

405
            # check for op test with fp64 precision, but not check mkldnn op test for now
406 407 408 409 410 411 412 413 414 415 416 417
            if (
                cls.dtype in [np.float32, np.float64]
                and cls.op_type
                not in op_accuracy_white_list.NO_FP64_CHECK_GRAD_OP_LIST
                and not hasattr(cls, 'exist_fp64_check_grad')
                and not is_xpu_op_test()
                and not is_mkldnn_op_test()
                and not is_rocm_op_test()
                and not is_npu_op_test()
                and not is_mlu_op_test()
                and not is_custom_device_op_test()
            ):
J
juncaipeng 已提交
418
                raise AssertionError(
419 420 421 422 423 424 425 426 427
                    "This test of %s op needs check_grad with fp64 precision."
                    % cls.op_type
                )

            if (
                not cls.input_shape_is_large
                and cls.op_type
                not in check_shape_white_list.NEED_TO_FIX_OP_LIST
            ):
428
                raise AssertionError(
429 430 431 432
                    "Input's shape should be large than or equal to 100 for "
                    + cls.op_type
                    + " Op."
                )
433

434 435 436 437 438
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

439
    def is_bfloat16_op(self):
Y
Yiqun Liu 已提交
440 441
        # self.dtype is the dtype of inputs, and is set in infer_dtype_from_inputs_outputs.
        # Make sure this function is called after calling infer_dtype_from_inputs_outputs.
442 443 444 445 446 447
        return (
            self.dtype == np.uint16
            or (
                hasattr(self, 'output_dtype') and self.output_dtype == np.uint16
            )
            or (
448
                hasattr(self, 'mkldnn_data_type')
449 450 451 452 453 454 455 456
                and getattr(self, 'mkldnn_data_type') == "bfloat16"
            )
            or (
                hasattr(self, 'attrs')
                and 'mkldnn_data_type' in self.attrs
                and self.attrs['mkldnn_data_type'] == 'bfloat16'
            )
        )
Y
Yiqun Liu 已提交
457 458

    def is_mkldnn_op(self):
459
        return (hasattr(self, "use_mkldnn") and self.use_mkldnn) or (
460 461
            hasattr(self, "attrs")
            and "use_mkldnn" in self.attrs
462
            and self.attrs["use_mkldnn"]
463
        )
Y
Yiqun Liu 已提交
464 465

    def is_xpu_op(self):
466
        return (hasattr(self, "use_xpu") and self.use_xpu) or (
467 468
            hasattr(self, "attrs")
            and "use_xpu" in self.attrs
469
            and self.attrs["use_xpu"]
470
        )
471

472
    # set the self.output_dtype .
473
    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
J
juncaipeng 已提交
474 475 476 477
        def is_np_data(input):
            return isinstance(input, (np.ndarray, np.generic))

        def infer_dtype(numpy_dict, dtype_set):
478
            assert isinstance(
479 480
                numpy_dict, dict
            ), "self.inputs, self.outputs must be numpy_dict"
J
juncaipeng 已提交
481 482 483 484 485 486
            # the inputs are as follows:
            # case 1: inputs = {'X': x}
            # case 2: inputs = {'X': (x, x_lod)}
            # case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
            # case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
            # TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
487
            for _, var_value in numpy_dict.items():
J
juncaipeng 已提交
488 489 490 491 492 493 494
                if is_np_data(var_value):  # case 1
                    dtype_set.add(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):  # case 2, 3, 4
                    for sub_val_value in var_value:
                        if is_np_data(sub_val_value):  # case 2
                            dtype_set.add(sub_val_value.dtype)
                        elif len(sub_val_value) > 1 and is_np_data(
495 496
                            sub_val_value[1]
                        ):  # case 3
J
juncaipeng 已提交
497
                            dtype_set.add(sub_val_value[1].dtype)
498 499 500 501 502
                        elif (
                            len(sub_val_value) > 1
                            and isinstance(sub_val_value[1], (list, tuple))
                            and is_np_data(sub_val_value[1][0])
                        ):  # case 4
J
juncaipeng 已提交
503 504 505 506
                            dtype_set.add(sub_val_value[1][0].dtype)

        # infer dtype from inputs, and dtype means the precision of the test
        # collect dtype of all inputs
Y
Yiqun Liu 已提交
507 508
        input_dtype_set = set()
        infer_dtype(inputs, input_dtype_set)
J
juncaipeng 已提交
509
        dtype_list = [
510 511 512 513 514 515 516 517 518
            np.dtype(np.float64),
            np.dtype(np.float32),
            np.dtype(np.float16),
            np.dtype(np.int64),
            np.dtype(np.int32),
            np.dtype(np.uint16),
            np.dtype(np.int16),
            np.dtype(np.int8),
            np.dtype(np.uint8),
519
            np.dtype(np.bool_),
J
juncaipeng 已提交
520 521 522
        ]
        # check the dtype in dtype_list in order, select the first dtype that in dtype_set
        for dtype in dtype_list:
Y
Yiqun Liu 已提交
523
            if dtype in input_dtype_set:
J
juncaipeng 已提交
524 525
                self.dtype = dtype
                break
Y
Yiqun Liu 已提交
526
        # save input dtype in class attr
527
        self.__class__.dtype = self.dtype
528

Y
Yiqun Liu 已提交
529 530 531 532 533 534 535 536
        # infer dtype of outputs
        output_dtype_set = set()
        infer_dtype(outputs, output_dtype_set)
        for dtype in dtype_list:
            if dtype in output_dtype_set:
                self.output_dtype = dtype
                break

Y
Yang Yang(Tony) 已提交
537 538 539 540 541 542
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
543
                    if isinstance(np_value, tuple):
544
                        tensor.set(np_value[0], place)
545
                        tensor.set_recursive_sequence_lengths(np_value[1])
546
                    else:
547
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
548 549 550 551
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
552
                    tensor.set(self.inputs[var_name][0], place)
553
                    tensor.set_recursive_sequence_lengths(
554 555
                        self.inputs[var_name][1]
                    )
Y
Yang Yang(Tony) 已提交
556
                else:
557
                    tensor.set(self.inputs[var_name], place)
Y
Yang Yang(Tony) 已提交
558
                feed_map[var_name] = tensor
559

Y
Yang Yang(Tony) 已提交
560 561
        return feed_map

562
    def _append_ops(self, block):
563 564 565
        self.__class__.op_type = (
            self.op_type
        )  # for ci check, please not delete it for now
Y
Yiqun Liu 已提交
566
        if self.is_mkldnn_op():
567
            self.__class__.use_mkldnn = True
C
cc 已提交
568

Y
Yiqun Liu 已提交
569
        if self.is_xpu_op():
570 571
            self.__class__.use_xpu = True

Y
Yang Yang(Tony) 已提交
572
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
573
        "infer datatype from inputs and outputs for this test case"
574 575 576 577 578 579
        if self.is_bfloat16_op():
            self.dtype = np.uint16
            self.__class__.dtype = self.dtype
            self.output_dtype = np.uint16
        else:
            self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
580 581 582 583 584 585
        inputs = append_input_output(
            block, op_proto, self.inputs, True, self.dtype
        )
        outputs = append_input_output(
            block, op_proto, self.outputs, False, self.dtype
        )
P
phlrain 已提交
586 587 588

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
589 590 591 592 593 594
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True,
                )
P
phlrain 已提交
595

Y
Yang Yang(Tony) 已提交
596 597 598 599
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
600 601
            attrs=copy(self.attrs) if hasattr(self, "attrs") else dict(),
        )
C
cc 已提交
602
        # infer variable type and infer shape in compile-time
Q
QI JUN 已提交
603 604
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
605

606 607
        return op

608 609
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
610
        for name, value in numpy_inputs.items():
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

M
minqiyang 已提交
630 631 632 633
    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
L
lujun 已提交
634
            v = fluid.dygraph.base.to_variable(value=data)
635
            v.value().get_tensor().set_recursive_sequence_lengths(lod)
M
minqiyang 已提交
636 637
            return v
        else:
L
lujun 已提交
638
            return fluid.dygraph.base.to_variable(value)
M
minqiyang 已提交
639

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
    def get_sequence_batch_size_1_input(self, lod=None, shape=None):
        """Get LoD input data whose batch size is 1.
        All sequence related OP unittests should call this function to contain the case of batch size = 1.
        Args:
            lod (list[list of int], optional): Length-based LoD, length of lod[0] should be 1. Default: [[13]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod) : LoD input data whose batch size is 1.
        """
        if lod is None:
            lod = [[13]]
        if shape is None:
            shape = [13, 23]
        assert len(lod[0]) == 1
        assert lod[0][0] == shape[0]
        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

658 659 660 661 662 663 664 665
    def lod_has_single_zero(self, lod):
        for i in range(len(lod) - 2):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] != 0:
                return True
        return False

    def lod_has_continuous_zero(self, lod):
        for i in range(len(lod) - 3):
666 667 668 669 670 671
            if (
                lod[i] != 0
                and lod[i + 1] == 0
                and lod[i + 2] == 0
                and lod[i + 3] != 0
            ):
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
                return True
        return False

    def get_sequence_instance_size_0_input(self, lod=None, shape=None):
        """Get LoD input data whose instance size is 0.
        All sequence related OP unittests should call this function to contain the case of instance size is 0.
        Args:
            lod (list[list of int], optional): Length-based LoD, lod[0]'s size must at least eight, lod[0] must at least two zeros at the beginning and at least two zeros at the end, the middle position of lod[0] contains a single zero and multiple zero. Default: [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod): LoD input data whose instance size is 0.
        """
        if lod is None:
            lod = [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]]
        if shape is None:
            shape = [12, 10]
        assert len(lod[0]) >= 8
689 690 691 692 693 694
        assert (
            lod[0][0] == 0
            and lod[0][1] == 0
            and lod[0][-1] == 0
            and lod[0][-2] == 0
        )
695 696 697 698 699 700 701
        assert self.lod_has_single_zero(lod[0]) is True
        assert self.lod_has_continuous_zero(lod[0]) is True
        assert sum(lod[0]) == shape[0]

        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

702 703 704
    def append_input_output_for_dygraph(
        self, op_proto, np_list, is_input, if_return_inputs_grad_dict, block
    ):
705 706 707 708 709 710 711 712 713 714 715
        def create_var(np_value, name, is_input, if_return_inputs_grad_dict):
            np_value_temp = np_value
            has_lod = False
            lod_temp = None
            if isinstance(np_value, tuple):
                np_value_temp = np_value[0]
                has_lod = True
                lod_temp = np_value[1]

            if is_input:
                v = self._create_var_from_numpy(np_value_temp)
716

717 718
                if if_return_inputs_grad_dict:
                    v.stop_gradient = False
J
Jiabin Yang 已提交
719
                    if not _in_legacy_dygraph():
720 721
                        v.retain_grads()

722
                if has_lod:
723
                    v.value().get_tensor().set_recursive_sequence_lengths(
724 725
                        lod_temp
                    )
726
            else:
727 728 729 730 731 732 733
                v = block.create_var(
                    name=name,
                    dtype=np_value_temp.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False,
                )
734 735 736 737 738 739 740 741 742 743 744 745 746
            return v

        # prepare variable for input or output
        var_dict = defaultdict(list)
        if if_return_inputs_grad_dict:
            inputs_grad_dict = defaultdict()
        proto_list = op_proto.inputs if is_input else op_proto.outputs
        for var_proto in proto_list:
            name = var_proto.name
            if (name not in np_list) and var_proto.dispensable:
                continue
            if name not in np_list:
                assert var_proto.intermediate, "{} not found".format(name)
747 748 749
                v = block.create_var(
                    dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR
                )
750 751 752 753 754 755
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v
                continue
            if var_proto.duplicable:
                assert isinstance(
756 757
                    np_list[name], list
                ), "Duplicable {} should be set as list".format(name)
758 759 760
                var_list = []
                slot_name = name
                for (name, np_value) in np_list[name]:
761 762 763
                    v = create_var(
                        np_value, name, is_input, if_return_inputs_grad_dict
                    )
764 765 766 767 768 769 770 771 772 773 774 775 776
                    var_list.append(v)
                    if if_return_inputs_grad_dict:
                        inputs_grad_dict[name] = v
                var_dict[slot_name] = var_list
            else:
                nplist_value_temp = None
                name_temp = None
                if isinstance(np_list[name], list):
                    nplist_value_temp = np_list[name][0]
                    name_temp = name
                else:
                    nplist_value_temp = np_list[name]
                    name_temp = unique_name.generate("%s_out" % (name))
777 778 779 780 781 782
                v = create_var(
                    nplist_value_temp,
                    name_temp,
                    is_input,
                    if_return_inputs_grad_dict,
                )
783 784 785 786 787 788 789 790 791
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v

        if if_return_inputs_grad_dict:
            return var_dict, inputs_grad_dict
        else:
            return var_dict

792
    def _check_api_outs_by_dygraph_outs(self, api_outs, dygraph_outs, place):
793 794 795 796
        """for quick verify, here we take a simplest strategy:
        1. we only check variable in api_outs.
        2. we simply check the numpy (tensor) .
        3. we set atol and rtol as 1e-5, because they are unrelated to dtype.
797 798 799 800
        """
        for name in api_outs:
            np_api = np.array(api_outs[name])
            np_dyg = np.array(dygraph_outs[name])
801 802 803 804 805
            np.testing.assert_allclose(
                np_api,
                np_dyg,
                rtol=1e-05,
                equal_nan=False,
806 807 808 809 810 811 812 813 814 815 816 817
                err_msg='Output ('
                + name
                + ') has diff at '
                + str(place)
                + '\nExpect '
                + str(np_dyg)
                + '\n'
                + 'But Got'
                + str(np_api)
                + ' in class '
                + self.__class__.__name__,
            )
818

819
    def _calc_python_api_output(self, place, egr_inps=None, egr_oups=None):
820
        """set egr_inps and egr_oups = None if you want to create it by yourself."""
821

822 823 824 825
        def prepare_python_api_arguments(
            api, op_proto_ins, op_proto_attrs, kernel_sig
        ):
            """map from `op proto inputs and attrs` to `api input list and api attrs dict`
826

827
            NOTE: the op_proto_attrs and op_proto_ins is a default dict. default value is []
828
            """
829 830 831 832 833 834 835

            class Empty:
                pass

            def is_empty(a):
                return isinstance(a, Empty)

836
            def get_default(idx, defaults):
837 838 839
                assert not isinstance(defaults[idx], Empty), (
                    "%d-th params of python api don't have default value." % idx
                )
840
                return defaults[idx]
841 842 843 844

            def to_defaults_list(params, defaults):
                return [defaults[p] for p in params if p in defaults]

845
            def parse_attri_value(name, op_inputs, op_attrs):
846 847 848 849
                """parse true value from inputs and attrs, if there is no name passed by OpTest, return Empty
                1. if the name in op_attrs, use the op_attrs[name]
                2. if the name in op_inputs, convert the op_inputs to [type of default value]
                3. if the name not in op_attrs ans op_inputs, return Empty. (this will use the default value from python api)
850 851 852 853
                """
                if name in op_proto_attrs:
                    return op_proto_attrs[name]
                elif name in op_inputs:
X
xiongkun 已提交
854 855
                    if len(op_inputs[name]) == 1:
                        # why don't use numpy().item() : if the Tensor is float64, we will change it to python.float32, where we loss accuracy: [allclose_op]
856
                        # why we reconstruct a tensor: because we want the tensor in cpu.
857 858 859
                        return paddle.to_tensor(
                            op_inputs[name][0].numpy(), place='cpu'
                        )
X
xiongkun 已提交
860 861 862
                    else:
                        # if this is a list (test_unsqueeze2_op): we just pass it into the python api.
                        return op_inputs[name]
863 864 865
                else:
                    return Empty()

866 867 868
            # NOTE(xiongkun): the logic of constructing parameters:
            # for example:
            #    python api: cumprod(x, dim, dtype=None, name=None)
869 870 871 872 873 874 875
            #    kernel sig: [["x"], ["dim"], ["out"]]"
            #
            # we will construct a lot of list with the same length : len == len(api_params), here is 4
            #    api_params = ["x", "dim", "dtype", "name"]
            #    api_defaults = [Empty, Empty, None, None]; empty means no defaults.
            #    inputs_and_attrs = ["x", "dim"] , the length may shorter or longer than api_params
            #    input_arguments = [RealValue in self.inputs and self.attrs]
876
            # then ,we will loop for the api_params, construct a result list:
877 878 879 880
            #    if the name in ['name', 'dtype', 'out', 'output'], we will use the default value
            #    else, we will consume a input_arguments. (because the name is not corresponding, so we only use the order)

            api_params, api_defaults = parse_arg_and_kwargs(api)
881
            api_defaults = to_defaults_list(api_params, api_defaults)
882 883 884 885
            api_defaults = [
                Empty() for i in range(len(api_params) - len(api_defaults))
            ] + api_defaults
            assert len(api_defaults) == len(
886 887
                api_params
            ), "Error happens. contack xiongkun03 to solve."
888
            inputs_sig, attrs_sig, outputs_sig = kernel_sig
889
            inputs_and_attrs = inputs_sig + attrs_sig
Z
zyfncg 已提交
890 891 892
            input_arguments = [
                op_proto_ins.get(name, Empty()) for name in inputs_sig
            ] + [
893
                parse_attri_value(name, op_proto_ins, op_proto_attrs)
894 895 896
                for name in attrs_sig
            ]
            results = []
897 898 899 900 901
            api_ignore_param_list = set(['name', 'dtype', 'out', 'output'])
            idx_of_op_proto_arguments = 0
            for idx, arg_name in enumerate(api_params):
                if arg_name in api_ignore_param_list:
                    results.append(get_default(idx, api_defaults))
902
                else:
903
                    if idx_of_op_proto_arguments < len(input_arguments):
904 905 906 907 908
                        tmp = input_arguments[idx_of_op_proto_arguments]
                        idx_of_op_proto_arguments += 1
                    else:
                        tmp = Empty()  # use the default value

909 910 911 912 913
                    if isinstance(tmp, Empty):
                        results.append(get_default(idx, api_defaults))
                    else:
                        results.append(tmp)
            assert len(results) == len(api_params)
914
            return results
915 916

        def construct_output_dict_by_kernel_sig(ret_tuple, output_sig):
X
xiongkun 已提交
917 918
            if hasattr(self, "python_out_sig"):
                output_sig = self.python_out_sig
919 920
            if not isinstance(ret_tuple, (tuple, list)):
                ret_tuple = [ret_tuple]
921 922 923 924 925
            if len(output_sig) == len(ret_tuple):
                # [assumption]: we assume {"Out": [Tensor]}
                return {a: [b] for a, b in zip(output_sig, ret_tuple)}
            else:
                # [assumption]: return multi-Tensor in a single output. such as paddle.split()
926 927 928
                assert (
                    len(output_sig) == 1
                ), "Don't support multi-output with multi-tensor output. (May be you can use set `python_out_sig`, see `test_squeeze2_op` as a example.)"
929
                return {output_sig[0]: ret_tuple}
930

931
        def assumption_assert_and_transform(args, inp_num):
932
            """
933
            transform inputs by the following rules:
934 935
                1. [Tensor] -> Tensor
                2. [Tensor, Tensor, ...] -> list of Tensors
Z
zyfncg 已提交
936 937
                3. None -> None
                4. Others: raise Error
938 939

            only support "X" is list of Tensor, currently don't support other structure like dict.
940
            """
941 942 943
            inp_args = [
                [inp] if inp is None else inp for inp in args[:inp_num]
            ]  # convert None -> [None]
Z
zyfncg 已提交
944
            for inp in inp_args:
945 946 947
                assert isinstance(
                    inp, list
                ), "currently only support `X` is [Tensor], don't support other structure."
948 949 950
            args = [
                inp[0] if len(inp) == 1 else inp for inp in inp_args
            ] + args[inp_num:]
951
            return args
952

953 954 955
        def _get_kernel_signature(
            eager_tensor_inputs, eager_tensor_outputs, attrs_outputs
        ):
956 957
            try:
                kernel_sig = _dygraph_tracer()._get_kernel_signature(
958 959 960 961 962
                    self.op_type,
                    eager_tensor_inputs,
                    eager_tensor_outputs,
                    attrs_outputs,
                )
963
            except RuntimeError as re:
964
                """we think the kernel_sig is missing."""
965
                kernel_sig = None
X
xiongkun 已提交
966 967
                print(
                    "[Warning: op_test.py] Kernel Signature is not found for %s, fall back to intermediate state."
968 969
                    % self.op_type
                )
970 971
            return kernel_sig

972
        def cal_python_api(python_api, args, kernel_sig):
973
            inputs_sig, attrs_sig, outputs_sig = kernel_sig
974 975
            args = assumption_assert_and_transform(args, len(inputs_sig))
            ret_tuple = python_api(*args)
976 977 978 979 980 981
            return construct_output_dict_by_kernel_sig(ret_tuple, outputs_sig)

        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
            # prepare input variable
982 983 984 985 986 987 988
            eager_tensor_inputs = (
                egr_inps
                if egr_inps
                else self.append_input_output_for_dygraph(
                    op_proto, self.inputs, True, False, block
                )
            )
989
            # prepare output variable
990 991 992 993 994 995 996
            eager_tensor_outputs = (
                egr_oups
                if egr_oups
                else self.append_input_output_for_dygraph(
                    op_proto, self.outputs, False, False, block
                )
            )
997

998
            # prepare attributes
999 1000 1001 1002 1003 1004
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]

1005 1006 1007
            kernel_sig = _get_kernel_signature(
                eager_tensor_inputs, eager_tensor_outputs, attrs_outputs
            )
1008 1009
            if not kernel_sig:
                return None
1010 1011 1012 1013 1014 1015 1016
            assert hasattr(self, "python_api"), (
                "Detect there is KernelSignature for `%s` op, please set the `self.python_api` if you set check_eager = True"
                % self.op_type
            )
            args = prepare_python_api_arguments(
                self.python_api, eager_tensor_inputs, attrs_outputs, kernel_sig
            )
1017
            """ we directly return the cal_python_api value because the value is already tensor.
1018
            """
1019
            return cal_python_api(self.python_api, args, kernel_sig)
1020

L
lujun 已提交
1021
    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
1022 1023 1024
        self.__class__.op_type = (
            self.op_type
        )  # for ci check, please not delete it for now
L
lujun 已提交
1025
        with fluid.dygraph.base.guard(place=place):
M
minqiyang 已提交
1026 1027
            block = fluid.default_main_program().global_block()

1028
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
M
minqiyang 已提交
1029

1030
            # prepare input variable
1031
            inputs = self.append_input_output_for_dygraph(
1032 1033
                op_proto, self.inputs, True, False, block
            )
M
minqiyang 已提交
1034
            # prepare output variable
1035
            outputs = self.append_input_output_for_dygraph(
1036 1037
                op_proto, self.outputs, False, False, block
            )
1038

1039
            # prepare attributes
1040 1041 1042 1043 1044
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
1045

M
minqiyang 已提交
1046 1047 1048 1049
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
1050 1051
                attrs=attrs_outputs if hasattr(self, "attrs") else None,
            )
M
minqiyang 已提交
1052
            return outputs
1053

1054 1055 1056 1057 1058 1059 1060 1061 1062
    def _calc_output(
        self,
        place,
        parallel=False,
        no_check_set=None,
        loss=None,
        enable_inplace=None,
        for_inplace_test=None,
    ):
1063 1064
        program = Program()
        block = program.global_block()
1065
        op = self._append_ops(block)
1066 1067 1068 1069 1070

        inputs = self._get_inputs(block)
        outputs = self._get_outputs(block)
        feed_map = self.feed_var(inputs, place)

1071
        if for_inplace_test:
C
cc 已提交
1072 1073
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
1074 1075
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
1076 1077
            for out_name in op.output_arg_names:
                var = block.var(out_name)
1078 1079
                if 0 in var.shape:
                    var.persistable = True
1080
        original_program = program
1081 1082
        if parallel:
            use_cuda = False
1083
            if isinstance(place, fluid.CUDAPlace):
1084
                use_cuda = True
1085
            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
1086 1087
                loss_name=loss.name if loss else None, places=place
            )
1088
            program = compiled_prog
1089 1090 1091 1092
        fetch_list = getattr(self, "fetch_list", [])
        # if the fetch_list is customized by user, we use it directly.
        # if not, fill the fetch_list by the user configured outputs in test.
        if len(fetch_list) == 0:
1093
            for var_name, var in outputs.items():
1094 1095
                if no_check_set is not None and var_name in no_check_set:
                    continue
Y
Yang Yang(Tony) 已提交
1096 1097
                if isinstance(var, list):
                    for v in var:
1098
                        fetch_list.append(v.name)
Y
Yang Yang(Tony) 已提交
1099
                else:
1100
                    fetch_list.append(var.name)
1101 1102 1103 1104
        # if the fetch_list still empty, fill the fetch_list by the operator output.
        if len(fetch_list) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                fetch_list.append(str(out_name))
1105 1106 1107 1108 1109 1110

        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace

            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
1111 1112
                build_strategy=build_strategy, places=place
            )
1113 1114
            program = compiled_prog

1115
        executor = Executor(place)
1116 1117 1118
        outs = executor.run(
            program, feed=feed_map, fetch_list=fetch_list, return_numpy=False
        )
1119 1120
        self.op = op
        self.program = original_program
1121 1122 1123 1124
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list
Y
Yang Yang(Tony) 已提交
1125

1126 1127 1128
    def _compare_expect_and_actual_outputs(
        self, place, fetch_list, expect_outs, actual_outs, inplace_atol=None
    ):
1129 1130 1131
        """Compare expect outs and actual outs of an tested op.

        Args:
C
cc 已提交
1132
            place (CPUPlace | CUDAPlace): The place where the op runs.
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
C
cc 已提交
1143
            # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
1144 1145 1146
            # computational consistency.
            # When inplace_atol is not None, the inplace check uses numpy.allclose
            # to check inplace result instead of numpy.array_equal.
1147 1148
            expect_out = np.array(expect_outs[i])
            actual_out = np.array(actual_outs[i])
1149
            if inplace_atol is not None:
1150 1151 1152 1153 1154
                np.testing.assert_allclose(
                    expect_out,
                    actual_out,
                    rtol=1e-05,
                    atol=inplace_atol,
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
                    err_msg='Output ('
                    + name
                    + ') has diff at '
                    + str(place)
                    + ' when using and not using inplace'
                    + '\nExpect '
                    + str(expect_out)
                    + '\n'
                    + 'But Got'
                    + str(actual_out)
                    + ' in class '
                    + self.__class__.__name__,
                )
1168
            else:
1169 1170 1171
                np.testing.assert_array_equal(
                    expect_out,
                    actual_out,
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
                    err_msg='Output ('
                    + name
                    + ') has diff at '
                    + str(place)
                    + ' when using and not using inplace'
                    + '\nExpect '
                    + str(expect_out)
                    + '\n'
                    + 'But Got'
                    + str(actual_out)
                    + ' in class '
                    + self.__class__.__name__
                    + '\n',
                )

    def _construct_grad_program_from_forward(
        self, fwd_program, grad_op_desc, op_grad_to_var
    ):
1190 1191 1192 1193 1194
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
1195
            op_grad_to_var (dict): The relation of variables in grad op and its forward op.
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
1207 1208 1209
        for arg in (
            grad_op_desc.input_arg_names() + grad_op_desc.output_arg_names()
        ):
1210 1211 1212 1213 1214
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
1215 1216 1217 1218 1219 1220 1221 1222 1223
                fwd_var_name
            )
            grad_var = grad_block.create_var(
                name=arg,
                dtype=fwd_var.dtype,
                shape=fwd_var.shape,
                type=fwd_var.type,
                persistable=False,
            )
1224

C
cc 已提交
1225 1226
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
1227 1228 1229 1230 1231 1232 1233
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

1234 1235 1236
    def _construct_grad_feed_map_from_forward(
        self, place, fwd_res, grad_op_desc, op_grad_to_var
    ):
1237 1238 1239 1240 1241 1242
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
1243
            place (CPUPlace | CUDAPlace): The place where the op runs.
1244 1245 1246
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
1247
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op.
1248 1249 1250 1251

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
1252 1253 1254 1255 1256 1257 1258
        (
            fwd_outs,
            fwd_fetch_list,
            fwd_feed_map,
            fwd_program,
            fwd_op_desc,
        ) = fwd_res
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)
1278

1279 1280 1281 1282 1283 1284 1285
        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
C
cc 已提交
1286

1287
        Args:
C
cc 已提交
1288 1289
            op_desc (OpDesc): The op_desc of current op.
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op.
1290
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
C
cc 已提交
1291

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
C
cc 已提交
1306
                # get grad_op_desc
1307
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
1308 1309
                    op_desc, set(), []
                )
1310 1311 1312 1313
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
1314 1315 1316 1317
                        if (
                            grad_op_desc.type() not in visited_ops
                            and _dfs_grad_op(grad_op_desc, fwd_op_desc=op_desc)
                        ):
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

1328 1329 1330
    def _check_forward_inplace(
        self, place, no_check_set=None, inplace_atol=None
    ):
1331
        """Check the inplace correctness of given op (self.op_type).
1332
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
C
cc 已提交
1333

1334
        Args:
C
cc 已提交
1335
            place (CPUPlace | CUDAPlace): The place where the op runs.
1336 1337 1338 1339
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1340 1341
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1342 1343
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
        expect_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=False,
            for_inplace_test=True,
        )
        actual_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=True,
            for_inplace_test=True,
        )
1356
        # compare expect_outs and actual_outs
1357 1358 1359 1360 1361 1362 1363
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol,
        )
1364 1365
        return expect_res

1366 1367 1368
    def _calc_grad_output(
        self, place, fwd_res, grad_op_desc, enable_inplace=None
    ):
1369 1370 1371 1372 1373 1374
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
1375
            place (CPUPlace | CUDAPlace): The place where the op runs.
1376 1377 1378 1379 1380 1381 1382 1383
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
1384 1385 1386 1387 1388 1389 1390
        (
            fwd_outs,
            fwd_fetch_list,
            fwd_feed_map,
            fwd_program,
            fwd_op_desc,
        ) = fwd_res
1391
        grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
1392 1393
            fwd_op_desc, set(), []
        )
1394
        grad_program = self._construct_grad_program_from_forward(
1395 1396
            fwd_program, grad_op_desc, op_grad_to_var
        )
1397
        grad_feed_map = self._construct_grad_feed_map_from_forward(
1398 1399
            place, fwd_res, grad_op_desc, op_grad_to_var
        )
1400 1401 1402 1403 1404 1405 1406
        grad_fetch_list = grad_op_desc.output_arg_names()
        exe = Executor(place)
        program = grad_program
        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace
            compiled_program = fluid.CompiledProgram(
1407 1408 1409 1410
                grad_program
            ).with_data_parallel(
                loss_name="", build_strategy=build_strategy, places=place
            )
1411
            program = compiled_program
1412

1413 1414 1415 1416 1417 1418
        outs = exe.run(
            program,
            feed=grad_feed_map,
            fetch_list=grad_fetch_list,
            return_numpy=False,
        )
1419 1420
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

1421 1422 1423
    def _check_grad_inplace(
        self, place, fwd_res, grad_op_desc, inplace_atol=None
    ):
1424
        """Check the inplace correctness of given grad_op_desc.
1425 1426 1427 1428 1429 1430

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
C
cc 已提交
1431
            place (CPUPlace | CUDAPlace): The place where the op runs.
1432 1433 1434 1435 1436 1437
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1438 1439
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1440
        """
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
        expect_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=False
        )
        actual_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=True
        )

        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol,
        )
1455
        return expect_res
1456

1457 1458 1459
    def check_inplace_output_with_place(
        self, place, no_check_set=None, inplace_atol=None
    ):
1460 1461 1462 1463 1464 1465
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
C
cc 已提交
1466
            place (CPUPlace | CUDAPlace): The place where the op runs.
1467 1468 1469 1470 1471 1472
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
1473 1474 1475
        if getattr(self, "no_need_check_inplace", False):
            return

1476 1477 1478
        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)

1479 1480 1481
        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True
        )
1482 1483 1484 1485
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
1486 1487
        if hasattr(self, 'attrs') and bool(self.attrs.get('use_xpu', False)):
            return
1488 1489 1490 1491 1492 1493 1494 1495
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
1496 1497
                        inplace_atol=inplace_atol,
                    )
1498
                else:
1499 1500 1501
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True
                    )
1502
            else:
1503 1504
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn
                # skip op that use_mkldnn currently
1505
                flags_use_mkldnn = fluid.core.globals()["FLAGS_use_mkldnn"]
1506
                attrs_use_mkldnn = hasattr(self, 'attrs') and bool(
1507 1508
                    self.attrs.get('use_mkldnn', False)
                )
1509 1510 1511 1512 1513 1514 1515 1516
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
1517 1518
                        place, fwd_res, op_desc, inplace_atol=inplace_atol
                    )
1519
                else:
1520
                    res[op_desc] = self._calc_grad_output(
1521 1522
                        place, fwd_res, op_desc
                    )
1523

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
    def check_output_with_place(
        self,
        place,
        atol=0,
        no_check_set=None,
        equal_nan=False,
        check_dygraph=True,
        inplace_atol=None,
        check_eager=False,
    ):
1534

1535
        # disable legacy dygraph check when check_eager is True
1536
        if check_eager:
1537 1538
            check_dygraph = False

1539 1540 1541 1542 1543 1544 1545 1546
        def find_imperative_actual(target_name, dygraph_outs, place):
            for name in dygraph_outs:
                if name == target_name:
                    return dygraph_outs[name][0]
                var_list = dygraph_outs[name]
                for i, var in enumerate(var_list):
                    if var.name == target_name:
                        return dygraph_outs[name][i]
1547
            self.assertTrue(
1548 1549 1550
                False,
                "Found failed {} {}".format(dygraph_outs.keys(), target_name),
            )
1551 1552 1553

        def find_actual(target_name, fetch_list):
            found = [
1554 1555
                i
                for i, var_name in enumerate(fetch_list)
1556 1557 1558
                if var_name == target_name
            ]
            self.assertTrue(
1559 1560
                len(found) == 1, "Found {} {}".format(len(found), target_name)
            )
1561 1562
            return found[0]

1563
        class Checker:
1564 1565
            """base class for check with self.outputs.
            currently don't support check between checkers.
1566 1567 1568
            """

            def __init__(self, op_test, expect_dict):
1569 1570
                """expect_dict is the self.outputs
                support : {str: [numpy]} and {str: [(str, numpy), (str, numpy)]}
1571 1572 1573 1574 1575 1576
                """
                self.expects = expect_dict
                self.checker_name = "checker"
                self.op_test = op_test  # stop the op_test object.
                self.op_type = op_test.op_type

1577 1578 1579
            def init(self):
                pass

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
            def convert_uint16_to_float(self, actual_np, expect_np):
                raise NotImplementedError("base class, not implement!")

            def calculate_output(self):
                """
                judge whether convert current output and expect to uint16.
                return True | False
                """

            def _is_skip_name(self, name):
                if name not in self.expects:
                    return True
                if no_check_set is not None and name in no_check_set:
                    return True
                return False

            def find_actual_value(self, name):
1597
                """return: (actual_tensor(var_base), actual_numpy)"""
1598 1599 1600 1601 1602 1603 1604 1605 1606
                raise NotImplementedError("base class, not implement!")

            def _compare_numpy(self, name, actual_np, expect_np):
                self.op_test.assertTrue(
                    np.allclose(
                        actual_np,
                        expect_np,
                        atol=atol,
                        rtol=self.rtol if hasattr(self, 'rtol') else 1e-5,
1607 1608 1609 1610 1611 1612 1613 1614 1615
                        equal_nan=equal_nan,
                    ),
                    "Output ("
                    + name
                    + ") has diff at "
                    + str(place)
                    + " in "
                    + self.checker_name,
                )
1616 1617

            def _compare_list(self, name, actual, expect):
1618
                """if expect is a tuple, we need to compare list."""
1619 1620 1621 1622
                raise NotImplementedError("base class, not implement!")

            def compare_single_output_with_expect(self, name, expect):
                actual, actual_np = self.find_actual_value(name)
1623
                expect_np = expect[0] if isinstance(expect, tuple) else expect
1624
                actual_np, expect_np = self.convert_uint16_to_float_ifneed(
1625 1626
                    actual_np, expect_np
                )
1627 1628 1629
                # NOTE(zhiqiu): np.allclose([], [1.]) returns True
                # see details: https://stackoverflow.com/questions/38331703/why-does-numpys-broadcasting-sometimes-allow-comparing-arrays-of-different-leng
                if expect_np.size == 0:
1630
                    self.op_test.assertTrue(actual_np.size == 0)
1631 1632 1633 1634 1635 1636
                self._compare_numpy(name, actual_np, expect_np)
                if isinstance(expect, tuple):
                    self._compare_list(name, actual, expect)

            def compare_outputs_with_expects(self):
                for out_name, out_dup in Operator.get_op_outputs(self.op_type):
1637 1638
                    if self._is_skip_name(out_name):
                        continue
1639 1640 1641 1642
                    if out_dup:
                        # if self.output = {'name': [(subname, Tensor), (subname, Tensor)]}
                        sub_out = self.expects[out_name]
                        if not isinstance(sub_out, list):
1643 1644 1645
                            raise AssertionError(
                                "sub_out type %s is not list", type(sub_out)
                            )
1646 1647
                        for item in sub_out:
                            sub_out_name, expect = item[0], item[1]
1648
                            self.compare_single_output_with_expect(
1649 1650
                                sub_out_name, expect
                            )
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
                    else:
                        expect = self.expects[out_name]
                        self.compare_single_output_with_expect(out_name, expect)

            def check(self):
                """
                return None means ok, raise Error means failed.

                the main enter point of Checker class
                """
1661
                self.init()
1662 1663 1664 1665
                self.calculate_output()
                self.compare_outputs_with_expects()

        class StaticChecker(Checker):
1666 1667 1668
            def init(self):
                self.checker_name = "static checker"

1669 1670
            def calculate_output(self):
                outs, fetch_list = self.op_test._calc_output(
1671 1672
                    place, no_check_set=no_check_set
                )
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
                self.outputs = outs
                self.fetch_list = fetch_list

            def find_actual_value(self, name):
                idx = find_actual(name, self.fetch_list)
                actual = self.outputs[idx]
                actual_t = np.array(actual)
                return actual, actual_t

            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
                """
                judge whether convert current output and expect to uint16.
                return True | False
                """
                if actual_np.dtype == np.uint16 and expect_np.dtype in [
1688 1689
                    np.float32,
                    np.float64,
1690 1691
                ]:
                    actual_np = convert_uint16_to_float(actual_np)
1692
                    self.rtol = 1.0e-2
1693
                else:
1694 1695 1696 1697 1698
                    self.rtol = 1.0e-5
                if (
                    expect_np.dtype == np.uint16
                    and actual_np.dtype == np.uint16
                ):
1699 1700 1701 1702 1703 1704 1705
                    nonlocal atol
                    expect_np = convert_uint16_to_float(expect_np)
                    actual_np = convert_uint16_to_float(actual_np)
                    atol = max(atol, 0.03)
                return actual_np, expect_np

            def _compare_list(self, name, actual, expect):
1706
                """if expect is a tuple, we need to compare list."""
1707
                self.op_test.assertListEqual(
1708 1709 1710 1711
                    actual.recursive_sequence_lengths(),
                    expect[1],
                    "Output (" + name + ") has different lod at " + str(place),
                )
1712 1713

        class DygraphChecker(Checker):
1714 1715 1716
            def init(self):
                self.checker_name = "dygraph checker"

1717 1718
            def calculate_output(self):
                self.outputs = self.op_test._calc_dygraph_output(
1719 1720
                    place, no_check_set=no_check_set
                )
1721 1722 1723 1724

            def find_actual_value(self, name):
                with fluid.dygraph.base.guard(place=place):
                    imperative_actual = find_imperative_actual(
1725 1726
                        name, self.outputs, place
                    )
1727
                    imperative_actual_t = np.array(
1728 1729
                        imperative_actual.value().get_tensor()
                    )
1730 1731 1732
                    return imperative_actual, imperative_actual_t

            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
1733
                if actual_np.dtype == np.uint16 and expect_np.dtype in [
1734 1735
                    np.float32,
                    np.float64,
1736
                ]:
1737
                    self.rtol = 1.0e-2
1738
                else:
1739
                    self.rtol = 1.0e-5
1740 1741 1742 1743
                if self.op_test.is_bfloat16_op():
                    if actual_np.dtype == np.uint16:
                        actual_np = convert_uint16_to_float(actual_np)
                    if expect_np.dtype == np.uint16:
X
xiongkun 已提交
1744
                        expect_np = convert_uint16_to_float(expect_np)
1745 1746 1747
                return actual_np, expect_np

            def _compare_list(self, name, actual, expect):
1748
                """if expect is a tuple, we need to compare list."""
1749 1750
                with fluid.dygraph.base.guard(place=place):
                    self.op_test.assertListEqual(
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
                        actual.value()
                        .get_tensor()
                        .recursive_sequence_lengths(),
                        expect[1],
                        "Output ("
                        + name
                        + ") has different lod at "
                        + str(place)
                        + " in dygraph mode",
                    )
1761 1762

            def _compare_numpy(self, name, actual_np, expect_np):
1763 1764 1765 1766 1767 1768
                if (
                    functools.reduce(lambda x, y: x * y, actual_np.shape, 1)
                    == 0
                    and functools.reduce(lambda x, y: x * y, expect_np.shape, 1)
                    == 0
                ):
1769 1770 1771 1772 1773 1774 1775 1776
                    pass
                else:
                    self.op_test.assertTrue(
                        np.allclose(
                            actual_np,
                            expect_np,
                            atol=atol,
                            rtol=self.rtol if hasattr(self, 'rtol') else 1e-5,
1777 1778 1779 1780 1781 1782 1783 1784 1785
                            equal_nan=equal_nan,
                        ),
                        "Output ("
                        + name
                        + ") has diff at "
                        + str(place)
                        + " in "
                        + self.checker_name,
                    )
1786 1787

        class EagerChecker(DygraphChecker):
1788 1789 1790
            def init(self):
                self.checker_name = "eager checker"

1791 1792 1793
            def calculate_output(self):
                # we only check end2end api when check_eager=True
                with _test_eager_guard():
1794
                    self.is_python_api_test = True
1795
                    eager_dygraph_outs = self.op_test._calc_python_api_output(
1796 1797
                        place
                    )
1798
                    if eager_dygraph_outs is None:
X
xiongkun 已提交
1799
                        self.is_python_api_test = False
1800
                        # missing KernelSignature, fall back to eager middle output.
1801
                        eager_dygraph_outs = self.op_test._calc_dygraph_output(
1802 1803
                            place, no_check_set=no_check_set
                        )
1804 1805 1806 1807 1808 1809 1810 1811
                self.outputs = eager_dygraph_outs

            def _compare_numpy(self, name, actual_np, expect_np):
                with _test_eager_guard():
                    super()._compare_numpy(name, actual_np, expect_np)

            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
                with _test_eager_guard():
1812
                    return super().convert_uint16_to_float_ifneed(
1813 1814
                        actual_np, expect_np
                    )
1815 1816 1817 1818 1819 1820

            def find_actual_value(self, name):
                with _test_eager_guard():
                    return super().find_actual_value(name)

            def _compare_list(self, name, actual, expect):
1821
                """if expect is a tuple, we need to compare list."""
1822 1823 1824
                with _test_eager_guard():
                    super()._compare_list(name, actual, expect)

X
xiongkun 已提交
1825 1826
            def _is_skip_name(self, name):
                # if in final state and kernel signature don't have name, then skip it.
1827 1828 1829 1830 1831
                if (
                    self.is_python_api_test
                    and hasattr(self.op_test, "python_out_sig")
                    and name not in self.op_test.python_out_sig
                ):
X
xiongkun 已提交
1832 1833
                    return True
                return super()._is_skip_name(name)
1834

1835
        # set some flags by the combination of arguments.
X
xiongkun 已提交
1836
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
1837 1838 1839 1840 1841
        if (
            self.dtype == np.float64
            and self.op_type
            not in op_threshold_white_list.NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST
        ):
1842 1843
            atol = 0

1844
        if self.is_bfloat16_op():
Y
Yiqun Liu 已提交
1845 1846
            if self.is_mkldnn_op():
                check_dygraph = False
1847
                check_eager = False
Y
Yiqun Liu 已提交
1848
                if hasattr(self, 'force_fp32_output') and getattr(
1849 1850
                    self, 'force_fp32_output'
                ):
Y
Yiqun Liu 已提交
1851 1852 1853
                    atol = 1e-2
                else:
                    atol = 2
1854
            else:
1855
                atol = 1e-1
1856

1857
        if no_check_set is not None:
1858 1859 1860 1861
            if (
                self.op_type
                not in no_check_set_white_list.no_check_set_white_list
            ):
1862
                raise AssertionError(
1863 1864
                    "no_check_set of op %s must be set to None." % self.op_type
                )
1865 1866 1867
        static_checker = StaticChecker(self, self.outputs)
        static_checker.check()
        outs, fetch_list = static_checker.outputs, static_checker.fetch_list
L
lujun 已提交
1868
        if check_dygraph:
1869 1870
            # always enable legacy dygraph
            g_enable_legacy_dygraph()
1871 1872 1873
            dygraph_checker = DygraphChecker(self, self.outputs)
            dygraph_checker.check()
            dygraph_outs = dygraph_checker.outputs
1874 1875
            # yield the original state
            g_disable_legacy_dygraph()
1876
        if check_eager:
1877 1878 1879
            eager_checker = EagerChecker(self, self.outputs)
            eager_checker.check()
            eager_dygraph_outs = eager_checker.outputs
1880

C
cc 已提交
1881
        # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
1882 1883
        # computational consistency.
        # For example, group_norm uses AtomicAdd on CUDAPlace, which do not ensure
C
cc 已提交
1884
        # computation order when multiple threads write the same address. So the
L
Leo Chen 已提交
1885 1886 1887
        # result of group_norm is non-deterministic when datatype is float.
        # When inplace_atol is not None, the inplace check uses numpy.allclose
        # to check inplace result instead of numpy.array_equal.
1888 1889
        if inplace_atol is not None:
            warnings.warn(
L
Leo Chen 已提交
1890 1891
                "inplace_atol should only be set when op doesn't ensure computational consistency, please check it!"
            )
1892
        # Check inplace for given op, its grad op, its grad_grad op, etc.
C
cc 已提交
1893
        # No effect on original OpTest
1894
        # Currently not support ParallelExecutor on XPUPlace.
1895 1896 1897 1898 1899 1900 1901 1902 1903
        if (
            not paddle.is_compiled_with_xpu()
            and not paddle.is_compiled_with_npu()
            and not paddle.is_compiled_with_mlu()
            and not isinstance(place, core.CustomPlace)
        ):
            self.check_inplace_output_with_place(
                place, no_check_set=no_check_set, inplace_atol=inplace_atol
            )
1904

1905
        if check_eager:
1906
            assert not check_dygraph
1907
            return outs, eager_dygraph_outs, fetch_list
1908
        elif check_dygraph:
1909 1910 1911 1912 1913 1914 1915
            return outs, dygraph_outs, fetch_list
        else:
            return outs, fetch_list

    def check_compile_vs_runtime(self, fetch_list, fetch_outs):
        def find_fetch_index(target_name, fetch_list):
            found = [
1916 1917
                i
                for i, var_name in enumerate(fetch_list)
1918 1919 1920 1921 1922 1923 1924
                if var_name == target_name
            ]
            if len(found) == 0:
                return -1
            else:
                self.assertTrue(
                    len(found) == 1,
1925 1926
                    "Found {} {}".format(len(found), target_name),
                )
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
                return found[0]

        for name in self.op.desc.output_names():
            var_names = self.op.desc.output(name)
            for var_name in var_names:
                i = find_fetch_index(var_name, fetch_list)
                if i == -1:
                    # The output is dispensiable or intermediate.
                    break
                out = fetch_outs[i]
                if isinstance(out, core.LoDTensor):
                    lod_level_runtime = len(out.lod())
                else:
                    if isinstance(out, core.LoDTensorArray):
                        warnings.warn(
                            "The check of LoDTensorArray's lod_level is not implemented now!"
                        )
                    lod_level_runtime = 0

                var = self.program.global_block().var(var_name)
                if var.type == core.VarDesc.VarType.LOD_TENSOR:
                    lod_level_compile = var.lod_level
                else:
                    lod_level_compile = 0
                self.assertEqual(
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
                    lod_level_compile,
                    lod_level_runtime,
                    "The lod_level of Output ("
                    + name
                    + ") is different between compile-time and runtime ("
                    + str(lod_level_compile)
                    + " vs "
                    + str(lod_level_runtime)
                    + ")",
                )
1962

1963
    def _get_places(self):
D
dzhwinter 已提交
1964 1965
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
1966 1967
                self.op_type
            ):
D
dzhwinter 已提交
1968 1969 1970
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
W
Wu Yi 已提交
1971 1972
                else:
                    return []
D
dzhwinter 已提交
1973 1974
            else:
                return []
1975
        places = [fluid.CPUPlace()]
1976
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
1977 1978 1979 1980 1981
        if (
            core.is_compiled_with_cuda()
            and core.op_support_gpu(self.op_type)
            and not cpu_only
        ):
D
dzhwinter 已提交
1982
            places.append(core.CUDAPlace(0))
1983 1984
        return places

1985 1986 1987 1988 1989 1990 1991 1992 1993
    def check_output(
        self,
        atol=1e-5,
        no_check_set=None,
        equal_nan=False,
        check_dygraph=True,
        inplace_atol=None,
        check_eager=False,
    ):
1994 1995

        # disable legacy dygraph check when check_eager is True
1996
        if check_eager:
1997 1998
            check_dygraph = False

1999
        self.__class__.op_type = self.op_type
Y
Yiqun Liu 已提交
2000
        if self.is_mkldnn_op():
2001
            self.__class__.use_mkldnn = True
C
cc 已提交
2002

Y
Yiqun Liu 已提交
2003
        if self.is_xpu_op():
2004 2005
            self.__class__.use_xpu = True

2006
        places = self._get_places()
Q
qijun 已提交
2007
        for place in places:
2008 2009 2010 2011 2012 2013 2014 2015 2016
            res = self.check_output_with_place(
                place,
                atol,
                no_check_set,
                equal_nan,
                check_dygraph,
                inplace_atol,
                check_eager=check_eager,
            )
2017
            if check_eager:
2018
                assert not check_dygraph
2019
                outs, eager_dygraph_outs, fetch_list = res
2020
            elif check_dygraph:
2021 2022 2023
                outs, dygraph_outs, fetch_list = res
            else:
                outs, fetch_list = res
2024 2025 2026 2027
            if (
                self.op_type
                not in compile_vs_runtime_white_list.COMPILE_RUN_OP_WHITE_LIST
            ):
2028
                self.check_compile_vs_runtime(fetch_list, outs)
Q
qijun 已提交
2029

P
pangyoki 已提交
2030
    def check_output_customized(self, checker, custom_place=None):
2031
        places = self._get_places()
P
pangyoki 已提交
2032 2033
        if custom_place:
            places.append(custom_place)
2034 2035 2036
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
2037
            outs.sort(key=len)
2038 2039
            checker(outs)

2040 2041 2042 2043 2044 2045
    def check_output_with_place_customized(self, checker, place):
        outs = self.calc_output(place)
        outs = [np.array(out) for out in outs]
        outs.sort(key=len)
        checker(outs)

2046 2047 2048 2049 2050 2051 2052 2053
    def _assert_is_close(
        self,
        numeric_grads,
        analytic_grads,
        names,
        max_relative_error,
        msg_prefix,
    ):
2054
        for a, b, name in zip(numeric_grads, analytic_grads, names):
2055 2056 2057 2058 2059 2060
            # It asserts np.abs(a - b) / np.abs(a) < max_relative_error, in which
            # max_relative_error is 1e-7. According to the value of np.abs(a), we
            # change np.abs(a) to achieve dynamic threshold. For example, if
            # the value of np.abs(a) is between 1e-10 and 1e-8, we set np.abs(a)*=1e4.
            # Therefore, it asserts np.abs(a - b) / (np.abs(a)*1e4) < max_relative_error,
            # which is the same as np.abs(a - b) / np.abs(a) < max_relative_error*1e4.
2061
            abs_a = np.abs(a)
2062
            if abs_a.ndim > 0:
2063 2064 2065 2066 2067
                if (
                    self.dtype == np.float64
                    and self.op_type
                    not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST
                ):
2068 2069 2070 2071 2072 2073 2074 2075
                    abs_a[abs_a < 1e-10] = 1e-3
                    abs_a[np.logical_and(abs_a > 1e-10, abs_a <= 1e-8)] *= 1e4
                    abs_a[np.logical_and(abs_a > 1e-8, abs_a <= 1e-6)] *= 1e2
                elif self.is_bfloat16_op():
                    abs_a[abs_a < 1e-2] = 1
                else:
                    abs_a[abs_a < 1e-3] = 1
            elif abs_a.ndim == 0:
2076 2077 2078 2079 2080
                if (
                    self.dtype == np.float64
                    and self.op_type
                    not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST
                ):
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
                    if abs_a < 1e-10:
                        abs_a = 1e-3
                    elif abs_a > 1e-10 and abs_a <= 1e-8:
                        abs_a = abs_a * 1e4
                    elif abs_a > 1e-8 and abs_a <= 1e-6:
                        abs_a = abs_a * 1e2
                elif self.is_bfloat16_op():
                    abs_a = 1 if abs_a < 1e-2 else abs_a
                else:
                    abs_a = 1 if abs_a < 1e-3 else abs_a
2091 2092 2093 2094 2095 2096

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
                return (
                    "Operator %s error, %s variable %s (shape: %s, dtype: %s) max gradient diff %e over limit %e, "
                    "the first error element is %d, expected %e, but got %e."
                ) % (
                    self.op_type,
                    msg_prefix,
                    name,
                    str(a.shape),
                    self.dtype,
                    max_diff,
                    max_relative_error,
                    offset,
                    a.flatten()[offset],
                    b.flatten()[offset],
                )
2112 2113 2114

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

2115 2116 2117 2118 2119 2120 2121
    def _check_grad_helper(self):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        self.__class__.op_type = self.op_type
        self.__class__.exist_check_grad = True
        if self.dtype == np.float64:
            self.__class__.exist_fp64_check_grad = True

2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
    def check_grad(
        self,
        inputs_to_check,
        output_names,
        no_grad_set=None,
        numeric_grad_delta=0.005,
        in_place=False,
        max_relative_error=0.005,
        user_defined_grads=None,
        user_defined_grad_outputs=None,
        check_dygraph=True,
        check_eager=False,
    ):
2135 2136

        # disable legacy dygraph check when check_eager is True
2137
        if check_eager:
2138 2139
            check_dygraph = False

2140
        self._check_grad_helper()
2141
        places = self._get_places()
2142
        for place in places:
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
            self.check_grad_with_place(
                place,
                inputs_to_check,
                output_names,
                no_grad_set,
                numeric_grad_delta,
                in_place,
                max_relative_error,
                user_defined_grads,
                user_defined_grad_outputs,
                check_dygraph,
                check_eager=check_eager,
            )

    def check_grad_with_place(
        self,
        place,
        inputs_to_check,
        output_names,
        no_grad_set=None,
        numeric_grad_delta=0.005,
        in_place=False,
        max_relative_error=0.005,
        user_defined_grads=None,
        user_defined_grad_outputs=None,
        check_dygraph=True,
        numeric_place=None,
        check_eager=False,
    ):
2172 2173

        # disable legacy dygraph check when check_eager is True
2174
        if check_eager:
2175 2176
            check_dygraph = False

2177
        self.scope = core.Scope()
Q
qijun 已提交
2178
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
2179
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
2180
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
P
phlrain 已提交
2181

Y
Yiqun Liu 已提交
2182 2183
        self._check_grad_helper()
        if self.is_bfloat16_op() and self.is_mkldnn_op():
2184
            check_dygraph = False
2185
            check_eager = False
2186

2187 2188 2189 2190 2191
        if (
            self.dtype == np.float64
            and self.op_type
            not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST
        ):
2192 2193
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7
2194

P
phlrain 已提交
2195 2196 2197
        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
2198 2199 2200

        # oneDNN numeric gradient should use CPU kernel
        use_onednn = False
2201
        if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"]:
2202 2203 2204
            op_attrs["use_mkldnn"] = False
            use_onednn = True

2205 2206 2207 2208 2209 2210 2211 2212
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list,
        )
Y
Yu Yang 已提交
2213

2214 2215 2216
        if use_onednn:
            op_attrs["use_mkldnn"] = True

2217 2218
        if no_grad_set is None:
            no_grad_set = set()
2219
        else:
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
            if (
                (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST)
                and (
                    self.op_type not in no_grad_set_white_list.NOT_CHECK_OP_LIST
                )
                and (not self.is_bfloat16_op())
            ):
                raise AssertionError(
                    "no_grad_set must be None, op_type is "
                    + self.op_type
                    + " Op."
                )
2232

2233 2234 2235
        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)
            tensor_to_check = self.scope.find_var(input_to_check).get_tensor()
2236 2237 2238
            tensor_size = functools.reduce(
                lambda a, b: a * b, tensor_to_check.shape(), 1
            )
2239 2240 2241
            tensor_ndim = len(tensor_to_check.shape())
            # for 0D Tensor, it's additional case for OP, so not raise error
            if tensor_ndim > 0 and tensor_size < 100:
2242 2243
                self.__class__.input_shape_is_large = False

Y
Yancey 已提交
2244 2245 2246
        if not type(output_names) is list:
            output_names = [output_names]

2247 2248 2249
        if numeric_place is None:
            numeric_place = place

Q
Qiao Longfei 已提交
2250
        numeric_grads = user_defined_grads or [
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
            get_numeric_gradient(
                numeric_place,
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
                output_names,
                delta=numeric_grad_delta,
                in_place=in_place,
            )
2261
            for input_to_check in inputs_to_check
2262
        ]
2263 2264 2265 2266 2267 2268 2269
        analytic_grads = self._get_gradient(
            inputs_to_check,
            place,
            output_names,
            no_grad_set,
            user_defined_grad_outputs,
        )
2270 2271
        # comparison of bf16 results will happen as fp32
        # loop over list of grads and convert bf16 to fp32
2272
        fp32_analytic_grads = []
2273 2274 2275
        for grad in analytic_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
2276 2277 2278
                max_relative_error = (
                    0.04 if max_relative_error < 0.04 else max_relative_error
                )
2279 2280 2281 2282 2283 2284 2285
            fp32_analytic_grads.append(grad)
        analytic_grads = fp32_analytic_grads

        fp32_numeric_grads = []
        for grad in numeric_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
2286 2287 2288
                max_relative_error = (
                    0.04 if max_relative_error < 0.04 else max_relative_error
                )
2289 2290
            fp32_numeric_grads.append(grad)
        numeric_grads = fp32_numeric_grads
2291

2292 2293 2294 2295 2296 2297 2298
        self._assert_is_close(
            numeric_grads,
            analytic_grads,
            inputs_to_check,
            max_relative_error,
            "Gradient Check On %s" % str(place),
        )
Q
qijun 已提交
2299

2300
        if check_dygraph:
2301 2302 2303
            # ensure switch into legacy dygraph
            g_enable_legacy_dygraph()

2304 2305 2306 2307 2308 2309 2310 2311
            dygraph_grad = self._get_dygraph_grad(
                inputs_to_check,
                place,
                output_names,
                user_defined_grad_outputs,
                no_grad_set,
                False,
            )
2312 2313 2314 2315
            fp32_grads = []
            for grad in dygraph_grad:
                if grad.dtype == np.uint16:
                    grad = convert_uint16_to_float(grad)
2316 2317 2318 2319 2320
                    max_relative_error = (
                        0.03
                        if max_relative_error < 0.03
                        else max_relative_error
                    )
2321 2322
                fp32_grads.append(grad)
            dygraph_grad = fp32_grads
2323 2324 2325 2326 2327 2328 2329
            self._assert_is_close(
                numeric_grads,
                dygraph_grad,
                inputs_to_check,
                max_relative_error,
                "Gradient Check On %s" % str(place),
            )
2330 2331
            # ensure switch back eager dygraph
            g_disable_legacy_dygraph()
2332

2333
        if check_eager:
J
Jiabin Yang 已提交
2334 2335 2336
            with fluid.dygraph.base.guard(place):
                with _test_eager_guard():
                    eager_dygraph_grad = self._get_dygraph_grad(
2337 2338 2339 2340 2341 2342 2343
                        inputs_to_check,
                        place,
                        output_names,
                        user_defined_grad_outputs,
                        no_grad_set,
                        check_eager,
                    )
J
Jiabin Yang 已提交
2344 2345 2346 2347
                    fp32_grads = []
                    for grad in eager_dygraph_grad:
                        if grad.dtype == np.uint16:
                            grad = convert_uint16_to_float(grad)
2348 2349 2350 2351 2352
                            max_relative_error = (
                                0.03
                                if max_relative_error < 0.03
                                else max_relative_error
                            )
J
Jiabin Yang 已提交
2353 2354
                        fp32_grads.append(grad)
                    eager_dygraph_grad = fp32_grads
2355 2356 2357 2358 2359 2360 2361
                    self._assert_is_close(
                        numeric_grads,
                        eager_dygraph_grad,
                        inputs_to_check,
                        max_relative_error,
                        "Gradient Check On %s" % str(place),
                    )
2362

2363 2364 2365 2366 2367 2368 2369 2370 2371
    def _find_var_in_dygraph(self, output_vars, name):
        if name in output_vars:
            return output_vars[name]
        else:
            for output_vars_index in output_vars:
                for output_vars_selected in output_vars[output_vars_index]:
                    if output_vars_selected.name == name:
                        return output_vars_selected

2372 2373 2374 2375 2376 2377 2378 2379 2380
    def _get_dygraph_grad(
        self,
        inputs_to_check,
        place,
        output_names,
        user_defined_grad_outputs=None,
        no_grad_set=None,
        check_eager=False,
    ):
2381 2382 2383 2384 2385 2386 2387
        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
2388 2389
                op_proto, self.inputs, True, True, block
            )
2390 2391 2392

            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
2393 2394
                op_proto, self.outputs, False, False, block
            )
2395

2396
            # prepare attributes
2397 2398 2399 2400 2401
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
2402

2403
            if check_eager:
2404
                eager_outputs = self._calc_python_api_output(
2405 2406
                    place, inputs, outputs
                )
2407
            # if outputs is None, kernel sig is empty or other error is happens.
X
xiongkun 已提交
2408
            if not check_eager or eager_outputs is None:
2409 2410 2411 2412
                block.append_op(
                    type=self.op_type,
                    inputs=inputs,
                    outputs=outputs,
2413 2414
                    attrs=attrs_outputs if hasattr(self, "attrs") else None,
                )
X
xiongkun 已提交
2415 2416
            else:
                outputs = eager_outputs
2417

2418
            if self.dtype == np.uint16:
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
                cast_inputs = self._find_var_in_dygraph(
                    outputs, output_names[0]
                )
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape
                )
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32,
                    },
                )
2434 2435
                outputs = {output_names[0]: cast_outputs}

2436 2437 2438
            outputs_valid = {}
            for output_name in output_names:
                outputs_valid[output_name] = self._find_var_in_dygraph(
2439 2440
                    outputs, output_name
                )
2441

2442 2443 2444 2445 2446 2447 2448
            if user_defined_grad_outputs is None:
                if len(outputs_valid) == 1:
                    loss = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
2449 2450
                        shape=[1],
                    )
2451 2452 2453 2454 2455
                    for outputs_valid_key in outputs_valid:
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[outputs_valid_key]},
                            outputs={"Out": [loss]},
2456 2457
                            attrs=None,
                        )
2458 2459 2460 2461 2462 2463 2464
                else:
                    avg_sum = []
                    for cur_loss in outputs_valid:
                        cur_avg_loss = block.create_var(
                            dtype=self.dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
2465 2466 2467 2468 2469 2470 2471 2472
                            stop_gradient=False,
                        )
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[cur_loss]},
                            outputs={"Out": [cur_avg_loss]},
                            attrs=None,
                        )
2473 2474 2475 2476 2477 2478
                        avg_sum.append(cur_avg_loss)
                    loss_sum = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
2479 2480 2481 2482 2483 2484 2485 2486
                        shape=[1],
                    )
                    block.append_op(
                        type='sum',
                        inputs={"X": avg_sum},
                        outputs={"Out": loss_sum},
                        attrs=None,
                    )
2487
                    loss = block.create_var(
2488 2489 2490
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
2491
                        stop_gradient=False,
2492 2493 2494 2495 2496 2497 2498 2499
                        shape=[1],
                    )
                    block.append_op(
                        type='scale',
                        inputs={"X": loss_sum},
                        outputs={"Out": loss},
                        attrs={'scale': 1.0 / float(len(avg_sum))},
                    )
2500
                loss.backward()
2501

2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
                fetch_list_grad = []
                for inputs_to_check_name in inputs_to_check:
                    a = inputs_grad_dict[inputs_to_check_name].gradient()
                    fetch_list_grad.append(a)
                return fetch_list_grad
            else:
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                grad_outputs = []
                for grad_out_value in user_defined_grad_outputs:
                    grad_outputs.append(paddle.to_tensor(grad_out_value))
2514
                # delete the inputs which no need to calculate grad
C
chentianyu03 已提交
2515
                for no_grad_val in no_grad_set:
2516
                    del inputs[no_grad_val]
C
chentianyu03 已提交
2517

J
Jiabin Yang 已提交
2518
                if not _in_legacy_dygraph():
2519 2520 2521
                    core.eager.run_backward(
                        fluid.layers.utils.flatten(outputs), grad_outputs, False
                    )
2522 2523 2524 2525 2526 2527 2528 2529 2530
                    grad_inputs = []
                    for inputs_list in inputs.values():
                        for inp in inputs_list:
                            grad_inputs.append(inp.grad.numpy())
                    return grad_inputs
                else:
                    grad_inputs = paddle.grad(
                        outputs=fluid.layers.utils.flatten(outputs),
                        inputs=fluid.layers.utils.flatten(inputs),
2531 2532
                        grad_outputs=grad_outputs,
                    )
2533
                    return [grad.numpy() for grad in grad_inputs]
2534

Y
Yu Yang 已提交
2535 2536 2537 2538 2539
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
2540
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
2541 2542
        return tensor

K
Kexin Zhao 已提交
2543
    @staticmethod
K
Kexin Zhao 已提交
2544 2545
    def np_dtype_to_fluid_dtype(input):
        return input
K
Kexin Zhao 已提交
2546

D
dzhwinter 已提交
2547 2548 2549 2550 2551 2552 2553 2554
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

2555 2556 2557 2558 2559 2560 2561 2562 2563
    def _get_gradient(
        self,
        input_to_check,
        place,
        output_names,
        no_grad_set,
        user_defined_grad_outputs=None,
        parallel=False,
    ):
Y
Yu Yang 已提交
2564
        prog = Program()
2565
        scope = core.Scope()
Y
Yu Yang 已提交
2566
        block = prog.global_block()
2567
        self._append_ops(block)
Y
Yu Yang 已提交
2568

2569
        inputs = self._get_inputs(block)
2570
        outputs = self._get_outputs(block)
2571
        feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
2572

2573
        if user_defined_grad_outputs is None:
2574 2575
            if self.dtype == np.uint16:
                cast_inputs = list(map(block.var, output_names))
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape
                )
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32,
                    },
                )
2588 2589 2590
                cast_op.desc.infer_var_type(block.desc)
                cast_op.desc.infer_shape(block.desc)
                output_names = [cast_outputs.name]
2591
            loss = append_loss_ops(block, output_names)
2592 2593 2594 2595 2596
            param_grad_list = append_backward(
                loss=loss,
                parameter_list=input_to_check,
                no_grad_set=no_grad_set,
            )
2597 2598
            fetch_list = [g for p, g in param_grad_list]
        else:
2599 2600 2601
            assert (
                parallel is False
            ), "unsupported parallel mode when giving custom grad outputs."
2602 2603 2604 2605 2606 2607
            # user_defined_grad_outputs here are numpy arrays
            if not isinstance(user_defined_grad_outputs, list):
                user_defined_grad_outputs = [user_defined_grad_outputs]
            grad_outputs = []
            for grad_out_value in user_defined_grad_outputs:
                # `presistable` is used to avoid executor create new var in local scope
2608 2609 2610 2611 2612
                var = block.create_var(
                    shape=grad_out_value.shape,
                    dtype=grad_out_value.dtype,
                    persistable=True,
                )
2613 2614 2615 2616 2617 2618 2619
                true_var = scope.var(var.name)
                tensor = true_var.get_tensor()
                tensor.set(grad_out_value, place)
                grad_outputs.append(var)
            targets = [
                outputs[name] for name in outputs if name in output_names
            ]
2620
            inputs = [inputs[name] for name in input_to_check if name in inputs]
2621 2622 2623
            grad_inputs = paddle.static.gradients(
                targets, inputs, grad_outputs, no_grad_set
            )
2624 2625
            fetch_list = grad_inputs

2626 2627
        if parallel:
            use_cuda = False
2628
            if isinstance(place, fluid.CUDAPlace):
2629
                use_cuda = True
2630
            compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
2631 2632
                loss_name=loss.name, places=place
            )
2633 2634
            prog = compiled_prog
        executor = fluid.Executor(place)
2635
        return list(
2636 2637
            map(
                np.array,
2638 2639 2640 2641 2642
                executor.run(
                    prog, feed_dict, fetch_list, scope=scope, return_numpy=False
                ),
            )
        )
A
arlesniak 已提交
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652


class OpTestTool:
    @classmethod
    def skip_if(cls, condition: object, reason: str):
        return unittest.skipIf(condition, reason)

    @classmethod
    def skip_if_not_cpu_bf16(cls):
        return OpTestTool.skip_if(
2653 2654 2655 2656 2657 2658
            not (
                isinstance(_current_expected_place(), core.CPUPlace)
                and core.supports_bfloat16()
            ),
            "Place does not support BF16 evaluation",
        )
2659 2660 2661 2662 2663

    @classmethod
    def skip_if_not_cpu(cls):
        return OpTestTool.skip_if(
            not isinstance(_current_expected_place(), core.CPUPlace),
2664 2665
            "OneDNN supports only CPU for now",
        )