op_test.py 102.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

B
baojun 已提交
15
import os
16
import sys
17
import unittest
18
import warnings
19
import numpy as np
20
import random
21
import functools
22
import struct
M
minqiyang 已提交
23
from collections import defaultdict
24
from copy import copy
25

26
import paddle
27
import paddle.fluid as fluid
28
from paddle.fluid.framework import _dygraph_tracer
29
import paddle.fluid.core as core
J
Jiabin Yang 已提交
30
from paddle.fluid.framework import _in_legacy_dygraph, _enable_legacy_dygraph, _in_eager_without_dygraph_check, _disable_legacy_dygraph
31
from paddle.fluid.framework import _test_eager_guard
32 33 34
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
35
from paddle.fluid.framework import OpProtoHolder, Program, _current_expected_place
36 37 38 39 40
from paddle.fluid import unique_name
from paddle.fluid.dygraph.dygraph_to_static.utils import parse_arg_and_kwargs

sys.path.append(os.path.abspath(os.path.dirname(__file__)))
from testsuite import (
41 42 43
    create_op,
    set_input,
    append_input_output,
44 45
    append_loss_ops,
)
46
from white_list import (
47 48 49 50 51
    op_accuracy_white_list,
    check_shape_white_list,
    compile_vs_runtime_white_list,
    no_check_set_white_list,
    op_threshold_white_list,
52 53
    no_grad_set_white_list,
)
54

55 56 57 58 59
# For switch new eager mode globally
g_is_in_eager = _in_eager_without_dygraph_check()
g_enable_legacy_dygraph = _enable_legacy_dygraph if g_is_in_eager else lambda: None
g_disable_legacy_dygraph = _disable_legacy_dygraph if g_is_in_eager else lambda: None

60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
def check_out_dtype(api_fn, in_specs, expect_dtypes, target_index=0, **configs):
    """
    Determines whether dtype of output tensor is as expected.

    Args:
        api_fn(callable):  paddle api function
        in_specs(list[tuple]): list of shape and dtype information for constructing input tensor of api_fn, such as [(shape, dtype), (shape, dtype)].
        expected_dtype(list[str]): expected dtype of output tensor.
        target_index(int): indicate which one from in_specs to infer the dtype of output.
        config(dict): other arguments of paddle api function

    Example:
        check_out_dtype(fluid.layers.pad_constant_like, [([2,3,2,3], 'float64'), ([1, 3, 1,3], )], ['float32', 'float64', 'int64'], target_index=1, pad_value=0.)

    """
    paddle.enable_static()
    for i, expect_dtype in enumerate(expect_dtypes):
        with paddle.static.program_guard(paddle.static.Program()):
            input_t = []
            for index, spec in enumerate(in_specs):
                if len(spec) == 1:
                    shape = spec[0]
                    dtype = expect_dtype if target_index == index else 'float32'
                elif len(spec) == 2:
                    shape, dtype = spec
                else:
                    raise ValueError(
88 89
                        "Value of in_specs[{}] should contains two elements: [shape, dtype]"
                        .format(index))
90
                input_t.append(
91 92 93
                    paddle.static.data(name='data_%s' % index,
                                       shape=shape,
                                       dtype=dtype))
94 95 96 97 98 99 100 101 102 103

            out = api_fn(*input_t, **configs)
            out_dtype = fluid.data_feeder.convert_dtype(out.dtype)

            if out_dtype != expect_dtype:
                raise ValueError(
                    "Expected out.dtype is {}, but got {} from {}.".format(
                        expect_dtype, out_dtype, api_fn.__name__))


104 105 106 107 108 109 110 111
def _set_use_system_allocator(value=None):
    USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
    old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
    value = old_value if value is None else value
    core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
    return old_value


112
def randomize_probability(batch_size, class_num, dtype='float32'):
113 114
    prob = np.random.uniform(0.1, 1.0,
                             size=(batch_size, class_num)).astype(dtype)
115
    prob_sum = prob.sum(axis=1)
116
    for i in range(len(prob)):
117 118 119 120
        prob[i] /= prob_sum[i]
    return prob


121 122
def get_numeric_gradient(place,
                         scope,
123 124 125
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
126
                         output_names,
127
                         delta=0.005,
C
chengduo 已提交
128
                         in_place=False):
Y
Yu Yang 已提交
129
    # FIXME: change this method by compile time concepts
130
    set_input(scope, op, inputs, place)
131 132

    def product(dim):
133
        return functools.reduce(lambda a, b: a * b, dim, 1)
134 135

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
136 137
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
138
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
139
        tensor_to_check_dtype = np.float32
140
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
141
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
142 143 144 145
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
146 147
    elif tensor_to_check_dtype == core.VarDesc.VarType.BF16:
        tensor_to_check_dtype = np.float32
L
Lijunhui 已提交
148 149 150
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX64:
        tensor_to_check_dtype = np.complex64
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX128:
151
        tensor_to_check_dtype = np.complex128
152
    else:
153 154 155
        raise ValueError("Not supported data type " +
                         str(tensor_to_check_dtype) + ", tensor name : " +
                         str(input_to_check))
156

C
chengduo 已提交
157 158 159 160
    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
161
            output_numpy = np.array(scope.find_var(output_name).get_tensor())
Y
Yiqun Liu 已提交
162 163 164
            # numpy.dtype does not have bfloat16, thus we use numpy.uint16 to
            # store bfloat16 data, and need to be converted to float to check
            # the floating precision.
165 166 167
            if tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
                output_numpy = convert_uint16_to_float(output_numpy)
            sum.append(output_numpy.astype(tensor_to_check_dtype).mean())
C
chengduo 已提交
168 169
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

170 171 172
    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
173 174 175 176
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
177 178 179
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            numpy_tensor = numpy_tensor.flatten()
180 181 182 183
            return struct.unpack(
                '<f',
                struct.pack('<I',
                            np.uint32(numpy_tensor[i]) << np.uint32(16)))[0]
D
dzhwinter 已提交
184
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
185
            return tensor._get_float_element(i)
186
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
187
            return tensor._get_double_element(i)
188 189 190
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
191 192

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
193 194 195 196 197
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
198
            numpy_tensor = numpy_tensor.reshape(shape)
D
dzhwinter 已提交
199
            tensor.set(numpy_tensor, place)
200 201 202 203 204 205 206
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = np.uint16(copy_bits_from_float_to_uint16(e))
            numpy_tensor = numpy_tensor.reshape(shape)
            tensor.set(numpy_tensor, place)
D
dzhwinter 已提交
207
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
208
            tensor._set_float_element(i, e)
209
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
210
            tensor._set_double_element(i, e)
211 212 213
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
214

215 216
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
217
    for i in range(tensor_size):
218
        if in_place:
219
            set_input(scope, op, inputs, place)
220 221

        # get one input element throw it's index i.
222
        origin = __get_elem__(tensor_to_check, i)
223 224
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
225
        __set_elem__(tensor_to_check, i, x_pos)
226 227 228
        y_pos = get_output()

        if in_place:
229
            set_input(scope, op, inputs, place)
230 231

        x_neg = origin - delta
232
        __set_elem__(tensor_to_check, i, x_neg)
233 234
        y_neg = get_output()

235
        __set_elem__(tensor_to_check, i, origin)
236 237
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
238
    return gradient_flat.reshape(tensor_to_check.shape())
239 240


241 242
def skip_check_grad_ci(reason=None):
    """Decorator to skip check_grad CI.
C
cc 已提交
243

244
       Check_grad is required for Op test cases. However, there are some special
C
cc 已提交
245
       cases that do not need to do check_grad. This decorator is used to skip the
246
       check_grad of the above cases.
C
cc 已提交
247 248

       Note: the execution of unit test will not be skipped. It just avoids check_grad
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
       checking in tearDownClass method by setting a `no_need_check_grad` flag.

       Example:
           @skip_check_grad_ci(reason="For inference, check_grad is not required.")
           class TestInference(OpTest):
    """
    if not isinstance(reason, str):
        raise AssertionError("The reason for skipping check_grad is required.")

    def wrapper(cls):
        cls.no_need_check_grad = True
        return cls

    return wrapper


265 266 267 268 269 270 271 272 273 274 275 276
def skip_check_inplace_ci(reason=None):
    if not isinstance(reason, str):
        raise AssertionError(
            "The reason for skipping check_inplace is required.")

    def wrapper(cls):
        cls.no_need_check_inplace = True
        return cls

    return wrapper


277 278 279 280
def copy_bits_from_float_to_uint16(f):
    return struct.unpack('<I', struct.pack('<f', f))[0] >> 16


281 282 283 284
def convert_float_to_uint16(float_list, data_format="NCHW"):
    if data_format == "NHWC":
        float_list = np.transpose(float_list, [0, 3, 1, 2])

285 286 287
    new_output = []
    for x in np.nditer(float_list):
        new_output.append(np.uint16(copy_bits_from_float_to_uint16(x)))
288
    new_output = np.reshape(new_output, float_list.shape).view(np.uint16)
289

290 291 292
    if data_format == "NHWC":
        new_output = np.transpose(new_output, [0, 2, 3, 1])
    return new_output
293 294


295 296
def convert_uint16_to_float(in_list):
    in_list = np.asarray(in_list)
297 298 299 300
    out = np.vectorize(lambda x: struct.unpack(
        '<f', struct.pack('<I',
                          np.uint32(x) << np.uint32(16)))[0],
                       otypes=[np.float32])(in_list.flat)
301
    return np.reshape(out, in_list.shape)
302 303


304
class OpTest(unittest.TestCase):
305

306 307 308 309 310
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
311
        cls.call_once = False
312
        cls.dtype = None
313
        cls.outputs = {}
314
        cls.input_shape_is_large = True
315 316 317 318

        np.random.seed(123)
        random.seed(124)

319 320 321 322
        if paddle.is_compiled_with_npu():
            cls._use_system_allocator = _set_use_system_allocator(False)
        else:
            cls._use_system_allocator = _set_use_system_allocator(True)
323

324 325
    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
326
        """Restore random seeds"""
327 328 329
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

330 331
        _set_use_system_allocator(cls._use_system_allocator)

332 333 334 335
        def is_empty_grad_op(op_type):
            all_op_kernels = core._get_all_register_op_kernels()
            grad_op = op_type + '_grad'
            if grad_op in all_op_kernels.keys():
J
juncaipeng 已提交
336
                if is_mkldnn_op_test():
337 338 339 340 341 342 343 344
                    grad_op_kernels = all_op_kernels[grad_op]
                    for grad_op_kernel in grad_op_kernels:
                        if 'MKLDNN' in grad_op_kernel:
                            return False
                else:
                    return False
            return True

345 346 347
        def is_xpu_op_test():
            return hasattr(cls, "use_xpu") and cls.use_xpu == True

J
juncaipeng 已提交
348
        def is_mkldnn_op_test():
349
            return hasattr(cls, "use_mkldnn") and cls.use_mkldnn == True
J
juncaipeng 已提交
350

351 352 353
        def is_rocm_op_test():
            return core.is_compiled_with_rocm()

354 355 356
        def is_npu_op_test():
            return hasattr(cls, "use_npu") and cls.use_npu == True

357 358 359
        def is_mlu_op_test():
            return hasattr(cls, "use_mlu") and cls.use_mlu == True

360 361 362 363
        def is_custom_device_op_test():
            return hasattr(
                cls, "use_custom_device") and cls.use_custom_device == True

364 365
        if not hasattr(cls, "op_type"):
            raise AssertionError(
366 367
                "This test do not have op_type in class attrs, "
                "please set self.__class__.op_type=the_real_op_type manually.")
368

J
juncaipeng 已提交
369 370
        # case in NO_FP64_CHECK_GRAD_CASES and op in NO_FP64_CHECK_GRAD_OP_LIST should be fixed
        if not hasattr(cls, "no_need_check_grad") \
371
            and not is_empty_grad_op(cls.op_type):
J
juncaipeng 已提交
372
            if cls.dtype is None or \
373 374
                (cls.dtype == np.float16 \
                    and cls.op_type not in op_accuracy_white_list.NO_FP16_CHECK_GRAD_OP_LIST \
J
juncaipeng 已提交
375 376 377 378
                    and not hasattr(cls, "exist_check_grad")):
                raise AssertionError("This test of %s op needs check_grad." %
                                     cls.op_type)

379
            # check for op test with fp64 precision, but not check mkldnn op test for now
J
juncaipeng 已提交
380 381
            if cls.dtype in [np.float32, np.float64] \
                and cls.op_type not in op_accuracy_white_list.NO_FP64_CHECK_GRAD_OP_LIST \
382
                and not hasattr(cls, 'exist_fp64_check_grad') \
383
                and not is_xpu_op_test() \
384
                and not is_mkldnn_op_test() \
385
                and not is_rocm_op_test() \
386
                and not is_npu_op_test() \
387 388
                and not is_mlu_op_test() \
                and not is_custom_device_op_test():
J
juncaipeng 已提交
389 390 391 392
                raise AssertionError(
                    "This test of %s op needs check_grad with fp64 precision." %
                    cls.op_type)

393
            if not cls.input_shape_is_large \
394 395 396 397
                and cls.op_type not in check_shape_white_list.NEED_TO_FIX_OP_LIST:
                raise AssertionError(
                    "Input's shape should be large than or equal to 100 for " +
                    cls.op_type + " Op.")
398

399 400 401 402 403
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

404
    def is_bfloat16_op(self):
Y
Yiqun Liu 已提交
405 406
        # self.dtype is the dtype of inputs, and is set in infer_dtype_from_inputs_outputs.
        # Make sure this function is called after calling infer_dtype_from_inputs_outputs.
407 408 409 410 411 412
        return self.dtype == np.uint16 or (hasattr(
            self, 'output_dtype') and self.output_dtype == np.uint16) or (
                hasattr(self, 'mkldnn_data_type')
                and getattr(self, 'mkldnn_data_type') == "bfloat16") or (
                    hasattr(self, 'attrs') and 'mkldnn_data_type' in self.attrs
                    and self.attrs['mkldnn_data_type'] == 'bfloat16')
Y
Yiqun Liu 已提交
413 414 415

    def is_mkldnn_op(self):
        return (hasattr(self, "use_mkldnn") and self.use_mkldnn == True) or (
416 417
            hasattr(self, "attrs") and "use_mkldnn" in self.attrs
            and self.attrs["use_mkldnn"] == True)
Y
Yiqun Liu 已提交
418 419

    def is_xpu_op(self):
420 421 422 423
        return (hasattr(self, "use_xpu")
                and self.use_xpu == True) or (hasattr(self, "attrs")
                                              and "use_xpu" in self.attrs
                                              and self.attrs["use_xpu"] == True)
424

425
    # set the self.output_dtype .
426
    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
427

J
juncaipeng 已提交
428 429 430 431
        def is_np_data(input):
            return isinstance(input, (np.ndarray, np.generic))

        def infer_dtype(numpy_dict, dtype_set):
432 433 434
            assert isinstance(
                numpy_dict,
                dict), "self.inputs, self.outputs must be numpy_dict"
J
juncaipeng 已提交
435 436 437 438 439 440
            # the inputs are as follows:
            # case 1: inputs = {'X': x}
            # case 2: inputs = {'X': (x, x_lod)}
            # case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
            # case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
            # TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
441
            for _, var_value in numpy_dict.items():
J
juncaipeng 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
                if is_np_data(var_value):  # case 1
                    dtype_set.add(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):  # case 2, 3, 4
                    for sub_val_value in var_value:
                        if is_np_data(sub_val_value):  # case 2
                            dtype_set.add(sub_val_value.dtype)
                        elif len(sub_val_value) > 1 and is_np_data(
                                sub_val_value[1]):  # case 3
                            dtype_set.add(sub_val_value[1].dtype)
                        elif len(sub_val_value) > 1 and isinstance(sub_val_value[1], (list, tuple)) \
                            and is_np_data(sub_val_value[1][0]): # case 4
                            dtype_set.add(sub_val_value[1][0].dtype)

        # infer dtype from inputs, and dtype means the precision of the test
        # collect dtype of all inputs
Y
Yiqun Liu 已提交
457 458
        input_dtype_set = set()
        infer_dtype(inputs, input_dtype_set)
J
juncaipeng 已提交
459
        dtype_list = [
460 461 462 463 464 465 466 467 468
            np.dtype(np.float64),
            np.dtype(np.float32),
            np.dtype(np.float16),
            np.dtype(np.int64),
            np.dtype(np.int32),
            np.dtype(np.uint16),
            np.dtype(np.int16),
            np.dtype(np.int8),
            np.dtype(np.uint8),
469
            np.dtype(np.bool_)
J
juncaipeng 已提交
470 471 472
        ]
        # check the dtype in dtype_list in order, select the first dtype that in dtype_set
        for dtype in dtype_list:
Y
Yiqun Liu 已提交
473
            if dtype in input_dtype_set:
J
juncaipeng 已提交
474 475
                self.dtype = dtype
                break
Y
Yiqun Liu 已提交
476
        # save input dtype in class attr
477
        self.__class__.dtype = self.dtype
478

Y
Yiqun Liu 已提交
479 480 481 482 483 484 485 486
        # infer dtype of outputs
        output_dtype_set = set()
        infer_dtype(outputs, output_dtype_set)
        for dtype in dtype_list:
            if dtype in output_dtype_set:
                self.output_dtype = dtype
                break

Y
Yang Yang(Tony) 已提交
487 488 489 490 491 492
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
493
                    if isinstance(np_value, tuple):
494
                        tensor.set(np_value[0], place)
495
                        tensor.set_recursive_sequence_lengths(np_value[1])
496
                    else:
497
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
498 499 500 501
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
502
                    tensor.set(self.inputs[var_name][0], place)
503 504
                    tensor.set_recursive_sequence_lengths(
                        self.inputs[var_name][1])
Y
Yang Yang(Tony) 已提交
505
                else:
506
                    tensor.set(self.inputs[var_name], place)
Y
Yang Yang(Tony) 已提交
507
                feed_map[var_name] = tensor
508

Y
Yang Yang(Tony) 已提交
509 510
        return feed_map

511
    def _append_ops(self, block):
J
juncaipeng 已提交
512
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
Y
Yiqun Liu 已提交
513
        if self.is_mkldnn_op():
514
            self.__class__.use_mkldnn = True
C
cc 已提交
515

Y
Yiqun Liu 已提交
516
        if self.is_xpu_op():
517 518
            self.__class__.use_xpu = True

Y
Yang Yang(Tony) 已提交
519
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
520
        "infer datatype from inputs and outputs for this test case"
521 522 523 524 525 526
        if self.is_bfloat16_op():
            self.dtype = np.uint16
            self.__class__.dtype = self.dtype
            self.output_dtype = np.uint16
        else:
            self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
527 528 529 530
        inputs = append_input_output(block, op_proto, self.inputs, True,
                                     self.dtype)
        outputs = append_input_output(block, op_proto, self.outputs, False,
                                      self.dtype)
P
phlrain 已提交
531 532 533

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
534 535 536 537
                inputs[name] = block.create_var(name=name,
                                                persistable=True,
                                                type=core.VarDesc.VarType.RAW,
                                                stop_gradient=True)
P
phlrain 已提交
538

Y
Yang Yang(Tony) 已提交
539 540 541 542
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
543
            attrs=copy(self.attrs) if hasattr(self, "attrs") else dict())
C
cc 已提交
544
        # infer variable type and infer shape in compile-time
Q
QI JUN 已提交
545 546
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
547

548 549
        return op

550 551
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
552
        for name, value in numpy_inputs.items():
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

M
minqiyang 已提交
572 573 574 575
    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
L
lujun 已提交
576
            v = fluid.dygraph.base.to_variable(value=data)
577
            v.value().get_tensor().set_recursive_sequence_lengths(lod)
M
minqiyang 已提交
578 579
            return v
        else:
L
lujun 已提交
580
            return fluid.dygraph.base.to_variable(value)
M
minqiyang 已提交
581

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
    def get_sequence_batch_size_1_input(self, lod=None, shape=None):
        """Get LoD input data whose batch size is 1.
        All sequence related OP unittests should call this function to contain the case of batch size = 1.
        Args:
            lod (list[list of int], optional): Length-based LoD, length of lod[0] should be 1. Default: [[13]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod) : LoD input data whose batch size is 1.
        """
        if lod is None:
            lod = [[13]]
        if shape is None:
            shape = [13, 23]
        assert len(lod[0]) == 1
        assert lod[0][0] == shape[0]
        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

600 601 602 603 604 605 606 607
    def lod_has_single_zero(self, lod):
        for i in range(len(lod) - 2):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] != 0:
                return True
        return False

    def lod_has_continuous_zero(self, lod):
        for i in range(len(lod) - 3):
608 609 610
            if lod[i] != 0 and lod[i +
                                   1] == 0 and lod[i +
                                                   2] == 0 and lod[i + 3] != 0:
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
                return True
        return False

    def get_sequence_instance_size_0_input(self, lod=None, shape=None):
        """Get LoD input data whose instance size is 0.
        All sequence related OP unittests should call this function to contain the case of instance size is 0.
        Args:
            lod (list[list of int], optional): Length-based LoD, lod[0]'s size must at least eight, lod[0] must at least two zeros at the beginning and at least two zeros at the end, the middle position of lod[0] contains a single zero and multiple zero. Default: [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod): LoD input data whose instance size is 0.
        """
        if lod is None:
            lod = [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]]
        if shape is None:
            shape = [12, 10]
        assert len(lod[0]) >= 8
        assert lod[0][0] == 0 and lod[0][1] == 0 and lod[0][-1] == 0 and lod[0][
            -2] == 0
        assert self.lod_has_single_zero(lod[0]) is True
        assert self.lod_has_continuous_zero(lod[0]) is True
        assert sum(lod[0]) == shape[0]

        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

637 638
    def append_input_output_for_dygraph(self, op_proto, np_list, is_input,
                                        if_return_inputs_grad_dict, block):
639

640 641 642 643 644 645 646 647 648 649 650
        def create_var(np_value, name, is_input, if_return_inputs_grad_dict):
            np_value_temp = np_value
            has_lod = False
            lod_temp = None
            if isinstance(np_value, tuple):
                np_value_temp = np_value[0]
                has_lod = True
                lod_temp = np_value[1]

            if is_input:
                v = self._create_var_from_numpy(np_value_temp)
651

652 653
                if if_return_inputs_grad_dict:
                    v.stop_gradient = False
J
Jiabin Yang 已提交
654
                    if not _in_legacy_dygraph():
655 656
                        v.retain_grads()

657
                if has_lod:
658
                    v.value().get_tensor().set_recursive_sequence_lengths(
659 660
                        lod_temp)
            else:
661 662 663 664 665
                v = block.create_var(name=name,
                                     dtype=np_value_temp.dtype,
                                     type=core.VarDesc.VarType.LOD_TENSOR,
                                     persistable=False,
                                     stop_gradient=False)
666 667 668 669 670 671 672 673 674 675 676 677 678
            return v

        # prepare variable for input or output
        var_dict = defaultdict(list)
        if if_return_inputs_grad_dict:
            inputs_grad_dict = defaultdict()
        proto_list = op_proto.inputs if is_input else op_proto.outputs
        for var_proto in proto_list:
            name = var_proto.name
            if (name not in np_list) and var_proto.dispensable:
                continue
            if name not in np_list:
                assert var_proto.intermediate, "{} not found".format(name)
679 680
                v = block.create_var(dtype='float32',
                                     type=core.VarDesc.VarType.LOD_TENSOR)
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v
                continue
            if var_proto.duplicable:
                assert isinstance(
                    np_list[name],
                    list), "Duplicable {} should be set as list".format(name)
                var_list = []
                slot_name = name
                for (name, np_value) in np_list[name]:
                    v = create_var(np_value, name, is_input,
                                   if_return_inputs_grad_dict)
                    var_list.append(v)
                    if if_return_inputs_grad_dict:
                        inputs_grad_dict[name] = v
                var_dict[slot_name] = var_list
            else:
                nplist_value_temp = None
                name_temp = None
                if isinstance(np_list[name], list):
                    nplist_value_temp = np_list[name][0]
                    name_temp = name
                else:
                    nplist_value_temp = np_list[name]
                    name_temp = unique_name.generate("%s_out" % (name))
                v = create_var(nplist_value_temp, name_temp, is_input,
                               if_return_inputs_grad_dict)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v

        if if_return_inputs_grad_dict:
            return var_dict, inputs_grad_dict
        else:
            return var_dict

718 719 720 721 722 723 724 725 726
    def _check_api_outs_by_dygraph_outs(self, api_outs, dygraph_outs, place):
        """ for quick verify, here we take a simplest strategy:
                1. we only check variable in api_outs.
                2. we simply check the numpy (tensor) .
                3. we set atol and rtol as 1e-5, because they are unrelated to dtype.
        """
        for name in api_outs:
            np_api = np.array(api_outs[name])
            np_dyg = np.array(dygraph_outs[name])
727 728 729 730 731 732 733 734
            np.testing.assert_allclose(
                np_api,
                np_dyg,
                rtol=1e-05,
                equal_nan=False,
                err_msg='Output (' + name + ') has diff at ' + str(place) +
                '\nExpect ' + str(np_dyg) + '\n' + 'But Got' + str(np_api) +
                ' in class ' + self.__class__.__name__)
735

736 737 738 739
    def _calc_python_api_output(self, place, egr_inps=None, egr_oups=None):
        """ set egr_inps and egr_oups = None if you want to create it by yourself.
        """

740
        def prepare_python_api_arguments(api, op_proto_ins, op_proto_attrs,
741 742
                                         kernel_sig):
            """ map from `op proto inputs and attrs` to `api input list and api attrs dict`
743

Z
zyfncg 已提交
744
                NOTE: the op_proto_attrs and op_proto_ins is a default dict. default value is []
745
            """
746 747 748 749 750 751 752

            class Empty:
                pass

            def is_empty(a):
                return isinstance(a, Empty)

753 754 755 756 757
            def get_default(idx, defaults):
                assert not isinstance(
                    defaults[idx], Empty
                ), "%d-th params of python api don't have default value." % idx
                return defaults[idx]
758 759 760 761

            def to_defaults_list(params, defaults):
                return [defaults[p] for p in params if p in defaults]

762 763 764 765 766 767 768 769 770
            def parse_attri_value(name, op_inputs, op_attrs):
                """ parse true value from inputs and attrs, if there is no name passed by OpTest, return Empty
                    1. if the name in op_attrs, use the op_attrs[name]
                    2. if the name in op_inputs, convert the op_inputs to [type of default value]
                    3. if the name not in op_attrs ans op_inputs, return Empty. (this will use the default value from python api)
                """
                if name in op_proto_attrs:
                    return op_proto_attrs[name]
                elif name in op_inputs:
X
xiongkun 已提交
771 772
                    if len(op_inputs[name]) == 1:
                        # why don't use numpy().item() : if the Tensor is float64, we will change it to python.float32, where we loss accuracy: [allclose_op]
773 774 775
                        # why we reconstruct a tensor: because we want the tensor in cpu.
                        return paddle.to_tensor(op_inputs[name][0].numpy(),
                                                place='cpu')
X
xiongkun 已提交
776 777 778
                    else:
                        # if this is a list (test_unsqueeze2_op): we just pass it into the python api.
                        return op_inputs[name]
779 780 781
                else:
                    return Empty()

782 783 784
            # NOTE(xiongkun): the logic of constructing parameters:
            # for example:
            #    python api: cumprod(x, dim, dtype=None, name=None)
785 786 787 788 789 790 791
            #    kernel sig: [["x"], ["dim"], ["out"]]"
            #
            # we will construct a lot of list with the same length : len == len(api_params), here is 4
            #    api_params = ["x", "dim", "dtype", "name"]
            #    api_defaults = [Empty, Empty, None, None]; empty means no defaults.
            #    inputs_and_attrs = ["x", "dim"] , the length may shorter or longer than api_params
            #    input_arguments = [RealValue in self.inputs and self.attrs]
792
            # then ,we will loop for the api_params, construct a result list:
793 794 795 796
            #    if the name in ['name', 'dtype', 'out', 'output'], we will use the default value
            #    else, we will consume a input_arguments. (because the name is not corresponding, so we only use the order)

            api_params, api_defaults = parse_arg_and_kwargs(api)
797
            api_defaults = to_defaults_list(api_params, api_defaults)
798 799 800 801 802
            api_defaults = [
                Empty() for i in range(len(api_params) - len(api_defaults))
            ] + api_defaults
            assert len(api_defaults) == len(
                api_params), "Error happens. contack xiongkun03 to solve."
803
            inputs_sig, attrs_sig, outputs_sig = kernel_sig
804
            inputs_and_attrs = inputs_sig + attrs_sig
Z
zyfncg 已提交
805 806 807
            input_arguments = [
                op_proto_ins.get(name, Empty()) for name in inputs_sig
            ] + [
808
                parse_attri_value(name, op_proto_ins, op_proto_attrs)
809 810 811
                for name in attrs_sig
            ]
            results = []
812 813 814 815 816
            api_ignore_param_list = set(['name', 'dtype', 'out', 'output'])
            idx_of_op_proto_arguments = 0
            for idx, arg_name in enumerate(api_params):
                if arg_name in api_ignore_param_list:
                    results.append(get_default(idx, api_defaults))
817
                else:
818 819 820 821 822 823
                    if (idx_of_op_proto_arguments < len(input_arguments)):
                        tmp = input_arguments[idx_of_op_proto_arguments]
                        idx_of_op_proto_arguments += 1
                    else:
                        tmp = Empty()  # use the default value

824 825 826 827 828
                    if isinstance(tmp, Empty):
                        results.append(get_default(idx, api_defaults))
                    else:
                        results.append(tmp)
            assert len(results) == len(api_params)
829
            return results
830 831

        def construct_output_dict_by_kernel_sig(ret_tuple, output_sig):
X
xiongkun 已提交
832 833
            if hasattr(self, "python_out_sig"):
                output_sig = self.python_out_sig
834 835
            if not isinstance(ret_tuple, (tuple, list)):
                ret_tuple = [ret_tuple]
836 837 838 839 840 841 842
            if len(output_sig) == len(ret_tuple):
                # [assumption]: we assume {"Out": [Tensor]}
                return {a: [b] for a, b in zip(output_sig, ret_tuple)}
            else:
                # [assumption]: return multi-Tensor in a single output. such as paddle.split()
                assert len(
                    output_sig
X
xiongkun 已提交
843
                ) == 1, "Don't support multi-output with multi-tensor output. (May be you can use set `python_out_sig`, see `test_squeeze2_op` as a example.)"
844
                return {output_sig[0]: ret_tuple}
845

846
        def assumption_assert_and_transform(args, inp_num):
847
            """
848
            transform inputs by the following rules:
849 850
                1. [Tensor] -> Tensor
                2. [Tensor, Tensor, ...] -> list of Tensors
Z
zyfncg 已提交
851 852
                3. None -> None
                4. Others: raise Error
853 854

            only support "X" is list of Tensor, currently don't support other structure like dict.
855
            """
Z
zyfncg 已提交
856 857 858
            inp_args = [[inp] if inp is None else inp
                        for inp in args[:inp_num]]  # convert None -> [None]
            for inp in inp_args:
859 860 861
                assert isinstance(
                    inp, list
                ), "currently only support `X` is [Tensor], don't support other structure."
Z
zyfncg 已提交
862 863
            args = [inp[0] if len(inp) == 1 else inp
                    for inp in inp_args] + args[inp_num:]
864
            return args
865

866 867 868 869 870 871 872 873 874 875
        def _get_kernel_signature(eager_tensor_inputs, eager_tensor_outputs,
                                  attrs_outputs):
            try:
                kernel_sig = _dygraph_tracer()._get_kernel_signature(
                    self.op_type, eager_tensor_inputs, eager_tensor_outputs,
                    attrs_outputs)
            except RuntimeError as re:
                """ we think the kernel_sig is missing.
                """
                kernel_sig = None
X
xiongkun 已提交
876 877 878
                print(
                    "[Warning: op_test.py] Kernel Signature is not found for %s, fall back to intermediate state."
                    % self.op_type)
879 880
            return kernel_sig

881
        def cal_python_api(python_api, args, kernel_sig):
882
            inputs_sig, attrs_sig, outputs_sig = kernel_sig
883 884
            args = assumption_assert_and_transform(args, len(inputs_sig))
            ret_tuple = python_api(*args)
885 886 887 888 889 890
            return construct_output_dict_by_kernel_sig(ret_tuple, outputs_sig)

        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
            # prepare input variable
891
            eager_tensor_inputs = egr_inps if egr_inps else self.append_input_output_for_dygraph(
892
                op_proto, self.inputs, True, False, block)
893
            # prepare output variable
894
            eager_tensor_outputs = egr_oups if egr_oups else self.append_input_output_for_dygraph(
895 896
                op_proto, self.outputs, False, False, block)

897
            # prepare attributes
898 899 900 901 902 903
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]

904 905 906
            kernel_sig = _get_kernel_signature(eager_tensor_inputs,
                                               eager_tensor_outputs,
                                               attrs_outputs)
907 908
            if not kernel_sig:
                return None
909 910
            assert hasattr(
                self, "python_api"
911
            ), "Detect there is KernelSignature for `%s` op, please set the `self.python_api` if you set check_eager = True" % self.op_type
912 913 914
            args = prepare_python_api_arguments(self.python_api,
                                                eager_tensor_inputs,
                                                attrs_outputs, kernel_sig)
915
            """ we directly return the cal_python_api value because the value is already tensor.
916
            """
917
            return cal_python_api(self.python_api, args, kernel_sig)
918

L
lujun 已提交
919
    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
J
juncaipeng 已提交
920
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
L
lujun 已提交
921
        with fluid.dygraph.base.guard(place=place):
M
minqiyang 已提交
922 923
            block = fluid.default_main_program().global_block()

924
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
M
minqiyang 已提交
925

926
            # prepare input variable
927 928
            inputs = self.append_input_output_for_dygraph(
                op_proto, self.inputs, True, False, block)
M
minqiyang 已提交
929
            # prepare output variable
930 931 932
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

933
            # prepare attributes
934 935 936 937 938
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
939

M
minqiyang 已提交
940 941 942 943
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
944
                attrs=attrs_outputs if hasattr(self, "attrs") else None)
M
minqiyang 已提交
945
            return outputs
946

947 948 949 950 951 952
    def _calc_output(self,
                     place,
                     parallel=False,
                     no_check_set=None,
                     loss=None,
                     enable_inplace=None,
953
                     for_inplace_test=None):
954 955
        program = Program()
        block = program.global_block()
956
        op = self._append_ops(block)
957 958 959 960 961

        inputs = self._get_inputs(block)
        outputs = self._get_outputs(block)
        feed_map = self.feed_var(inputs, place)

962
        if for_inplace_test:
C
cc 已提交
963 964
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
965 966
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
967 968
            for out_name in op.output_arg_names:
                var = block.var(out_name)
969 970
                if 0 in var.shape:
                    var.persistable = True
971
        original_program = program
972 973
        if parallel:
            use_cuda = False
974
            if isinstance(place, fluid.CUDAPlace):
975
                use_cuda = True
976 977 978
            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                loss_name=loss.name if loss else None, places=place)
            program = compiled_prog
979 980 981 982
        fetch_list = getattr(self, "fetch_list", [])
        # if the fetch_list is customized by user, we use it directly.
        # if not, fill the fetch_list by the user configured outputs in test.
        if len(fetch_list) == 0:
983
            for var_name, var in outputs.items():
984 985
                if no_check_set is not None and var_name in no_check_set:
                    continue
Y
Yang Yang(Tony) 已提交
986 987
                if isinstance(var, list):
                    for v in var:
988
                        fetch_list.append(v.name)
Y
Yang Yang(Tony) 已提交
989
                else:
990
                    fetch_list.append(var.name)
991 992 993 994
        # if the fetch_list still empty, fill the fetch_list by the operator output.
        if len(fetch_list) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                fetch_list.append(str(out_name))
995 996 997 998 999 1000 1001 1002 1003

        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace

            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                build_strategy=build_strategy, places=place)
            program = compiled_prog

1004
        executor = Executor(place)
1005 1006 1007 1008
        outs = executor.run(program,
                            feed=feed_map,
                            fetch_list=fetch_list,
                            return_numpy=False)
1009 1010
        self.op = op
        self.program = original_program
1011 1012 1013 1014
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list
Y
Yang Yang(Tony) 已提交
1015

1016 1017 1018 1019 1020 1021 1022 1023 1024
    def _compare_expect_and_actual_outputs(self,
                                           place,
                                           fetch_list,
                                           expect_outs,
                                           actual_outs,
                                           inplace_atol=None):
        """Compare expect outs and actual outs of an tested op.

        Args:
C
cc 已提交
1025
            place (CPUPlace | CUDAPlace): The place where the op runs.
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
C
cc 已提交
1036
            # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
1037 1038 1039
            # computational consistency.
            # When inplace_atol is not None, the inplace check uses numpy.allclose
            # to check inplace result instead of numpy.array_equal.
1040 1041
            expect_out = np.array(expect_outs[i])
            actual_out = np.array(actual_outs[i])
1042
            if inplace_atol is not None:
1043 1044 1045 1046 1047 1048 1049 1050 1051
                np.testing.assert_allclose(
                    expect_out,
                    actual_out,
                    rtol=1e-05,
                    atol=inplace_atol,
                    err_msg='Output (' + name + ') has diff at ' + str(place) +
                    ' when using and not using inplace' + '\nExpect ' +
                    str(expect_out) + '\n' + 'But Got' + str(actual_out) +
                    ' in class ' + self.__class__.__name__)
1052
            else:
1053 1054 1055 1056 1057 1058 1059
                np.testing.assert_array_equal(
                    expect_out,
                    actual_out,
                    err_msg='Output (' + name + ') has diff at ' + str(place) +
                    ' when using and not using inplace' + '\nExpect ' +
                    str(expect_out) + '\n' + 'But Got' + str(actual_out) +
                    ' in class ' + self.__class__.__name__ + '\n')
1060 1061 1062 1063 1064 1065 1066 1067

    def _construct_grad_program_from_forward(self, fwd_program, grad_op_desc,
                                             op_grad_to_var):
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
1068
            op_grad_to_var (dict): The relation of variables in grad op and its forward op.
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
        for arg in grad_op_desc.input_arg_names(
        ) + grad_op_desc.output_arg_names():
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
                fwd_var_name)
1088 1089 1090 1091 1092
            grad_var = grad_block.create_var(name=arg,
                                             dtype=fwd_var.dtype,
                                             shape=fwd_var.shape,
                                             type=fwd_var.type,
                                             persistable=False)
1093

C
cc 已提交
1094 1095
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

    def _construct_grad_feed_map_from_forward(self, place, fwd_res,
                                              grad_op_desc, op_grad_to_var):
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
1111
            place (CPUPlace | CUDAPlace): The place where the op runs.
1112 1113 1114
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
1115
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op.
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)
1140

1141 1142 1143 1144 1145 1146 1147
        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
C
cc 已提交
1148

1149
        Args:
C
cc 已提交
1150 1151
            op_desc (OpDesc): The op_desc of current op.
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op.
1152
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
C
cc 已提交
1153

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
C
cc 已提交
1168
                # get grad_op_desc
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                    op_desc, set(), [])
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
                        if grad_op_desc.type(
                        ) not in visited_ops and _dfs_grad_op(
                                grad_op_desc, fwd_op_desc=op_desc):
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

    def _check_forward_inplace(self,
                               place,
                               no_check_set=None,
                               inplace_atol=None):
1192
        """Check the inplace correctness of given op (self.op_type).
1193
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
C
cc 已提交
1194

1195
        Args:
C
cc 已提交
1196
            place (CPUPlace | CUDAPlace): The place where the op runs.
1197 1198 1199 1200
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1201 1202
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1203 1204
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
1205 1206 1207 1208 1209 1210 1211 1212
        expect_res = self._calc_output(place,
                                       no_check_set=no_check_set,
                                       enable_inplace=False,
                                       for_inplace_test=True)
        actual_res = self._calc_output(place,
                                       no_check_set=no_check_set,
                                       enable_inplace=True,
                                       for_inplace_test=True)
1213
        # compare expect_outs and actual_outs
1214 1215 1216 1217 1218
        self._compare_expect_and_actual_outputs(place,
                                                expect_res[1],
                                                expect_res[0],
                                                actual_res[0],
                                                inplace_atol=inplace_atol)
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
        return expect_res

    def _calc_grad_output(self,
                          place,
                          fwd_res,
                          grad_op_desc,
                          enable_inplace=None):
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
1232
            place (CPUPlace | CUDAPlace): The place where the op runs.
1233 1234 1235 1236 1237 1238 1239 1240 1241
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
1242 1243
        grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
            fwd_op_desc, set(), [])
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
        grad_program = self._construct_grad_program_from_forward(
            fwd_program, grad_op_desc, op_grad_to_var)
        grad_feed_map = self._construct_grad_feed_map_from_forward(
            place, fwd_res, grad_op_desc, op_grad_to_var)
        grad_fetch_list = grad_op_desc.output_arg_names()
        exe = Executor(place)
        program = grad_program
        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace
            compiled_program = fluid.CompiledProgram(
1255 1256 1257
                grad_program).with_data_parallel(loss_name="",
                                                 build_strategy=build_strategy,
                                                 places=place)
1258
            program = compiled_program
1259

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
        outs = exe.run(program,
                       feed=grad_feed_map,
                       fetch_list=grad_fetch_list,
                       return_numpy=False)
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

    def _check_grad_inplace(self,
                            place,
                            fwd_res,
                            grad_op_desc,
                            inplace_atol=None):
1271
        """Check the inplace correctness of given grad_op_desc.
1272 1273 1274 1275 1276 1277

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
C
cc 已提交
1278
            place (CPUPlace | CUDAPlace): The place where the op runs.
1279 1280 1281 1282 1283 1284
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1285 1286
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1287
        """
1288 1289 1290 1291 1292 1293 1294 1295
        expect_res = self._calc_grad_output(place,
                                            fwd_res,
                                            grad_op_desc,
                                            enable_inplace=False)
        actual_res = self._calc_grad_output(place,
                                            fwd_res,
                                            grad_op_desc,
                                            enable_inplace=True)
1296

1297 1298 1299 1300 1301
        self._compare_expect_and_actual_outputs(place,
                                                expect_res[1],
                                                expect_res[0],
                                                actual_res[0],
                                                inplace_atol=inplace_atol)
1302
        return expect_res
1303

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    def check_inplace_output_with_place(self,
                                        place,
                                        no_check_set=None,
                                        inplace_atol=None):
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
C
cc 已提交
1314
            place (CPUPlace | CUDAPlace): The place where the op runs.
1315 1316 1317 1318 1319 1320
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
1321 1322 1323
        if getattr(self, "no_need_check_inplace", False):
            return

1324 1325 1326
        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)

1327 1328 1329
        fwd_res = self._calc_output(place,
                                    no_check_set=no_check_set,
                                    for_inplace_test=True)
1330 1331 1332 1333
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
1334 1335
        if hasattr(self, 'attrs') and bool(self.attrs.get('use_xpu', False)):
            return
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
                        inplace_atol=inplace_atol)
                else:
1346 1347 1348
                    res[op_desc] = self._calc_output(place,
                                                     no_check_set=no_check_set,
                                                     for_inplace_test=True)
1349
            else:
1350 1351
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn
                # skip op that use_mkldnn currently
1352
                flags_use_mkldnn = fluid.core.globals()["FLAGS_use_mkldnn"]
1353 1354
                attrs_use_mkldnn = hasattr(self, 'attrs') and bool(
                    self.attrs.get('use_mkldnn', False))
1355 1356 1357 1358 1359 1360 1361 1362 1363
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
                        place, fwd_res, op_desc, inplace_atol=inplace_atol)
1364
                else:
1365 1366
                    res[op_desc] = self._calc_grad_output(
                        place, fwd_res, op_desc)
1367

1368 1369
    def check_output_with_place(self,
                                place,
1370
                                atol=0,
1371
                                no_check_set=None,
M
minqiyang 已提交
1372
                                equal_nan=False,
1373
                                check_dygraph=True,
1374 1375
                                inplace_atol=None,
                                check_eager=False):
1376

1377 1378 1379 1380
        # disable legacy dygraph check when check_eager is True
        if check_eager == True:
            check_dygraph = False

1381 1382 1383 1384 1385 1386 1387 1388
        def find_imperative_actual(target_name, dygraph_outs, place):
            for name in dygraph_outs:
                if name == target_name:
                    return dygraph_outs[name][0]
                var_list = dygraph_outs[name]
                for i, var in enumerate(var_list):
                    if var.name == target_name:
                        return dygraph_outs[name][i]
1389 1390 1391
            self.assertTrue(
                False, "Found failed {} {}".format(dygraph_outs.keys(),
                                                   target_name))
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415

        def find_actual(target_name, fetch_list):
            found = [
                i for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            self.assertTrue(
                len(found) == 1, "Found {} {}".format(len(found), target_name))
            return found[0]

        class Checker(object):
            """ base class for check with self.outputs.
                currently don't support check between checkers.
            """

            def __init__(self, op_test, expect_dict):
                """ expect_dict is the self.outputs
                    support : {str: [numpy]} and {str: [(str, numpy), (str, numpy)]}
                """
                self.expects = expect_dict
                self.checker_name = "checker"
                self.op_test = op_test  # stop the op_test object.
                self.op_type = op_test.op_type

1416 1417 1418
            def init(self):
                pass

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
            def convert_uint16_to_float(self, actual_np, expect_np):
                raise NotImplementedError("base class, not implement!")

            def calculate_output(self):
                """
                judge whether convert current output and expect to uint16.
                return True | False
                """

            def _is_skip_name(self, name):
                if name not in self.expects:
                    return True
                if no_check_set is not None and name in no_check_set:
                    return True
                return False

            def find_actual_value(self, name):
                """ return: (actual_tensor(var_base), actual_numpy)
                """
                raise NotImplementedError("base class, not implement!")

            def _compare_numpy(self, name, actual_np, expect_np):
                self.op_test.assertTrue(
                    np.allclose(
                        actual_np,
                        expect_np,
                        atol=atol,
                        rtol=self.rtol if hasattr(self, 'rtol') else 1e-5,
1447 1448
                        equal_nan=equal_nan), "Output (" + name +
                    ") has diff at " + str(place) + " in " + self.checker_name)
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463

            def _compare_list(self, name, actual, expect):
                """ if expect is a tuple, we need to compare list.
                """
                raise NotImplementedError("base class, not implement!")

            def compare_single_output_with_expect(self, name, expect):
                actual, actual_np = self.find_actual_value(name)
                expect_np = expect[0] \
                    if isinstance(expect, tuple) else expect
                actual_np, expect_np = self.convert_uint16_to_float_ifneed(
                    actual_np, expect_np)
                # NOTE(zhiqiu): np.allclose([], [1.]) returns True
                # see details: https://stackoverflow.com/questions/38331703/why-does-numpys-broadcasting-sometimes-allow-comparing-arrays-of-different-leng
                if expect_np.size == 0:
1464
                    self.op_test.assertTrue(actual_np.size == 0)
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
                self._compare_numpy(name, actual_np, expect_np)
                if isinstance(expect, tuple):
                    self._compare_list(name, actual, expect)

            def compare_outputs_with_expects(self):
                for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                    if self._is_skip_name(out_name): continue
                    if out_dup:
                        # if self.output = {'name': [(subname, Tensor), (subname, Tensor)]}
                        sub_out = self.expects[out_name]
                        if not isinstance(sub_out, list):
                            raise AssertionError("sub_out type %s is not list",
                                                 type(sub_out))
                        for item in sub_out:
                            sub_out_name, expect = item[0], item[1]
1480 1481
                            self.compare_single_output_with_expect(
                                sub_out_name, expect)
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
                    else:
                        expect = self.expects[out_name]
                        self.compare_single_output_with_expect(out_name, expect)

            def check(self):
                """
                return None means ok, raise Error means failed.

                the main enter point of Checker class
                """
1492
                self.init()
1493 1494 1495 1496
                self.calculate_output()
                self.compare_outputs_with_expects()

        class StaticChecker(Checker):
1497

1498 1499 1500
            def init(self):
                self.checker_name = "static checker"

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
            def calculate_output(self):
                outs, fetch_list = self.op_test._calc_output(
                    place, no_check_set=no_check_set)
                self.outputs = outs
                self.fetch_list = fetch_list

            def find_actual_value(self, name):
                idx = find_actual(name, self.fetch_list)
                actual = self.outputs[idx]
                actual_t = np.array(actual)
                return actual, actual_t

            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
                """
                judge whether convert current output and expect to uint16.
                return True | False
                """
                if actual_np.dtype == np.uint16 and expect_np.dtype in [
                        np.float32, np.float64
                ]:
                    actual_np = convert_uint16_to_float(actual_np)
                    self.rtol = 1.e-2
                else:
                    self.rtol = 1.e-5
                if expect_np.dtype == np.uint16 and actual_np.dtype == np.uint16:
                    nonlocal atol
                    expect_np = convert_uint16_to_float(expect_np)
                    actual_np = convert_uint16_to_float(actual_np)
                    atol = max(atol, 0.03)
                return actual_np, expect_np

            def _compare_list(self, name, actual, expect):
                """ if expect is a tuple, we need to compare list.
                """
                self.op_test.assertListEqual(
                    actual.recursive_sequence_lengths(), expect[1],
                    "Output (" + name + ") has different lod at " + str(place))

        class DygraphChecker(Checker):
1540

1541 1542 1543
            def init(self):
                self.checker_name = "dygraph checker"

1544 1545 1546 1547 1548 1549 1550 1551
            def calculate_output(self):
                self.outputs = self.op_test._calc_dygraph_output(
                    place, no_check_set=no_check_set)

            def find_actual_value(self, name):
                with fluid.dygraph.base.guard(place=place):
                    imperative_actual = find_imperative_actual(
                        name, self.outputs, place)
1552 1553
                    imperative_actual_t = np.array(
                        imperative_actual.value().get_tensor())
1554 1555 1556
                    return imperative_actual, imperative_actual_t

            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
1557 1558 1559 1560 1561 1562
                if actual_np.dtype == np.uint16 and expect_np.dtype in [
                        np.float32, np.float64
                ]:
                    self.rtol = 1.e-2
                else:
                    self.rtol = 1.e-5
1563 1564 1565 1566
                if self.op_test.is_bfloat16_op():
                    if actual_np.dtype == np.uint16:
                        actual_np = convert_uint16_to_float(actual_np)
                    if expect_np.dtype == np.uint16:
X
xiongkun 已提交
1567
                        expect_np = convert_uint16_to_float(expect_np)
1568 1569 1570 1571 1572 1573 1574
                return actual_np, expect_np

            def _compare_list(self, name, actual, expect):
                """ if expect is a tuple, we need to compare list.
                """
                with fluid.dygraph.base.guard(place=place):
                    self.op_test.assertListEqual(
1575 1576
                        actual.value().get_tensor().recursive_sequence_lengths(
                        ), expect[1],
1577 1578 1579 1580
                        "Output (" + name + ") has different lod at " +
                        str(place) + " in dygraph mode")

            def _compare_numpy(self, name, actual_np, expect_np):
1581 1582
                if functools.reduce(lambda x, y: x * y, actual_np.shape,
                                    1) == 0 and functools.reduce(
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
                                        lambda x, y: x * y, expect_np.shape,
                                        1) == 0:
                    pass
                else:
                    self.op_test.assertTrue(
                        np.allclose(
                            actual_np,
                            expect_np,
                            atol=atol,
                            rtol=self.rtol if hasattr(self, 'rtol') else 1e-5,
                            equal_nan=equal_nan),
                        "Output (" + name + ") has diff at " + str(place) +
1595
                        " in " + self.checker_name)
1596 1597

        class EagerChecker(DygraphChecker):
1598

1599 1600 1601
            def init(self):
                self.checker_name = "eager checker"

1602 1603 1604
            def calculate_output(self):
                # we only check end2end api when check_eager=True
                with _test_eager_guard():
1605
                    self.is_python_api_test = True
1606 1607 1608
                    eager_dygraph_outs = self.op_test._calc_python_api_output(
                        place)
                    if eager_dygraph_outs is None:
X
xiongkun 已提交
1609
                        self.is_python_api_test = False
1610
                        # missing KernelSignature, fall back to eager middle output.
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
                        eager_dygraph_outs = self.op_test._calc_dygraph_output(
                            place, no_check_set=no_check_set)
                self.outputs = eager_dygraph_outs

            def _compare_numpy(self, name, actual_np, expect_np):
                with _test_eager_guard():
                    super()._compare_numpy(name, actual_np, expect_np)

            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
                with _test_eager_guard():
1621 1622
                    return super().convert_uint16_to_float_ifneed(
                        actual_np, expect_np)
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633

            def find_actual_value(self, name):
                with _test_eager_guard():
                    return super().find_actual_value(name)

            def _compare_list(self, name, actual, expect):
                """ if expect is a tuple, we need to compare list.
                """
                with _test_eager_guard():
                    super()._compare_list(name, actual, expect)

X
xiongkun 已提交
1634 1635 1636 1637 1638 1639 1640
            def _is_skip_name(self, name):
                # if in final state and kernel signature don't have name, then skip it.
                if self.is_python_api_test and hasattr(
                        self.op_test, "python_out_sig"
                ) and name not in self.op_test.python_out_sig:
                    return True
                return super()._is_skip_name(name)
1641

1642
        # set some flags by the combination of arguments.
X
xiongkun 已提交
1643
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
1644 1645 1646 1647
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST:
            atol = 0

1648
        if self.is_bfloat16_op():
Y
Yiqun Liu 已提交
1649 1650
            if self.is_mkldnn_op():
                check_dygraph = False
1651
                check_eager = False
Y
Yiqun Liu 已提交
1652 1653 1654 1655 1656
                if hasattr(self, 'force_fp32_output') and getattr(
                        self, 'force_fp32_output'):
                    atol = 1e-2
                else:
                    atol = 2
1657
            else:
1658
                atol = 1e-1
1659

1660 1661 1662
        if no_check_set is not None:
            if self.op_type not in no_check_set_white_list.no_check_set_white_list:
                raise AssertionError(
X
xiongkun 已提交
1663
                    "no_check_set of op %s must be set to None." % self.op_type)
1664 1665 1666
        static_checker = StaticChecker(self, self.outputs)
        static_checker.check()
        outs, fetch_list = static_checker.outputs, static_checker.fetch_list
L
lujun 已提交
1667
        if check_dygraph:
1668 1669
            # always enable legacy dygraph
            g_enable_legacy_dygraph()
1670 1671 1672
            dygraph_checker = DygraphChecker(self, self.outputs)
            dygraph_checker.check()
            dygraph_outs = dygraph_checker.outputs
1673 1674
            # yield the original state
            g_disable_legacy_dygraph()
1675
        if check_eager:
1676 1677 1678
            eager_checker = EagerChecker(self, self.outputs)
            eager_checker.check()
            eager_dygraph_outs = eager_checker.outputs
1679

C
cc 已提交
1680
        # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
1681 1682
        # computational consistency.
        # For example, group_norm uses AtomicAdd on CUDAPlace, which do not ensure
C
cc 已提交
1683
        # computation order when multiple threads write the same address. So the
L
Leo Chen 已提交
1684 1685 1686
        # result of group_norm is non-deterministic when datatype is float.
        # When inplace_atol is not None, the inplace check uses numpy.allclose
        # to check inplace result instead of numpy.array_equal.
1687 1688
        if inplace_atol is not None:
            warnings.warn(
L
Leo Chen 已提交
1689 1690
                "inplace_atol should only be set when op doesn't ensure computational consistency, please check it!"
            )
1691
        # Check inplace for given op, its grad op, its grad_grad op, etc.
C
cc 已提交
1692
        # No effect on original OpTest
1693
        # Currently not support ParallelExecutor on XPUPlace.
1694
        if not paddle.is_compiled_with_xpu(
1695
        ) and not paddle.is_compiled_with_npu(
1696 1697
        ) and not paddle.is_compiled_with_mlu() and not isinstance(
                place, core.CustomPlace):
1698 1699 1700
            self.check_inplace_output_with_place(place,
                                                 no_check_set=no_check_set,
                                                 inplace_atol=inplace_atol)
1701

1702
        if check_eager:
1703 1704
            assert check_dygraph == False
            return outs, eager_dygraph_outs, fetch_list
1705
        elif check_dygraph:
1706 1707 1708 1709 1710
            return outs, dygraph_outs, fetch_list
        else:
            return outs, fetch_list

    def check_compile_vs_runtime(self, fetch_list, fetch_outs):
1711

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
        def find_fetch_index(target_name, fetch_list):
            found = [
                i for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            if len(found) == 0:
                return -1
            else:
                self.assertTrue(
                    len(found) == 1,
                    "Found {} {}".format(len(found), target_name))
                return found[0]

        for name in self.op.desc.output_names():
            var_names = self.op.desc.output(name)
            for var_name in var_names:
                i = find_fetch_index(var_name, fetch_list)
                if i == -1:
                    # The output is dispensiable or intermediate.
                    break
                out = fetch_outs[i]
                if isinstance(out, core.LoDTensor):
                    lod_level_runtime = len(out.lod())
                else:
                    if isinstance(out, core.LoDTensorArray):
                        warnings.warn(
                            "The check of LoDTensorArray's lod_level is not implemented now!"
                        )
                    lod_level_runtime = 0

                var = self.program.global_block().var(var_name)
                if var.type == core.VarDesc.VarType.LOD_TENSOR:
                    lod_level_compile = var.lod_level
                else:
                    lod_level_compile = 0
                self.assertEqual(
                    lod_level_compile, lod_level_runtime,
                    "The lod_level of Output (" + name +
                    ") is different between compile-time and runtime (" +
                    str(lod_level_compile) + " vs " + str(lod_level_runtime) +
                    ")")

1754
    def _get_places(self):
D
dzhwinter 已提交
1755 1756 1757 1758 1759 1760
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
                    self.op_type):
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
W
Wu Yi 已提交
1761 1762
                else:
                    return []
D
dzhwinter 已提交
1763 1764
            else:
                return []
1765
        places = [fluid.CPUPlace()]
1766 1767 1768
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
        if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type)\
           and not cpu_only:
D
dzhwinter 已提交
1769
            places.append(core.CUDAPlace(0))
1770 1771
        return places

M
minqiyang 已提交
1772 1773 1774 1775
    def check_output(self,
                     atol=1e-5,
                     no_check_set=None,
                     equal_nan=False,
1776
                     check_dygraph=True,
1777 1778
                     inplace_atol=None,
                     check_eager=False):
1779 1780 1781 1782 1783

        # disable legacy dygraph check when check_eager is True
        if check_eager == True:
            check_dygraph = False

1784
        self.__class__.op_type = self.op_type
Y
Yiqun Liu 已提交
1785
        if self.is_mkldnn_op():
1786
            self.__class__.use_mkldnn = True
C
cc 已提交
1787

Y
Yiqun Liu 已提交
1788
        if self.is_xpu_op():
1789 1790
            self.__class__.use_xpu = True

1791
        places = self._get_places()
Q
qijun 已提交
1792
        for place in places:
1793 1794 1795 1796 1797 1798 1799
            res = self.check_output_with_place(place,
                                               atol,
                                               no_check_set,
                                               equal_nan,
                                               check_dygraph,
                                               inplace_atol,
                                               check_eager=check_eager)
1800
            if check_eager:
1801 1802
                assert check_dygraph == False
                outs, eager_dygraph_outs, fetch_list = res
1803
            elif check_dygraph:
1804 1805 1806
                outs, dygraph_outs, fetch_list = res
            else:
                outs, fetch_list = res
1807
            if self.op_type not in compile_vs_runtime_white_list.COMPILE_RUN_OP_WHITE_LIST:
1808
                self.check_compile_vs_runtime(fetch_list, outs)
Q
qijun 已提交
1809

P
pangyoki 已提交
1810
    def check_output_customized(self, checker, custom_place=None):
1811
        places = self._get_places()
P
pangyoki 已提交
1812 1813
        if custom_place:
            places.append(custom_place)
1814 1815 1816
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
1817
            outs.sort(key=len)
1818 1819
            checker(outs)

1820 1821 1822 1823 1824 1825
    def check_output_with_place_customized(self, checker, place):
        outs = self.calc_output(place)
        outs = [np.array(out) for out in outs]
        outs.sort(key=len)
        checker(outs)

D
Dun 已提交
1826 1827
    def _assert_is_close(self, numeric_grads, analytic_grads, names,
                         max_relative_error, msg_prefix):
1828
        for a, b, name in zip(numeric_grads, analytic_grads, names):
1829 1830 1831 1832 1833 1834
            # It asserts np.abs(a - b) / np.abs(a) < max_relative_error, in which
            # max_relative_error is 1e-7. According to the value of np.abs(a), we
            # change np.abs(a) to achieve dynamic threshold. For example, if
            # the value of np.abs(a) is between 1e-10 and 1e-8, we set np.abs(a)*=1e4.
            # Therefore, it asserts np.abs(a - b) / (np.abs(a)*1e4) < max_relative_error,
            # which is the same as np.abs(a - b) / np.abs(a) < max_relative_error*1e4.
1835
            abs_a = np.abs(a)
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
            if abs_a.ndim > 0:
                if self.dtype == np.float64 and \
                    self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
                    abs_a[abs_a < 1e-10] = 1e-3
                    abs_a[np.logical_and(abs_a > 1e-10, abs_a <= 1e-8)] *= 1e4
                    abs_a[np.logical_and(abs_a > 1e-8, abs_a <= 1e-6)] *= 1e2
                elif self.is_bfloat16_op():
                    abs_a[abs_a < 1e-2] = 1
                else:
                    abs_a[abs_a < 1e-3] = 1
            elif abs_a.ndim == 0:
                if self.dtype == np.float64 and \
                    self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
                    if abs_a < 1e-10:
                        abs_a = 1e-3
                    elif abs_a > 1e-10 and abs_a <= 1e-8:
                        abs_a = abs_a * 1e4
                    elif abs_a > 1e-8 and abs_a <= 1e-6:
                        abs_a = abs_a * 1e2
                elif self.is_bfloat16_op():
                    abs_a = 1 if abs_a < 1e-2 else abs_a
                else:
                    abs_a = 1 if abs_a < 1e-3 else abs_a
1859 1860 1861 1862 1863 1864

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
1865 1866 1867
                return ("Operator %s error, %s variable %s (shape: %s, dtype: %s) max gradient diff %e over limit %e, "
                    "the first error element is %d, expected %e, but got %e.") \
                    % (self.op_type, msg_prefix, name, str(a.shape), self.dtype, max_diff, max_relative_error,
1868
                    offset, a.flatten()[offset], b.flatten()[offset])
1869 1870 1871

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

1872 1873 1874 1875 1876 1877 1878
    def _check_grad_helper(self):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        self.__class__.op_type = self.op_type
        self.__class__.exist_check_grad = True
        if self.dtype == np.float64:
            self.__class__.exist_fp64_check_grad = True

1879 1880
    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
1881
                   output_names,
1882
                   no_grad_set=None,
1883
                   numeric_grad_delta=0.005,
1884
                   in_place=False,
Q
Qiao Longfei 已提交
1885
                   max_relative_error=0.005,
1886
                   user_defined_grads=None,
1887
                   user_defined_grad_outputs=None,
1888 1889
                   check_dygraph=True,
                   check_eager=False):
1890 1891 1892 1893 1894

        # disable legacy dygraph check when check_eager is True
        if check_eager == True:
            check_dygraph = False

1895
        self._check_grad_helper()
1896
        places = self._get_places()
1897
        for place in places:
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
            self.check_grad_with_place(place,
                                       inputs_to_check,
                                       output_names,
                                       no_grad_set,
                                       numeric_grad_delta,
                                       in_place,
                                       max_relative_error,
                                       user_defined_grads,
                                       user_defined_grad_outputs,
                                       check_dygraph,
                                       check_eager=check_eager)
1909 1910 1911 1912 1913 1914 1915 1916 1917

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
1918
                              user_defined_grads=None,
1919
                              user_defined_grad_outputs=None,
1920
                              check_dygraph=True,
1921 1922
                              numeric_place=None,
                              check_eager=False):
1923 1924 1925 1926 1927

        # disable legacy dygraph check when check_eager is True
        if check_eager == True:
            check_dygraph = False

1928
        self.scope = core.Scope()
Q
qijun 已提交
1929
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
1930
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
1931
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
P
phlrain 已提交
1932

Y
Yiqun Liu 已提交
1933 1934
        self._check_grad_helper()
        if self.is_bfloat16_op() and self.is_mkldnn_op():
1935
            check_dygraph = False
1936
            check_eager = False
1937

1938 1939 1940 1941
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7
1942

P
phlrain 已提交
1943 1944 1945
        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
1946 1947 1948 1949 1950 1951 1952

        # oneDNN numeric gradient should use CPU kernel
        use_onednn = False
        if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"] == True:
            op_attrs["use_mkldnn"] = False
            use_onednn = True

1953 1954 1955 1956 1957 1958
        self.op = create_op(self.scope,
                            self.op_type,
                            op_inputs,
                            op_outputs,
                            op_attrs,
                            cache_list=cache_list)
Y
Yu Yang 已提交
1959

1960 1961 1962
        if use_onednn:
            op_attrs["use_mkldnn"] = True

1963 1964
        if no_grad_set is None:
            no_grad_set = set()
1965 1966
        else:
            if (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST
1967 1968 1969
                ) and (self.op_type
                       not in no_grad_set_white_list.NOT_CHECK_OP_LIST) and (
                           not self.is_bfloat16_op()):
1970 1971
                raise AssertionError("no_grad_set must be None, op_type is " +
                                     self.op_type + " Op.")
1972

1973 1974 1975
        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)
            tensor_to_check = self.scope.find_var(input_to_check).get_tensor()
1976
            tensor_size = functools.reduce(lambda a, b: a * b,
1977
                                           tensor_to_check.shape(), 1)
1978 1979 1980
            tensor_ndim = len(tensor_to_check.shape())
            # for 0D Tensor, it's additional case for OP, so not raise error
            if tensor_ndim > 0 and tensor_size < 100:
1981 1982
                self.__class__.input_shape_is_large = False

Y
Yancey 已提交
1983 1984 1985
        if not type(output_names) is list:
            output_names = [output_names]

1986 1987 1988
        if numeric_place is None:
            numeric_place = place

Q
Qiao Longfei 已提交
1989
        numeric_grads = user_defined_grads or [
1990 1991 1992 1993 1994 1995 1996 1997 1998
            get_numeric_gradient(numeric_place,
                                 self.scope,
                                 self.op,
                                 self.inputs,
                                 input_to_check,
                                 output_names,
                                 delta=numeric_grad_delta,
                                 in_place=in_place)
            for input_to_check in inputs_to_check
1999
        ]
2000
        analytic_grads = self._get_gradient(inputs_to_check, place,
2001 2002
                                            output_names, no_grad_set,
                                            user_defined_grad_outputs)
2003 2004
        # comparison of bf16 results will happen as fp32
        # loop over list of grads and convert bf16 to fp32
2005
        fp32_analytic_grads = []
2006 2007 2008
        for grad in analytic_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
2009
                max_relative_error = 0.04 if max_relative_error < 0.04 else max_relative_error
2010 2011 2012 2013 2014 2015 2016
            fp32_analytic_grads.append(grad)
        analytic_grads = fp32_analytic_grads

        fp32_numeric_grads = []
        for grad in numeric_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
2017
                max_relative_error = 0.04 if max_relative_error < 0.04 else max_relative_error
2018 2019
            fp32_numeric_grads.append(grad)
        numeric_grads = fp32_numeric_grads
2020

D
Dun 已提交
2021 2022 2023
        self._assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                              max_relative_error,
                              "Gradient Check On %s" % str(place))
Q
qijun 已提交
2024

2025
        if check_dygraph:
2026 2027 2028
            # ensure switch into legacy dygraph
            g_enable_legacy_dygraph()

2029 2030 2031 2032
            dygraph_grad = self._get_dygraph_grad(inputs_to_check, place,
                                                  output_names,
                                                  user_defined_grad_outputs,
                                                  no_grad_set, False)
2033 2034 2035 2036
            fp32_grads = []
            for grad in dygraph_grad:
                if grad.dtype == np.uint16:
                    grad = convert_uint16_to_float(grad)
2037
                    max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
2038 2039
                fp32_grads.append(grad)
            dygraph_grad = fp32_grads
2040 2041 2042
            self._assert_is_close(numeric_grads, dygraph_grad, inputs_to_check,
                                  max_relative_error,
                                  "Gradient Check On %s" % str(place))
2043 2044
            # ensure switch back eager dygraph
            g_disable_legacy_dygraph()
2045

2046
        if check_eager:
J
Jiabin Yang 已提交
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
            with fluid.dygraph.base.guard(place):
                with _test_eager_guard():
                    eager_dygraph_grad = self._get_dygraph_grad(
                        inputs_to_check, place, output_names,
                        user_defined_grad_outputs, no_grad_set, check_eager)
                    fp32_grads = []
                    for grad in eager_dygraph_grad:
                        if grad.dtype == np.uint16:
                            grad = convert_uint16_to_float(grad)
                            max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
                        fp32_grads.append(grad)
                    eager_dygraph_grad = fp32_grads
                    self._assert_is_close(numeric_grads, eager_dygraph_grad,
                                          inputs_to_check, max_relative_error,
                                          "Gradient Check On %s" % str(place))
2062

2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
    def _find_var_in_dygraph(self, output_vars, name):
        if name in output_vars:
            return output_vars[name]
        else:
            for output_vars_index in output_vars:
                for output_vars_selected in output_vars[output_vars_index]:
                    if output_vars_selected.name == name:
                        return output_vars_selected

    def _get_dygraph_grad(self,
                          inputs_to_check,
                          place,
                          output_names,
2076
                          user_defined_grad_outputs=None,
2077 2078
                          no_grad_set=None,
                          check_eager=False):
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
                op_proto, self.inputs, True, True, block)

            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

2092
            # prepare attributes
2093 2094 2095 2096 2097
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
2098

2099
            if check_eager:
2100 2101
                eager_outputs = self._calc_python_api_output(
                    place, inputs, outputs)
2102
            # if outputs is None, kernel sig is empty or other error is happens.
X
xiongkun 已提交
2103
            if not check_eager or eager_outputs is None:
2104 2105 2106 2107 2108
                block.append_op(
                    type=self.op_type,
                    inputs=inputs,
                    outputs=outputs,
                    attrs=attrs_outputs if hasattr(self, "attrs") else None)
X
xiongkun 已提交
2109 2110
            else:
                outputs = eager_outputs
2111

2112 2113 2114
            if self.dtype == np.uint16:
                cast_inputs = self._find_var_in_dygraph(outputs,
                                                        output_names[0])
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
                cast_outputs = block.create_var(dtype="float32",
                                                shape=cast_inputs[0].shape)
                cast_op = block.append_op(inputs={"X": cast_inputs},
                                          outputs={"Out": cast_outputs},
                                          type="cast",
                                          attrs={
                                              "in_dtype":
                                              core.VarDesc.VarType.BF16,
                                              "out_dtype":
                                              core.VarDesc.VarType.FP32
                                          })
2126 2127
                outputs = {output_names[0]: cast_outputs}

2128 2129 2130 2131 2132
            outputs_valid = {}
            for output_name in output_names:
                outputs_valid[output_name] = self._find_var_in_dygraph(
                    outputs, output_name)

2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
            if user_defined_grad_outputs is None:
                if len(outputs_valid) == 1:
                    loss = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
                    for outputs_valid_key in outputs_valid:
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[outputs_valid_key]},
                            outputs={"Out": [loss]},
                            attrs=None)
                else:
                    avg_sum = []
                    for cur_loss in outputs_valid:
                        cur_avg_loss = block.create_var(
                            dtype=self.dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
                            stop_gradient=False)
2155 2156 2157 2158
                        block.append_op(type="mean",
                                        inputs={"X": outputs_valid[cur_loss]},
                                        outputs={"Out": [cur_avg_loss]},
                                        attrs=None)
2159 2160 2161 2162 2163 2164 2165
                        avg_sum.append(cur_avg_loss)
                    loss_sum = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
2166 2167 2168 2169
                    block.append_op(type='sum',
                                    inputs={"X": avg_sum},
                                    outputs={"Out": loss_sum},
                                    attrs=None)
2170
                    loss = block.create_var(
2171 2172 2173
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
2174 2175
                        stop_gradient=False,
                        shape=[1])
2176 2177 2178 2179
                    block.append_op(type='scale',
                                    inputs={"X": loss_sum},
                                    outputs={"Out": loss},
                                    attrs={'scale': 1.0 / float(len(avg_sum))})
2180
                loss.backward()
2181

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
                fetch_list_grad = []
                for inputs_to_check_name in inputs_to_check:
                    a = inputs_grad_dict[inputs_to_check_name].gradient()
                    fetch_list_grad.append(a)
                return fetch_list_grad
            else:
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                grad_outputs = []
                for grad_out_value in user_defined_grad_outputs:
                    grad_outputs.append(paddle.to_tensor(grad_out_value))
2194
                # delete the inputs which no need to calculate grad
C
chentianyu03 已提交
2195 2196 2197
                for no_grad_val in no_grad_set:
                    del (inputs[no_grad_val])

J
Jiabin Yang 已提交
2198
                if not _in_legacy_dygraph():
2199 2200
                    core.eager.run_backward(fluid.layers.utils.flatten(outputs),
                                            grad_outputs, False)
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
                    grad_inputs = []
                    for inputs_list in inputs.values():
                        for inp in inputs_list:
                            grad_inputs.append(inp.grad.numpy())
                    return grad_inputs
                else:
                    grad_inputs = paddle.grad(
                        outputs=fluid.layers.utils.flatten(outputs),
                        inputs=fluid.layers.utils.flatten(inputs),
                        grad_outputs=grad_outputs)
                    return [grad.numpy() for grad in grad_inputs]
2212

Y
Yu Yang 已提交
2213 2214 2215 2216 2217
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
2218
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
2219 2220
        return tensor

K
Kexin Zhao 已提交
2221
    @staticmethod
K
Kexin Zhao 已提交
2222 2223
    def np_dtype_to_fluid_dtype(input):
        return input
K
Kexin Zhao 已提交
2224

D
dzhwinter 已提交
2225 2226 2227 2228 2229 2230 2231 2232
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

2233 2234 2235 2236 2237
    def _get_gradient(self,
                      input_to_check,
                      place,
                      output_names,
                      no_grad_set,
2238
                      user_defined_grad_outputs=None,
2239
                      parallel=False):
Y
Yu Yang 已提交
2240
        prog = Program()
2241
        scope = core.Scope()
Y
Yu Yang 已提交
2242
        block = prog.global_block()
2243
        self._append_ops(block)
Y
Yu Yang 已提交
2244

2245
        inputs = self._get_inputs(block)
2246
        outputs = self._get_outputs(block)
2247
        feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
2248

2249
        if user_defined_grad_outputs is None:
2250 2251
            if self.dtype == np.uint16:
                cast_inputs = list(map(block.var, output_names))
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
                cast_outputs = block.create_var(dtype="float32",
                                                shape=cast_inputs[0].shape)
                cast_op = block.append_op(inputs={"X": cast_inputs},
                                          outputs={"Out": cast_outputs},
                                          type="cast",
                                          attrs={
                                              "in_dtype":
                                              core.VarDesc.VarType.BF16,
                                              "out_dtype":
                                              core.VarDesc.VarType.FP32
                                          })
2263 2264 2265
                cast_op.desc.infer_var_type(block.desc)
                cast_op.desc.infer_shape(block.desc)
                output_names = [cast_outputs.name]
2266
            loss = append_loss_ops(block, output_names)
2267 2268 2269
            param_grad_list = append_backward(loss=loss,
                                              parameter_list=input_to_check,
                                              no_grad_set=no_grad_set)
2270 2271 2272 2273 2274 2275 2276 2277 2278
            fetch_list = [g for p, g in param_grad_list]
        else:
            assert parallel is False, "unsupported parallel mode when giving custom grad outputs."
            # user_defined_grad_outputs here are numpy arrays
            if not isinstance(user_defined_grad_outputs, list):
                user_defined_grad_outputs = [user_defined_grad_outputs]
            grad_outputs = []
            for grad_out_value in user_defined_grad_outputs:
                # `presistable` is used to avoid executor create new var in local scope
2279 2280 2281
                var = block.create_var(shape=grad_out_value.shape,
                                       dtype=grad_out_value.dtype,
                                       persistable=True)
2282 2283 2284 2285 2286 2287 2288
                true_var = scope.var(var.name)
                tensor = true_var.get_tensor()
                tensor.set(grad_out_value, place)
                grad_outputs.append(var)
            targets = [
                outputs[name] for name in outputs if name in output_names
            ]
2289
            inputs = [inputs[name] for name in input_to_check if name in inputs]
2290 2291 2292 2293
            grad_inputs = paddle.static.gradients(targets, inputs, grad_outputs,
                                                  no_grad_set)
            fetch_list = grad_inputs

2294 2295
        if parallel:
            use_cuda = False
2296
            if isinstance(place, fluid.CUDAPlace):
2297
                use_cuda = True
2298 2299 2300 2301
            compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
                loss_name=loss.name, places=place)
            prog = compiled_prog
        executor = fluid.Executor(place)
2302
        return list(
2303 2304
            map(
                np.array,
2305 2306 2307 2308 2309
                executor.run(prog,
                             feed_dict,
                             fetch_list,
                             scope=scope,
                             return_numpy=False)))
A
arlesniak 已提交
2310 2311 2312


class OpTestTool:
2313

A
arlesniak 已提交
2314 2315 2316 2317 2318 2319 2320
    @classmethod
    def skip_if(cls, condition: object, reason: str):
        return unittest.skipIf(condition, reason)

    @classmethod
    def skip_if_not_cpu_bf16(cls):
        return OpTestTool.skip_if(
2321 2322
            not (isinstance(_current_expected_place(), core.CPUPlace)
                 and core.supports_bfloat16()),
A
arlesniak 已提交
2323
            "Place does not support BF16 evaluation")
2324 2325 2326 2327 2328 2329

    @classmethod
    def skip_if_not_cpu(cls):
        return OpTestTool.skip_if(
            not isinstance(_current_expected_place(), core.CPUPlace),
            "OneDNN supports only CPU for now")