op_test.py 90.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

B
baojun 已提交
17
import os
18
import unittest
19
import warnings
20
import numpy as np
21
import random
M
minqiyang 已提交
22
import six
23
import struct
24
import time
25
import itertools
Y
Yu Yang 已提交
26
import collections
M
minqiyang 已提交
27
from collections import defaultdict
28
from copy import copy
29

30
import paddle
31
import paddle.fluid as fluid
32
from paddle.fluid.framework import _dygraph_tracer
33
import paddle.fluid.core as core
34
from paddle.fluid.framework import _in_eager_mode
35
from paddle.fluid.framework import _test_eager_guard
36 37 38
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
A
arlesniak 已提交
39
from paddle.fluid.framework import Program, OpProtoHolder, Variable, _current_expected_place
40 41 42 43 44
from paddle.fluid.tests.unittests.testsuite import (
    create_op,
    set_input,
    append_input_output,
    append_loss_ops, )
45
from paddle.fluid import unique_name
46 47 48 49 50 51 52
from paddle.fluid.tests.unittests.white_list import (
    op_accuracy_white_list,
    check_shape_white_list,
    compile_vs_runtime_white_list,
    no_check_set_white_list,
    op_threshold_white_list,
    no_grad_set_white_list, )
53 54


55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
def check_out_dtype(api_fn, in_specs, expect_dtypes, target_index=0, **configs):
    """
    Determines whether dtype of output tensor is as expected.

    Args:
        api_fn(callable):  paddle api function
        in_specs(list[tuple]): list of shape and dtype information for constructing input tensor of api_fn, such as [(shape, dtype), (shape, dtype)].
        expected_dtype(list[str]): expected dtype of output tensor.
        target_index(int): indicate which one from in_specs to infer the dtype of output.
        config(dict): other arguments of paddle api function

    Example:
        check_out_dtype(fluid.layers.pad_constant_like, [([2,3,2,3], 'float64'), ([1, 3, 1,3], )], ['float32', 'float64', 'int64'], target_index=1, pad_value=0.)

    """
    paddle.enable_static()
    for i, expect_dtype in enumerate(expect_dtypes):
        with paddle.static.program_guard(paddle.static.Program()):
            input_t = []
            for index, spec in enumerate(in_specs):
                if len(spec) == 1:
                    shape = spec[0]
                    dtype = expect_dtype if target_index == index else 'float32'
                elif len(spec) == 2:
                    shape, dtype = spec
                else:
                    raise ValueError(
                        "Value of in_specs[{}] should contains two elements: [shape, dtype]".
                        format(index))
                input_t.append(
                    paddle.static.data(
                        name='data_%s' % index, shape=shape, dtype=dtype))

            out = api_fn(*input_t, **configs)
            out_dtype = fluid.data_feeder.convert_dtype(out.dtype)

            if out_dtype != expect_dtype:
                raise ValueError(
                    "Expected out.dtype is {}, but got {} from {}.".format(
                        expect_dtype, out_dtype, api_fn.__name__))


97 98 99 100 101 102 103 104
def _set_use_system_allocator(value=None):
    USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
    old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
    value = old_value if value is None else value
    core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
    return old_value


105 106 107 108
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
M
minqiyang 已提交
109
    for i in six.moves.xrange(len(prob)):
110 111 112 113
        prob[i] /= prob_sum[i]
    return prob


114 115
def get_numeric_gradient(place,
                         scope,
116 117 118
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
119
                         output_names,
120
                         delta=0.005,
C
chengduo 已提交
121
                         in_place=False):
Y
Yu Yang 已提交
122
    # FIXME: change this method by compile time concepts
123
    set_input(scope, op, inputs, place)
124 125

    def product(dim):
M
minqiyang 已提交
126
        return six.moves.reduce(lambda a, b: a * b, dim, 1)
127 128

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
129 130
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
131
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
132
        tensor_to_check_dtype = np.float32
133
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
134
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
135 136 137 138
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
139 140
    elif tensor_to_check_dtype == core.VarDesc.VarType.BF16:
        tensor_to_check_dtype = np.float32
L
Lijunhui 已提交
141 142 143 144
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX64:
        tensor_to_check_dtype = np.complex64
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX128:
        tensor_tp_check_dtype = np.complex128
145
    else:
146 147
        raise ValueError("Not supported data type " + str(tensor_to_check_dtype)
                         + ", tensor name : " + str(input_to_check))
148

C
chengduo 已提交
149 150 151 152
    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
153
            output_numpy = np.array(scope.find_var(output_name).get_tensor())
Y
Yiqun Liu 已提交
154 155 156
            # numpy.dtype does not have bfloat16, thus we use numpy.uint16 to
            # store bfloat16 data, and need to be converted to float to check
            # the floating precision.
157 158 159
            if tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
                output_numpy = convert_uint16_to_float(output_numpy)
            sum.append(output_numpy.astype(tensor_to_check_dtype).mean())
C
chengduo 已提交
160 161
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

162 163 164
    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
165 166 167 168
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
169 170 171
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            numpy_tensor = numpy_tensor.flatten()
172 173 174 175
            return struct.unpack('<f',
                                 struct.pack('<I',
                                             np.uint32(numpy_tensor[i])
                                             << np.uint32(16)))[0]
D
dzhwinter 已提交
176
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
177
            return tensor._get_float_element(i)
178
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
179
            return tensor._get_double_element(i)
180 181 182
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
183 184

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
185 186 187 188 189
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
190
            numpy_tensor = numpy_tensor.reshape(shape)
D
dzhwinter 已提交
191
            tensor.set(numpy_tensor, place)
192 193 194 195 196 197 198
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = np.uint16(copy_bits_from_float_to_uint16(e))
            numpy_tensor = numpy_tensor.reshape(shape)
            tensor.set(numpy_tensor, place)
D
dzhwinter 已提交
199
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
200
            tensor._set_float_element(i, e)
201
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
202
            tensor._set_double_element(i, e)
203 204 205
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
206

207 208
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
M
minqiyang 已提交
209
    for i in six.moves.xrange(tensor_size):
210
        if in_place:
211
            set_input(scope, op, inputs, place)
212 213

        # get one input element throw it's index i.
214
        origin = __get_elem__(tensor_to_check, i)
215 216
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
217
        __set_elem__(tensor_to_check, i, x_pos)
218 219 220
        y_pos = get_output()

        if in_place:
221
            set_input(scope, op, inputs, place)
222 223

        x_neg = origin - delta
224
        __set_elem__(tensor_to_check, i, x_neg)
225 226
        y_neg = get_output()

227
        __set_elem__(tensor_to_check, i, origin)
228 229
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
230
    return gradient_flat.reshape(tensor_to_check.shape())
231 232


233 234
def skip_check_grad_ci(reason=None):
    """Decorator to skip check_grad CI.
C
cc 已提交
235

236
       Check_grad is required for Op test cases. However, there are some special
C
cc 已提交
237
       cases that do not need to do check_grad. This decorator is used to skip the
238
       check_grad of the above cases.
C
cc 已提交
239 240

       Note: the execution of unit test will not be skipped. It just avoids check_grad
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
       checking in tearDownClass method by setting a `no_need_check_grad` flag.

       Example:
           @skip_check_grad_ci(reason="For inference, check_grad is not required.")
           class TestInference(OpTest):
    """
    if not isinstance(reason, str):
        raise AssertionError("The reason for skipping check_grad is required.")

    def wrapper(cls):
        cls.no_need_check_grad = True
        return cls

    return wrapper


257 258 259 260
def copy_bits_from_float_to_uint16(f):
    return struct.unpack('<I', struct.pack('<f', f))[0] >> 16


261 262 263 264
def convert_float_to_uint16(float_list, data_format="NCHW"):
    if data_format == "NHWC":
        float_list = np.transpose(float_list, [0, 3, 1, 2])

265 266 267
    new_output = []
    for x in np.nditer(float_list):
        new_output.append(np.uint16(copy_bits_from_float_to_uint16(x)))
268
    new_output = np.reshape(new_output, float_list.shape).view(np.uint16)
269

270 271 272
    if data_format == "NHWC":
        new_output = np.transpose(new_output, [0, 2, 3, 1])
    return new_output
273 274


275 276 277
def convert_uint16_to_float(in_list):
    in_list = np.asarray(in_list)
    out = np.vectorize(
278
        lambda x: struct.unpack('<f', struct.pack('<I', np.uint32(x) << np.uint32(16)))[0],
279 280
        otypes=[np.float32])(in_list.flat)
    return np.reshape(out, in_list.shape)
281 282


283
class OpTest(unittest.TestCase):
284 285 286 287 288
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
289
        cls.call_once = False
290
        cls.dtype = None
291
        cls.outputs = {}
292
        cls.input_shape_is_large = True
293 294 295 296

        np.random.seed(123)
        random.seed(124)

297 298 299 300
        if paddle.is_compiled_with_npu():
            cls._use_system_allocator = _set_use_system_allocator(False)
        else:
            cls._use_system_allocator = _set_use_system_allocator(True)
301

302 303
    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
304
        """Restore random seeds"""
305 306 307
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

308 309
        _set_use_system_allocator(cls._use_system_allocator)

310 311 312 313
        def is_empty_grad_op(op_type):
            all_op_kernels = core._get_all_register_op_kernels()
            grad_op = op_type + '_grad'
            if grad_op in all_op_kernels.keys():
J
juncaipeng 已提交
314
                if is_mkldnn_op_test():
315 316 317 318 319 320 321 322
                    grad_op_kernels = all_op_kernels[grad_op]
                    for grad_op_kernel in grad_op_kernels:
                        if 'MKLDNN' in grad_op_kernel:
                            return False
                else:
                    return False
            return True

323 324 325
        def is_xpu_op_test():
            return hasattr(cls, "use_xpu") and cls.use_xpu == True

J
juncaipeng 已提交
326
        def is_mkldnn_op_test():
327
            return hasattr(cls, "use_mkldnn") and cls.use_mkldnn == True
J
juncaipeng 已提交
328

329 330 331
        def is_rocm_op_test():
            return core.is_compiled_with_rocm()

332 333 334
        def is_npu_op_test():
            return hasattr(cls, "use_npu") and cls.use_npu == True

335 336 337
        def is_mlu_op_test():
            return hasattr(cls, "use_mlu") and cls.use_mlu == True

338 339
        if not hasattr(cls, "op_type"):
            raise AssertionError(
340 341
                "This test do not have op_type in class attrs, "
                "please set self.__class__.op_type=the_real_op_type manually.")
342

J
juncaipeng 已提交
343 344
        # case in NO_FP64_CHECK_GRAD_CASES and op in NO_FP64_CHECK_GRAD_OP_LIST should be fixed
        if not hasattr(cls, "no_need_check_grad") \
345
            and not is_empty_grad_op(cls.op_type):
J
juncaipeng 已提交
346
            if cls.dtype is None or \
347 348
                (cls.dtype == np.float16 \
                    and cls.op_type not in op_accuracy_white_list.NO_FP16_CHECK_GRAD_OP_LIST \
J
juncaipeng 已提交
349 350 351 352
                    and not hasattr(cls, "exist_check_grad")):
                raise AssertionError("This test of %s op needs check_grad." %
                                     cls.op_type)

353
            # check for op test with fp64 precision, but not check mkldnn op test for now
J
juncaipeng 已提交
354 355
            if cls.dtype in [np.float32, np.float64] \
                and cls.op_type not in op_accuracy_white_list.NO_FP64_CHECK_GRAD_OP_LIST \
356
                and not hasattr(cls, 'exist_fp64_check_grad') \
357
                and not is_xpu_op_test() \
358
                and not is_mkldnn_op_test() \
359
                and not is_rocm_op_test() \
360 361
                and not is_npu_op_test() \
                and not is_mlu_op_test():
J
juncaipeng 已提交
362 363 364 365
                raise AssertionError(
                    "This test of %s op needs check_grad with fp64 precision." %
                    cls.op_type)

366
            if not cls.input_shape_is_large \
367 368 369 370
                and cls.op_type not in check_shape_white_list.NEED_TO_FIX_OP_LIST:
                raise AssertionError(
                    "Input's shape should be large than or equal to 100 for " +
                    cls.op_type + " Op.")
371

372 373 374 375 376
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

377
    def is_bfloat16_op(self):
Y
Yiqun Liu 已提交
378 379
        # self.dtype is the dtype of inputs, and is set in infer_dtype_from_inputs_outputs.
        # Make sure this function is called after calling infer_dtype_from_inputs_outputs.
380
        return self.dtype == np.uint16 or (
Y
Yiqun Liu 已提交
381 382 383
            hasattr(self, 'output_dtype') and
            self.output_dtype == np.uint16) or (
                hasattr(self, 'mkldnn_data_type') and
384
                getattr(self, 'mkldnn_data_type') == "bfloat16") or (
Y
Yiqun Liu 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397
                    hasattr(self, 'attrs') and
                    'mkldnn_data_type' in self.attrs and
                    self.attrs['mkldnn_data_type'] == 'bfloat16')

    def is_mkldnn_op(self):
        return (hasattr(self, "use_mkldnn") and self.use_mkldnn == True) or (
            hasattr(self, "attrs") and "use_mkldnn" in self.attrs and
            self.attrs["use_mkldnn"] == True)

    def is_xpu_op(self):
        return (hasattr(self, "use_xpu") and self.use_xpu == True) or (
            hasattr(self, "attrs") and "use_xpu" in self.attrs and
            self.attrs["use_xpu"] == True)
398

399
    # set the self.output_dtype .
400
    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
J
juncaipeng 已提交
401 402 403 404
        def is_np_data(input):
            return isinstance(input, (np.ndarray, np.generic))

        def infer_dtype(numpy_dict, dtype_set):
405 406 407
            assert isinstance(
                numpy_dict,
                dict), "self.inputs, self.outputs must be numpy_dict"
J
juncaipeng 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
            # the inputs are as follows:
            # case 1: inputs = {'X': x}
            # case 2: inputs = {'X': (x, x_lod)}
            # case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
            # case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
            # TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
            for _, var_value in six.iteritems(numpy_dict):
                if is_np_data(var_value):  # case 1
                    dtype_set.add(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):  # case 2, 3, 4
                    for sub_val_value in var_value:
                        if is_np_data(sub_val_value):  # case 2
                            dtype_set.add(sub_val_value.dtype)
                        elif len(sub_val_value) > 1 and is_np_data(
                                sub_val_value[1]):  # case 3
                            dtype_set.add(sub_val_value[1].dtype)
                        elif len(sub_val_value) > 1 and isinstance(sub_val_value[1], (list, tuple)) \
                            and is_np_data(sub_val_value[1][0]): # case 4
                            dtype_set.add(sub_val_value[1][0].dtype)

        # infer dtype from inputs, and dtype means the precision of the test
        # collect dtype of all inputs
Y
Yiqun Liu 已提交
430 431
        input_dtype_set = set()
        infer_dtype(inputs, input_dtype_set)
J
juncaipeng 已提交
432 433
        dtype_list = [
            np.dtype(np.float64), np.dtype(np.float32), np.dtype(np.float16),
434 435 436
            np.dtype(np.int64), np.dtype(np.int32), np.dtype(np.uint16),
            np.dtype(np.int16), np.dtype(np.int8), np.dtype(np.uint8),
            np.dtype(np.bool)
J
juncaipeng 已提交
437 438 439
        ]
        # check the dtype in dtype_list in order, select the first dtype that in dtype_set
        for dtype in dtype_list:
Y
Yiqun Liu 已提交
440
            if dtype in input_dtype_set:
J
juncaipeng 已提交
441 442
                self.dtype = dtype
                break
Y
Yiqun Liu 已提交
443
        # save input dtype in class attr
444
        self.__class__.dtype = self.dtype
445

Y
Yiqun Liu 已提交
446 447 448 449 450 451 452 453
        # infer dtype of outputs
        output_dtype_set = set()
        infer_dtype(outputs, output_dtype_set)
        for dtype in dtype_list:
            if dtype in output_dtype_set:
                self.output_dtype = dtype
                break

Y
Yang Yang(Tony) 已提交
454 455 456 457 458 459
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
460
                    if isinstance(np_value, tuple):
461
                        tensor.set(np_value[0], place)
462
                        tensor.set_recursive_sequence_lengths(np_value[1])
463
                    else:
464
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
465 466 467 468
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
469
                    tensor.set(self.inputs[var_name][0], place)
470 471
                    tensor.set_recursive_sequence_lengths(self.inputs[var_name][
                        1])
Y
Yang Yang(Tony) 已提交
472
                else:
473
                    tensor.set(self.inputs[var_name], place)
Y
Yang Yang(Tony) 已提交
474 475 476
                feed_map[var_name] = tensor
        return feed_map

477
    def _append_ops(self, block):
J
juncaipeng 已提交
478
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
Y
Yiqun Liu 已提交
479
        if self.is_mkldnn_op():
480
            self.__class__.use_mkldnn = True
C
cc 已提交
481

Y
Yiqun Liu 已提交
482
        if self.is_xpu_op():
483 484
            self.__class__.use_xpu = True

Y
Yang Yang(Tony) 已提交
485
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
486
        "infer datatype from inputs and outputs for this test case"
487 488 489 490 491 492
        if self.is_bfloat16_op():
            self.dtype = np.uint16
            self.__class__.dtype = self.dtype
            self.output_dtype = np.uint16
        else:
            self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
493 494 495 496
        inputs = append_input_output(block, op_proto, self.inputs, True,
                                     self.dtype)
        outputs = append_input_output(block, op_proto, self.outputs, False,
                                      self.dtype)
P
phlrain 已提交
497 498 499 500 501 502 503 504 505

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True)

Y
Yang Yang(Tony) 已提交
506 507 508 509
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
510
            attrs=copy(self.attrs) if hasattr(self, "attrs") else dict())
C
cc 已提交
511
        # infer variable type and infer shape in compile-time
Q
QI JUN 已提交
512 513
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
514

515 516
        return op

517 518
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
M
minqiyang 已提交
519
        for name, value in six.iteritems(numpy_inputs):
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

M
minqiyang 已提交
539 540 541 542
    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
L
lujun 已提交
543
            v = fluid.dygraph.base.to_variable(value=data)
544
            v.value().get_tensor().set_recursive_sequence_lengths(lod)
M
minqiyang 已提交
545 546
            return v
        else:
L
lujun 已提交
547
            return fluid.dygraph.base.to_variable(value)
M
minqiyang 已提交
548

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
    def get_sequence_batch_size_1_input(self, lod=None, shape=None):
        """Get LoD input data whose batch size is 1.
        All sequence related OP unittests should call this function to contain the case of batch size = 1.
        Args:
            lod (list[list of int], optional): Length-based LoD, length of lod[0] should be 1. Default: [[13]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod) : LoD input data whose batch size is 1.
        """
        if lod is None:
            lod = [[13]]
        if shape is None:
            shape = [13, 23]
        assert len(lod[0]) == 1
        assert lod[0][0] == shape[0]
        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
    def lod_has_single_zero(self, lod):
        for i in range(len(lod) - 2):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] != 0:
                return True
        return False

    def lod_has_continuous_zero(self, lod):
        for i in range(len(lod) - 3):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] == 0 and lod[
                    i + 3] != 0:
                return True
        return False

    def get_sequence_instance_size_0_input(self, lod=None, shape=None):
        """Get LoD input data whose instance size is 0.
        All sequence related OP unittests should call this function to contain the case of instance size is 0.
        Args:
            lod (list[list of int], optional): Length-based LoD, lod[0]'s size must at least eight, lod[0] must at least two zeros at the beginning and at least two zeros at the end, the middle position of lod[0] contains a single zero and multiple zero. Default: [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod): LoD input data whose instance size is 0.
        """
        if lod is None:
            lod = [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]]
        if shape is None:
            shape = [12, 10]
        assert len(lod[0]) >= 8
        assert lod[0][0] == 0 and lod[0][1] == 0 and lod[0][-1] == 0 and lod[0][
            -2] == 0
        assert self.lod_has_single_zero(lod[0]) is True
        assert self.lod_has_continuous_zero(lod[0]) is True
        assert sum(lod[0]) == shape[0]

        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

603 604 605 606 607 608 609 610 611 612 613 614 615
    def append_input_output_for_dygraph(self, op_proto, np_list, is_input,
                                        if_return_inputs_grad_dict, block):
        def create_var(np_value, name, is_input, if_return_inputs_grad_dict):
            np_value_temp = np_value
            has_lod = False
            lod_temp = None
            if isinstance(np_value, tuple):
                np_value_temp = np_value[0]
                has_lod = True
                lod_temp = np_value[1]

            if is_input:
                v = self._create_var_from_numpy(np_value_temp)
616

617 618
                if if_return_inputs_grad_dict:
                    v.stop_gradient = False
619 620 621
                    if _in_eager_mode():
                        v.retain_grads()

622
                if has_lod:
623
                    v.value().get_tensor().set_recursive_sequence_lengths(
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
                        lod_temp)
            else:
                v = block.create_var(
                    name=name,
                    dtype=np_value_temp.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False)
            return v

        # prepare variable for input or output
        var_dict = defaultdict(list)
        if if_return_inputs_grad_dict:
            inputs_grad_dict = defaultdict()
        proto_list = op_proto.inputs if is_input else op_proto.outputs
        for var_proto in proto_list:
            name = var_proto.name
            if (name not in np_list) and var_proto.dispensable:
                continue
            if name not in np_list:
                assert var_proto.intermediate, "{} not found".format(name)
                v = block.create_var(
                    dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v
                continue
            if var_proto.duplicable:
                assert isinstance(
                    np_list[name],
                    list), "Duplicable {} should be set as list".format(name)
                var_list = []
                slot_name = name
                for (name, np_value) in np_list[name]:
                    v = create_var(np_value, name, is_input,
                                   if_return_inputs_grad_dict)
                    var_list.append(v)
                    if if_return_inputs_grad_dict:
                        inputs_grad_dict[name] = v
                var_dict[slot_name] = var_list
            else:
                nplist_value_temp = None
                name_temp = None
                if isinstance(np_list[name], list):
                    nplist_value_temp = np_list[name][0]
                    name_temp = name
                else:
                    nplist_value_temp = np_list[name]
                    name_temp = unique_name.generate("%s_out" % (name))
                v = create_var(nplist_value_temp, name_temp, is_input,
                               if_return_inputs_grad_dict)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v

        if if_return_inputs_grad_dict:
            return var_dict, inputs_grad_dict
        else:
            return var_dict

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
    def _check_api_outs_by_dygraph_outs(self, api_outs, dygraph_outs, place):
        """ for quick verify, here we take a simplest strategy:
                1. we only check variable in api_outs.
                2. we simply check the numpy (tensor) .
                3. we set atol and rtol as 1e-5, because they are unrelated to dtype.
        """
        for name in api_outs:
            np_api = np.array(api_outs[name])
            np_dyg = np.array(dygraph_outs[name])
            self.assertTrue(
                np.allclose(
                    np_api, np_dyg, equal_nan=False),
                "Output (" + name + ") has diff at " + str(place) + "\nExpect "
                + str(np_dyg) + "\n" + "But Got" + str(np_api) + " in class " +
                self.__class__.__name__)

    def _calc_python_api_output(self, place):
        def prepare_python_api_arguments(op_proto_ins, op_proto_attrs,
                                         kernel_sig):
            """ map from `op proto inputs and attrs` to `api input list and api attrs dict`
            """
            # NOTE(xiongkun): why don't use input arguments dicts ? 
            # Because we don't know the python api name of each arguments.
            inputs_sig, attrs_sig, outputs_sig = kernel_sig
            input_arguments = [op_proto_ins[name] for name in inputs_sig]
            attr_arguments = {
                name: op_proto_attrs[name]
                for name in attrs_sig if name in op_proto_attrs
            }
            return input_arguments, attr_arguments

        def construct_output_dict_by_kernel_sig(ret_tuple, output_sig):
            if not isinstance(ret_tuple, (tuple, list)):
                ret_tuple = [ret_tuple]
            assert len(output_sig) == len(
                ret_tuple), "expect %d outputs, but get %d outputs" % (
                    len(output_sig), len(ret_tuple))
            return {a: b for a, b in zip(output_sig, ret_tuple)}

        def assumption_assert_and_transform(args, argvs):
            """
            currently only support "X" is [Tensor], don't support multi-tensor in "X"
            """
            for inp in args:
                assert isinstance(inp, list) and len(
                    inp
                ) == 1, "currently only support `X` is [Tensor], don't support multi-tensor in `X`"
            args = [inp[0] for inp in args]
            return args, argvs

        def cal_python_api(python_api, args, argvs, kernel_sig):
            args, argvs = assumption_assert_and_transform(args, argvs)
            inputs_sig, attrs_sig, outputs_sig = kernel_sig
            ret_tuple = python_api(*args, **argvs)
            return construct_output_dict_by_kernel_sig(ret_tuple, outputs_sig)

        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
            # prepare input variable
            inputs = self.append_input_output_for_dygraph(op_proto, self.inputs,
                                                          True, False, block)
            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]

            kernel_sig = _dygraph_tracer()._get_kernel_signature(
                self.op_type, inputs, outputs, attrs_outputs)

            assert hasattr(
                self, "python_api"
            ), "Please set the `self.python_api` if you want to compare python api output."
            arg, argv = prepare_python_api_arguments(inputs, attrs_outputs,
                                                     kernel_sig)
            """ we directly return the cal_python_api value because the value is already tensor. 
            """
            return cal_python_api(self.python_api, arg, argv, kernel_sig)

L
lujun 已提交
769
    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
J
juncaipeng 已提交
770
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
L
lujun 已提交
771
        with fluid.dygraph.base.guard(place=place):
M
minqiyang 已提交
772 773
            block = fluid.default_main_program().global_block()

774
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
M
minqiyang 已提交
775

776 777 778
            # prepare input variable
            inputs = self.append_input_output_for_dygraph(op_proto, self.inputs,
                                                          True, False, block)
M
minqiyang 已提交
779
            # prepare output variable
780 781 782 783 784 785 786 787 788
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
789

M
minqiyang 已提交
790 791 792 793
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
794
                attrs=attrs_outputs if hasattr(self, "attrs") else None)
M
minqiyang 已提交
795
            return outputs
796

797 798 799 800 801 802
    def _calc_output(self,
                     place,
                     parallel=False,
                     no_check_set=None,
                     loss=None,
                     enable_inplace=None,
803
                     for_inplace_test=None):
804 805
        program = Program()
        block = program.global_block()
806
        op = self._append_ops(block)
807 808 809 810 811

        inputs = self._get_inputs(block)
        outputs = self._get_outputs(block)
        feed_map = self.feed_var(inputs, place)

812
        if for_inplace_test:
C
cc 已提交
813 814
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
815 816
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
817 818
            for out_name in op.output_arg_names:
                var = block.var(out_name)
819 820
                if 0 in var.shape:
                    var.persistable = True
821
        original_program = program
822 823
        if parallel:
            use_cuda = False
824
            if isinstance(place, fluid.CUDAPlace):
825
                use_cuda = True
826 827 828
            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                loss_name=loss.name if loss else None, places=place)
            program = compiled_prog
829 830 831 832
        fetch_list = getattr(self, "fetch_list", [])
        # if the fetch_list is customized by user, we use it directly.
        # if not, fill the fetch_list by the user configured outputs in test.
        if len(fetch_list) == 0:
M
minqiyang 已提交
833
            for var_name, var in six.iteritems(outputs):
834 835
                if no_check_set is not None and var_name in no_check_set:
                    continue
Y
Yang Yang(Tony) 已提交
836 837
                if isinstance(var, list):
                    for v in var:
838
                        fetch_list.append(v.name)
Y
Yang Yang(Tony) 已提交
839
                else:
840
                    fetch_list.append(var.name)
841 842 843 844
        # if the fetch_list still empty, fill the fetch_list by the operator output.
        if len(fetch_list) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                fetch_list.append(str(out_name))
845 846 847 848 849 850 851 852 853

        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace

            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                build_strategy=build_strategy, places=place)
            program = compiled_prog

854
        executor = Executor(place)
855 856 857 858
        outs = executor.run(program,
                            feed=feed_map,
                            fetch_list=fetch_list,
                            return_numpy=False)
859 860
        self.op = op
        self.program = original_program
861 862 863 864
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list
Y
Yang Yang(Tony) 已提交
865

866 867 868 869 870 871 872 873 874
    def _compare_expect_and_actual_outputs(self,
                                           place,
                                           fetch_list,
                                           expect_outs,
                                           actual_outs,
                                           inplace_atol=None):
        """Compare expect outs and actual outs of an tested op.

        Args:
C
cc 已提交
875
            place (CPUPlace | CUDAPlace): The place where the op runs.
876 877 878 879 880 881 882 883 884 885
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
C
cc 已提交
886
            # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
887 888 889
            # computational consistency.
            # When inplace_atol is not None, the inplace check uses numpy.allclose
            # to check inplace result instead of numpy.array_equal.
890 891
            expect_out = np.array(expect_outs[i])
            actual_out = np.array(actual_outs[i])
892 893 894
            if inplace_atol is not None:
                self.assertTrue(
                    np.allclose(
895
                        expect_out, actual_out, atol=inplace_atol),
896 897
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
898 899
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__)
900 901
            else:
                self.assertTrue(
902
                    np.array_equal(expect_out, actual_out),
903 904
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
905 906
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__ + '\n')
907 908 909 910 911 912 913 914

    def _construct_grad_program_from_forward(self, fwd_program, grad_op_desc,
                                             op_grad_to_var):
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
915
            op_grad_to_var (dict): The relation of variables in grad op and its forward op.
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
        for arg in grad_op_desc.input_arg_names(
        ) + grad_op_desc.output_arg_names():
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
                fwd_var_name)
            grad_var = grad_block.create_var(
                name=arg,
                dtype=fwd_var.dtype,
                shape=fwd_var.shape,
                type=fwd_var.type,
                persistable=False)

C
cc 已提交
942 943
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

    def _construct_grad_feed_map_from_forward(self, place, fwd_res,
                                              grad_op_desc, op_grad_to_var):
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
959
            place (CPUPlace | CUDAPlace): The place where the op runs.
960 961 962
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
963
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op.
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)
        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
C
cc 已提交
995

996
        Args:
C
cc 已提交
997 998
            op_desc (OpDesc): The op_desc of current op.
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op.
999
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
C
cc 已提交
1000

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
C
cc 已提交
1015
                # get grad_op_desc
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                    op_desc, set(), [])
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
                        if grad_op_desc.type(
                        ) not in visited_ops and _dfs_grad_op(
                                grad_op_desc, fwd_op_desc=op_desc):
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

    def _check_forward_inplace(self,
                               place,
                               no_check_set=None,
                               inplace_atol=None):
1039
        """Check the inplace correctness of given op (self.op_type).
1040
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
C
cc 已提交
1041

1042
        Args:
C
cc 已提交
1043
            place (CPUPlace | CUDAPlace): The place where the op runs.
1044 1045 1046 1047
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1048 1049
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1050 1051
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
        expect_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=False,
            for_inplace_test=True)
        actual_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=True,
            for_inplace_test=True)
1062
        # compare expect_outs and actual_outs
1063 1064 1065 1066 1067 1068
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
        return expect_res

    def _calc_grad_output(self,
                          place,
                          fwd_res,
                          grad_op_desc,
                          enable_inplace=None):
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
1082
            place (CPUPlace | CUDAPlace): The place where the op runs.
1083 1084 1085 1086 1087 1088 1089 1090 1091
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
1092
        grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(fwd_op_desc,
1093
                                                                  set(), [])
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
        grad_program = self._construct_grad_program_from_forward(
            fwd_program, grad_op_desc, op_grad_to_var)
        grad_feed_map = self._construct_grad_feed_map_from_forward(
            place, fwd_res, grad_op_desc, op_grad_to_var)
        grad_fetch_list = grad_op_desc.output_arg_names()
        exe = Executor(place)
        program = grad_program
        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace
            compiled_program = fluid.CompiledProgram(
                grad_program).with_data_parallel(
                    loss_name="", build_strategy=build_strategy, places=place)
            program = compiled_program
        outs = exe.run(program,
                       feed=grad_feed_map,
                       fetch_list=grad_fetch_list,
                       return_numpy=False)
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

    def _check_grad_inplace(self,
                            place,
                            fwd_res,
                            grad_op_desc,
                            inplace_atol=None):
1119
        """Check the inplace correctness of given grad_op_desc.
1120 1121 1122 1123 1124 1125

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
C
cc 已提交
1126
            place (CPUPlace | CUDAPlace): The place where the op runs.
1127 1128 1129 1130 1131 1132
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1133 1134
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
        """
        expect_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=False)
        actual_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=True)
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
        return expect_res
1147

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
    def check_inplace_output_with_place(self,
                                        place,
                                        no_check_set=None,
                                        inplace_atol=None):
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
C
cc 已提交
1158
            place (CPUPlace | CUDAPlace): The place where the op runs.
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)

        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True)
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
1174 1175
        if hasattr(self, 'attrs') and bool(self.attrs.get('use_xpu', False)):
            return
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
                        inplace_atol=inplace_atol)
                else:
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True)
            else:
1189 1190
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn
                # skip op that use_mkldnn currently
1191
                flags_use_mkldnn = fluid.core.globals()["FLAGS_use_mkldnn"]
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
                attrs_use_mkldnn = hasattr(
                    self,
                    'attrs') and bool(self.attrs.get('use_mkldnn', False))
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
                        place, fwd_res, op_desc, inplace_atol=inplace_atol)
1204
                else:
1205 1206
                    res[op_desc] = self._calc_grad_output(place, fwd_res,
                                                          op_desc)
1207

1208 1209
    def check_output_with_place(self,
                                place,
1210
                                atol=0,
1211
                                no_check_set=None,
M
minqiyang 已提交
1212
                                equal_nan=False,
1213
                                check_dygraph=True,
1214 1215
                                inplace_atol=None,
                                check_eager=False):
1216 1217 1218 1219 1220
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST:
            atol = 0

1221
        if self.is_bfloat16_op():
Y
Yiqun Liu 已提交
1222 1223
            if self.is_mkldnn_op():
                check_dygraph = False
1224
                check_eager = False
Y
Yiqun Liu 已提交
1225 1226 1227 1228 1229
                if hasattr(self, 'force_fp32_output') and getattr(
                        self, 'force_fp32_output'):
                    atol = 1e-2
                else:
                    atol = 2
1230
            else:
1231
                atol = 1e-1
1232

1233 1234 1235 1236
        if no_check_set is not None:
            if self.op_type not in no_check_set_white_list.no_check_set_white_list:
                raise AssertionError(
                    "no_check_set of op %s must be set to None." % self.op_type)
1237

L
lujun 已提交
1238 1239
        if check_dygraph:
            dygraph_outs = self._calc_dygraph_output(
M
minqiyang 已提交
1240
                place, no_check_set=no_check_set)
1241 1242 1243 1244 1245 1246

            if hasattr(self, "python_api"):
                api_outs = self._calc_python_api_output(place)
                self._check_api_outs_by_dygraph_outs(api_outs, dygraph_outs,
                                                     place)

1247 1248 1249 1250
        if check_eager:
            with _test_eager_guard():
                eager_dygraph_outs = self._calc_dygraph_output(
                    place, no_check_set=no_check_set)
1251
        outs, fetch_list = self._calc_output(place, no_check_set=no_check_set)
1252

Y
Yang Yang(Tony) 已提交
1253
        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
1254 1255
            if out_name not in self.outputs:
                continue
1256 1257
            if no_check_set is not None and out_name in no_check_set:
                continue
1258

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
            def find_imperative_actual(target_name, dygraph_outs, place):
                with fluid.dygraph.base.guard(place=place):
                    for name in dygraph_outs:
                        if name == target_name:
                            return dygraph_outs[name][0]
                        var_list = dygraph_outs[name]
                        for i, var in enumerate(var_list):
                            if var.name == target_name:
                                return dygraph_outs[name][i]
                    self.assertTrue(False, "Found failed {} {}".format(
                        dygraph_outs.keys(), target_name))

Y
Yang Yang(Tony) 已提交
1271 1272
            def find_actual(target_name, fetch_list):
                found = [
1273 1274
                    i for i, var_name in enumerate(fetch_list)
                    if var_name == target_name
Y
Yang Yang(Tony) 已提交
1275 1276 1277 1278 1279 1280
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

1281 1282
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
1283 1284 1285
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
1286 1287
                for item in sub_out:
                    sub_out_name, expect = item[0], item[1]
L
lujun 已提交
1288
                    if check_dygraph:
1289 1290
                        imperative_actual = find_imperative_actual(
                            sub_out_name, dygraph_outs, place)
1291 1292
                        imperative_actual_t = np.array(imperative_actual.value()
                                                       .get_tensor())
1293 1294 1295 1296 1297 1298 1299
                    if check_eager:
                        with _test_eager_guard():
                            eager_imperative_actual = find_imperative_actual(
                                sub_out_name, eager_dygraph_outs, place)
                            eager_imperative_actual_t = eager_imperative_actual.numpy(
                            )

Y
Yang Yang(Tony) 已提交
1300
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
1301 1302
                    actual = outs[idx]
                    actual_t = np.array(actual)
1303 1304
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
1305 1306
                    self.assertTrue(
                        np.allclose(
1307
                            actual_t, expect_t, atol=atol, equal_nan=equal_nan),
Y
Yang Yang(Tony) 已提交
1308 1309
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
L
lujun 已提交
1310
                    if check_dygraph:
M
minqiyang 已提交
1311 1312 1313 1314 1315 1316 1317
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + sub_out_name + ") has diff at " +
L
lujun 已提交
1318
                            str(place) + " in dygraph mode")
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
                    if check_eager:
                        with _test_eager_guard():
                            self.assertTrue(
                                np.allclose(
                                    eager_imperative_actual_t,
                                    expect_t,
                                    atol=atol,
                                    equal_nan=equal_nan),
                                "Output (" + sub_out_name + ") has diff at " +
                                str(place) + " in eager dygraph mode")
1329 1330
                    if isinstance(expect, tuple):
                        self.assertListEqual(
1331 1332
                            actual.recursive_sequence_lengths(), expect[1],
                            "Output (" + sub_out_name +
Q
QI JUN 已提交
1333
                            ") has different lod at " + str(place))
1334 1335
                        if check_dygraph:
                            self.assertListEqual(
1336
                                imperative_actual.value().get_tensor()
1337 1338 1339 1340
                                .recursive_sequence_lengths(), expect[1],
                                "Output (" + out_name +
                                ") has different lod at " + str(place) +
                                " in dygraph mode")
1341 1342 1343 1344 1345 1346 1347 1348
                        if check_eager:
                            with _test_eager_guard():
                                self.assertListEqual(
                                    eager_imperative_actual.value().get_tensor()
                                    .recursive_sequence_lengths(), expect[1],
                                    "Output (" + out_name +
                                    ") has different lod at " + str(place) +
                                    " in eager dygraph mode")
1349
            else:
L
lujun 已提交
1350
                if check_dygraph:
1351 1352
                    imperative_actual = find_imperative_actual(
                        out_name, dygraph_outs, place)
1353 1354
                    imperative_actual_t = np.array(imperative_actual.value()
                                                   .get_tensor())
1355 1356 1357 1358 1359 1360 1361
                if check_eager:
                    with _test_eager_guard():
                        eager_imperative_actual = find_imperative_actual(
                            out_name, eager_dygraph_outs, place)
                        eager_imperative_actual_t = eager_imperative_actual.numpy(
                        )

Y
Yang Yang(Tony) 已提交
1362
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
1363 1364
                actual = outs[idx]
                actual_t = np.array(actual)
1365

1366
                expect = self.outputs[out_name]
1367
                expect_t = expect[0] if isinstance(expect, tuple) else expect
1368

Y
Yiqun Liu 已提交
1369
                # np.uint16 represents bfloat16
1370 1371 1372
                if actual_t.dtype == np.uint16 and expect_t.dtype in [
                        np.float32, np.float64
                ]:
1373
                    actual_t = convert_uint16_to_float(actual_t)
W
wuhuanzhou 已提交
1374 1375 1376
                    rtol = 1.e-2
                else:
                    rtol = 1.e-5
1377

1378 1379 1380 1381
                if expect_t.dtype == np.uint16 and actual_t.dtype == np.uint16:
                    expect_t = convert_uint16_to_float(expect_t)
                    actual_t = convert_uint16_to_float(actual_t)
                    atol = max(atol, 0.03)
Y
Yiqun Liu 已提交
1382

1383 1384 1385 1386 1387
                # NOTE(zhiqiu): np.allclose([], [1.]) returns True
                # see details: https://stackoverflow.com/questions/38331703/why-does-numpys-broadcasting-sometimes-allow-comparing-arrays-of-different-leng
                if expect_t.size == 0:
                    self.assertTrue(actual_t.size == 0)

1388 1389
                self.assertTrue(
                    np.allclose(
W
wuhuanzhou 已提交
1390 1391 1392
                        actual_t,
                        expect_t,
                        atol=atol,
Y
Yiqun Liu 已提交
1393
                        rtol=rtol,
W
wuhuanzhou 已提交
1394
                        equal_nan=equal_nan),
E
emailweixu 已提交
1395
                    "Output (" + out_name + ") has diff at " + str(place) +
D
dzhwinter 已提交
1396
                    "\nExpect " + str(expect_t) + "\n" + "But Got" +
1397
                    str(actual_t) + " in class " + self.__class__.__name__)
L
lujun 已提交
1398
                if check_dygraph:
Y
Yiqun Liu 已提交
1399 1400 1401 1402 1403 1404
                    if self.is_bfloat16_op():
                        if imperative_actual_t.dtype == np.uint16:
                            imperative_actual_t = convert_uint16_to_float(
                                imperative_actual_t)
                        if expect_t.dtype == np.uint16:
                            expect_t = convert_uint16_to_float(expect_t)
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
                    if six.moves.reduce(
                            lambda x, y: x * y, imperative_actual_t.shape,
                            1) == 0 and six.moves.reduce(
                                lambda x, y: x * y, expect_t.shape, 1) == 0:
                        pass
                    else:
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
Y
Yiqun Liu 已提交
1416
                                rtol=rtol,
1417 1418 1419 1420 1421
                                equal_nan=equal_nan),
                            "Output (" + out_name + ") has diff at " +
                            str(place) + "\nExpect " + str(expect_t) + "\n" +
                            "But Got" + str(imperative_actual_t) + " in class "
                            + self.__class__.__name__)
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
                if check_eager:
                    with _test_eager_guard():
                        if self.is_bfloat16_op():
                            if eager_imperative_actual_t.dtype == np.uint16:
                                eager_imperative_actual_t = convert_uint16_to_float(
                                    eager_imperative_actual_t)
                            if expect_t.dtype == np.uint16:
                                expect_t = convert_uint16_to_float(expect_t)
                        if six.moves.reduce(lambda x, y: x * y,
                                            eager_imperative_actual_t.shape,
                                            1) == 0 and six.moves.reduce(
                                                lambda x, y: x * y,
                                                expect_t.shape, 1) == 0:
                            pass
                        else:
                            self.assertTrue(
                                np.allclose(
                                    eager_imperative_actual_t,
                                    expect_t,
                                    atol=atol,
                                    rtol=rtol,
                                    equal_nan=equal_nan),
                                "Output (" + out_name + ") has diff at " +
                                str(place) + "\nExpect " + str(expect_t) + "\n"
                                + "But Got" + str(eager_imperative_actual_t) +
                                " in class " + self.__class__.__name__)
1448
                if isinstance(expect, tuple):
1449 1450
                    self.assertListEqual(actual.recursive_sequence_lengths(),
                                         expect[1], "Output (" + out_name +
1451
                                         ") has different lod at " + str(place))
L
lujun 已提交
1452
                    if check_dygraph:
M
minqiyang 已提交
1453
                        self.assertListEqual(
1454
                            imperative_actual.value().get_tensor()
M
minqiyang 已提交
1455 1456
                            .recursive_sequence_lengths(), expect[1],
                            "Output (" + out_name + ") has different lod at " +
1457 1458 1459 1460 1461 1462 1463 1464 1465
                            str(place) + " in eager dygraph mode")
                    if check_eager:
                        with _test_eager_guard():
                            self.assertListEqual(
                                eager_imperative_actual.value().get_tensor()
                                .recursive_sequence_lengths(), expect[1],
                                "Output (" + out_name +
                                ") has different lod at " + str(place) +
                                " in eager dygraph mode")
1466

C
cc 已提交
1467
        # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
1468 1469
        # computational consistency.
        # For example, group_norm uses AtomicAdd on CUDAPlace, which do not ensure
C
cc 已提交
1470
        # computation order when multiple threads write the same address. So the
L
Leo Chen 已提交
1471 1472 1473
        # result of group_norm is non-deterministic when datatype is float.
        # When inplace_atol is not None, the inplace check uses numpy.allclose
        # to check inplace result instead of numpy.array_equal.
1474 1475
        if inplace_atol is not None:
            warnings.warn(
L
Leo Chen 已提交
1476 1477
                "inplace_atol should only be set when op doesn't ensure computational consistency, please check it!"
            )
1478
        # Check inplace for given op, its grad op, its grad_grad op, etc.
C
cc 已提交
1479
        # No effect on original OpTest
1480
        # Currently not support ParallelExecutor on XPUPlace.
1481
        if not paddle.is_compiled_with_xpu(
1482 1483
        ) and not paddle.is_compiled_with_npu(
        ) and not paddle.is_compiled_with_mlu():
1484 1485
            self.check_inplace_output_with_place(
                place, no_check_set=no_check_set, inplace_atol=inplace_atol)
1486

1487 1488 1489
        if check_eager:
            return outs, dygraph_outs, eager_dygraph_outs, fetch_list
        elif check_dygraph:
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
            return outs, dygraph_outs, fetch_list
        else:
            return outs, fetch_list

    def check_compile_vs_runtime(self, fetch_list, fetch_outs):
        def find_fetch_index(target_name, fetch_list):
            found = [
                i for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            if len(found) == 0:
                return -1
            else:
                self.assertTrue(
                    len(found) == 1,
                    "Found {} {}".format(len(found), target_name))
                return found[0]

        for name in self.op.desc.output_names():
            var_names = self.op.desc.output(name)
            for var_name in var_names:
                i = find_fetch_index(var_name, fetch_list)
                if i == -1:
                    # The output is dispensiable or intermediate.
                    break
                out = fetch_outs[i]
                if isinstance(out, core.LoDTensor):
                    lod_level_runtime = len(out.lod())
                else:
                    if isinstance(out, core.LoDTensorArray):
                        warnings.warn(
                            "The check of LoDTensorArray's lod_level is not implemented now!"
                        )
                    lod_level_runtime = 0

                var = self.program.global_block().var(var_name)
                if var.type == core.VarDesc.VarType.LOD_TENSOR:
                    lod_level_compile = var.lod_level
                else:
                    lod_level_compile = 0
                self.assertEqual(
                    lod_level_compile, lod_level_runtime,
                    "The lod_level of Output (" + name +
                    ") is different between compile-time and runtime (" +
                    str(lod_level_compile) + " vs " + str(lod_level_runtime) +
                    ")")

1537
    def _get_places(self):
D
dzhwinter 已提交
1538 1539 1540 1541 1542 1543
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
                    self.op_type):
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
W
Wu Yi 已提交
1544 1545
                else:
                    return []
D
dzhwinter 已提交
1546 1547
            else:
                return []
1548
        places = [fluid.CPUPlace()]
1549 1550 1551
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
        if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type)\
           and not cpu_only:
D
dzhwinter 已提交
1552
            places.append(core.CUDAPlace(0))
1553 1554
        return places

M
minqiyang 已提交
1555 1556 1557 1558
    def check_output(self,
                     atol=1e-5,
                     no_check_set=None,
                     equal_nan=False,
1559
                     check_dygraph=True,
1560 1561
                     inplace_atol=None,
                     check_eager=False):
1562
        self.__class__.op_type = self.op_type
Y
Yiqun Liu 已提交
1563
        if self.is_mkldnn_op():
1564
            self.__class__.use_mkldnn = True
C
cc 已提交
1565

Y
Yiqun Liu 已提交
1566
        if self.is_xpu_op():
1567 1568
            self.__class__.use_xpu = True

1569
        places = self._get_places()
Q
qijun 已提交
1570
        for place in places:
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
            res = self.check_output_with_place(
                place,
                atol,
                no_check_set,
                equal_nan,
                check_dygraph,
                inplace_atol,
                check_eager=check_eager)
            if check_eager:
                assert check_dygraph == True
                outs, dygraph_outs, eager_dygraph_outs, fetch_list = res
            elif check_dygraph:
1583 1584 1585
                outs, dygraph_outs, fetch_list = res
            else:
                outs, fetch_list = res
1586
            if self.op_type not in compile_vs_runtime_white_list.COMPILE_RUN_OP_WHITE_LIST:
1587
                self.check_compile_vs_runtime(fetch_list, outs)
Q
qijun 已提交
1588

P
pangyoki 已提交
1589
    def check_output_customized(self, checker, custom_place=None):
1590
        places = self._get_places()
P
pangyoki 已提交
1591 1592
        if custom_place:
            places.append(custom_place)
1593 1594 1595
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
1596
            outs.sort(key=len)
1597 1598
            checker(outs)

1599 1600 1601 1602 1603 1604
    def check_output_with_place_customized(self, checker, place):
        outs = self.calc_output(place)
        outs = [np.array(out) for out in outs]
        outs.sort(key=len)
        checker(outs)

D
Dun 已提交
1605 1606
    def _assert_is_close(self, numeric_grads, analytic_grads, names,
                         max_relative_error, msg_prefix):
M
minqiyang 已提交
1607
        for a, b, name in six.moves.zip(numeric_grads, analytic_grads, names):
1608 1609 1610 1611 1612 1613
            # It asserts np.abs(a - b) / np.abs(a) < max_relative_error, in which
            # max_relative_error is 1e-7. According to the value of np.abs(a), we
            # change np.abs(a) to achieve dynamic threshold. For example, if
            # the value of np.abs(a) is between 1e-10 and 1e-8, we set np.abs(a)*=1e4.
            # Therefore, it asserts np.abs(a - b) / (np.abs(a)*1e4) < max_relative_error,
            # which is the same as np.abs(a - b) / np.abs(a) < max_relative_error*1e4.
1614
            abs_a = np.abs(a)
1615 1616 1617 1618 1619
            if self.dtype == np.float64 and \
                self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
                abs_a[abs_a < 1e-10] = 1e-3
                abs_a[np.logical_and(abs_a > 1e-10, abs_a <= 1e-8)] *= 1e4
                abs_a[np.logical_and(abs_a > 1e-8, abs_a <= 1e-6)] *= 1e2
1620 1621
            elif self.is_bfloat16_op():
                abs_a[abs_a < 1e-2] = 1
1622 1623
            else:
                abs_a[abs_a < 1e-3] = 1
1624 1625 1626 1627 1628 1629

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
1630 1631 1632
                return ("Operator %s error, %s variable %s (shape: %s, dtype: %s) max gradient diff %e over limit %e, "
                    "the first error element is %d, expected %e, but got %e.") \
                    % (self.op_type, msg_prefix, name, str(a.shape), self.dtype, max_diff, max_relative_error,
1633
                    offset, a.flatten()[offset], b.flatten()[offset])
1634 1635 1636

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

1637 1638 1639 1640 1641 1642 1643
    def _check_grad_helper(self):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        self.__class__.op_type = self.op_type
        self.__class__.exist_check_grad = True
        if self.dtype == np.float64:
            self.__class__.exist_fp64_check_grad = True

1644 1645
    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
1646
                   output_names,
1647
                   no_grad_set=None,
1648
                   numeric_grad_delta=0.005,
1649
                   in_place=False,
Q
Qiao Longfei 已提交
1650
                   max_relative_error=0.005,
1651
                   user_defined_grads=None,
1652
                   user_defined_grad_outputs=None,
1653 1654
                   check_dygraph=True,
                   check_eager=False):
1655
        self._check_grad_helper()
1656
        places = self._get_places()
1657
        for place in places:
1658
            self.check_grad_with_place(
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
                place,
                inputs_to_check,
                output_names,
                no_grad_set,
                numeric_grad_delta,
                in_place,
                max_relative_error,
                user_defined_grads,
                user_defined_grad_outputs,
                check_dygraph,
                check_eager=check_eager)
1670 1671 1672 1673 1674 1675 1676 1677 1678

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
1679
                              user_defined_grads=None,
1680
                              user_defined_grad_outputs=None,
1681
                              check_dygraph=True,
1682 1683
                              numeric_place=None,
                              check_eager=False):
1684
        self.scope = core.Scope()
Q
qijun 已提交
1685
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
1686
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
1687
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
P
phlrain 已提交
1688

Y
Yiqun Liu 已提交
1689 1690
        self._check_grad_helper()
        if self.is_bfloat16_op() and self.is_mkldnn_op():
1691
            check_dygraph = False
1692
            check_eager = False
1693

1694 1695 1696 1697
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7
1698

P
phlrain 已提交
1699 1700 1701
        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
1702 1703 1704 1705 1706 1707 1708

        # oneDNN numeric gradient should use CPU kernel
        use_onednn = False
        if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"] == True:
            op_attrs["use_mkldnn"] = False
            use_onednn = True

P
phlrain 已提交
1709 1710 1711 1712 1713 1714 1715
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list)
Y
Yu Yang 已提交
1716

1717 1718 1719
        if use_onednn:
            op_attrs["use_mkldnn"] = True

1720 1721
        if no_grad_set is None:
            no_grad_set = set()
1722 1723
        else:
            if (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST
1724 1725 1726
                ) and (
                    self.op_type not in no_grad_set_white_list.NOT_CHECK_OP_LIST
                ) and (not self.is_bfloat16_op()):
1727 1728
                raise AssertionError("no_grad_set must be None, op_type is " +
                                     self.op_type + " Op.")
1729

1730 1731 1732 1733 1734 1735 1736 1737
        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)
            tensor_to_check = self.scope.find_var(input_to_check).get_tensor()
            tensor_size = six.moves.reduce(lambda a, b: a * b,
                                           tensor_to_check.shape(), 1)
            if tensor_size < 100:
                self.__class__.input_shape_is_large = False

Y
Yancey 已提交
1738 1739 1740
        if not type(output_names) is list:
            output_names = [output_names]

1741 1742 1743
        if numeric_place is None:
            numeric_place = place

Q
Qiao Longfei 已提交
1744
        numeric_grads = user_defined_grads or [
1745
            get_numeric_gradient(
1746
                numeric_place,
1747 1748 1749 1750
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
1751
                output_names,
1752
                delta=numeric_grad_delta,
C
chengduo 已提交
1753
                in_place=in_place) for input_to_check in inputs_to_check
1754
        ]
1755
        analytic_grads = self._get_gradient(inputs_to_check, place,
1756 1757
                                            output_names, no_grad_set,
                                            user_defined_grad_outputs)
1758 1759
        # comparison of bf16 results will happen as fp32
        # loop over list of grads and convert bf16 to fp32
1760
        fp32_analytic_grads = []
1761 1762 1763
        for grad in analytic_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
1764
                max_relative_error = 0.04 if max_relative_error < 0.04 else max_relative_error
1765 1766 1767 1768 1769 1770 1771
            fp32_analytic_grads.append(grad)
        analytic_grads = fp32_analytic_grads

        fp32_numeric_grads = []
        for grad in numeric_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
1772
                max_relative_error = 0.04 if max_relative_error < 0.04 else max_relative_error
1773 1774
            fp32_numeric_grads.append(grad)
        numeric_grads = fp32_numeric_grads
1775

D
Dun 已提交
1776 1777 1778
        self._assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                              max_relative_error,
                              "Gradient Check On %s" % str(place))
Q
qijun 已提交
1779

1780
        if check_dygraph:
1781 1782 1783
            dygraph_grad = self._get_dygraph_grad(
                inputs_to_check, place, output_names, user_defined_grad_outputs,
                no_grad_set)
1784 1785 1786 1787
            fp32_grads = []
            for grad in dygraph_grad:
                if grad.dtype == np.uint16:
                    grad = convert_uint16_to_float(grad)
1788
                    max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
1789 1790
                fp32_grads.append(grad)
            dygraph_grad = fp32_grads
1791 1792 1793 1794
            self._assert_is_close(numeric_grads, dygraph_grad, inputs_to_check,
                                  max_relative_error,
                                  "Gradient Check On %s" % str(place))

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
        if check_eager:
            with _test_eager_guard():
                eager_dygraph_grad = self._get_dygraph_grad(
                    inputs_to_check, place, output_names,
                    user_defined_grad_outputs, no_grad_set)
                fp32_grads = []
                for grad in eager_dygraph_grad:
                    if grad.dtype == np.uint16:
                        grad = convert_uint16_to_float(grad)
                        max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
                    fp32_grads.append(grad)
                eager_dygraph_grad = fp32_grads
                self._assert_is_close(numeric_grads, eager_dygraph_grad,
                                      inputs_to_check, max_relative_error,
                                      "Gradient Check On %s" % str(place))

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
    def _find_var_in_dygraph(self, output_vars, name):
        if name in output_vars:
            return output_vars[name]
        else:
            for output_vars_index in output_vars:
                for output_vars_selected in output_vars[output_vars_index]:
                    if output_vars_selected.name == name:
                        return output_vars_selected

    def _get_dygraph_grad(self,
                          inputs_to_check,
                          place,
                          output_names,
1824
                          user_defined_grad_outputs=None,
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
                          no_grad_set=None):
        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
                op_proto, self.inputs, True, True, block)

            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
1845

1846 1847 1848 1849 1850 1851
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs_outputs if hasattr(self, "attrs") else None)

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
            if self.dtype == np.uint16:
                cast_inputs = self._find_var_in_dygraph(outputs,
                                                        output_names[0])
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape)
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32
                    })
                outputs = {output_names[0]: cast_outputs}

1867 1868 1869 1870 1871
            outputs_valid = {}
            for output_name in output_names:
                outputs_valid[output_name] = self._find_var_in_dygraph(
                    outputs, output_name)

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
            if user_defined_grad_outputs is None:
                if len(outputs_valid) == 1:
                    loss = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
                    for outputs_valid_key in outputs_valid:
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[outputs_valid_key]},
                            outputs={"Out": [loss]},
                            attrs=None)
                else:
                    avg_sum = []
                    for cur_loss in outputs_valid:
                        cur_avg_loss = block.create_var(
                            dtype=self.dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
                            stop_gradient=False)
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[cur_loss]},
                            outputs={"Out": [cur_avg_loss]},
                            attrs=None)
                        avg_sum.append(cur_avg_loss)
                    loss_sum = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
1906
                    block.append_op(
1907 1908 1909
                        type='sum',
                        inputs={"X": avg_sum},
                        outputs={"Out": loss_sum},
1910
                        attrs=None)
1911
                    loss = block.create_var(
1912 1913 1914
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
1915 1916
                        stop_gradient=False,
                        shape=[1])
1917
                    block.append_op(
1918 1919 1920 1921
                        type='scale',
                        inputs={"X": loss_sum},
                        outputs={"Out": loss},
                        attrs={'scale': 1.0 / float(len(avg_sum))})
1922

1923
                loss.backward()
1924

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
                fetch_list_grad = []
                for inputs_to_check_name in inputs_to_check:
                    a = inputs_grad_dict[inputs_to_check_name].gradient()
                    fetch_list_grad.append(a)
                return fetch_list_grad
            else:
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                grad_outputs = []
                for grad_out_value in user_defined_grad_outputs:
                    grad_outputs.append(paddle.to_tensor(grad_out_value))
C
chentianyu03 已提交
1937 1938 1939 1940
                # delete the inputs which no need to calculate grad
                for no_grad_val in no_grad_set:
                    del (inputs[no_grad_val])

1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
                if _in_eager_mode():
                    core.eager.run_backward(
                        fluid.layers.utils.flatten(outputs), grad_outputs,
                        False)
                    grad_inputs = []
                    for inputs_list in inputs.values():
                        for inp in inputs_list:
                            grad_inputs.append(inp.grad.numpy())
                    return grad_inputs
                else:
                    grad_inputs = paddle.grad(
                        outputs=fluid.layers.utils.flatten(outputs),
                        inputs=fluid.layers.utils.flatten(inputs),
                        grad_outputs=grad_outputs)
                    return [grad.numpy() for grad in grad_inputs]
1956

Y
Yu Yang 已提交
1957 1958 1959 1960 1961
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
1962
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
1963 1964
        return tensor

K
Kexin Zhao 已提交
1965
    @staticmethod
K
Kexin Zhao 已提交
1966 1967
    def np_dtype_to_fluid_dtype(input):
        return input
K
Kexin Zhao 已提交
1968

D
dzhwinter 已提交
1969 1970 1971 1972 1973 1974 1975 1976
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

1977 1978 1979 1980 1981
    def _get_gradient(self,
                      input_to_check,
                      place,
                      output_names,
                      no_grad_set,
1982
                      user_defined_grad_outputs=None,
1983
                      parallel=False):
Y
Yu Yang 已提交
1984
        prog = Program()
1985
        scope = core.Scope()
Y
Yu Yang 已提交
1986
        block = prog.global_block()
1987
        self._append_ops(block)
Y
Yu Yang 已提交
1988

1989
        inputs = self._get_inputs(block)
1990
        outputs = self._get_outputs(block)
1991
        feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
1992

1993
        if user_defined_grad_outputs is None:
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
            if self.dtype == np.uint16:
                cast_inputs = list(map(block.var, output_names))
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape)
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32
                    })
                cast_op.desc.infer_var_type(block.desc)
                cast_op.desc.infer_shape(block.desc)
                output_names = [cast_outputs.name]
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
            loss = append_loss_ops(block, output_names)
            param_grad_list = append_backward(
                loss=loss,
                parameter_list=input_to_check,
                no_grad_set=no_grad_set)
            fetch_list = [g for p, g in param_grad_list]
        else:
            assert parallel is False, "unsupported parallel mode when giving custom grad outputs."
            # user_defined_grad_outputs here are numpy arrays
            if not isinstance(user_defined_grad_outputs, list):
                user_defined_grad_outputs = [user_defined_grad_outputs]
            grad_outputs = []
            for grad_out_value in user_defined_grad_outputs:
                # `presistable` is used to avoid executor create new var in local scope
                var = block.create_var(
                    shape=grad_out_value.shape,
                    dtype=grad_out_value.dtype,
                    persistable=True)
                true_var = scope.var(var.name)
                tensor = true_var.get_tensor()
                tensor.set(grad_out_value, place)
                grad_outputs.append(var)
            targets = [
                outputs[name] for name in outputs if name in output_names
            ]
2034
            inputs = [inputs[name] for name in input_to_check if name in inputs]
2035 2036 2037 2038
            grad_inputs = paddle.static.gradients(targets, inputs, grad_outputs,
                                                  no_grad_set)
            fetch_list = grad_inputs

2039 2040
        if parallel:
            use_cuda = False
2041
            if isinstance(place, fluid.CUDAPlace):
2042
                use_cuda = True
2043 2044 2045 2046
            compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
                loss_name=loss.name, places=place)
            prog = compiled_prog
        executor = fluid.Executor(place)
2047 2048
        return list(
            map(np.array,
2049 2050 2051 2052 2053
                executor.run(prog,
                             feed_dict,
                             fetch_list,
                             scope=scope,
                             return_numpy=False)))
A
arlesniak 已提交
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066


class OpTestTool:
    @classmethod
    def skip_if(cls, condition: object, reason: str):
        return unittest.skipIf(condition, reason)

    @classmethod
    def skip_if_not_cpu_bf16(cls):
        return OpTestTool.skip_if(
            not (isinstance(_current_expected_place(), core.CPUPlace) and
                 core.supports_bfloat16()),
            "Place does not support BF16 evaluation")
2067 2068 2069 2070 2071 2072

    @classmethod
    def skip_if_not_cpu(cls):
        return OpTestTool.skip_if(
            not isinstance(_current_expected_place(), core.CPUPlace),
            "OneDNN supports only CPU for now")