“830e2b7e734a3545ce04505179575c71d9cb853f”上不存在“ernie-gen/eval/tasks/cnndm/cnndm_eval.sh”
op_test.py 106.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import functools
B
baojun 已提交
16
import os
17 18
import random
import struct
19
import sys
20
import unittest
21
import warnings
M
minqiyang 已提交
22
from collections import defaultdict
23
from copy import copy
24

25 26
import numpy as np

27
import paddle
28 29
import paddle.fluid as fluid
import paddle.fluid.core as core
30
from paddle.fluid import unique_name
31 32
from paddle.fluid.backward import append_backward
from paddle.fluid.executor import Executor
33 34 35 36
from paddle.fluid.framework import (
    OpProtoHolder,
    Program,
    _current_expected_place,
37 38 39 40
    _disable_legacy_dygraph,
    _enable_legacy_dygraph,
    _in_eager_without_dygraph_check,
    _test_eager_guard,
姜永久 已提交
41
    in_dygraph_mode,
42
)
43
from paddle.fluid.op import Operator
44 45

sys.path.append(os.path.abspath(os.path.dirname(__file__)))
46
from prim_op_test import OpTestUtils, PrimForwardChecker, PrimGradChecker
47
from testsuite import append_input_output, append_loss_ops, create_op, set_input
48
from white_list import (
49 50 51
    check_shape_white_list,
    compile_vs_runtime_white_list,
    no_check_set_white_list,
52
    no_grad_set_white_list,
53 54
    op_accuracy_white_list,
    op_threshold_white_list,
55
)
56

57 58
# For switch new eager mode globally
g_is_in_eager = _in_eager_without_dygraph_check()
59 60 61 62 63 64
g_enable_legacy_dygraph = (
    _enable_legacy_dygraph if g_is_in_eager else lambda: None
)
g_disable_legacy_dygraph = (
    _disable_legacy_dygraph if g_is_in_eager else lambda: None
)
65

66

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
def check_out_dtype(api_fn, in_specs, expect_dtypes, target_index=0, **configs):
    """
    Determines whether dtype of output tensor is as expected.

    Args:
        api_fn(callable):  paddle api function
        in_specs(list[tuple]): list of shape and dtype information for constructing input tensor of api_fn, such as [(shape, dtype), (shape, dtype)].
        expected_dtype(list[str]): expected dtype of output tensor.
        target_index(int): indicate which one from in_specs to infer the dtype of output.
        config(dict): other arguments of paddle api function

    Example:
        check_out_dtype(fluid.layers.pad_constant_like, [([2,3,2,3], 'float64'), ([1, 3, 1,3], )], ['float32', 'float64', 'int64'], target_index=1, pad_value=0.)

    """
    paddle.enable_static()
    for i, expect_dtype in enumerate(expect_dtypes):
        with paddle.static.program_guard(paddle.static.Program()):
            input_t = []
            for index, spec in enumerate(in_specs):
                if len(spec) == 1:
                    shape = spec[0]
                    dtype = expect_dtype if target_index == index else 'float32'
                elif len(spec) == 2:
                    shape, dtype = spec
                else:
                    raise ValueError(
94 95 96 97
                        "Value of in_specs[{}] should contains two elements: [shape, dtype]".format(
                            index
                        )
                    )
98
                input_t.append(
99 100 101 102
                    paddle.static.data(
                        name='data_%s' % index, shape=shape, dtype=dtype
                    )
                )
103 104 105 106 107 108 109

            out = api_fn(*input_t, **configs)
            out_dtype = fluid.data_feeder.convert_dtype(out.dtype)

            if out_dtype != expect_dtype:
                raise ValueError(
                    "Expected out.dtype is {}, but got {} from {}.".format(
110 111 112
                        expect_dtype, out_dtype, api_fn.__name__
                    )
                )
113 114


115 116 117 118 119 120 121 122
def _set_use_system_allocator(value=None):
    USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
    old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
    value = old_value if value is None else value
    core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
    return old_value


123
def randomize_probability(batch_size, class_num, dtype='float32'):
124 125 126
    prob = np.random.uniform(0.1, 1.0, size=(batch_size, class_num)).astype(
        dtype
    )
127
    prob_sum = prob.sum(axis=1)
128
    for i in range(len(prob)):
129 130 131 132
        prob[i] /= prob_sum[i]
    return prob


133 134 135 136 137 138 139 140 141 142
def get_numeric_gradient(
    place,
    scope,
    op,
    inputs,
    input_to_check,
    output_names,
    delta=0.005,
    in_place=False,
):
Y
Yu Yang 已提交
143
    # FIXME: change this method by compile time concepts
144
    set_input(scope, op, inputs, place)
145 146

    def product(dim):
147
        return functools.reduce(lambda a, b: a * b, dim, 1)
148 149

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
150 151
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
152
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
153
        tensor_to_check_dtype = np.float32
154
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
155
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
156 157 158 159
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
160 161
    elif tensor_to_check_dtype == core.VarDesc.VarType.BF16:
        tensor_to_check_dtype = np.float32
L
Lijunhui 已提交
162 163 164
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX64:
        tensor_to_check_dtype = np.complex64
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX128:
165
        tensor_to_check_dtype = np.complex128
166
    else:
167 168 169 170 171 172
        raise ValueError(
            "Not supported data type "
            + str(tensor_to_check_dtype)
            + ", tensor name : "
            + str(input_to_check)
        )
173

C
chengduo 已提交
174 175 176 177
    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
178
            output_numpy = np.array(scope.find_var(output_name).get_tensor())
Y
Yiqun Liu 已提交
179 180 181
            # numpy.dtype does not have bfloat16, thus we use numpy.uint16 to
            # store bfloat16 data, and need to be converted to float to check
            # the floating precision.
182 183 184
            if tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
                output_numpy = convert_uint16_to_float(output_numpy)
            sum.append(output_numpy.astype(tensor_to_check_dtype).mean())
C
chengduo 已提交
185 186
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

187
    gradient_flat = np.zeros(shape=(tensor_size,), dtype=tensor_to_check_dtype)
188 189

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
190 191 192 193
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
194 195 196
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            numpy_tensor = numpy_tensor.flatten()
197 198
            return struct.unpack(
                '<f',
199 200
                struct.pack('<I', np.uint32(numpy_tensor[i]) << np.uint32(16)),
            )[0]
D
dzhwinter 已提交
201
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
202
            return tensor._get_float_element(i)
203
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
204
            return tensor._get_double_element(i)
205
        else:
206 207 208
            raise TypeError(
                "Unsupported test data type %s." % tensor_to_check_dtype
            )
209 210

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
211 212 213 214 215
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
216
            numpy_tensor = numpy_tensor.reshape(shape)
D
dzhwinter 已提交
217
            tensor.set(numpy_tensor, place)
218 219 220 221 222 223 224
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = np.uint16(copy_bits_from_float_to_uint16(e))
            numpy_tensor = numpy_tensor.reshape(shape)
            tensor.set(numpy_tensor, place)
D
dzhwinter 已提交
225
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
226
            tensor._set_float_element(i, e)
227
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
228
            tensor._set_double_element(i, e)
229
        else:
230 231 232
            raise TypeError(
                "Unsupported test data type %s." % tensor_to_check_dtype
            )
233

234 235
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
236
    for i in range(tensor_size):
237
        if in_place:
238
            set_input(scope, op, inputs, place)
239 240

        # get one input element throw it's index i.
241
        origin = __get_elem__(tensor_to_check, i)
242 243
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
244
        __set_elem__(tensor_to_check, i, x_pos)
245 246 247
        y_pos = get_output()

        if in_place:
248
            set_input(scope, op, inputs, place)
249 250

        x_neg = origin - delta
251
        __set_elem__(tensor_to_check, i, x_neg)
252 253
        y_neg = get_output()

254
        __set_elem__(tensor_to_check, i, origin)
255 256
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
257
    return gradient_flat.reshape(tensor_to_check.shape())
258 259


260 261
def skip_check_grad_ci(reason=None):
    """Decorator to skip check_grad CI.
C
cc 已提交
262

263 264 265
    Check_grad is required for Op test cases. However, there are some special
    cases that do not need to do check_grad. This decorator is used to skip the
    check_grad of the above cases.
C
cc 已提交
266

267 268
    Note: the execution of unit test will not be skipped. It just avoids check_grad
    checking in tearDownClass method by setting a `no_need_check_grad` flag.
269

270 271 272
    Example:
        @skip_check_grad_ci(reason="For inference, check_grad is not required.")
        class TestInference(OpTest):
273 274 275 276 277 278 279 280 281 282 283
    """
    if not isinstance(reason, str):
        raise AssertionError("The reason for skipping check_grad is required.")

    def wrapper(cls):
        cls.no_need_check_grad = True
        return cls

    return wrapper


284 285 286
def skip_check_inplace_ci(reason=None):
    if not isinstance(reason, str):
        raise AssertionError(
287 288
            "The reason for skipping check_inplace is required."
        )
289 290 291 292 293 294 295 296

    def wrapper(cls):
        cls.no_need_check_inplace = True
        return cls

    return wrapper


297 298 299 300
def copy_bits_from_float_to_uint16(f):
    return struct.unpack('<I', struct.pack('<f', f))[0] >> 16


301 302 303 304
def convert_float_to_uint16(float_list, data_format="NCHW"):
    if data_format == "NHWC":
        float_list = np.transpose(float_list, [0, 3, 1, 2])

305 306 307
    new_output = []
    for x in np.nditer(float_list):
        new_output.append(np.uint16(copy_bits_from_float_to_uint16(x)))
308
    new_output = np.reshape(new_output, float_list.shape).view(np.uint16)
309

310 311 312
    if data_format == "NHWC":
        new_output = np.transpose(new_output, [0, 2, 3, 1])
    return new_output
313 314


315 316
def convert_uint16_to_float(in_list):
    in_list = np.asarray(in_list)
317 318 319 320 321 322
    out = np.vectorize(
        lambda x: struct.unpack(
            '<f', struct.pack('<I', np.uint32(x) << np.uint32(16))
        )[0],
        otypes=[np.float32],
    )(in_list.flat)
323
    return np.reshape(out, in_list.shape)
324 325


326
class OpTest(unittest.TestCase):
327 328 329 330 331
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
332
        cls.call_once = False
333
        cls.dtype = None
334
        cls.outputs = {}
335
        cls.input_shape_is_large = True
336
        cls.is_calc_ref = False
337
        cls.check_prim = False
338 339 340 341

        np.random.seed(123)
        random.seed(124)

342 343 344 345
        if paddle.is_compiled_with_npu():
            cls._use_system_allocator = _set_use_system_allocator(False)
        else:
            cls._use_system_allocator = _set_use_system_allocator(True)
346

347 348
    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
349
        """Restore random seeds"""
350 351 352
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

353 354
        _set_use_system_allocator(cls._use_system_allocator)

355 356 357 358
        def is_empty_grad_op(op_type):
            all_op_kernels = core._get_all_register_op_kernels()
            grad_op = op_type + '_grad'
            if grad_op in all_op_kernels.keys():
J
juncaipeng 已提交
359
                if is_mkldnn_op_test():
360 361 362 363 364 365 366 367
                    grad_op_kernels = all_op_kernels[grad_op]
                    for grad_op_kernel in grad_op_kernels:
                        if 'MKLDNN' in grad_op_kernel:
                            return False
                else:
                    return False
            return True

368
        def is_xpu_op_test():
369
            return hasattr(cls, "use_xpu") and cls.use_xpu
370

J
juncaipeng 已提交
371
        def is_mkldnn_op_test():
372
            return hasattr(cls, "use_mkldnn") and cls.use_mkldnn
J
juncaipeng 已提交
373

374 375 376
        def is_rocm_op_test():
            return core.is_compiled_with_rocm()

377
        def is_npu_op_test():
378
            return hasattr(cls, "use_npu") and cls.use_npu
379

380
        def is_mlu_op_test():
381
            return hasattr(cls, "use_mlu") and cls.use_mlu
382

383
        def is_custom_device_op_test():
384
            return hasattr(cls, "use_custom_device") and cls.use_custom_device
385

386 387
        if not hasattr(cls, "op_type"):
            raise AssertionError(
388
                "This test do not have op_type in class attrs, "
389 390
                "please set self.__class__.op_type=the_real_op_type manually."
            )
391

J
juncaipeng 已提交
392
        # case in NO_FP64_CHECK_GRAD_CASES and op in NO_FP64_CHECK_GRAD_OP_LIST should be fixed
393 394 395 396 397 398 399 400 401 402 403 404
        if not hasattr(cls, "no_need_check_grad") and not is_empty_grad_op(
            cls.op_type
        ):
            if cls.dtype is None or (
                cls.dtype == np.float16
                and cls.op_type
                not in op_accuracy_white_list.NO_FP16_CHECK_GRAD_OP_LIST
                and not hasattr(cls, "exist_check_grad")
            ):
                raise AssertionError(
                    "This test of %s op needs check_grad." % cls.op_type
                )
J
juncaipeng 已提交
405

406
            # check for op test with fp64 precision, but not check mkldnn op test for now
407 408 409 410 411 412 413 414 415 416 417
            if (
                cls.dtype in [np.float32, np.float64]
                and cls.op_type
                not in op_accuracy_white_list.NO_FP64_CHECK_GRAD_OP_LIST
                and not hasattr(cls, 'exist_fp64_check_grad')
                and not is_xpu_op_test()
                and not is_mkldnn_op_test()
                and not is_rocm_op_test()
                and not is_npu_op_test()
                and not is_mlu_op_test()
                and not is_custom_device_op_test()
418
                and not cls.check_prim
419
            ):
J
juncaipeng 已提交
420
                raise AssertionError(
421 422 423 424 425 426 427 428 429
                    "This test of %s op needs check_grad with fp64 precision."
                    % cls.op_type
                )

            if (
                not cls.input_shape_is_large
                and cls.op_type
                not in check_shape_white_list.NEED_TO_FIX_OP_LIST
            ):
430
                raise AssertionError(
431 432 433 434
                    "Input's shape should be large than or equal to 100 for "
                    + cls.op_type
                    + " Op."
                )
435

436 437 438 439 440
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

441
    def is_bfloat16_op(self):
Y
Yiqun Liu 已提交
442 443
        # self.dtype is the dtype of inputs, and is set in infer_dtype_from_inputs_outputs.
        # Make sure this function is called after calling infer_dtype_from_inputs_outputs.
444 445 446 447 448 449
        return (
            self.dtype == np.uint16
            or (
                hasattr(self, 'output_dtype') and self.output_dtype == np.uint16
            )
            or (
450
                hasattr(self, 'mkldnn_data_type')
451 452 453 454 455 456 457 458
                and getattr(self, 'mkldnn_data_type') == "bfloat16"
            )
            or (
                hasattr(self, 'attrs')
                and 'mkldnn_data_type' in self.attrs
                and self.attrs['mkldnn_data_type'] == 'bfloat16'
            )
        )
Y
Yiqun Liu 已提交
459

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
    def is_float16_op(self):
        # self.dtype is the dtype of inputs, and is set in infer_dtype_from_inputs_outputs.
        # Make sure this function is called after calling infer_dtype_from_inputs_outputs.
        return (
            self.dtype == np.float16
            or (
                hasattr(self, 'output_dtype')
                and self.output_dtype == np.float16
            )
            or (
                hasattr(self, 'mkldnn_data_type')
                and getattr(self, 'mkldnn_data_type') == "float16"
            )
            or (
                hasattr(self, 'attrs')
                and 'mkldnn_data_type' in self.attrs
                and self.attrs['mkldnn_data_type'] == 'float16'
            )
        )

Y
Yiqun Liu 已提交
480
    def is_mkldnn_op(self):
481
        return (hasattr(self, "use_mkldnn") and self.use_mkldnn) or (
482 483
            hasattr(self, "attrs")
            and "use_mkldnn" in self.attrs
484
            and self.attrs["use_mkldnn"]
485
        )
Y
Yiqun Liu 已提交
486 487

    def is_xpu_op(self):
488
        return (hasattr(self, "use_xpu") and self.use_xpu) or (
489 490
            hasattr(self, "attrs")
            and "use_xpu" in self.attrs
491
            and self.attrs["use_xpu"]
492
        )
493

494 495 496 497 498 499 500 501 502 503 504 505
    def is_fp16_compared_with_fp32(self):
        return self.is_float16_op() and (
            self.op_type
            not in op_accuracy_white_list.NO_FP16_COMPARED_WITH_FP32_OP_LIST
        )

    def enable_cal_ref_output(self):
        self.is_calc_ref = self.is_fp16_compared_with_fp32()

    def disable_cal_ref_output(self):
        self.is_calc_ref = False

506
    # set the self.output_dtype .
507
    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
J
juncaipeng 已提交
508 509 510 511
        def is_np_data(input):
            return isinstance(input, (np.ndarray, np.generic))

        def infer_dtype(numpy_dict, dtype_set):
512
            assert isinstance(
513 514
                numpy_dict, dict
            ), "self.inputs, self.outputs must be numpy_dict"
J
juncaipeng 已提交
515 516 517 518 519 520
            # the inputs are as follows:
            # case 1: inputs = {'X': x}
            # case 2: inputs = {'X': (x, x_lod)}
            # case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
            # case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
            # TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
521
            for _, var_value in numpy_dict.items():
J
juncaipeng 已提交
522 523 524 525 526 527 528
                if is_np_data(var_value):  # case 1
                    dtype_set.add(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):  # case 2, 3, 4
                    for sub_val_value in var_value:
                        if is_np_data(sub_val_value):  # case 2
                            dtype_set.add(sub_val_value.dtype)
                        elif len(sub_val_value) > 1 and is_np_data(
529 530
                            sub_val_value[1]
                        ):  # case 3
J
juncaipeng 已提交
531
                            dtype_set.add(sub_val_value[1].dtype)
532 533 534 535 536
                        elif (
                            len(sub_val_value) > 1
                            and isinstance(sub_val_value[1], (list, tuple))
                            and is_np_data(sub_val_value[1][0])
                        ):  # case 4
J
juncaipeng 已提交
537 538 539 540
                            dtype_set.add(sub_val_value[1][0].dtype)

        # infer dtype from inputs, and dtype means the precision of the test
        # collect dtype of all inputs
Y
Yiqun Liu 已提交
541 542
        input_dtype_set = set()
        infer_dtype(inputs, input_dtype_set)
J
juncaipeng 已提交
543
        dtype_list = [
544 545 546 547 548 549 550 551 552
            np.dtype(np.float64),
            np.dtype(np.float32),
            np.dtype(np.float16),
            np.dtype(np.int64),
            np.dtype(np.int32),
            np.dtype(np.uint16),
            np.dtype(np.int16),
            np.dtype(np.int8),
            np.dtype(np.uint8),
553
            np.dtype(np.bool_),
J
juncaipeng 已提交
554 555 556
        ]
        # check the dtype in dtype_list in order, select the first dtype that in dtype_set
        for dtype in dtype_list:
Y
Yiqun Liu 已提交
557
            if dtype in input_dtype_set:
J
juncaipeng 已提交
558 559
                self.dtype = dtype
                break
Y
Yiqun Liu 已提交
560
        # save input dtype in class attr
561
        self.__class__.dtype = self.dtype
562

Y
Yiqun Liu 已提交
563 564 565 566 567 568 569 570
        # infer dtype of outputs
        output_dtype_set = set()
        infer_dtype(outputs, output_dtype_set)
        for dtype in dtype_list:
            if dtype in output_dtype_set:
                self.output_dtype = dtype
                break

Y
Yang Yang(Tony) 已提交
571 572 573 574 575 576
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
577
                    if isinstance(np_value, tuple):
578
                        tensor.set(np_value[0], place)
579 580 581 582 583 584 585 586 587 588 589 590
                        dtype = np.array(np_value[1]).dtype
                        if self.is_calc_ref and dtype == np.float16:
                            if isinstance(np_value[1], list):
                                tensor.set_recursive_sequence_lengths(
                                    np.array(np_value[1]).astype(np.float32)
                                )
                            else:
                                tensor.set_recursive_sequence_lengths(
                                    np_value[1].astype(np.float32)
                                )
                        else:
                            tensor.set_recursive_sequence_lengths(np_value[1])
591
                    else:
592 593 594 595
                        if self.is_calc_ref and np_value.dtype == np.float16:
                            tensor.set(np_value.astype(np.float32), place)
                        else:
                            tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
596 597 598 599
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
600
                    tensor.set(self.inputs[var_name][0], place)
601 602 603 604 605 606 607 608 609 610 611
                    if (
                        self.is_calc_ref
                        and self.inputs[var_name][1].dtype == np.float16
                    ):
                        tensor.set_recursive_sequence_lengths(
                            self.inputs[var_name][1].astype(np.float32)
                        )
                    else:
                        tensor.set_recursive_sequence_lengths(
                            self.inputs[var_name][1]
                        )
Y
Yang Yang(Tony) 已提交
612
                else:
613 614 615 616 617 618 619 620 621
                    if (
                        self.is_calc_ref
                        and self.inputs[var_name].dtype == np.float16
                    ):
                        tensor.set(
                            self.inputs[var_name].astype(np.float32), place
                        )
                    else:
                        tensor.set(self.inputs[var_name], place)
Y
Yang Yang(Tony) 已提交
622
                feed_map[var_name] = tensor
623

Y
Yang Yang(Tony) 已提交
624 625
        return feed_map

626
    def _append_ops(self, block):
627 628 629
        self.__class__.op_type = (
            self.op_type
        )  # for ci check, please not delete it for now
Y
Yiqun Liu 已提交
630
        if self.is_mkldnn_op():
631
            self.__class__.use_mkldnn = True
C
cc 已提交
632

Y
Yiqun Liu 已提交
633
        if self.is_xpu_op():
634 635
            self.__class__.use_xpu = True

Y
Yang Yang(Tony) 已提交
636
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
637
        "infer datatype from inputs and outputs for this test case"
638 639 640 641 642 643
        if self.is_bfloat16_op():
            self.dtype = np.uint16
            self.__class__.dtype = self.dtype
            self.output_dtype = np.uint16
        else:
            self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
644
        inputs = append_input_output(
645
            block, op_proto, self.inputs, True, self.dtype, self.is_calc_ref
646 647
        )
        outputs = append_input_output(
648
            block, op_proto, self.outputs, False, self.dtype, self.is_calc_ref
649
        )
P
phlrain 已提交
650 651 652

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
653 654 655 656 657 658
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True,
                )
P
phlrain 已提交
659

Y
Yang Yang(Tony) 已提交
660 661 662 663
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
664 665
            attrs=copy(self.attrs) if hasattr(self, "attrs") else dict(),
        )
C
cc 已提交
666
        # infer variable type and infer shape in compile-time
Q
QI JUN 已提交
667 668
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
669

670 671
        return op

672 673
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
674
        for name, value in numpy_inputs.items():
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

M
minqiyang 已提交
694 695 696 697
    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
L
lujun 已提交
698
            v = fluid.dygraph.base.to_variable(value=data)
699
            v.value().get_tensor().set_recursive_sequence_lengths(lod)
M
minqiyang 已提交
700 701
            return v
        else:
L
lujun 已提交
702
            return fluid.dygraph.base.to_variable(value)
M
minqiyang 已提交
703

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
    def get_sequence_batch_size_1_input(self, lod=None, shape=None):
        """Get LoD input data whose batch size is 1.
        All sequence related OP unittests should call this function to contain the case of batch size = 1.
        Args:
            lod (list[list of int], optional): Length-based LoD, length of lod[0] should be 1. Default: [[13]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod) : LoD input data whose batch size is 1.
        """
        if lod is None:
            lod = [[13]]
        if shape is None:
            shape = [13, 23]
        assert len(lod[0]) == 1
        assert lod[0][0] == shape[0]
        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

722 723 724 725 726 727 728 729
    def lod_has_single_zero(self, lod):
        for i in range(len(lod) - 2):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] != 0:
                return True
        return False

    def lod_has_continuous_zero(self, lod):
        for i in range(len(lod) - 3):
730 731 732 733 734 735
            if (
                lod[i] != 0
                and lod[i + 1] == 0
                and lod[i + 2] == 0
                and lod[i + 3] != 0
            ):
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
                return True
        return False

    def get_sequence_instance_size_0_input(self, lod=None, shape=None):
        """Get LoD input data whose instance size is 0.
        All sequence related OP unittests should call this function to contain the case of instance size is 0.
        Args:
            lod (list[list of int], optional): Length-based LoD, lod[0]'s size must at least eight, lod[0] must at least two zeros at the beginning and at least two zeros at the end, the middle position of lod[0] contains a single zero and multiple zero. Default: [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod): LoD input data whose instance size is 0.
        """
        if lod is None:
            lod = [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]]
        if shape is None:
            shape = [12, 10]
        assert len(lod[0]) >= 8
753 754 755 756 757 758
        assert (
            lod[0][0] == 0
            and lod[0][1] == 0
            and lod[0][-1] == 0
            and lod[0][-2] == 0
        )
759 760 761 762 763 764 765
        assert self.lod_has_single_zero(lod[0]) is True
        assert self.lod_has_continuous_zero(lod[0]) is True
        assert sum(lod[0]) == shape[0]

        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

766 767 768
    def append_input_output_for_dygraph(
        self, op_proto, np_list, is_input, if_return_inputs_grad_dict, block
    ):
769 770 771 772 773 774 775
        def create_var(
            np_value,
            name,
            is_input,
            if_return_inputs_grad_dict,
            is_calc_ref=False,
        ):
776 777 778 779 780 781 782 783 784
            np_value_temp = np_value
            has_lod = False
            lod_temp = None
            if isinstance(np_value, tuple):
                np_value_temp = np_value[0]
                has_lod = True
                lod_temp = np_value[1]

            if is_input:
785 786 787 788 789 790
                if is_calc_ref and np_value_temp.dtype == np.float16:
                    v = self._create_var_from_numpy(
                        np_value_temp.astype(np.float32)
                    )
                else:
                    v = self._create_var_from_numpy(np_value_temp)
791

792 793
                if if_return_inputs_grad_dict:
                    v.stop_gradient = False
姜永久 已提交
794
                    if hasattr(v, "retain_grads"):
795 796
                        v.retain_grads()

797
                if has_lod:
798
                    v.value().get_tensor().set_recursive_sequence_lengths(
799 800
                        lod_temp
                    )
801
            else:
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
                if is_calc_ref and np_value_temp.dtype == np.float16:
                    v = block.create_var(
                        name=name,
                        dtype=np.float32,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                    )
                else:
                    v = block.create_var(
                        name=name,
                        dtype=np_value_temp.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                    )
818 819 820 821 822 823 824 825 826 827 828 829 830
            return v

        # prepare variable for input or output
        var_dict = defaultdict(list)
        if if_return_inputs_grad_dict:
            inputs_grad_dict = defaultdict()
        proto_list = op_proto.inputs if is_input else op_proto.outputs
        for var_proto in proto_list:
            name = var_proto.name
            if (name not in np_list) and var_proto.dispensable:
                continue
            if name not in np_list:
                assert var_proto.intermediate, "{} not found".format(name)
831 832 833
                v = block.create_var(
                    dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR
                )
834 835 836 837 838 839
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v
                continue
            if var_proto.duplicable:
                assert isinstance(
840 841
                    np_list[name], list
                ), "Duplicable {} should be set as list".format(name)
842 843 844
                var_list = []
                slot_name = name
                for (name, np_value) in np_list[name]:
845
                    v = create_var(
846 847 848 849 850
                        np_value,
                        name,
                        is_input,
                        if_return_inputs_grad_dict,
                        self.is_calc_ref,
851
                    )
852 853 854 855 856 857 858 859 860 861 862 863 864
                    var_list.append(v)
                    if if_return_inputs_grad_dict:
                        inputs_grad_dict[name] = v
                var_dict[slot_name] = var_list
            else:
                nplist_value_temp = None
                name_temp = None
                if isinstance(np_list[name], list):
                    nplist_value_temp = np_list[name][0]
                    name_temp = name
                else:
                    nplist_value_temp = np_list[name]
                    name_temp = unique_name.generate("%s_out" % (name))
865 866 867 868 869
                v = create_var(
                    nplist_value_temp,
                    name_temp,
                    is_input,
                    if_return_inputs_grad_dict,
870
                    self.is_calc_ref,
871
                )
872 873 874 875 876 877 878 879 880
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v

        if if_return_inputs_grad_dict:
            return var_dict, inputs_grad_dict
        else:
            return var_dict

881
    def _check_api_outs_by_dygraph_outs(self, api_outs, dygraph_outs, place):
882 883 884 885
        """for quick verify, here we take a simplest strategy:
        1. we only check variable in api_outs.
        2. we simply check the numpy (tensor) .
        3. we set atol and rtol as 1e-5, because they are unrelated to dtype.
886 887 888 889
        """
        for name in api_outs:
            np_api = np.array(api_outs[name])
            np_dyg = np.array(dygraph_outs[name])
890 891 892 893 894
            np.testing.assert_allclose(
                np_api,
                np_dyg,
                rtol=1e-05,
                equal_nan=False,
895 896 897 898 899 900 901 902 903 904 905 906
                err_msg='Output ('
                + name
                + ') has diff at '
                + str(place)
                + '\nExpect '
                + str(np_dyg)
                + '\n'
                + 'But Got'
                + str(np_api)
                + ' in class '
                + self.__class__.__name__,
            )
907

908
    def _calc_python_api_output(self, place, egr_inps=None, egr_oups=None):
909
        """set egr_inps and egr_oups = None if you want to create it by yourself."""
910

911
        def construct_output_dict_by_kernel_sig(ret_tuple, output_sig):
X
xiongkun 已提交
912 913
            if hasattr(self, "python_out_sig"):
                output_sig = self.python_out_sig
914 915
            if not isinstance(ret_tuple, (tuple, list)):
                ret_tuple = [ret_tuple]
916 917 918 919 920
            if len(output_sig) == len(ret_tuple):
                # [assumption]: we assume {"Out": [Tensor]}
                return {a: [b] for a, b in zip(output_sig, ret_tuple)}
            else:
                # [assumption]: return multi-Tensor in a single output. such as paddle.split()
921 922 923
                assert (
                    len(output_sig) == 1
                ), "Don't support multi-output with multi-tensor output. (May be you can use set `python_out_sig`, see `test_squeeze2_op` as a example.)"
924
                return {output_sig[0]: ret_tuple}
925

926
        def cal_python_api(python_api, args, kernel_sig):
927
            inputs_sig, attrs_sig, outputs_sig = kernel_sig
928 929 930
            args = OpTestUtils.assumption_assert_and_transform(
                args, len(inputs_sig)
            )
931
            ret_tuple = python_api(*args)
932 933 934 935 936 937
            return construct_output_dict_by_kernel_sig(ret_tuple, outputs_sig)

        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
            # prepare input variable
938 939 940 941 942 943 944
            eager_tensor_inputs = (
                egr_inps
                if egr_inps
                else self.append_input_output_for_dygraph(
                    op_proto, self.inputs, True, False, block
                )
            )
945
            # prepare output variable
946 947 948 949 950 951 952
            eager_tensor_outputs = (
                egr_oups
                if egr_oups
                else self.append_input_output_for_dygraph(
                    op_proto, self.outputs, False, False, block
                )
            )
953
            # prepare attributes
954 955 956 957 958 959
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]

960 961 962 963 964
            kernel_sig = OpTestUtils._get_kernel_signature(
                self.op_type,
                eager_tensor_inputs,
                eager_tensor_outputs,
                attrs_outputs,
965
            )
966 967
            if not kernel_sig:
                return None
968 969 970 971
            assert hasattr(self, "python_api"), (
                "Detect there is KernelSignature for `%s` op, please set the `self.python_api` if you set check_eager = True"
                % self.op_type
            )
972
            args = OpTestUtils.prepare_python_api_arguments(
973 974
                self.python_api, eager_tensor_inputs, attrs_outputs, kernel_sig
            )
975
            """ we directly return the cal_python_api value because the value is already tensor.
976
            """
977
            return cal_python_api(self.python_api, args, kernel_sig)
978

L
lujun 已提交
979
    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
980 981 982
        self.__class__.op_type = (
            self.op_type
        )  # for ci check, please not delete it for now
L
lujun 已提交
983
        with fluid.dygraph.base.guard(place=place):
M
minqiyang 已提交
984 985
            block = fluid.default_main_program().global_block()

986
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
M
minqiyang 已提交
987

988
            # prepare input variable
989
            inputs = self.append_input_output_for_dygraph(
990 991
                op_proto, self.inputs, True, False, block
            )
M
minqiyang 已提交
992
            # prepare output variable
993
            outputs = self.append_input_output_for_dygraph(
994 995
                op_proto, self.outputs, False, False, block
            )
996

997
            # prepare attributes
998 999 1000 1001 1002
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
1003

M
minqiyang 已提交
1004 1005 1006 1007
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
1008 1009
                attrs=attrs_outputs if hasattr(self, "attrs") else None,
            )
M
minqiyang 已提交
1010
            return outputs
1011

1012 1013 1014 1015 1016 1017 1018 1019 1020
    def _calc_output(
        self,
        place,
        parallel=False,
        no_check_set=None,
        loss=None,
        enable_inplace=None,
        for_inplace_test=None,
    ):
C
Charles-hit 已提交
1021
        with paddle.fluid.framework._static_guard():
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
            program = Program()
            block = program.global_block()
            op = self._append_ops(block)

            inputs = self._get_inputs(block)
            outputs = self._get_outputs(block)
            feed_map = self.feed_var(inputs, place)

            if for_inplace_test:
                # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
                # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
                # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
                # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
                for out_name in op.output_arg_names:
                    var = block.var(out_name)
                    if 0 in var.shape:
                        var.persistable = True
            original_program = program
            if parallel:
                use_cuda = False
                if isinstance(place, fluid.CUDAPlace):
                    use_cuda = True
                compiled_prog = fluid.CompiledProgram(
                    program
                ).with_data_parallel(
                    loss_name=loss.name if loss else None, places=place
                )
                program = compiled_prog
            fetch_list = getattr(self, "fetch_list", [])
            # if the fetch_list is customized by user, we use it directly.
            # if not, fill the fetch_list by the user configured outputs in test.
            if len(fetch_list) == 0:
                for var_name, var in outputs.items():
                    if no_check_set is not None and var_name in no_check_set:
                        continue
                    if isinstance(var, list):
                        for v in var:
                            fetch_list.append(v.name)
                    else:
                        fetch_list.append(var.name)
            # if the fetch_list still empty, fill the fetch_list by the operator output.
            if len(fetch_list) == 0:
                for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                    fetch_list.append(str(out_name))
1066

1067 1068 1069
            if enable_inplace is not None:
                build_strategy = fluid.BuildStrategy()
                build_strategy.enable_inplace = enable_inplace
1070

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
                compiled_prog = fluid.CompiledProgram(
                    program
                ).with_data_parallel(
                    build_strategy=build_strategy, places=place
                )
                program = compiled_prog

            executor = Executor(place)
            outs = executor.run(
                program,
                feed=feed_map,
                fetch_list=fetch_list,
                return_numpy=False,
1084
            )
1085 1086
            self.op = op
            self.program = original_program
1087 1088 1089 1090
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list
Y
Yang Yang(Tony) 已提交
1091

1092 1093 1094
    def _compare_expect_and_actual_outputs(
        self, place, fetch_list, expect_outs, actual_outs, inplace_atol=None
    ):
1095 1096 1097
        """Compare expect outs and actual outs of an tested op.

        Args:
C
cc 已提交
1098
            place (CPUPlace | CUDAPlace): The place where the op runs.
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
C
cc 已提交
1109
            # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
1110 1111 1112
            # computational consistency.
            # When inplace_atol is not None, the inplace check uses numpy.allclose
            # to check inplace result instead of numpy.array_equal.
1113 1114
            expect_out = np.array(expect_outs[i])
            actual_out = np.array(actual_outs[i])
1115
            if inplace_atol is not None:
1116 1117 1118 1119 1120
                np.testing.assert_allclose(
                    expect_out,
                    actual_out,
                    rtol=1e-05,
                    atol=inplace_atol,
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
                    err_msg='Output ('
                    + name
                    + ') has diff at '
                    + str(place)
                    + ' when using and not using inplace'
                    + '\nExpect '
                    + str(expect_out)
                    + '\n'
                    + 'But Got'
                    + str(actual_out)
                    + ' in class '
                    + self.__class__.__name__,
                )
1134
            else:
1135 1136 1137
                np.testing.assert_array_equal(
                    expect_out,
                    actual_out,
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
                    err_msg='Output ('
                    + name
                    + ') has diff at '
                    + str(place)
                    + ' when using and not using inplace'
                    + '\nExpect '
                    + str(expect_out)
                    + '\n'
                    + 'But Got'
                    + str(actual_out)
                    + ' in class '
                    + self.__class__.__name__
                    + '\n',
                )

    def _construct_grad_program_from_forward(
        self, fwd_program, grad_op_desc, op_grad_to_var
    ):
1156 1157 1158 1159 1160
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
1161
            op_grad_to_var (dict): The relation of variables in grad op and its forward op.
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
1173 1174 1175
        for arg in (
            grad_op_desc.input_arg_names() + grad_op_desc.output_arg_names()
        ):
1176 1177 1178 1179 1180
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
1181 1182 1183 1184 1185 1186 1187 1188 1189
                fwd_var_name
            )
            grad_var = grad_block.create_var(
                name=arg,
                dtype=fwd_var.dtype,
                shape=fwd_var.shape,
                type=fwd_var.type,
                persistable=False,
            )
1190

C
cc 已提交
1191 1192
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
1193 1194 1195 1196 1197 1198 1199
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

1200 1201 1202
    def _construct_grad_feed_map_from_forward(
        self, place, fwd_res, grad_op_desc, op_grad_to_var
    ):
1203 1204 1205 1206 1207 1208
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
1209
            place (CPUPlace | CUDAPlace): The place where the op runs.
1210 1211 1212
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
1213
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op.
1214 1215 1216 1217

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
1218 1219 1220 1221 1222 1223 1224
        (
            fwd_outs,
            fwd_fetch_list,
            fwd_feed_map,
            fwd_program,
            fwd_op_desc,
        ) = fwd_res
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)
1244

1245 1246 1247 1248 1249 1250 1251
        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
C
cc 已提交
1252

1253
        Args:
C
cc 已提交
1254 1255
            op_desc (OpDesc): The op_desc of current op.
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op.
1256
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
C
cc 已提交
1257

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
C
cc 已提交
1272
                # get grad_op_desc
1273
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
1274 1275
                    op_desc, set(), []
                )
1276 1277 1278 1279
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
1280 1281 1282 1283
                        if (
                            grad_op_desc.type() not in visited_ops
                            and _dfs_grad_op(grad_op_desc, fwd_op_desc=op_desc)
                        ):
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

1294 1295 1296
    def _check_forward_inplace(
        self, place, no_check_set=None, inplace_atol=None
    ):
1297
        """Check the inplace correctness of given op (self.op_type).
1298
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
C
cc 已提交
1299

1300
        Args:
C
cc 已提交
1301
            place (CPUPlace | CUDAPlace): The place where the op runs.
1302 1303 1304 1305
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1306 1307
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1308 1309
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
        expect_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=False,
            for_inplace_test=True,
        )
        actual_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=True,
            for_inplace_test=True,
        )
1322
        # compare expect_outs and actual_outs
1323 1324 1325 1326 1327 1328 1329
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol,
        )
1330 1331
        return expect_res

1332 1333 1334
    def _calc_grad_output(
        self, place, fwd_res, grad_op_desc, enable_inplace=None
    ):
1335 1336 1337 1338 1339 1340
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
1341
            place (CPUPlace | CUDAPlace): The place where the op runs.
1342 1343 1344 1345 1346 1347 1348 1349
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
C
Charles-hit 已提交
1350
        with paddle.fluid.framework._static_guard():
1351 1352 1353 1354 1355 1356 1357 1358 1359
            (
                fwd_outs,
                fwd_fetch_list,
                fwd_feed_map,
                fwd_program,
                fwd_op_desc,
            ) = fwd_res
            grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                fwd_op_desc, set(), []
1360
            )
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
            grad_program = self._construct_grad_program_from_forward(
                fwd_program, grad_op_desc, op_grad_to_var
            )
            grad_feed_map = self._construct_grad_feed_map_from_forward(
                place, fwd_res, grad_op_desc, op_grad_to_var
            )
            grad_fetch_list = grad_op_desc.output_arg_names()
            exe = Executor(place)
            program = grad_program
            if enable_inplace is not None:
                build_strategy = fluid.BuildStrategy()
                build_strategy.enable_inplace = enable_inplace
                compiled_program = fluid.CompiledProgram(
                    grad_program
                ).with_data_parallel(
                    loss_name="", build_strategy=build_strategy, places=place
                )
                program = compiled_program
1379

1380 1381 1382 1383 1384 1385
            outs = exe.run(
                program,
                feed=grad_feed_map,
                fetch_list=grad_fetch_list,
                return_numpy=False,
            )
1386 1387
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

1388 1389 1390
    def _check_grad_inplace(
        self, place, fwd_res, grad_op_desc, inplace_atol=None
    ):
1391
        """Check the inplace correctness of given grad_op_desc.
1392 1393 1394 1395 1396 1397

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
C
cc 已提交
1398
            place (CPUPlace | CUDAPlace): The place where the op runs.
1399 1400 1401 1402 1403 1404
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1405 1406
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1407
        """
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
        expect_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=False
        )
        actual_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=True
        )

        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol,
        )
1422
        return expect_res
1423

1424 1425 1426
    def check_inplace_output_with_place(
        self, place, no_check_set=None, inplace_atol=None
    ):
1427 1428 1429 1430 1431 1432
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
C
cc 已提交
1433
            place (CPUPlace | CUDAPlace): The place where the op runs.
1434 1435 1436 1437 1438 1439
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
1440 1441 1442
        if getattr(self, "no_need_check_inplace", False):
            return

1443 1444 1445
        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)

1446 1447 1448
        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True
        )
1449 1450 1451 1452
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
1453 1454
        if hasattr(self, 'attrs') and bool(self.attrs.get('use_xpu', False)):
            return
1455 1456 1457 1458 1459 1460 1461 1462
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
1463 1464
                        inplace_atol=inplace_atol,
                    )
1465
                else:
1466 1467 1468
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True
                    )
1469
            else:
1470 1471
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn
                # skip op that use_mkldnn currently
1472
                flags_use_mkldnn = fluid.core.globals()["FLAGS_use_mkldnn"]
1473
                attrs_use_mkldnn = hasattr(self, 'attrs') and bool(
1474 1475
                    self.attrs.get('use_mkldnn', False)
                )
1476 1477 1478 1479 1480 1481 1482 1483
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
1484 1485
                        place, fwd_res, op_desc, inplace_atol=inplace_atol
                    )
1486
                else:
1487
                    res[op_desc] = self._calc_grad_output(
1488 1489
                        place, fwd_res, op_desc
                    )
1490

1491 1492 1493 1494 1495 1496 1497 1498 1499
    def check_output_with_place(
        self,
        place,
        atol=0,
        no_check_set=None,
        equal_nan=False,
        check_dygraph=True,
        inplace_atol=None,
        check_eager=False,
1500
        check_prim=False,
1501
    ):
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
        core._set_prim_all_enabled(False)
        if check_prim:
            prim_checker = PrimForwardChecker(self, place)
            prim_checker.check()
            # Support operators which not in the NO_FP64_CHECK_GRAD_OP_LIST list can be test prim with fp32
            setattr(self.__class__, 'check_prim', True)
            self.__class__.op_type = self.op_type
            if prim_checker.is_only_check_prim():
                self.only_prim = True
                return
1512
        # disable legacy dygraph check when check_eager is True
1513
        if check_eager:
1514 1515
            check_dygraph = False

1516 1517 1518 1519 1520 1521 1522 1523
        def find_imperative_actual(target_name, dygraph_outs, place):
            for name in dygraph_outs:
                if name == target_name:
                    return dygraph_outs[name][0]
                var_list = dygraph_outs[name]
                for i, var in enumerate(var_list):
                    if var.name == target_name:
                        return dygraph_outs[name][i]
1524
            self.assertTrue(
1525 1526 1527
                False,
                "Found failed {} {}".format(dygraph_outs.keys(), target_name),
            )
1528

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
        def find_imperative_expect(target_name, dygraph_outs, place):
            for name in dygraph_outs:
                if name == target_name:
                    return dygraph_outs[name][0]
                var_list = dygraph_outs[name]
                for i, var in enumerate(var_list):
                    if var.name == target_name:
                        return dygraph_outs[name][i]
            self.assertTrue(
                False,
                "Found failed {} {}".format(dygraph_outs.keys(), target_name),
            )

1542 1543
        def find_actual(target_name, fetch_list):
            found = [
1544 1545
                i
                for i, var_name in enumerate(fetch_list)
1546 1547 1548
                if var_name == target_name
            ]
            self.assertTrue(
1549 1550
                len(found) == 1, "Found {} {}".format(len(found), target_name)
            )
1551 1552
            return found[0]

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
        def find_expect(target_name, fetch_list):
            found = [
                i
                for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            self.assertTrue(
                len(found) == 1, "Found {} {}".format(len(found), target_name)
            )
            return found[0]

1564
        class Checker:
1565 1566
            """base class for check with self.outputs.
            currently don't support check between checkers.
1567 1568 1569
            """

            def __init__(self, op_test, expect_dict):
1570 1571
                """expect_dict is the self.outputs
                support : {str: [numpy]} and {str: [(str, numpy), (str, numpy)]}
1572 1573 1574 1575 1576 1577
                """
                self.expects = expect_dict
                self.checker_name = "checker"
                self.op_test = op_test  # stop the op_test object.
                self.op_type = op_test.op_type

1578 1579 1580
            def init(self):
                pass

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
            def convert_uint16_to_float(self, actual_np, expect_np):
                raise NotImplementedError("base class, not implement!")

            def calculate_output(self):
                """
                judge whether convert current output and expect to uint16.
                return True | False
                """

            def _is_skip_name(self, name):
                if name not in self.expects:
                    return True
                if no_check_set is not None and name in no_check_set:
                    return True
                return False

            def find_actual_value(self, name):
1598
                """return: (actual_tensor(var_base), actual_numpy)"""
1599 1600
                raise NotImplementedError("base class, not implement!")

1601 1602 1603 1604
            def find_expect_value(self, name):
                """return: (expect_tensor(var_base), actual_numpy)"""
                raise NotImplementedError("base class, not implement!")

1605 1606 1607 1608 1609 1610 1611
            def _compare_numpy(self, name, actual_np, expect_np):
                self.op_test.assertTrue(
                    np.allclose(
                        actual_np,
                        expect_np,
                        atol=atol,
                        rtol=self.rtol if hasattr(self, 'rtol') else 1e-5,
1612 1613 1614 1615 1616 1617 1618 1619 1620
                        equal_nan=equal_nan,
                    ),
                    "Output ("
                    + name
                    + ") has diff at "
                    + str(place)
                    + " in "
                    + self.checker_name,
                )
1621 1622

            def _compare_list(self, name, actual, expect):
1623
                """if expect is a tuple, we need to compare list."""
1624 1625 1626 1627
                raise NotImplementedError("base class, not implement!")

            def compare_single_output_with_expect(self, name, expect):
                actual, actual_np = self.find_actual_value(name)
1628 1629 1630 1631 1632 1633
                if self.op_test.is_fp16_compared_with_fp32():
                    expect, expect_np = self.find_expect_value(name)
                else:
                    expect_np = (
                        expect[0] if isinstance(expect, tuple) else expect
                    )
1634
                actual_np, expect_np = self.convert_uint16_to_float_ifneed(
1635 1636
                    actual_np, expect_np
                )
1637 1638
                # modify there for fp32 check

1639 1640 1641
                # NOTE(zhiqiu): np.allclose([], [1.]) returns True
                # see details: https://stackoverflow.com/questions/38331703/why-does-numpys-broadcasting-sometimes-allow-comparing-arrays-of-different-leng
                if expect_np.size == 0:
1642
                    self.op_test.assertTrue(actual_np.size == 0)
1643 1644 1645 1646 1647 1648
                self._compare_numpy(name, actual_np, expect_np)
                if isinstance(expect, tuple):
                    self._compare_list(name, actual, expect)

            def compare_outputs_with_expects(self):
                for out_name, out_dup in Operator.get_op_outputs(self.op_type):
1649 1650
                    if self._is_skip_name(out_name):
                        continue
1651 1652 1653 1654
                    if out_dup:
                        # if self.output = {'name': [(subname, Tensor), (subname, Tensor)]}
                        sub_out = self.expects[out_name]
                        if not isinstance(sub_out, list):
1655 1656 1657
                            raise AssertionError(
                                "sub_out type %s is not list", type(sub_out)
                            )
1658 1659
                        for item in sub_out:
                            sub_out_name, expect = item[0], item[1]
1660
                            self.compare_single_output_with_expect(
1661 1662
                                sub_out_name, expect
                            )
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
                    else:
                        expect = self.expects[out_name]
                        self.compare_single_output_with_expect(out_name, expect)

            def check(self):
                """
                return None means ok, raise Error means failed.

                the main enter point of Checker class
                """
1673
                self.init()
1674 1675 1676 1677
                self.calculate_output()
                self.compare_outputs_with_expects()

        class StaticChecker(Checker):
1678 1679 1680
            def init(self):
                self.checker_name = "static checker"

1681 1682
            def calculate_output(self):
                outs, fetch_list = self.op_test._calc_output(
1683 1684
                    place, no_check_set=no_check_set
                )
1685 1686
                self.outputs = outs
                self.fetch_list = fetch_list
1687 1688 1689 1690 1691 1692 1693 1694
                if self.op_test.is_fp16_compared_with_fp32():
                    self.op_test.enable_cal_ref_output()
                    ref_outs, ref_fetch_list = self.op_test._calc_output(
                        place, no_check_set=no_check_set
                    )
                    self.op_test.disable_cal_ref_output()
                    self.ref_outputs = ref_outs
                    self.ref_fetch_list = ref_fetch_list
1695 1696 1697 1698 1699 1700 1701

            def find_actual_value(self, name):
                idx = find_actual(name, self.fetch_list)
                actual = self.outputs[idx]
                actual_t = np.array(actual)
                return actual, actual_t

1702 1703 1704 1705 1706 1707
            def find_expect_value(self, name):
                idx = find_expect(name, self.ref_fetch_list)
                expect = self.ref_outputs[idx]
                expect_t = np.array(expect)
                return expect, expect_t

1708 1709 1710 1711 1712 1713
            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
                """
                judge whether convert current output and expect to uint16.
                return True | False
                """
                if actual_np.dtype == np.uint16 and expect_np.dtype in [
1714 1715
                    np.float32,
                    np.float64,
1716 1717
                ]:
                    actual_np = convert_uint16_to_float(actual_np)
1718
                    self.rtol = 1.0e-2
1719 1720
                elif actual_np.dtype == np.float16:
                    self.rtol = 1.0e-3
1721
                else:
1722 1723 1724 1725 1726
                    self.rtol = 1.0e-5
                if (
                    expect_np.dtype == np.uint16
                    and actual_np.dtype == np.uint16
                ):
1727 1728 1729 1730 1731 1732 1733
                    nonlocal atol
                    expect_np = convert_uint16_to_float(expect_np)
                    actual_np = convert_uint16_to_float(actual_np)
                    atol = max(atol, 0.03)
                return actual_np, expect_np

            def _compare_list(self, name, actual, expect):
1734
                """if expect is a tuple, we need to compare list."""
1735
                self.op_test.assertListEqual(
1736 1737 1738 1739
                    actual.recursive_sequence_lengths(),
                    expect[1],
                    "Output (" + name + ") has different lod at " + str(place),
                )
1740 1741

        class DygraphChecker(Checker):
1742 1743 1744
            def init(self):
                self.checker_name = "dygraph checker"

1745 1746
            def calculate_output(self):
                self.outputs = self.op_test._calc_dygraph_output(
1747 1748
                    place, no_check_set=no_check_set
                )
1749 1750 1751 1752 1753 1754
                if self.op_test.is_fp16_compared_with_fp32():
                    self.op_test.enable_cal_ref_output()
                    self.ref_outputs = self.op_test._calc_dygraph_output(
                        place, no_check_set=no_check_set
                    )
                    self.op_test.disable_cal_ref_output()
1755 1756 1757 1758

            def find_actual_value(self, name):
                with fluid.dygraph.base.guard(place=place):
                    imperative_actual = find_imperative_actual(
1759 1760
                        name, self.outputs, place
                    )
1761
                    imperative_actual_t = np.array(
1762 1763
                        imperative_actual.value().get_tensor()
                    )
1764 1765
                    return imperative_actual, imperative_actual_t

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
            def find_expect_value(self, name):
                with fluid.dygraph.base.guard(place=place):
                    imperative_expect = find_imperative_expect(
                        name, self.ref_outputs, place
                    )
                    imperative_expect_t = np.array(
                        imperative_expect.value().get_tensor()
                    )
                    return imperative_expect, imperative_expect_t

1776
            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
1777
                if actual_np.dtype == np.uint16 and expect_np.dtype in [
1778 1779
                    np.float32,
                    np.float64,
1780
                ]:
1781
                    self.rtol = 1.0e-2
1782 1783
                elif actual_np.dtype == np.float16:
                    self.rtol = 1.0e-3
1784
                else:
1785
                    self.rtol = 1.0e-5
1786 1787 1788 1789
                if self.op_test.is_bfloat16_op():
                    if actual_np.dtype == np.uint16:
                        actual_np = convert_uint16_to_float(actual_np)
                    if expect_np.dtype == np.uint16:
X
xiongkun 已提交
1790
                        expect_np = convert_uint16_to_float(expect_np)
1791 1792 1793
                return actual_np, expect_np

            def _compare_list(self, name, actual, expect):
1794
                """if expect is a tuple, we need to compare list."""
1795 1796
                with fluid.dygraph.base.guard(place=place):
                    self.op_test.assertListEqual(
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
                        actual.value()
                        .get_tensor()
                        .recursive_sequence_lengths(),
                        expect[1],
                        "Output ("
                        + name
                        + ") has different lod at "
                        + str(place)
                        + " in dygraph mode",
                    )
1807 1808

            def _compare_numpy(self, name, actual_np, expect_np):
1809 1810 1811 1812 1813 1814
                if (
                    functools.reduce(lambda x, y: x * y, actual_np.shape, 1)
                    == 0
                    and functools.reduce(lambda x, y: x * y, expect_np.shape, 1)
                    == 0
                ):
1815 1816 1817 1818 1819 1820 1821 1822
                    pass
                else:
                    self.op_test.assertTrue(
                        np.allclose(
                            actual_np,
                            expect_np,
                            atol=atol,
                            rtol=self.rtol if hasattr(self, 'rtol') else 1e-5,
1823 1824 1825 1826 1827 1828 1829 1830 1831
                            equal_nan=equal_nan,
                        ),
                        "Output ("
                        + name
                        + ") has diff at "
                        + str(place)
                        + " in "
                        + self.checker_name,
                    )
1832 1833

        class EagerChecker(DygraphChecker):
1834 1835 1836
            def init(self):
                self.checker_name = "eager checker"

1837 1838 1839
            def calculate_output(self):
                # we only check end2end api when check_eager=True
                with _test_eager_guard():
1840
                    self.is_python_api_test = True
1841
                    eager_dygraph_outs = self.op_test._calc_python_api_output(
1842 1843
                        place
                    )
1844
                    if eager_dygraph_outs is None:
X
xiongkun 已提交
1845
                        self.is_python_api_test = False
1846
                        # missing KernelSignature, fall back to eager middle output.
1847
                        eager_dygraph_outs = self.op_test._calc_dygraph_output(
1848 1849
                            place, no_check_set=no_check_set
                        )
1850 1851
                self.outputs = eager_dygraph_outs

1852 1853 1854 1855 1856 1857 1858
                if self.op_test.is_fp16_compared_with_fp32():
                    self.op_test.enable_cal_ref_output()
                    with _test_eager_guard():
                        self.is_python_api_test = True
                        ref_eager_dygraph_outs = (
                            self.op_test._calc_python_api_output(place)
                        )
1859
                        if ref_eager_dygraph_outs is None:
1860 1861 1862 1863 1864 1865 1866 1867 1868
                            self.is_python_api_test = False
                            ref_eager_dygraph_outs = (
                                self.op_test._calc_dygraph_output(
                                    place, no_check_set=no_check_set
                                )
                            )
                    self.op_test.disable_cal_ref_output()
                    self.ref_outputs = ref_eager_dygraph_outs

1869 1870 1871 1872 1873 1874
            def _compare_numpy(self, name, actual_np, expect_np):
                with _test_eager_guard():
                    super()._compare_numpy(name, actual_np, expect_np)

            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
                with _test_eager_guard():
1875
                    return super().convert_uint16_to_float_ifneed(
1876 1877
                        actual_np, expect_np
                    )
1878 1879 1880 1881 1882

            def find_actual_value(self, name):
                with _test_eager_guard():
                    return super().find_actual_value(name)

1883 1884 1885 1886
            def find_expect_valur(self, name):
                with _test_eager_guard():
                    return super().find_expect_value(name)

1887
            def _compare_list(self, name, actual, expect):
1888
                """if expect is a tuple, we need to compare list."""
1889 1890 1891
                with _test_eager_guard():
                    super()._compare_list(name, actual, expect)

X
xiongkun 已提交
1892 1893
            def _is_skip_name(self, name):
                # if in final state and kernel signature don't have name, then skip it.
1894 1895 1896 1897 1898
                if (
                    self.is_python_api_test
                    and hasattr(self.op_test, "python_out_sig")
                    and name not in self.op_test.python_out_sig
                ):
X
xiongkun 已提交
1899 1900
                    return True
                return super()._is_skip_name(name)
1901

1902
        # set some flags by the combination of arguments.
X
xiongkun 已提交
1903
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
1904 1905 1906 1907 1908
        if (
            self.dtype == np.float64
            and self.op_type
            not in op_threshold_white_list.NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST
        ):
1909 1910
            atol = 0

1911
        if self.is_bfloat16_op():
Y
Yiqun Liu 已提交
1912 1913
            if self.is_mkldnn_op():
                check_dygraph = False
1914
                check_eager = False
Y
Yiqun Liu 已提交
1915
                if hasattr(self, 'force_fp32_output') and getattr(
1916 1917
                    self, 'force_fp32_output'
                ):
Y
Yiqun Liu 已提交
1918 1919 1920
                    atol = 1e-2
                else:
                    atol = 2
1921
            else:
1922
                atol = 1e-1
1923

1924 1925 1926
        if self.is_float16_op():
            atol = 1e-3

1927
        if no_check_set is not None:
1928 1929 1930 1931
            if (
                self.op_type
                not in no_check_set_white_list.no_check_set_white_list
            ):
1932
                raise AssertionError(
1933 1934
                    "no_check_set of op %s must be set to None." % self.op_type
                )
1935 1936 1937
        static_checker = StaticChecker(self, self.outputs)
        static_checker.check()
        outs, fetch_list = static_checker.outputs, static_checker.fetch_list
L
lujun 已提交
1938
        if check_dygraph:
1939 1940
            # always enable legacy dygraph
            g_enable_legacy_dygraph()
1941 1942 1943
            dygraph_checker = DygraphChecker(self, self.outputs)
            dygraph_checker.check()
            dygraph_outs = dygraph_checker.outputs
1944 1945
            # yield the original state
            g_disable_legacy_dygraph()
1946
        if check_eager:
1947 1948 1949
            eager_checker = EagerChecker(self, self.outputs)
            eager_checker.check()
            eager_dygraph_outs = eager_checker.outputs
1950

C
cc 已提交
1951
        # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
1952 1953
        # computational consistency.
        # For example, group_norm uses AtomicAdd on CUDAPlace, which do not ensure
C
cc 已提交
1954
        # computation order when multiple threads write the same address. So the
L
Leo Chen 已提交
1955 1956 1957
        # result of group_norm is non-deterministic when datatype is float.
        # When inplace_atol is not None, the inplace check uses numpy.allclose
        # to check inplace result instead of numpy.array_equal.
1958 1959
        if inplace_atol is not None:
            warnings.warn(
L
Leo Chen 已提交
1960 1961
                "inplace_atol should only be set when op doesn't ensure computational consistency, please check it!"
            )
1962
        # Check inplace for given op, its grad op, its grad_grad op, etc.
C
cc 已提交
1963
        # No effect on original OpTest
1964
        # Currently not support ParallelExecutor on XPUPlace.
1965 1966 1967 1968 1969 1970 1971 1972 1973
        if (
            not paddle.is_compiled_with_xpu()
            and not paddle.is_compiled_with_npu()
            and not paddle.is_compiled_with_mlu()
            and not isinstance(place, core.CustomPlace)
        ):
            self.check_inplace_output_with_place(
                place, no_check_set=no_check_set, inplace_atol=inplace_atol
            )
1974

1975
        if check_eager:
1976
            assert not check_dygraph
1977
            return outs, eager_dygraph_outs, fetch_list
1978
        elif check_dygraph:
1979 1980 1981 1982 1983 1984 1985
            return outs, dygraph_outs, fetch_list
        else:
            return outs, fetch_list

    def check_compile_vs_runtime(self, fetch_list, fetch_outs):
        def find_fetch_index(target_name, fetch_list):
            found = [
1986 1987
                i
                for i, var_name in enumerate(fetch_list)
1988 1989 1990 1991 1992 1993 1994
                if var_name == target_name
            ]
            if len(found) == 0:
                return -1
            else:
                self.assertTrue(
                    len(found) == 1,
1995 1996
                    "Found {} {}".format(len(found), target_name),
                )
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
                return found[0]

        for name in self.op.desc.output_names():
            var_names = self.op.desc.output(name)
            for var_name in var_names:
                i = find_fetch_index(var_name, fetch_list)
                if i == -1:
                    # The output is dispensiable or intermediate.
                    break
                out = fetch_outs[i]
                if isinstance(out, core.LoDTensor):
                    lod_level_runtime = len(out.lod())
                else:
                    if isinstance(out, core.LoDTensorArray):
                        warnings.warn(
                            "The check of LoDTensorArray's lod_level is not implemented now!"
                        )
                    lod_level_runtime = 0

                var = self.program.global_block().var(var_name)
                if var.type == core.VarDesc.VarType.LOD_TENSOR:
                    lod_level_compile = var.lod_level
                else:
                    lod_level_compile = 0
                self.assertEqual(
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
                    lod_level_compile,
                    lod_level_runtime,
                    "The lod_level of Output ("
                    + name
                    + ") is different between compile-time and runtime ("
                    + str(lod_level_compile)
                    + " vs "
                    + str(lod_level_runtime)
                    + ")",
                )
2032

2033
    def _get_places(self):
D
dzhwinter 已提交
2034 2035
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
2036 2037
                self.op_type
            ):
D
dzhwinter 已提交
2038 2039 2040
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
W
Wu Yi 已提交
2041 2042
                else:
                    return []
D
dzhwinter 已提交
2043 2044
            else:
                return []
2045
        places = [fluid.CPUPlace()]
2046
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
2047 2048 2049 2050 2051
        if (
            core.is_compiled_with_cuda()
            and core.op_support_gpu(self.op_type)
            and not cpu_only
        ):
D
dzhwinter 已提交
2052
            places.append(core.CUDAPlace(0))
2053 2054
        return places

2055 2056 2057 2058 2059 2060 2061 2062
    def check_output(
        self,
        atol=1e-5,
        no_check_set=None,
        equal_nan=False,
        check_dygraph=True,
        inplace_atol=None,
        check_eager=False,
2063
        check_prim=False,
2064
    ):
2065 2066

        # disable legacy dygraph check when check_eager is True
2067
        if check_eager:
2068 2069
            check_dygraph = False

2070
        self.__class__.op_type = self.op_type
Y
Yiqun Liu 已提交
2071
        if self.is_mkldnn_op():
2072
            self.__class__.use_mkldnn = True
C
cc 已提交
2073

Y
Yiqun Liu 已提交
2074
        if self.is_xpu_op():
2075 2076
            self.__class__.use_xpu = True

2077
        places = self._get_places()
Q
qijun 已提交
2078
        for place in places:
2079 2080 2081 2082 2083 2084 2085 2086
            res = self.check_output_with_place(
                place,
                atol,
                no_check_set,
                equal_nan,
                check_dygraph,
                inplace_atol,
                check_eager=check_eager,
2087
                check_prim=check_prim,
2088
            )
2089 2090
            if hasattr(self, 'only_prim') and self.only_prim:
                continue
2091
            if check_eager:
2092
                assert not check_dygraph
2093
                outs, eager_dygraph_outs, fetch_list = res
2094
            elif check_dygraph:
2095 2096 2097
                outs, dygraph_outs, fetch_list = res
            else:
                outs, fetch_list = res
2098 2099 2100 2101
            if (
                self.op_type
                not in compile_vs_runtime_white_list.COMPILE_RUN_OP_WHITE_LIST
            ):
2102
                self.check_compile_vs_runtime(fetch_list, outs)
Q
qijun 已提交
2103

P
pangyoki 已提交
2104
    def check_output_customized(self, checker, custom_place=None):
2105
        places = self._get_places()
P
pangyoki 已提交
2106 2107
        if custom_place:
            places.append(custom_place)
2108 2109 2110
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
2111
            outs.sort(key=len)
2112 2113
            checker(outs)

2114 2115 2116 2117 2118 2119
    def check_output_with_place_customized(self, checker, place):
        outs = self.calc_output(place)
        outs = [np.array(out) for out in outs]
        outs.sort(key=len)
        checker(outs)

2120 2121 2122 2123 2124 2125 2126 2127
    def _assert_is_close(
        self,
        numeric_grads,
        analytic_grads,
        names,
        max_relative_error,
        msg_prefix,
    ):
2128
        for a, b, name in zip(numeric_grads, analytic_grads, names):
2129 2130 2131 2132 2133 2134
            # It asserts np.abs(a - b) / np.abs(a) < max_relative_error, in which
            # max_relative_error is 1e-7. According to the value of np.abs(a), we
            # change np.abs(a) to achieve dynamic threshold. For example, if
            # the value of np.abs(a) is between 1e-10 and 1e-8, we set np.abs(a)*=1e4.
            # Therefore, it asserts np.abs(a - b) / (np.abs(a)*1e4) < max_relative_error,
            # which is the same as np.abs(a - b) / np.abs(a) < max_relative_error*1e4.
2135

2136
            abs_a = np.abs(a)
2137
            if abs_a.ndim > 0:
2138 2139 2140 2141 2142
                if (
                    self.dtype == np.float64
                    and self.op_type
                    not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST
                ):
2143 2144 2145 2146 2147 2148 2149 2150
                    abs_a[abs_a < 1e-10] = 1e-3
                    abs_a[np.logical_and(abs_a > 1e-10, abs_a <= 1e-8)] *= 1e4
                    abs_a[np.logical_and(abs_a > 1e-8, abs_a <= 1e-6)] *= 1e2
                elif self.is_bfloat16_op():
                    abs_a[abs_a < 1e-2] = 1
                else:
                    abs_a[abs_a < 1e-3] = 1
            elif abs_a.ndim == 0:
2151 2152 2153 2154 2155
                if (
                    self.dtype == np.float64
                    and self.op_type
                    not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST
                ):
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
                    if abs_a < 1e-10:
                        abs_a = 1e-3
                    elif abs_a > 1e-10 and abs_a <= 1e-8:
                        abs_a = abs_a * 1e4
                    elif abs_a > 1e-8 and abs_a <= 1e-6:
                        abs_a = abs_a * 1e2
                elif self.is_bfloat16_op():
                    abs_a = 1 if abs_a < 1e-2 else abs_a
                else:
                    abs_a = 1 if abs_a < 1e-3 else abs_a
2166

2167 2168 2169 2170
            if self.dtype == np.bool:
                diff_mat = np.abs(a ^ b) / abs_a
            else:
                diff_mat = np.abs(a - b) / abs_a
2171 2172 2173 2174
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
                return (
                    "Operator %s error, %s variable %s (shape: %s, dtype: %s) max gradient diff %e over limit %e, "
                    "the first error element is %d, expected %e, but got %e."
                ) % (
                    self.op_type,
                    msg_prefix,
                    name,
                    str(a.shape),
                    self.dtype,
                    max_diff,
                    max_relative_error,
                    offset,
                    a.flatten()[offset],
                    b.flatten()[offset],
                )
2190 2191 2192

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

2193 2194 2195 2196 2197 2198 2199
    def _check_grad_helper(self):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        self.__class__.op_type = self.op_type
        self.__class__.exist_check_grad = True
        if self.dtype == np.float64:
            self.__class__.exist_fp64_check_grad = True

2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
    def check_grad(
        self,
        inputs_to_check,
        output_names,
        no_grad_set=None,
        numeric_grad_delta=0.005,
        in_place=False,
        max_relative_error=0.005,
        user_defined_grads=None,
        user_defined_grad_outputs=None,
        check_dygraph=True,
        check_eager=False,
2212
        check_prim=False,
2213
    ):
2214
        # disable legacy dygraph check when check_eager is True
2215
        if check_eager:
2216 2217
            check_dygraph = False

2218
        self._check_grad_helper()
2219
        places = self._get_places()
2220
        for place in places:
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
            self.check_grad_with_place(
                place,
                inputs_to_check,
                output_names,
                no_grad_set,
                numeric_grad_delta,
                in_place,
                max_relative_error,
                user_defined_grads,
                user_defined_grad_outputs,
                check_dygraph,
                check_eager=check_eager,
2233
                check_prim=check_prim,
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
            )

    def check_grad_with_place(
        self,
        place,
        inputs_to_check,
        output_names,
        no_grad_set=None,
        numeric_grad_delta=0.005,
        in_place=False,
        max_relative_error=0.005,
        user_defined_grads=None,
        user_defined_grad_outputs=None,
        check_dygraph=True,
        numeric_place=None,
        check_eager=False,
2250
        check_prim=False,
2251
    ):
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
        core._set_prim_all_enabled(False)
        if check_prim:
            prim_grad_checker = PrimGradChecker(
                self,
                place,
                inputs_to_check,
                output_names,
                no_grad_set,
                user_defined_grad_outputs,
            )
            prim_grad_checker.check()
            # Support operators which not in the NO_FP64_CHECK_GRAD_OP_LIST list can be test prim with fp32
            setattr(self.__class__, 'check_prim', True)
            self._check_grad_helper()
            if prim_grad_checker.is_only_check_prim():
                self.only_prim = True
                return
2269
        # disable legacy dygraph check when check_eager is True
2270
        if check_eager:
2271 2272
            check_dygraph = False

2273
        self.scope = core.Scope()
Q
qijun 已提交
2274
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
2275
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
2276
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
P
phlrain 已提交
2277

Y
Yiqun Liu 已提交
2278 2279
        self._check_grad_helper()
        if self.is_bfloat16_op() and self.is_mkldnn_op():
2280
            check_dygraph = False
2281
            check_eager = False
2282

2283 2284 2285 2286 2287
        if (
            self.dtype == np.float64
            and self.op_type
            not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST
        ):
2288 2289
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7
2290

P
phlrain 已提交
2291 2292 2293
        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
2294 2295 2296

        # oneDNN numeric gradient should use CPU kernel
        use_onednn = False
2297
        if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"]:
2298 2299 2300
            op_attrs["use_mkldnn"] = False
            use_onednn = True

2301 2302 2303 2304 2305 2306 2307 2308
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list,
        )
Y
Yu Yang 已提交
2309

2310 2311 2312
        if use_onednn:
            op_attrs["use_mkldnn"] = True

2313 2314
        if no_grad_set is None:
            no_grad_set = set()
2315
        else:
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
            if (
                (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST)
                and (
                    self.op_type not in no_grad_set_white_list.NOT_CHECK_OP_LIST
                )
                and (not self.is_bfloat16_op())
            ):
                raise AssertionError(
                    "no_grad_set must be None, op_type is "
                    + self.op_type
                    + " Op."
                )
2328

2329 2330 2331
        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)
            tensor_to_check = self.scope.find_var(input_to_check).get_tensor()
2332 2333 2334
            tensor_size = functools.reduce(
                lambda a, b: a * b, tensor_to_check.shape(), 1
            )
2335 2336 2337
            tensor_ndim = len(tensor_to_check.shape())
            # for 0D Tensor, it's additional case for OP, so not raise error
            if tensor_ndim > 0 and tensor_size < 100:
2338 2339
                self.__class__.input_shape_is_large = False

Y
Yancey 已提交
2340 2341 2342
        if not type(output_names) is list:
            output_names = [output_names]

2343 2344 2345
        if numeric_place is None:
            numeric_place = place

Q
Qiao Longfei 已提交
2346
        numeric_grads = user_defined_grads or [
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
            get_numeric_gradient(
                numeric_place,
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
                output_names,
                delta=numeric_grad_delta,
                in_place=in_place,
            )
2357
            for input_to_check in inputs_to_check
2358
        ]
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370

        if self.is_fp16_compared_with_fp32():
            self.enable_cal_ref_output()
            numeric_grads = self._get_gradient(
                inputs_to_check,
                place,
                output_names,
                no_grad_set,
                user_defined_grad_outputs,
            )
            self.disable_cal_ref_output()

2371 2372 2373 2374 2375 2376 2377
        analytic_grads = self._get_gradient(
            inputs_to_check,
            place,
            output_names,
            no_grad_set,
            user_defined_grad_outputs,
        )
2378 2379
        # comparison of bf16 results will happen as fp32
        # loop over list of grads and convert bf16 to fp32
2380
        fp32_analytic_grads = []
2381 2382 2383
        for grad in analytic_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
2384 2385 2386
                max_relative_error = (
                    0.04 if max_relative_error < 0.04 else max_relative_error
                )
2387 2388 2389 2390 2391 2392 2393
            fp32_analytic_grads.append(grad)
        analytic_grads = fp32_analytic_grads

        fp32_numeric_grads = []
        for grad in numeric_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
2394 2395 2396
                max_relative_error = (
                    0.04 if max_relative_error < 0.04 else max_relative_error
                )
2397 2398
            fp32_numeric_grads.append(grad)
        numeric_grads = fp32_numeric_grads
2399

2400 2401 2402 2403 2404 2405 2406
        self._assert_is_close(
            numeric_grads,
            analytic_grads,
            inputs_to_check,
            max_relative_error,
            "Gradient Check On %s" % str(place),
        )
Q
qijun 已提交
2407

2408
        if check_dygraph:
2409 2410 2411
            # ensure switch into legacy dygraph
            g_enable_legacy_dygraph()

2412 2413 2414 2415 2416 2417 2418 2419
            dygraph_grad = self._get_dygraph_grad(
                inputs_to_check,
                place,
                output_names,
                user_defined_grad_outputs,
                no_grad_set,
                False,
            )
2420 2421 2422 2423
            fp32_grads = []
            for grad in dygraph_grad:
                if grad.dtype == np.uint16:
                    grad = convert_uint16_to_float(grad)
2424 2425 2426 2427 2428
                    max_relative_error = (
                        0.03
                        if max_relative_error < 0.03
                        else max_relative_error
                    )
2429 2430
                fp32_grads.append(grad)
            dygraph_grad = fp32_grads
2431 2432 2433 2434 2435 2436 2437
            self._assert_is_close(
                numeric_grads,
                dygraph_grad,
                inputs_to_check,
                max_relative_error,
                "Gradient Check On %s" % str(place),
            )
2438 2439
            # ensure switch back eager dygraph
            g_disable_legacy_dygraph()
2440

2441
        if check_eager:
J
Jiabin Yang 已提交
2442 2443 2444
            with fluid.dygraph.base.guard(place):
                with _test_eager_guard():
                    eager_dygraph_grad = self._get_dygraph_grad(
2445 2446 2447 2448 2449 2450 2451
                        inputs_to_check,
                        place,
                        output_names,
                        user_defined_grad_outputs,
                        no_grad_set,
                        check_eager,
                    )
J
Jiabin Yang 已提交
2452 2453 2454 2455
                    fp32_grads = []
                    for grad in eager_dygraph_grad:
                        if grad.dtype == np.uint16:
                            grad = convert_uint16_to_float(grad)
2456 2457 2458 2459 2460
                            max_relative_error = (
                                0.03
                                if max_relative_error < 0.03
                                else max_relative_error
                            )
J
Jiabin Yang 已提交
2461 2462
                        fp32_grads.append(grad)
                    eager_dygraph_grad = fp32_grads
2463 2464 2465 2466 2467 2468 2469
                    self._assert_is_close(
                        numeric_grads,
                        eager_dygraph_grad,
                        inputs_to_check,
                        max_relative_error,
                        "Gradient Check On %s" % str(place),
                    )
2470

2471 2472 2473 2474 2475 2476 2477 2478 2479
    def _find_var_in_dygraph(self, output_vars, name):
        if name in output_vars:
            return output_vars[name]
        else:
            for output_vars_index in output_vars:
                for output_vars_selected in output_vars[output_vars_index]:
                    if output_vars_selected.name == name:
                        return output_vars_selected

2480 2481 2482 2483 2484 2485 2486 2487 2488
    def _get_dygraph_grad(
        self,
        inputs_to_check,
        place,
        output_names,
        user_defined_grad_outputs=None,
        no_grad_set=None,
        check_eager=False,
    ):
2489 2490 2491 2492 2493 2494 2495
        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
2496 2497
                op_proto, self.inputs, True, True, block
            )
2498 2499 2500

            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
2501 2502
                op_proto, self.outputs, False, False, block
            )
2503

2504
            # prepare attributes
2505 2506 2507 2508 2509
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
2510

2511
            if check_eager:
2512
                eager_outputs = self._calc_python_api_output(
2513 2514
                    place, inputs, outputs
                )
2515
            # if outputs is None, kernel sig is empty or other error is happens.
X
xiongkun 已提交
2516
            if not check_eager or eager_outputs is None:
2517 2518 2519 2520
                block.append_op(
                    type=self.op_type,
                    inputs=inputs,
                    outputs=outputs,
2521 2522
                    attrs=attrs_outputs if hasattr(self, "attrs") else None,
                )
X
xiongkun 已提交
2523 2524
            else:
                outputs = eager_outputs
2525

2526
            if self.dtype == np.uint16:
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
                cast_inputs = self._find_var_in_dygraph(
                    outputs, output_names[0]
                )
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape
                )
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32,
                    },
                )
2542 2543
                outputs = {output_names[0]: cast_outputs}

2544 2545 2546
            outputs_valid = {}
            for output_name in output_names:
                outputs_valid[output_name] = self._find_var_in_dygraph(
2547 2548
                    outputs, output_name
                )
2549

2550 2551 2552 2553 2554 2555 2556
            if user_defined_grad_outputs is None:
                if len(outputs_valid) == 1:
                    loss = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
2557 2558
                        shape=[1],
                    )
2559 2560 2561 2562 2563
                    for outputs_valid_key in outputs_valid:
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[outputs_valid_key]},
                            outputs={"Out": [loss]},
2564 2565
                            attrs=None,
                        )
2566 2567 2568 2569 2570 2571 2572
                else:
                    avg_sum = []
                    for cur_loss in outputs_valid:
                        cur_avg_loss = block.create_var(
                            dtype=self.dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
2573 2574 2575 2576 2577 2578 2579 2580
                            stop_gradient=False,
                        )
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[cur_loss]},
                            outputs={"Out": [cur_avg_loss]},
                            attrs=None,
                        )
2581 2582 2583 2584 2585 2586
                        avg_sum.append(cur_avg_loss)
                    loss_sum = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
2587 2588 2589 2590 2591 2592 2593 2594
                        shape=[1],
                    )
                    block.append_op(
                        type='sum',
                        inputs={"X": avg_sum},
                        outputs={"Out": loss_sum},
                        attrs=None,
                    )
2595
                    loss = block.create_var(
2596 2597 2598
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
2599
                        stop_gradient=False,
2600 2601 2602 2603 2604 2605 2606 2607
                        shape=[1],
                    )
                    block.append_op(
                        type='scale',
                        inputs={"X": loss_sum},
                        outputs={"Out": loss},
                        attrs={'scale': 1.0 / float(len(avg_sum))},
                    )
2608
                loss.backward()
2609

2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
                fetch_list_grad = []
                for inputs_to_check_name in inputs_to_check:
                    a = inputs_grad_dict[inputs_to_check_name].gradient()
                    fetch_list_grad.append(a)
                return fetch_list_grad
            else:
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                grad_outputs = []
                for grad_out_value in user_defined_grad_outputs:
                    grad_outputs.append(paddle.to_tensor(grad_out_value))
2622
                # delete the inputs which no need to calculate grad
C
chentianyu03 已提交
2623
                for no_grad_val in no_grad_set:
2624
                    del inputs[no_grad_val]
C
chentianyu03 已提交
2625

姜永久 已提交
2626
                if in_dygraph_mode():
2627 2628 2629
                    core.eager.run_backward(
                        fluid.layers.utils.flatten(outputs), grad_outputs, False
                    )
2630 2631 2632 2633 2634 2635 2636 2637 2638
                    grad_inputs = []
                    for inputs_list in inputs.values():
                        for inp in inputs_list:
                            grad_inputs.append(inp.grad.numpy())
                    return grad_inputs
                else:
                    grad_inputs = paddle.grad(
                        outputs=fluid.layers.utils.flatten(outputs),
                        inputs=fluid.layers.utils.flatten(inputs),
2639 2640
                        grad_outputs=grad_outputs,
                    )
2641
                    return [grad.numpy() for grad in grad_inputs]
2642

Y
Yu Yang 已提交
2643 2644 2645 2646 2647
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
2648
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
2649 2650
        return tensor

K
Kexin Zhao 已提交
2651
    @staticmethod
K
Kexin Zhao 已提交
2652 2653
    def np_dtype_to_fluid_dtype(input):
        return input
K
Kexin Zhao 已提交
2654

D
dzhwinter 已提交
2655 2656 2657 2658 2659 2660 2661 2662
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

2663 2664 2665 2666 2667 2668 2669 2670 2671
    def _get_gradient(
        self,
        input_to_check,
        place,
        output_names,
        no_grad_set,
        user_defined_grad_outputs=None,
        parallel=False,
    ):
C
Charles-hit 已提交
2672
        with paddle.fluid.framework._static_guard():
2673 2674 2675 2676
            prog = Program()
            scope = core.Scope()
            block = prog.global_block()
            self._append_ops(block)
Y
Yu Yang 已提交
2677

2678 2679 2680
            inputs = self._get_inputs(block)
            outputs = self._get_outputs(block)
            feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
2681

2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
            if user_defined_grad_outputs is None:
                if self.dtype == np.uint16:
                    cast_inputs = list(map(block.var, output_names))
                    cast_outputs = block.create_var(
                        dtype="float32", shape=cast_inputs[0].shape
                    )
                    cast_op = block.append_op(
                        inputs={"X": cast_inputs},
                        outputs={"Out": cast_outputs},
                        type="cast",
                        attrs={
                            "in_dtype": core.VarDesc.VarType.BF16,
                            "out_dtype": core.VarDesc.VarType.FP32,
                        },
                    )
                    cast_op.desc.infer_var_type(block.desc)
                    cast_op.desc.infer_shape(block.desc)
                    output_names = [cast_outputs.name]
                loss = append_loss_ops(block, output_names)
                param_grad_list = append_backward(
                    loss=loss,
                    parameter_list=input_to_check,
                    no_grad_set=no_grad_set,
2705
                )
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
                fetch_list = [g for p, g in param_grad_list]
            else:
                assert (
                    parallel is False
                ), "unsupported parallel mode when giving custom grad outputs."
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                grad_outputs = []
                for grad_out_value in user_defined_grad_outputs:
                    # `presistable` is used to avoid executor create new var in local scope
                    var = block.create_var(
                        shape=grad_out_value.shape,
                        dtype=grad_out_value.dtype,
                        persistable=True,
                    )
                    true_var = scope.var(var.name)
                    tensor = true_var.get_tensor()
                    tensor.set(grad_out_value, place)
                    grad_outputs.append(var)
                targets = [
                    outputs[name] for name in outputs if name in output_names
                ]
                inputs = [
                    inputs[name] for name in input_to_check if name in inputs
                ]
                grad_inputs = paddle.static.gradients(
                    targets, inputs, grad_outputs, no_grad_set
2734
                )
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
                fetch_list = grad_inputs

            if parallel:
                use_cuda = False
                if isinstance(place, fluid.CUDAPlace):
                    use_cuda = True
                compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
                    loss_name=loss.name, places=place
                )
                prog = compiled_prog
            executor = fluid.Executor(place)
            res = list(
                map(
                    np.array,
                    executor.run(
                        prog,
                        feed_dict,
                        fetch_list,
                        scope=scope,
                        return_numpy=False,
                    ),
2756 2757
                )
            )
2758
        return res
A
arlesniak 已提交
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768


class OpTestTool:
    @classmethod
    def skip_if(cls, condition: object, reason: str):
        return unittest.skipIf(condition, reason)

    @classmethod
    def skip_if_not_cpu_bf16(cls):
        return OpTestTool.skip_if(
2769 2770 2771 2772 2773 2774
            not (
                isinstance(_current_expected_place(), core.CPUPlace)
                and core.supports_bfloat16()
            ),
            "Place does not support BF16 evaluation",
        )
2775 2776 2777 2778 2779

    @classmethod
    def skip_if_not_cpu(cls):
        return OpTestTool.skip_if(
            not isinstance(_current_expected_place(), core.CPUPlace),
2780 2781
            "OneDNN supports only CPU for now",
        )