op_test.py 77.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

B
baojun 已提交
17
import os
18
import unittest
19
import warnings
20
import numpy as np
21
import random
M
minqiyang 已提交
22
import six
23
import struct
24
import time
25
import itertools
Y
Yu Yang 已提交
26
import collections
M
minqiyang 已提交
27
from collections import defaultdict
28

29
import paddle
30 31
import paddle.fluid as fluid
import paddle.fluid.core as core
32 33 34
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
A
arlesniak 已提交
35
from paddle.fluid.framework import Program, OpProtoHolder, Variable, _current_expected_place
36 37 38 39 40
from paddle.fluid.tests.unittests.testsuite import (
    create_op,
    set_input,
    append_input_output,
    append_loss_ops, )
41
from paddle.fluid import unique_name
42 43 44 45 46 47 48
from paddle.fluid.tests.unittests.white_list import (
    op_accuracy_white_list,
    check_shape_white_list,
    compile_vs_runtime_white_list,
    no_check_set_white_list,
    op_threshold_white_list,
    no_grad_set_white_list, )
49 50


51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
def check_out_dtype(api_fn, in_specs, expect_dtypes, target_index=0, **configs):
    """
    Determines whether dtype of output tensor is as expected.

    Args:
        api_fn(callable):  paddle api function
        in_specs(list[tuple]): list of shape and dtype information for constructing input tensor of api_fn, such as [(shape, dtype), (shape, dtype)].
        expected_dtype(list[str]): expected dtype of output tensor.
        target_index(int): indicate which one from in_specs to infer the dtype of output.
        config(dict): other arguments of paddle api function

    Example:
        check_out_dtype(fluid.layers.pad_constant_like, [([2,3,2,3], 'float64'), ([1, 3, 1,3], )], ['float32', 'float64', 'int64'], target_index=1, pad_value=0.)

    """
    paddle.enable_static()
    for i, expect_dtype in enumerate(expect_dtypes):
        with paddle.static.program_guard(paddle.static.Program()):
            input_t = []
            for index, spec in enumerate(in_specs):
                if len(spec) == 1:
                    shape = spec[0]
                    dtype = expect_dtype if target_index == index else 'float32'
                elif len(spec) == 2:
                    shape, dtype = spec
                else:
                    raise ValueError(
                        "Value of in_specs[{}] should contains two elements: [shape, dtype]".
                        format(index))
                input_t.append(
                    paddle.static.data(
                        name='data_%s' % index, shape=shape, dtype=dtype))

            out = api_fn(*input_t, **configs)
            out_dtype = fluid.data_feeder.convert_dtype(out.dtype)

            if out_dtype != expect_dtype:
                raise ValueError(
                    "Expected out.dtype is {}, but got {} from {}.".format(
                        expect_dtype, out_dtype, api_fn.__name__))


93 94 95 96 97 98 99 100
def _set_use_system_allocator(value=None):
    USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
    old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
    value = old_value if value is None else value
    core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
    return old_value


101 102 103 104
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
M
minqiyang 已提交
105
    for i in six.moves.xrange(len(prob)):
106 107 108 109
        prob[i] /= prob_sum[i]
    return prob


110 111
def get_numeric_gradient(place,
                         scope,
112 113 114
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
115
                         output_names,
116
                         delta=0.005,
C
chengduo 已提交
117
                         in_place=False):
Y
Yu Yang 已提交
118
    # FIXME: change this method by compile time concepts
119
    set_input(scope, op, inputs, place)
120 121

    def product(dim):
M
minqiyang 已提交
122
        return six.moves.reduce(lambda a, b: a * b, dim, 1)
123 124

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
125 126
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
127
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
128
        tensor_to_check_dtype = np.float32
129
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
130
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
131 132 133 134
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
135 136
    elif tensor_to_check_dtype == core.VarDesc.VarType.BF16:
        tensor_to_check_dtype = np.float32
L
Lijunhui 已提交
137 138 139 140
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX64:
        tensor_to_check_dtype = np.complex64
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX128:
        tensor_tp_check_dtype = np.complex128
141 142 143 144
    else:
        raise ValueError("Not supported data type " + str(
            tensor_to_check_dtype))

C
chengduo 已提交
145 146 147 148
    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
149 150 151 152
            output_numpy = np.array(scope.find_var(output_name).get_tensor())
            if tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
                output_numpy = convert_uint16_to_float(output_numpy)
            sum.append(output_numpy.astype(tensor_to_check_dtype).mean())
C
chengduo 已提交
153 154
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

155 156 157
    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
158 159 160 161
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
162 163 164 165 166
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            numpy_tensor = numpy_tensor.flatten()
            return struct.unpack('<f', struct.pack('<I', numpy_tensor[i]
                                                   << 16))[0]
D
dzhwinter 已提交
167
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
168
            return tensor._get_float_element(i)
169
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
170
            return tensor._get_double_element(i)
171 172 173
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
174 175

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
176 177 178 179 180
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
181
            numpy_tensor = numpy_tensor.reshape(shape)
D
dzhwinter 已提交
182
            tensor.set(numpy_tensor, place)
183 184 185 186 187 188 189
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = np.uint16(copy_bits_from_float_to_uint16(e))
            numpy_tensor = numpy_tensor.reshape(shape)
            tensor.set(numpy_tensor, place)
D
dzhwinter 已提交
190
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
191
            tensor._set_float_element(i, e)
192
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
193
            tensor._set_double_element(i, e)
194 195 196
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
197

198 199
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
M
minqiyang 已提交
200
    for i in six.moves.xrange(tensor_size):
201
        if in_place:
202
            set_input(scope, op, inputs, place)
203 204

        # get one input element throw it's index i.
205
        origin = __get_elem__(tensor_to_check, i)
206 207
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
208
        __set_elem__(tensor_to_check, i, x_pos)
209 210 211
        y_pos = get_output()

        if in_place:
212
            set_input(scope, op, inputs, place)
213 214

        x_neg = origin - delta
215
        __set_elem__(tensor_to_check, i, x_neg)
216 217
        y_neg = get_output()

218
        __set_elem__(tensor_to_check, i, origin)
219 220
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
221
    return gradient_flat.reshape(tensor_to_check.shape())
222 223


224 225
def skip_check_grad_ci(reason=None):
    """Decorator to skip check_grad CI.
C
cc 已提交
226

227
       Check_grad is required for Op test cases. However, there are some special
C
cc 已提交
228
       cases that do not need to do check_grad. This decorator is used to skip the
229
       check_grad of the above cases.
C
cc 已提交
230 231

       Note: the execution of unit test will not be skipped. It just avoids check_grad
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
       checking in tearDownClass method by setting a `no_need_check_grad` flag.

       Example:
           @skip_check_grad_ci(reason="For inference, check_grad is not required.")
           class TestInference(OpTest):
    """
    if not isinstance(reason, str):
        raise AssertionError("The reason for skipping check_grad is required.")

    def wrapper(cls):
        cls.no_need_check_grad = True
        return cls

    return wrapper


248 249 250 251
def copy_bits_from_float_to_uint16(f):
    return struct.unpack('<I', struct.pack('<f', f))[0] >> 16


252 253 254 255
def convert_float_to_uint16(float_list, data_format="NCHW"):
    if data_format == "NHWC":
        float_list = np.transpose(float_list, [0, 3, 1, 2])

256 257 258
    new_output = []
    for x in np.nditer(float_list):
        new_output.append(np.uint16(copy_bits_from_float_to_uint16(x)))
259
    new_output = np.reshape(new_output, float_list.shape).view(np.uint16)
260

261 262 263
    if data_format == "NHWC":
        new_output = np.transpose(new_output, [0, 2, 3, 1])
    return new_output
264 265


266 267 268 269 270 271
def convert_uint16_to_float(in_list):
    in_list = np.asarray(in_list)
    out = np.vectorize(
        lambda x: struct.unpack('<f', struct.pack('<I', x << 16))[0],
        otypes=[np.float32])(in_list.flat)
    return np.reshape(out, in_list.shape)
272 273


274
class OpTest(unittest.TestCase):
275 276 277 278 279
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
280
        cls.call_once = False
281
        cls.dtype = None
282
        cls.outputs = {}
283
        cls.input_shape_is_large = True
284 285 286 287

        np.random.seed(123)
        random.seed(124)

288 289 290 291
        if paddle.is_compiled_with_npu():
            cls._use_system_allocator = _set_use_system_allocator(False)
        else:
            cls._use_system_allocator = _set_use_system_allocator(True)
292

293 294
    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
295
        """Restore random seeds"""
296 297 298
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

299 300
        _set_use_system_allocator(cls._use_system_allocator)

301 302 303 304
        def is_empty_grad_op(op_type):
            all_op_kernels = core._get_all_register_op_kernels()
            grad_op = op_type + '_grad'
            if grad_op in all_op_kernels.keys():
J
juncaipeng 已提交
305
                if is_mkldnn_op_test():
306 307 308 309 310 311 312 313
                    grad_op_kernels = all_op_kernels[grad_op]
                    for grad_op_kernel in grad_op_kernels:
                        if 'MKLDNN' in grad_op_kernel:
                            return False
                else:
                    return False
            return True

314 315 316
        def is_xpu_op_test():
            return hasattr(cls, "use_xpu") and cls.use_xpu == True

J
juncaipeng 已提交
317
        def is_mkldnn_op_test():
318
            return hasattr(cls, "use_mkldnn") and cls.use_mkldnn == True
J
juncaipeng 已提交
319

320 321 322
        def is_rocm_op_test():
            return core.is_compiled_with_rocm()

323 324 325
        def is_npu_op_test():
            return hasattr(cls, "use_npu") and cls.use_npu == True

326 327
        if not hasattr(cls, "op_type"):
            raise AssertionError(
328 329
                "This test do not have op_type in class attrs, "
                "please set self.__class__.op_type=the_real_op_type manually.")
330

J
juncaipeng 已提交
331 332
        # case in NO_FP64_CHECK_GRAD_CASES and op in NO_FP64_CHECK_GRAD_OP_LIST should be fixed
        if not hasattr(cls, "no_need_check_grad") \
333
            and not is_empty_grad_op(cls.op_type):
J
juncaipeng 已提交
334
            if cls.dtype is None or \
335 336
                (cls.dtype == np.float16 \
                    and cls.op_type not in op_accuracy_white_list.NO_FP16_CHECK_GRAD_OP_LIST \
J
juncaipeng 已提交
337 338 339 340
                    and not hasattr(cls, "exist_check_grad")):
                raise AssertionError("This test of %s op needs check_grad." %
                                     cls.op_type)

341
            # check for op test with fp64 precision, but not check mkldnn op test for now
J
juncaipeng 已提交
342 343
            if cls.dtype in [np.float32, np.float64] \
                and cls.op_type not in op_accuracy_white_list.NO_FP64_CHECK_GRAD_OP_LIST \
344
                and not hasattr(cls, 'exist_fp64_check_grad') \
345
                and not is_xpu_op_test() \
346
                and not is_mkldnn_op_test() \
347 348
                and not is_rocm_op_test() \
                and not is_npu_op_test():
J
juncaipeng 已提交
349 350 351 352
                raise AssertionError(
                    "This test of %s op needs check_grad with fp64 precision." %
                    cls.op_type)

353
            if not cls.input_shape_is_large \
354 355 356 357
                and cls.op_type not in check_shape_white_list.NEED_TO_FIX_OP_LIST:
                raise AssertionError(
                    "Input's shape should be large than or equal to 100 for " +
                    cls.op_type + " Op.")
358

359 360 361 362 363
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

364 365 366
    def is_bfloat16_op(self):
        return self.dtype == np.uint16 or (
            hasattr(self, 'mkldnn_data_type') and
367 368 369
            getattr(self, 'mkldnn_data_type') is "bfloat16") or (
                hasattr(self, 'attrs') and 'mkldnn_data_type' in self.attrs and
                self.attrs['mkldnn_data_type'] == 'bfloat16')
370

371
    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
J
juncaipeng 已提交
372 373 374 375
        def is_np_data(input):
            return isinstance(input, (np.ndarray, np.generic))

        def infer_dtype(numpy_dict, dtype_set):
376 377 378
            assert isinstance(
                numpy_dict,
                dict), "self.inputs, self.outputs must be numpy_dict"
J
juncaipeng 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
            # the inputs are as follows:
            # case 1: inputs = {'X': x}
            # case 2: inputs = {'X': (x, x_lod)}
            # case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
            # case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
            # TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
            for _, var_value in six.iteritems(numpy_dict):
                if is_np_data(var_value):  # case 1
                    dtype_set.add(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):  # case 2, 3, 4
                    for sub_val_value in var_value:
                        if is_np_data(sub_val_value):  # case 2
                            dtype_set.add(sub_val_value.dtype)
                        elif len(sub_val_value) > 1 and is_np_data(
                                sub_val_value[1]):  # case 3
                            dtype_set.add(sub_val_value[1].dtype)
                        elif len(sub_val_value) > 1 and isinstance(sub_val_value[1], (list, tuple)) \
                            and is_np_data(sub_val_value[1][0]): # case 4
                            dtype_set.add(sub_val_value[1][0].dtype)

        # infer dtype from inputs, and dtype means the precision of the test
        # collect dtype of all inputs
        dtype_set = set()
        infer_dtype(inputs, dtype_set)
        dtype_list = [
            np.dtype(np.float64), np.dtype(np.float32), np.dtype(np.float16),
405 406 407
            np.dtype(np.int64), np.dtype(np.int32), np.dtype(np.uint16),
            np.dtype(np.int16), np.dtype(np.int8), np.dtype(np.uint8),
            np.dtype(np.bool)
J
juncaipeng 已提交
408 409 410 411 412 413
        ]
        # check the dtype in dtype_list in order, select the first dtype that in dtype_set
        for dtype in dtype_list:
            if dtype in dtype_set:
                self.dtype = dtype
                break
414 415
        # save dtype in class attr
        self.__class__.dtype = self.dtype
416

Y
Yang Yang(Tony) 已提交
417 418 419 420 421 422
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
423
                    if isinstance(np_value, tuple):
424
                        tensor.set(np_value[0], place)
425
                        tensor.set_recursive_sequence_lengths(np_value[1])
426
                    else:
427
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
428 429 430 431
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
432
                    tensor.set(self.inputs[var_name][0], place)
433 434
                    tensor.set_recursive_sequence_lengths(self.inputs[var_name][
                        1])
Y
Yang Yang(Tony) 已提交
435
                else:
436
                    tensor.set(self.inputs[var_name], place)
Y
Yang Yang(Tony) 已提交
437 438 439
                feed_map[var_name] = tensor
        return feed_map

440
    def _append_ops(self, block):
J
juncaipeng 已提交
441
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
442 443 444 445
        if (hasattr(self, "use_mkldnn") and self.use_mkldnn == True) or \
            (hasattr(self, "attrs") and "use_mkldnn" in self.attrs and \
                    self.attrs["use_mkldnn"] == True):
            self.__class__.use_mkldnn = True
C
cc 已提交
446

447 448 449 450 451
        if (hasattr(self, "use_xpu") and self.use_xpu == True) or \
            (hasattr(self, "attrs") and "use_xpu" in self.attrs and \
                    self.attrs["use_xpu"] == True):
            self.__class__.use_xpu = True

Y
Yang Yang(Tony) 已提交
452
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
453 454 455 456 457 458
        "infer datatype from inputs and outputs for this test case"
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        inputs = append_input_output(block, op_proto, self.inputs, True,
                                     self.dtype)
        outputs = append_input_output(block, op_proto, self.outputs, False,
                                      self.dtype)
P
phlrain 已提交
459 460 461 462 463 464 465 466 467

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True)

Y
Yang Yang(Tony) 已提交
468 469 470 471 472
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=self.attrs if hasattr(self, "attrs") else dict())
C
cc 已提交
473
        # infer variable type and infer shape in compile-time
Q
QI JUN 已提交
474 475
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
476

477 478
        return op

479 480
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
M
minqiyang 已提交
481
        for name, value in six.iteritems(numpy_inputs):
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

M
minqiyang 已提交
501 502 503 504
    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
L
lujun 已提交
505
            v = fluid.dygraph.base.to_variable(value=data)
506
            v.value().get_tensor().set_recursive_sequence_lengths(lod)
M
minqiyang 已提交
507 508
            return v
        else:
L
lujun 已提交
509
            return fluid.dygraph.base.to_variable(value)
M
minqiyang 已提交
510

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
    def get_sequence_batch_size_1_input(self, lod=None, shape=None):
        """Get LoD input data whose batch size is 1.
        All sequence related OP unittests should call this function to contain the case of batch size = 1.
        Args:
            lod (list[list of int], optional): Length-based LoD, length of lod[0] should be 1. Default: [[13]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod) : LoD input data whose batch size is 1.
        """
        if lod is None:
            lod = [[13]]
        if shape is None:
            shape = [13, 23]
        assert len(lod[0]) == 1
        assert lod[0][0] == shape[0]
        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
    def lod_has_single_zero(self, lod):
        for i in range(len(lod) - 2):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] != 0:
                return True
        return False

    def lod_has_continuous_zero(self, lod):
        for i in range(len(lod) - 3):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] == 0 and lod[
                    i + 3] != 0:
                return True
        return False

    def get_sequence_instance_size_0_input(self, lod=None, shape=None):
        """Get LoD input data whose instance size is 0.
        All sequence related OP unittests should call this function to contain the case of instance size is 0.
        Args:
            lod (list[list of int], optional): Length-based LoD, lod[0]'s size must at least eight, lod[0] must at least two zeros at the beginning and at least two zeros at the end, the middle position of lod[0] contains a single zero and multiple zero. Default: [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod): LoD input data whose instance size is 0.
        """
        if lod is None:
            lod = [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]]
        if shape is None:
            shape = [12, 10]
        assert len(lod[0]) >= 8
        assert lod[0][0] == 0 and lod[0][1] == 0 and lod[0][-1] == 0 and lod[0][
            -2] == 0
        assert self.lod_has_single_zero(lod[0]) is True
        assert self.lod_has_continuous_zero(lod[0]) is True
        assert sum(lod[0]) == shape[0]

        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
    def append_input_output_for_dygraph(self, op_proto, np_list, is_input,
                                        if_return_inputs_grad_dict, block):
        def create_var(np_value, name, is_input, if_return_inputs_grad_dict):
            np_value_temp = np_value
            has_lod = False
            lod_temp = None
            if isinstance(np_value, tuple):
                np_value_temp = np_value[0]
                has_lod = True
                lod_temp = np_value[1]

            if is_input:
                v = self._create_var_from_numpy(np_value_temp)
                if if_return_inputs_grad_dict:
                    v.stop_gradient = False
                if has_lod:
581
                    v.value().get_tensor().set_recursive_sequence_lengths(
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
                        lod_temp)
            else:
                v = block.create_var(
                    name=name,
                    dtype=np_value_temp.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False)

            return v

        # prepare variable for input or output
        var_dict = defaultdict(list)
        if if_return_inputs_grad_dict:
            inputs_grad_dict = defaultdict()
        proto_list = op_proto.inputs if is_input else op_proto.outputs
        for var_proto in proto_list:
            name = var_proto.name
            if (name not in np_list) and var_proto.dispensable:
                continue
            if name not in np_list:
                assert var_proto.intermediate, "{} not found".format(name)
                v = block.create_var(
                    dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v
                continue
            if var_proto.duplicable:
                assert isinstance(
                    np_list[name],
                    list), "Duplicable {} should be set as list".format(name)
                var_list = []
                slot_name = name
                for (name, np_value) in np_list[name]:
                    v = create_var(np_value, name, is_input,
                                   if_return_inputs_grad_dict)
                    var_list.append(v)
                    if if_return_inputs_grad_dict:
                        inputs_grad_dict[name] = v
                var_dict[slot_name] = var_list
            else:
                nplist_value_temp = None
                name_temp = None
                if isinstance(np_list[name], list):
                    nplist_value_temp = np_list[name][0]
                    name_temp = name
                else:
                    nplist_value_temp = np_list[name]
                    name_temp = unique_name.generate("%s_out" % (name))
                v = create_var(nplist_value_temp, name_temp, is_input,
                               if_return_inputs_grad_dict)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v

        if if_return_inputs_grad_dict:
            return var_dict, inputs_grad_dict
        else:
            return var_dict

L
lujun 已提交
643
    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
J
juncaipeng 已提交
644
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
L
lujun 已提交
645
        with fluid.dygraph.base.guard(place=place):
M
minqiyang 已提交
646 647
            block = fluid.default_main_program().global_block()

648
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
M
minqiyang 已提交
649

650 651 652
            # prepare input variable
            inputs = self.append_input_output_for_dygraph(op_proto, self.inputs,
                                                          True, False, block)
M
minqiyang 已提交
653 654

            # prepare output variable
655 656 657 658 659 660 661 662 663
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
M
minqiyang 已提交
664 665 666 667
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
668
                attrs=attrs_outputs if hasattr(self, "attrs") else None)
M
minqiyang 已提交
669
            return outputs
670

671 672 673 674 675 676
    def _calc_output(self,
                     place,
                     parallel=False,
                     no_check_set=None,
                     loss=None,
                     enable_inplace=None,
677
                     for_inplace_test=None):
678 679
        program = Program()
        block = program.global_block()
680
        op = self._append_ops(block)
681 682 683 684 685

        inputs = self._get_inputs(block)
        outputs = self._get_outputs(block)
        feed_map = self.feed_var(inputs, place)

686
        if for_inplace_test:
C
cc 已提交
687 688
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
689 690
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
691 692
            for out_name in op.output_arg_names:
                var = block.var(out_name)
693 694
                if 0 in var.shape:
                    var.persistable = True
695
        original_program = program
696 697
        if parallel:
            use_cuda = False
698
            if isinstance(place, fluid.CUDAPlace):
699
                use_cuda = True
700 701 702
            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                loss_name=loss.name if loss else None, places=place)
            program = compiled_prog
703 704 705 706
        fetch_list = getattr(self, "fetch_list", [])
        # if the fetch_list is customized by user, we use it directly.
        # if not, fill the fetch_list by the user configured outputs in test.
        if len(fetch_list) == 0:
M
minqiyang 已提交
707
            for var_name, var in six.iteritems(outputs):
708 709
                if no_check_set is not None and var_name in no_check_set:
                    continue
Y
Yang Yang(Tony) 已提交
710 711
                if isinstance(var, list):
                    for v in var:
712
                        fetch_list.append(v.name)
Y
Yang Yang(Tony) 已提交
713
                else:
714
                    fetch_list.append(var.name)
715 716 717 718
        # if the fetch_list still empty, fill the fetch_list by the operator output.
        if len(fetch_list) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                fetch_list.append(str(out_name))
719 720 721 722 723 724 725 726 727

        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace

            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                build_strategy=build_strategy, places=place)
            program = compiled_prog

728
        executor = Executor(place)
729 730 731 732
        outs = executor.run(program,
                            feed=feed_map,
                            fetch_list=fetch_list,
                            return_numpy=False)
733 734
        self.op = op
        self.program = original_program
735 736 737 738
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list
Y
Yang Yang(Tony) 已提交
739

740 741 742 743 744 745 746 747 748
    def _compare_expect_and_actual_outputs(self,
                                           place,
                                           fetch_list,
                                           expect_outs,
                                           actual_outs,
                                           inplace_atol=None):
        """Compare expect outs and actual outs of an tested op.

        Args:
C
cc 已提交
749
            place (CPUPlace | CUDAPlace): The place where the op runs.
750 751 752 753 754 755 756 757 758 759
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
C
cc 已提交
760
            # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
761 762 763
            # computational consistency.
            # When inplace_atol is not None, the inplace check uses numpy.allclose
            # to check inplace result instead of numpy.array_equal.
764 765
            expect_out = np.array(expect_outs[i])
            actual_out = np.array(actual_outs[i])
766 767 768
            if inplace_atol is not None:
                self.assertTrue(
                    np.allclose(
769
                        expect_out, actual_out, atol=inplace_atol),
770 771
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
772 773
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__)
774 775
            else:
                self.assertTrue(
776
                    np.array_equal(expect_out, actual_out),
777 778
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
779 780
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__ + '\n')
781 782 783 784 785 786 787 788

    def _construct_grad_program_from_forward(self, fwd_program, grad_op_desc,
                                             op_grad_to_var):
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
789
            op_grad_to_var (dict): The relation of variables in grad op and its forward op.
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
        for arg in grad_op_desc.input_arg_names(
        ) + grad_op_desc.output_arg_names():
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
                fwd_var_name)
            grad_var = grad_block.create_var(
                name=arg,
                dtype=fwd_var.dtype,
                shape=fwd_var.shape,
                type=fwd_var.type,
                persistable=False)

C
cc 已提交
816 817
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

    def _construct_grad_feed_map_from_forward(self, place, fwd_res,
                                              grad_op_desc, op_grad_to_var):
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
833
            place (CPUPlace | CUDAPlace): The place where the op runs.
834 835 836
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
837
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op.
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)
        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
C
cc 已提交
869

870
        Args:
C
cc 已提交
871 872
            op_desc (OpDesc): The op_desc of current op.
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op.
873
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
C
cc 已提交
874

875 876 877 878 879 880 881 882 883 884 885 886 887 888
        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
C
cc 已提交
889
                # get grad_op_desc
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                    op_desc, set(), [])
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
                        if grad_op_desc.type(
                        ) not in visited_ops and _dfs_grad_op(
                                grad_op_desc, fwd_op_desc=op_desc):
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

    def _check_forward_inplace(self,
                               place,
                               no_check_set=None,
                               inplace_atol=None):
913
        """Check the inplace correctness of given op (self.op_type).
914
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
C
cc 已提交
915

916
        Args:
C
cc 已提交
917
            place (CPUPlace | CUDAPlace): The place where the op runs.
918 919 920 921
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
922 923
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
924 925
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
926 927 928 929 930 931 932 933 934 935
        expect_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=False,
            for_inplace_test=True)
        actual_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=True,
            for_inplace_test=True)
936
        # compare expect_outs and actual_outs
937 938 939 940 941 942
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
943 944 945 946 947 948 949 950 951 952 953 954 955
        return expect_res

    def _calc_grad_output(self,
                          place,
                          fwd_res,
                          grad_op_desc,
                          enable_inplace=None):
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
956
            place (CPUPlace | CUDAPlace): The place where the op runs.
957 958 959 960 961 962 963 964 965
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
966
        grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(fwd_op_desc,
967
                                                                  set(), [])
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
        grad_program = self._construct_grad_program_from_forward(
            fwd_program, grad_op_desc, op_grad_to_var)
        grad_feed_map = self._construct_grad_feed_map_from_forward(
            place, fwd_res, grad_op_desc, op_grad_to_var)
        grad_fetch_list = grad_op_desc.output_arg_names()
        exe = Executor(place)
        program = grad_program
        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace
            compiled_program = fluid.CompiledProgram(
                grad_program).with_data_parallel(
                    loss_name="", build_strategy=build_strategy, places=place)
            program = compiled_program
        outs = exe.run(program,
                       feed=grad_feed_map,
                       fetch_list=grad_fetch_list,
                       return_numpy=False)
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

    def _check_grad_inplace(self,
                            place,
                            fwd_res,
                            grad_op_desc,
                            inplace_atol=None):
993
        """Check the inplace correctness of given grad_op_desc.
994 995 996 997 998 999

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
C
cc 已提交
1000
            place (CPUPlace | CUDAPlace): The place where the op runs.
1001 1002 1003 1004 1005 1006
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1007 1008
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
        """
        expect_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=False)
        actual_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=True)
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
        return expect_res
1021

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
    def check_inplace_output_with_place(self,
                                        place,
                                        no_check_set=None,
                                        inplace_atol=None):
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
C
cc 已提交
1032
            place (CPUPlace | CUDAPlace): The place where the op runs.
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)

        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True)
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
1048 1049
        if hasattr(self, 'attrs') and bool(self.attrs.get('use_xpu', False)):
            return
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
                        inplace_atol=inplace_atol)
                else:
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True)
            else:
1063 1064
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn
                # skip op that use_mkldnn currently
1065
                flags_use_mkldnn = fluid.core.globals()["FLAGS_use_mkldnn"]
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
                attrs_use_mkldnn = hasattr(
                    self,
                    'attrs') and bool(self.attrs.get('use_mkldnn', False))
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
                        place, fwd_res, op_desc, inplace_atol=inplace_atol)
1078
                else:
1079 1080
                    res[op_desc] = self._calc_grad_output(place, fwd_res,
                                                          op_desc)
1081

1082 1083
    def check_output_with_place(self,
                                place,
1084
                                atol=0,
1085
                                no_check_set=None,
M
minqiyang 已提交
1086
                                equal_nan=False,
1087
                                check_dygraph=True,
1088
                                inplace_atol=None):
1089 1090 1091 1092 1093
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST:
            atol = 0

1094 1095 1096 1097 1098 1099 1100 1101
        if self.is_bfloat16_op():
            check_dygraph = False
            if hasattr(self, 'force_fp32_output') and getattr(
                    self, 'force_fp32_output'):
                atol = 1e-2
            else:
                atol = 2

1102 1103 1104 1105
        if no_check_set is not None:
            if self.op_type not in no_check_set_white_list.no_check_set_white_list:
                raise AssertionError(
                    "no_check_set of op %s must be set to None." % self.op_type)
1106

L
lujun 已提交
1107 1108
        if check_dygraph:
            dygraph_outs = self._calc_dygraph_output(
M
minqiyang 已提交
1109
                place, no_check_set=no_check_set)
1110
        outs, fetch_list = self._calc_output(place, no_check_set=no_check_set)
1111

Y
Yang Yang(Tony) 已提交
1112
        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
1113 1114
            if out_name not in self.outputs:
                continue
1115 1116
            if no_check_set is not None and out_name in no_check_set:
                continue
1117

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
            def find_imperative_actual(target_name, dygraph_outs, place):
                with fluid.dygraph.base.guard(place=place):
                    for name in dygraph_outs:
                        if name == target_name:
                            return dygraph_outs[name][0]
                        var_list = dygraph_outs[name]
                        for i, var in enumerate(var_list):
                            if var.name == target_name:
                                return dygraph_outs[name][i]
                    self.assertTrue(False, "Found failed {} {}".format(
                        dygraph_outs.keys(), target_name))

Y
Yang Yang(Tony) 已提交
1130 1131
            def find_actual(target_name, fetch_list):
                found = [
1132 1133
                    i for i, var_name in enumerate(fetch_list)
                    if var_name == target_name
Y
Yang Yang(Tony) 已提交
1134 1135 1136 1137 1138 1139
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

1140 1141
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
1142 1143 1144
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
1145 1146
                for item in sub_out:
                    sub_out_name, expect = item[0], item[1]
L
lujun 已提交
1147
                    if check_dygraph:
1148 1149
                        imperative_actual = find_imperative_actual(
                            sub_out_name, dygraph_outs, place)
1150 1151
                        imperative_actual_t = np.array(imperative_actual.value()
                                                       .get_tensor())
Y
Yang Yang(Tony) 已提交
1152
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
1153 1154
                    actual = outs[idx]
                    actual_t = np.array(actual)
1155 1156
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
1157 1158
                    self.assertTrue(
                        np.allclose(
1159
                            actual_t, expect_t, atol=atol, equal_nan=equal_nan),
Y
Yang Yang(Tony) 已提交
1160 1161
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
L
lujun 已提交
1162
                    if check_dygraph:
M
minqiyang 已提交
1163 1164 1165 1166 1167 1168 1169
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + sub_out_name + ") has diff at " +
L
lujun 已提交
1170
                            str(place) + " in dygraph mode")
1171 1172
                    if isinstance(expect, tuple):
                        self.assertListEqual(
1173 1174
                            actual.recursive_sequence_lengths(), expect[1],
                            "Output (" + sub_out_name +
Q
QI JUN 已提交
1175
                            ") has different lod at " + str(place))
1176 1177
                        if check_dygraph:
                            self.assertListEqual(
1178
                                imperative_actual.value().get_tensor()
1179 1180 1181 1182
                                .recursive_sequence_lengths(), expect[1],
                                "Output (" + out_name +
                                ") has different lod at " + str(place) +
                                " in dygraph mode")
1183
            else:
L
lujun 已提交
1184
                if check_dygraph:
1185 1186
                    imperative_actual = find_imperative_actual(
                        out_name, dygraph_outs, place)
1187 1188
                    imperative_actual_t = np.array(imperative_actual.value()
                                                   .get_tensor())
Y
Yang Yang(Tony) 已提交
1189
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
1190 1191
                actual = outs[idx]
                actual_t = np.array(actual)
1192

1193
                expect = self.outputs[out_name]
1194
                expect_t = expect[0] if isinstance(expect, tuple) else expect
1195

1196 1197 1198
                if actual_t.dtype == np.uint16 and expect_t.dtype in [
                        np.float32, np.float64
                ]:
1199
                    actual_t = convert_uint16_to_float(actual_t)
W
wuhuanzhou 已提交
1200 1201 1202
                    rtol = 1.e-2
                else:
                    rtol = 1.e-5
1203

1204 1205 1206 1207
                if expect_t.dtype == np.uint16 and actual_t.dtype == np.uint16:
                    expect_t = convert_uint16_to_float(expect_t)
                    actual_t = convert_uint16_to_float(actual_t)
                    atol = max(atol, 0.03)
1208 1209 1210 1211 1212
                # NOTE(zhiqiu): np.allclose([], [1.]) returns True
                # see details: https://stackoverflow.com/questions/38331703/why-does-numpys-broadcasting-sometimes-allow-comparing-arrays-of-different-leng
                if expect_t.size == 0:
                    self.assertTrue(actual_t.size == 0)

1213 1214
                self.assertTrue(
                    np.allclose(
W
wuhuanzhou 已提交
1215 1216 1217 1218 1219
                        actual_t,
                        expect_t,
                        rtol=rtol,
                        atol=atol,
                        equal_nan=equal_nan),
E
emailweixu 已提交
1220
                    "Output (" + out_name + ") has diff at " + str(place) +
D
dzhwinter 已提交
1221
                    "\nExpect " + str(expect_t) + "\n" + "But Got" +
1222
                    str(actual_t) + " in class " + self.__class__.__name__)
L
lujun 已提交
1223
                if check_dygraph:
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
                    if six.moves.reduce(
                            lambda x, y: x * y, imperative_actual_t.shape,
                            1) == 0 and six.moves.reduce(
                                lambda x, y: x * y, expect_t.shape, 1) == 0:
                        pass
                    else:
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + out_name + ") has diff at " +
                            str(place) + "\nExpect " + str(expect_t) + "\n" +
                            "But Got" + str(imperative_actual_t) + " in class "
                            + self.__class__.__name__)
1240
                if isinstance(expect, tuple):
1241 1242
                    self.assertListEqual(actual.recursive_sequence_lengths(),
                                         expect[1], "Output (" + out_name +
1243
                                         ") has different lod at " + str(place))
L
lujun 已提交
1244
                    if check_dygraph:
M
minqiyang 已提交
1245
                        self.assertListEqual(
1246
                            imperative_actual.value().get_tensor()
M
minqiyang 已提交
1247 1248
                            .recursive_sequence_lengths(), expect[1],
                            "Output (" + out_name + ") has different lod at " +
L
lujun 已提交
1249
                            str(place) + " in dygraph mode")
1250

C
cc 已提交
1251
        # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
1252 1253
        # computational consistency.
        # For example, group_norm uses AtomicAdd on CUDAPlace, which do not ensure
C
cc 已提交
1254
        # computation order when multiple threads write the same address. So the
L
Leo Chen 已提交
1255 1256 1257
        # result of group_norm is non-deterministic when datatype is float.
        # When inplace_atol is not None, the inplace check uses numpy.allclose
        # to check inplace result instead of numpy.array_equal.
1258 1259
        if inplace_atol is not None:
            warnings.warn(
L
Leo Chen 已提交
1260 1261
                "inplace_atol should only be set when op doesn't ensure computational consistency, please check it!"
            )
1262
        # Check inplace for given op, its grad op, its grad_grad op, etc.
C
cc 已提交
1263
        # No effect on original OpTest
1264
        # Currently not support ParallelExecutor on XPUPlace.
1265 1266
        if not paddle.is_compiled_with_xpu(
        ) and not paddle.is_compiled_with_npu():
1267 1268
            self.check_inplace_output_with_place(
                place, no_check_set=no_check_set, inplace_atol=inplace_atol)
1269

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
        if check_dygraph:
            return outs, dygraph_outs, fetch_list
        else:
            return outs, fetch_list

    def check_compile_vs_runtime(self, fetch_list, fetch_outs):
        def find_fetch_index(target_name, fetch_list):
            found = [
                i for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            if len(found) == 0:
                return -1
            else:
                self.assertTrue(
                    len(found) == 1,
                    "Found {} {}".format(len(found), target_name))
                return found[0]

        for name in self.op.desc.output_names():
            var_names = self.op.desc.output(name)
            for var_name in var_names:
                i = find_fetch_index(var_name, fetch_list)
                if i == -1:
                    # The output is dispensiable or intermediate.
                    break
                out = fetch_outs[i]
                if isinstance(out, core.LoDTensor):
                    lod_level_runtime = len(out.lod())
                else:
                    if isinstance(out, core.LoDTensorArray):
                        warnings.warn(
                            "The check of LoDTensorArray's lod_level is not implemented now!"
                        )
                    lod_level_runtime = 0

                var = self.program.global_block().var(var_name)
                if var.type == core.VarDesc.VarType.LOD_TENSOR:
                    lod_level_compile = var.lod_level
                else:
                    lod_level_compile = 0
                self.assertEqual(
                    lod_level_compile, lod_level_runtime,
                    "The lod_level of Output (" + name +
                    ") is different between compile-time and runtime (" +
                    str(lod_level_compile) + " vs " + str(lod_level_runtime) +
                    ")")

1318
    def _get_places(self):
D
dzhwinter 已提交
1319 1320 1321 1322 1323 1324
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
                    self.op_type):
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
W
Wu Yi 已提交
1325 1326
                else:
                    return []
D
dzhwinter 已提交
1327 1328
            else:
                return []
1329
        places = [fluid.CPUPlace()]
1330 1331 1332
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
        if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type)\
           and not cpu_only:
D
dzhwinter 已提交
1333
            places.append(core.CUDAPlace(0))
1334 1335
        return places

M
minqiyang 已提交
1336 1337 1338 1339
    def check_output(self,
                     atol=1e-5,
                     no_check_set=None,
                     equal_nan=False,
1340
                     check_dygraph=True,
1341
                     inplace_atol=None):
1342
        self.__class__.op_type = self.op_type
1343 1344 1345 1346
        if (hasattr(self, "use_mkldnn") and self.use_mkldnn == True) or \
            (hasattr(self, "attrs") and "use_mkldnn" in self.attrs and \
                    self.attrs["use_mkldnn"] == True):
            self.__class__.use_mkldnn = True
C
cc 已提交
1347

1348 1349 1350 1351 1352
        if (hasattr(self, "use_xpu") and self.use_xpu == True) or \
            (hasattr(self, "attrs") and "use_xpu" in self.attrs and \
                    self.attrs["use_xpu"] == True):
            self.__class__.use_xpu = True

1353
        places = self._get_places()
Q
qijun 已提交
1354
        for place in places:
1355
            res = self.check_output_with_place(place, atol, no_check_set,
F
feng_shuai 已提交
1356 1357
                                               equal_nan, check_dygraph,
                                               inplace_atol)
1358 1359 1360 1361
            if check_dygraph:
                outs, dygraph_outs, fetch_list = res
            else:
                outs, fetch_list = res
1362
            if self.op_type not in compile_vs_runtime_white_list.COMPILE_RUN_OP_WHITE_LIST:
1363
                self.check_compile_vs_runtime(fetch_list, outs)
Q
qijun 已提交
1364

P
pangyoki 已提交
1365
    def check_output_customized(self, checker, custom_place=None):
1366
        places = self._get_places()
P
pangyoki 已提交
1367 1368
        if custom_place:
            places.append(custom_place)
1369 1370 1371
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
1372
            outs.sort(key=len)
1373 1374
            checker(outs)

1375 1376 1377 1378 1379 1380
    def check_output_with_place_customized(self, checker, place):
        outs = self.calc_output(place)
        outs = [np.array(out) for out in outs]
        outs.sort(key=len)
        checker(outs)

D
Dun 已提交
1381 1382
    def _assert_is_close(self, numeric_grads, analytic_grads, names,
                         max_relative_error, msg_prefix):
M
minqiyang 已提交
1383
        for a, b, name in six.moves.zip(numeric_grads, analytic_grads, names):
1384 1385 1386 1387 1388 1389
            # It asserts np.abs(a - b) / np.abs(a) < max_relative_error, in which
            # max_relative_error is 1e-7. According to the value of np.abs(a), we
            # change np.abs(a) to achieve dynamic threshold. For example, if
            # the value of np.abs(a) is between 1e-10 and 1e-8, we set np.abs(a)*=1e4.
            # Therefore, it asserts np.abs(a - b) / (np.abs(a)*1e4) < max_relative_error,
            # which is the same as np.abs(a - b) / np.abs(a) < max_relative_error*1e4.
1390
            abs_a = np.abs(a)
1391 1392 1393 1394 1395
            if self.dtype == np.float64 and \
                self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
                abs_a[abs_a < 1e-10] = 1e-3
                abs_a[np.logical_and(abs_a > 1e-10, abs_a <= 1e-8)] *= 1e4
                abs_a[np.logical_and(abs_a > 1e-8, abs_a <= 1e-6)] *= 1e2
1396 1397
            elif self.is_bfloat16_op():
                abs_a[abs_a < 1e-2] = 1
1398 1399
            else:
                abs_a[abs_a < 1e-3] = 1
1400 1401 1402 1403 1404 1405

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
1406 1407 1408
                return ("Operator %s error, %s variable %s (shape: %s, dtype: %s) max gradient diff %e over limit %e, "
                    "the first error element is %d, expected %e, but got %e.") \
                    % (self.op_type, msg_prefix, name, str(a.shape), self.dtype, max_diff, max_relative_error,
1409
                    offset, a.flatten()[offset], b.flatten()[offset])
1410 1411 1412

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

1413 1414 1415 1416 1417 1418 1419
    def _check_grad_helper(self):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        self.__class__.op_type = self.op_type
        self.__class__.exist_check_grad = True
        if self.dtype == np.float64:
            self.__class__.exist_fp64_check_grad = True

1420 1421
    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
1422
                   output_names,
1423
                   no_grad_set=None,
1424
                   numeric_grad_delta=0.005,
1425
                   in_place=False,
Q
Qiao Longfei 已提交
1426
                   max_relative_error=0.005,
1427
                   user_defined_grads=None,
1428
                   user_defined_grad_outputs=None,
1429
                   check_dygraph=True):
1430
        self._check_grad_helper()
1431
        places = self._get_places()
1432
        for place in places:
1433 1434 1435 1436
            self.check_grad_with_place(
                place, inputs_to_check, output_names, no_grad_set,
                numeric_grad_delta, in_place, max_relative_error,
                user_defined_grads, user_defined_grad_outputs, check_dygraph)
1437 1438 1439 1440 1441 1442 1443 1444 1445

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
1446
                              user_defined_grads=None,
1447
                              user_defined_grad_outputs=None,
1448 1449
                              check_dygraph=True,
                              numeric_place=None):
1450
        self.scope = core.Scope()
Q
qijun 已提交
1451
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
1452
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
1453
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
P
phlrain 已提交
1454

1455 1456 1457
        if self.is_bfloat16_op():
            check_dygraph = False

1458
        self._check_grad_helper()
1459 1460 1461 1462
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7
1463

P
phlrain 已提交
1464 1465 1466
        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
1467 1468 1469 1470 1471 1472 1473

        # oneDNN numeric gradient should use CPU kernel
        use_onednn = False
        if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"] == True:
            op_attrs["use_mkldnn"] = False
            use_onednn = True

P
phlrain 已提交
1474 1475 1476 1477 1478 1479 1480
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list)
Y
Yu Yang 已提交
1481

1482 1483 1484
        if use_onednn:
            op_attrs["use_mkldnn"] = True

1485 1486
        if no_grad_set is None:
            no_grad_set = set()
1487 1488
        else:
            if (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST
1489 1490 1491
                ) and (
                    self.op_type not in no_grad_set_white_list.NOT_CHECK_OP_LIST
                ) and (not self.is_bfloat16_op()):
1492 1493
                raise AssertionError("no_grad_set must be None, op_type is " +
                                     self.op_type + " Op.")
1494

1495 1496 1497 1498 1499 1500 1501 1502
        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)
            tensor_to_check = self.scope.find_var(input_to_check).get_tensor()
            tensor_size = six.moves.reduce(lambda a, b: a * b,
                                           tensor_to_check.shape(), 1)
            if tensor_size < 100:
                self.__class__.input_shape_is_large = False

Y
Yancey 已提交
1503 1504 1505
        if not type(output_names) is list:
            output_names = [output_names]

1506 1507 1508
        if numeric_place is None:
            numeric_place = place

Q
Qiao Longfei 已提交
1509
        numeric_grads = user_defined_grads or [
1510
            get_numeric_gradient(
1511
                numeric_place,
1512 1513 1514 1515
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
1516
                output_names,
1517
                delta=numeric_grad_delta,
C
chengduo 已提交
1518
                in_place=in_place) for input_to_check in inputs_to_check
1519
        ]
1520

1521
        analytic_grads = self._get_gradient(inputs_to_check, place,
1522 1523
                                            output_names, no_grad_set,
                                            user_defined_grad_outputs)
1524

1525 1526
        # comparison of bf16 results will happen as fp32
        # loop over list of grads and convert bf16 to fp32
1527
        fp32_analytic_grads = []
1528 1529 1530
        for grad in analytic_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
1531
                max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
1532 1533 1534 1535 1536 1537 1538
            fp32_analytic_grads.append(grad)
        analytic_grads = fp32_analytic_grads

        fp32_numeric_grads = []
        for grad in numeric_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
1539
                max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
1540 1541
            fp32_numeric_grads.append(grad)
        numeric_grads = fp32_numeric_grads
1542

D
Dun 已提交
1543 1544 1545
        self._assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                              max_relative_error,
                              "Gradient Check On %s" % str(place))
Q
qijun 已提交
1546

1547
        if check_dygraph:
1548 1549 1550
            dygraph_grad = self._get_dygraph_grad(
                inputs_to_check, place, output_names, user_defined_grad_outputs,
                no_grad_set)
1551 1552 1553 1554
            fp32_grads = []
            for grad in dygraph_grad:
                if grad.dtype == np.uint16:
                    grad = convert_uint16_to_float(grad)
1555
                    max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
1556 1557
                fp32_grads.append(grad)
            dygraph_grad = fp32_grads
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
            self._assert_is_close(numeric_grads, dygraph_grad, inputs_to_check,
                                  max_relative_error,
                                  "Gradient Check On %s" % str(place))

    def _find_var_in_dygraph(self, output_vars, name):
        if name in output_vars:
            return output_vars[name]
        else:
            for output_vars_index in output_vars:
                for output_vars_selected in output_vars[output_vars_index]:
                    if output_vars_selected.name == name:
                        return output_vars_selected

    def _get_dygraph_grad(self,
                          inputs_to_check,
                          place,
                          output_names,
1575
                          user_defined_grad_outputs=None,
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
                          no_grad_set=None):
        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
                op_proto, self.inputs, True, True, block)

            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs_outputs if hasattr(self, "attrs") else None)

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
            if self.dtype == np.uint16:
                cast_inputs = self._find_var_in_dygraph(outputs,
                                                        output_names[0])
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape)
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32
                    })
                outputs = {output_names[0]: cast_outputs}

1617 1618 1619 1620 1621
            outputs_valid = {}
            for output_name in output_names:
                outputs_valid[output_name] = self._find_var_in_dygraph(
                    outputs, output_name)

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
            if user_defined_grad_outputs is None:
                if len(outputs_valid) == 1:
                    loss = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
                    for outputs_valid_key in outputs_valid:
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[outputs_valid_key]},
                            outputs={"Out": [loss]},
                            attrs=None)
                else:
                    avg_sum = []
                    for cur_loss in outputs_valid:
                        cur_avg_loss = block.create_var(
                            dtype=self.dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
                            stop_gradient=False)
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[cur_loss]},
                            outputs={"Out": [cur_avg_loss]},
                            attrs=None)
                        avg_sum.append(cur_avg_loss)
                    loss_sum = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
1656
                    block.append_op(
1657 1658 1659
                        type='sum',
                        inputs={"X": avg_sum},
                        outputs={"Out": loss_sum},
1660
                        attrs=None)
1661
                    loss = block.create_var(
1662 1663 1664
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
1665 1666
                        stop_gradient=False,
                        shape=[1])
1667
                    block.append_op(
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
                        type='scale',
                        inputs={"X": loss_sum},
                        outputs={"Out": loss},
                        attrs={'scale': 1.0 / float(len(avg_sum))})
                loss.backward()
                fetch_list_grad = []
                for inputs_to_check_name in inputs_to_check:
                    a = inputs_grad_dict[inputs_to_check_name].gradient()
                    fetch_list_grad.append(a)
                return fetch_list_grad
            else:
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                grad_outputs = []
                for grad_out_value in user_defined_grad_outputs:
                    grad_outputs.append(paddle.to_tensor(grad_out_value))
C
chentianyu03 已提交
1685 1686 1687 1688
                # delete the inputs which no need to calculate grad
                for no_grad_val in no_grad_set:
                    del (inputs[no_grad_val])

1689 1690 1691 1692 1693
                grad_inputs = paddle.grad(
                    outputs=fluid.layers.utils.flatten(outputs),
                    inputs=fluid.layers.utils.flatten(inputs),
                    grad_outputs=grad_outputs)
                return [grad.numpy() for grad in grad_inputs]
1694

Y
Yu Yang 已提交
1695 1696 1697 1698 1699
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
1700
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
1701 1702
        return tensor

K
Kexin Zhao 已提交
1703
    @staticmethod
K
Kexin Zhao 已提交
1704 1705
    def np_dtype_to_fluid_dtype(input):
        return input
K
Kexin Zhao 已提交
1706

D
dzhwinter 已提交
1707 1708 1709 1710 1711 1712 1713 1714
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

1715 1716 1717 1718 1719
    def _get_gradient(self,
                      input_to_check,
                      place,
                      output_names,
                      no_grad_set,
1720
                      user_defined_grad_outputs=None,
1721
                      parallel=False):
Y
Yu Yang 已提交
1722
        prog = Program()
1723
        scope = core.Scope()
Y
Yu Yang 已提交
1724
        block = prog.global_block()
1725
        self._append_ops(block)
Y
Yu Yang 已提交
1726

1727
        inputs = self._get_inputs(block)
1728
        outputs = self._get_outputs(block)
1729
        feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
1730

1731
        if user_defined_grad_outputs is None:
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
            if self.dtype == np.uint16:
                cast_inputs = list(map(block.var, output_names))
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape)
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32
                    })
                cast_op.desc.infer_var_type(block.desc)
                cast_op.desc.infer_shape(block.desc)
                output_names = [cast_outputs.name]
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
            loss = append_loss_ops(block, output_names)
            param_grad_list = append_backward(
                loss=loss,
                parameter_list=input_to_check,
                no_grad_set=no_grad_set)
            fetch_list = [g for p, g in param_grad_list]
        else:
            assert parallel is False, "unsupported parallel mode when giving custom grad outputs."
            # user_defined_grad_outputs here are numpy arrays
            if not isinstance(user_defined_grad_outputs, list):
                user_defined_grad_outputs = [user_defined_grad_outputs]
            grad_outputs = []
            for grad_out_value in user_defined_grad_outputs:
                # `presistable` is used to avoid executor create new var in local scope
                var = block.create_var(
                    shape=grad_out_value.shape,
                    dtype=grad_out_value.dtype,
                    persistable=True)
                true_var = scope.var(var.name)
                tensor = true_var.get_tensor()
                tensor.set(grad_out_value, place)
                grad_outputs.append(var)
            targets = [
                outputs[name] for name in outputs if name in output_names
            ]
1772
            inputs = [inputs[name] for name in input_to_check if name in inputs]
1773 1774 1775 1776
            grad_inputs = paddle.static.gradients(targets, inputs, grad_outputs,
                                                  no_grad_set)
            fetch_list = grad_inputs

1777 1778
        if parallel:
            use_cuda = False
1779
            if isinstance(place, fluid.CUDAPlace):
1780
                use_cuda = True
1781 1782 1783 1784
            compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
                loss_name=loss.name, places=place)
            prog = compiled_prog
        executor = fluid.Executor(place)
1785 1786
        return list(
            map(np.array,
1787 1788 1789 1790 1791
                executor.run(prog,
                             feed_dict,
                             fetch_list,
                             scope=scope,
                             return_numpy=False)))
A
arlesniak 已提交
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804


class OpTestTool:
    @classmethod
    def skip_if(cls, condition: object, reason: str):
        return unittest.skipIf(condition, reason)

    @classmethod
    def skip_if_not_cpu_bf16(cls):
        return OpTestTool.skip_if(
            not (isinstance(_current_expected_place(), core.CPUPlace) and
                 core.supports_bfloat16()),
            "Place does not support BF16 evaluation")