op_test.py 72.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

B
baojun 已提交
17
import os
18
import unittest
19
import warnings
20
import numpy as np
21
import random
M
minqiyang 已提交
22
import six
23
import struct
24
import time
25
import itertools
Y
Yu Yang 已提交
26
import collections
M
minqiyang 已提交
27
from collections import defaultdict
28

29
import paddle
30 31
import paddle.fluid as fluid
import paddle.fluid.core as core
32 33 34
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
35
from paddle.fluid.framework import Program, OpProtoHolder, Variable
36
from testsuite import create_op, set_input, append_input_output, append_loss_ops
37
from paddle.fluid import unique_name
38
from white_list import op_accuracy_white_list, check_shape_white_list, compile_vs_runtime_white_list, no_check_set_white_list
39
from white_list import op_threshold_white_list, no_grad_set_white_list
40 41


42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
def check_out_dtype(api_fn, in_specs, expect_dtypes, target_index=0, **configs):
    """
    Determines whether dtype of output tensor is as expected.

    Args:
        api_fn(callable):  paddle api function
        in_specs(list[tuple]): list of shape and dtype information for constructing input tensor of api_fn, such as [(shape, dtype), (shape, dtype)].
        expected_dtype(list[str]): expected dtype of output tensor.
        target_index(int): indicate which one from in_specs to infer the dtype of output.
        config(dict): other arguments of paddle api function

    Example:
        check_out_dtype(fluid.layers.pad_constant_like, [([2,3,2,3], 'float64'), ([1, 3, 1,3], )], ['float32', 'float64', 'int64'], target_index=1, pad_value=0.)

    """
    paddle.enable_static()
    for i, expect_dtype in enumerate(expect_dtypes):
        with paddle.static.program_guard(paddle.static.Program()):
            input_t = []
            for index, spec in enumerate(in_specs):
                if len(spec) == 1:
                    shape = spec[0]
                    dtype = expect_dtype if target_index == index else 'float32'
                elif len(spec) == 2:
                    shape, dtype = spec
                else:
                    raise ValueError(
                        "Value of in_specs[{}] should contains two elements: [shape, dtype]".
                        format(index))
                input_t.append(
                    paddle.static.data(
                        name='data_%s' % index, shape=shape, dtype=dtype))

            out = api_fn(*input_t, **configs)
            out_dtype = fluid.data_feeder.convert_dtype(out.dtype)

            if out_dtype != expect_dtype:
                raise ValueError(
                    "Expected out.dtype is {}, but got {} from {}.".format(
                        expect_dtype, out_dtype, api_fn.__name__))


84 85 86 87 88 89 90 91
def _set_use_system_allocator(value=None):
    USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
    old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
    value = old_value if value is None else value
    core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
    return old_value


92 93 94 95
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
M
minqiyang 已提交
96
    for i in six.moves.xrange(len(prob)):
97 98 99 100
        prob[i] /= prob_sum[i]
    return prob


101 102
def get_numeric_gradient(place,
                         scope,
103 104 105
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
106
                         output_names,
107
                         delta=0.005,
C
chengduo 已提交
108
                         in_place=False):
Y
Yu Yang 已提交
109
    # FIXME: change this method by compile time concepts
110
    set_input(scope, op, inputs, place)
111 112

    def product(dim):
M
minqiyang 已提交
113
        return six.moves.reduce(lambda a, b: a * b, dim, 1)
114 115

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
116 117
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
118
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
119
        tensor_to_check_dtype = np.float32
120
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
121
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
122 123 124 125
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
126 127 128 129
    else:
        raise ValueError("Not supported data type " + str(
            tensor_to_check_dtype))

C
chengduo 已提交
130 131 132 133 134 135 136 137 138
    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
            sum.append(
                np.array(scope.find_var(output_name).get_tensor()).astype(
                    tensor_to_check_dtype).mean())
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

139 140 141
    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
142 143 144 145 146
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
147
            return tensor._get_float_element(i)
148
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
149
            return tensor._get_double_element(i)
150 151 152
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
153 154

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
155 156 157 158 159
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
160
            numpy_tensor = numpy_tensor.reshape(shape)
D
dzhwinter 已提交
161 162
            tensor.set(numpy_tensor, place)
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
163
            tensor._set_float_element(i, e)
164
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
165
            tensor._set_double_element(i, e)
166 167 168
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
169

170 171
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
M
minqiyang 已提交
172
    for i in six.moves.xrange(tensor_size):
173
        if in_place:
174
            set_input(scope, op, inputs, place)
175 176

        # get one input element throw it's index i.
177
        origin = __get_elem__(tensor_to_check, i)
178 179
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
180
        __set_elem__(tensor_to_check, i, x_pos)
181 182 183
        y_pos = get_output()

        if in_place:
184
            set_input(scope, op, inputs, place)
185 186

        x_neg = origin - delta
187
        __set_elem__(tensor_to_check, i, x_neg)
188 189
        y_neg = get_output()

190
        __set_elem__(tensor_to_check, i, origin)
191 192
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
193
    return gradient_flat.reshape(tensor_to_check.shape())
194 195


196 197
def skip_check_grad_ci(reason=None):
    """Decorator to skip check_grad CI.
C
cc 已提交
198

199
       Check_grad is required for Op test cases. However, there are some special
C
cc 已提交
200
       cases that do not need to do check_grad. This decorator is used to skip the
201
       check_grad of the above cases.
C
cc 已提交
202 203

       Note: the execution of unit test will not be skipped. It just avoids check_grad
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
       checking in tearDownClass method by setting a `no_need_check_grad` flag.

       Example:
           @skip_check_grad_ci(reason="For inference, check_grad is not required.")
           class TestInference(OpTest):
    """
    if not isinstance(reason, str):
        raise AssertionError("The reason for skipping check_grad is required.")

    def wrapper(cls):
        cls.no_need_check_grad = True
        return cls

    return wrapper


220 221 222 223
def copy_bits_from_float_to_uint16(f):
    return struct.unpack('<I', struct.pack('<f', f))[0] >> 16


224 225 226 227
def convert_float_to_uint16(float_list, data_format="NCHW"):
    if data_format == "NHWC":
        float_list = np.transpose(float_list, [0, 3, 1, 2])

228 229 230
    new_output = []
    for x in np.nditer(float_list):
        new_output.append(np.uint16(copy_bits_from_float_to_uint16(x)))
231
    new_output = np.reshape(new_output, float_list.shape).view(np.uint16)
232

233 234 235
    if data_format == "NHWC":
        new_output = np.transpose(new_output, [0, 2, 3, 1])
    return new_output
236 237


238 239 240 241 242 243 244 245 246 247 248 249 250
def copy_bits_from_uint16_to_float(i):
    i = np.uint32(i) << 16
    return struct.unpack('<f', struct.pack('<I', i))[0]


def convert_uint16_to_float(uint16_list):
    new_output = []
    for x in np.nditer(uint16_list):
        new_output.append(np.float32(copy_bits_from_uint16_to_float(x)))

    return np.reshape(new_output, uint16_list.shape).view(np.float32)


251
class OpTest(unittest.TestCase):
252 253 254 255 256
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
257
        cls.call_once = False
258
        cls.dtype = None
259
        cls.outputs = {}
260
        cls.input_shape_is_large = True
261 262 263 264

        np.random.seed(123)
        random.seed(124)

265 266
        cls._use_system_allocator = _set_use_system_allocator(True)

267 268
    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
269
        """Restore random seeds"""
270 271 272
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

273 274
        _set_use_system_allocator(cls._use_system_allocator)

275 276 277 278
        def is_empty_grad_op(op_type):
            all_op_kernels = core._get_all_register_op_kernels()
            grad_op = op_type + '_grad'
            if grad_op in all_op_kernels.keys():
J
juncaipeng 已提交
279
                if is_mkldnn_op_test():
280 281 282 283 284 285 286 287
                    grad_op_kernels = all_op_kernels[grad_op]
                    for grad_op_kernel in grad_op_kernels:
                        if 'MKLDNN' in grad_op_kernel:
                            return False
                else:
                    return False
            return True

288 289 290
        def is_xpu_op_test():
            return hasattr(cls, "use_xpu") and cls.use_xpu == True

J
juncaipeng 已提交
291
        def is_mkldnn_op_test():
292
            return hasattr(cls, "use_mkldnn") and cls.use_mkldnn == True
J
juncaipeng 已提交
293

294 295 296
        def is_rocm_op_test():
            return core.is_compiled_with_rocm()

297 298
        if not hasattr(cls, "op_type"):
            raise AssertionError(
299 300
                "This test do not have op_type in class attrs, "
                "please set self.__class__.op_type=the_real_op_type manually.")
301

J
juncaipeng 已提交
302 303
        # case in NO_FP64_CHECK_GRAD_CASES and op in NO_FP64_CHECK_GRAD_OP_LIST should be fixed
        if not hasattr(cls, "no_need_check_grad") \
304
            and not is_empty_grad_op(cls.op_type):
J
juncaipeng 已提交
305
            if cls.dtype is None or \
306 307
                (cls.dtype == np.float16 \
                    and cls.op_type not in op_accuracy_white_list.NO_FP16_CHECK_GRAD_OP_LIST \
J
juncaipeng 已提交
308 309 310 311
                    and not hasattr(cls, "exist_check_grad")):
                raise AssertionError("This test of %s op needs check_grad." %
                                     cls.op_type)

312
            # check for op test with fp64 precision, but not check mkldnn op test for now
J
juncaipeng 已提交
313 314
            if cls.dtype in [np.float32, np.float64] \
                and cls.op_type not in op_accuracy_white_list.NO_FP64_CHECK_GRAD_OP_LIST \
315
                and not hasattr(cls, 'exist_fp64_check_grad') \
316
                and not is_xpu_op_test() \
317 318
                and not is_mkldnn_op_test() \
                and not is_rocm_op_test():
J
juncaipeng 已提交
319 320 321 322
                raise AssertionError(
                    "This test of %s op needs check_grad with fp64 precision." %
                    cls.op_type)

323
            if not cls.input_shape_is_large \
324 325 326 327
                and cls.op_type not in check_shape_white_list.NEED_TO_FIX_OP_LIST:
                raise AssertionError(
                    "Input's shape should be large than or equal to 100 for " +
                    cls.op_type + " Op.")
328

329 330 331 332 333
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

334 335 336 337 338
    def is_bfloat16_op(self):
        return self.dtype == np.uint16 or (
            hasattr(self, 'mkldnn_data_type') and
            getattr(self, 'mkldnn_data_type') is "bfloat16")

339
    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
J
juncaipeng 已提交
340 341 342 343
        def is_np_data(input):
            return isinstance(input, (np.ndarray, np.generic))

        def infer_dtype(numpy_dict, dtype_set):
344 345 346
            assert isinstance(
                numpy_dict,
                dict), "self.inputs, self.outputs must be numpy_dict"
J
juncaipeng 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
            # the inputs are as follows:
            # case 1: inputs = {'X': x}
            # case 2: inputs = {'X': (x, x_lod)}
            # case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
            # case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
            # TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
            for _, var_value in six.iteritems(numpy_dict):
                if is_np_data(var_value):  # case 1
                    dtype_set.add(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):  # case 2, 3, 4
                    for sub_val_value in var_value:
                        if is_np_data(sub_val_value):  # case 2
                            dtype_set.add(sub_val_value.dtype)
                        elif len(sub_val_value) > 1 and is_np_data(
                                sub_val_value[1]):  # case 3
                            dtype_set.add(sub_val_value[1].dtype)
                        elif len(sub_val_value) > 1 and isinstance(sub_val_value[1], (list, tuple)) \
                            and is_np_data(sub_val_value[1][0]): # case 4
                            dtype_set.add(sub_val_value[1][0].dtype)

        # infer dtype from inputs, and dtype means the precision of the test
        # collect dtype of all inputs
        dtype_set = set()
        infer_dtype(inputs, dtype_set)
        dtype_list = [
            np.dtype(np.float64), np.dtype(np.float32), np.dtype(np.float16),
373 374 375
            np.dtype(np.int64), np.dtype(np.int32), np.dtype(np.uint16),
            np.dtype(np.int16), np.dtype(np.int8), np.dtype(np.uint8),
            np.dtype(np.bool)
J
juncaipeng 已提交
376 377 378 379 380 381
        ]
        # check the dtype in dtype_list in order, select the first dtype that in dtype_set
        for dtype in dtype_list:
            if dtype in dtype_set:
                self.dtype = dtype
                break
382 383
        # save dtype in class attr
        self.__class__.dtype = self.dtype
384

Y
Yang Yang(Tony) 已提交
385 386 387 388 389 390
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
391
                    if isinstance(np_value, tuple):
392
                        tensor.set(np_value[0], place)
393
                        tensor.set_recursive_sequence_lengths(np_value[1])
394
                    else:
395
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
396 397 398 399
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
400
                    tensor.set(self.inputs[var_name][0], place)
401 402
                    tensor.set_recursive_sequence_lengths(self.inputs[var_name][
                        1])
Y
Yang Yang(Tony) 已提交
403
                else:
404
                    tensor.set(self.inputs[var_name], place)
Y
Yang Yang(Tony) 已提交
405 406 407
                feed_map[var_name] = tensor
        return feed_map

408
    def _append_ops(self, block):
J
juncaipeng 已提交
409
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
410 411 412 413
        if (hasattr(self, "use_mkldnn") and self.use_mkldnn == True) or \
            (hasattr(self, "attrs") and "use_mkldnn" in self.attrs and \
                    self.attrs["use_mkldnn"] == True):
            self.__class__.use_mkldnn = True
C
cc 已提交
414

415 416 417 418 419
        if (hasattr(self, "use_xpu") and self.use_xpu == True) or \
            (hasattr(self, "attrs") and "use_xpu" in self.attrs and \
                    self.attrs["use_xpu"] == True):
            self.__class__.use_xpu = True

Y
Yang Yang(Tony) 已提交
420
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
421 422 423 424 425 426
        "infer datatype from inputs and outputs for this test case"
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        inputs = append_input_output(block, op_proto, self.inputs, True,
                                     self.dtype)
        outputs = append_input_output(block, op_proto, self.outputs, False,
                                      self.dtype)
P
phlrain 已提交
427 428 429 430 431 432 433 434 435

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True)

Y
Yang Yang(Tony) 已提交
436 437 438 439 440
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=self.attrs if hasattr(self, "attrs") else dict())
C
cc 已提交
441
        # infer variable type and infer shape in compile-time
Q
QI JUN 已提交
442 443
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
444

445 446
        return op

447 448
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
M
minqiyang 已提交
449
        for name, value in six.iteritems(numpy_inputs):
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

M
minqiyang 已提交
469 470 471 472
    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
L
lujun 已提交
473
            v = fluid.dygraph.base.to_variable(value=data)
474
            v.value().get_tensor().set_recursive_sequence_lengths(lod)
M
minqiyang 已提交
475 476
            return v
        else:
L
lujun 已提交
477
            return fluid.dygraph.base.to_variable(value)
M
minqiyang 已提交
478

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
    def get_sequence_batch_size_1_input(self, lod=None, shape=None):
        """Get LoD input data whose batch size is 1.
        All sequence related OP unittests should call this function to contain the case of batch size = 1.
        Args:
            lod (list[list of int], optional): Length-based LoD, length of lod[0] should be 1. Default: [[13]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod) : LoD input data whose batch size is 1.
        """
        if lod is None:
            lod = [[13]]
        if shape is None:
            shape = [13, 23]
        assert len(lod[0]) == 1
        assert lod[0][0] == shape[0]
        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
    def lod_has_single_zero(self, lod):
        for i in range(len(lod) - 2):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] != 0:
                return True
        return False

    def lod_has_continuous_zero(self, lod):
        for i in range(len(lod) - 3):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] == 0 and lod[
                    i + 3] != 0:
                return True
        return False

    def get_sequence_instance_size_0_input(self, lod=None, shape=None):
        """Get LoD input data whose instance size is 0.
        All sequence related OP unittests should call this function to contain the case of instance size is 0.
        Args:
            lod (list[list of int], optional): Length-based LoD, lod[0]'s size must at least eight, lod[0] must at least two zeros at the beginning and at least two zeros at the end, the middle position of lod[0] contains a single zero and multiple zero. Default: [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod): LoD input data whose instance size is 0.
        """
        if lod is None:
            lod = [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]]
        if shape is None:
            shape = [12, 10]
        assert len(lod[0]) >= 8
        assert lod[0][0] == 0 and lod[0][1] == 0 and lod[0][-1] == 0 and lod[0][
            -2] == 0
        assert self.lod_has_single_zero(lod[0]) is True
        assert self.lod_has_continuous_zero(lod[0]) is True
        assert sum(lod[0]) == shape[0]

        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
    def append_input_output_for_dygraph(self, op_proto, np_list, is_input,
                                        if_return_inputs_grad_dict, block):
        def create_var(np_value, name, is_input, if_return_inputs_grad_dict):
            np_value_temp = np_value
            has_lod = False
            lod_temp = None
            if isinstance(np_value, tuple):
                np_value_temp = np_value[0]
                has_lod = True
                lod_temp = np_value[1]

            if is_input:
                v = self._create_var_from_numpy(np_value_temp)
                if if_return_inputs_grad_dict:
                    v.stop_gradient = False
                if has_lod:
549
                    v.value().get_tensor().set_recursive_sequence_lengths(
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
                        lod_temp)
            else:
                v = block.create_var(
                    name=name,
                    dtype=np_value_temp.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False)

            return v

        # prepare variable for input or output
        var_dict = defaultdict(list)
        if if_return_inputs_grad_dict:
            inputs_grad_dict = defaultdict()
        proto_list = op_proto.inputs if is_input else op_proto.outputs
        for var_proto in proto_list:
            name = var_proto.name
            if (name not in np_list) and var_proto.dispensable:
                continue
            if name not in np_list:
                assert var_proto.intermediate, "{} not found".format(name)
                v = block.create_var(
                    dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v
                continue
            if var_proto.duplicable:
                assert isinstance(
                    np_list[name],
                    list), "Duplicable {} should be set as list".format(name)
                var_list = []
                slot_name = name
                for (name, np_value) in np_list[name]:
                    v = create_var(np_value, name, is_input,
                                   if_return_inputs_grad_dict)
                    var_list.append(v)
                    if if_return_inputs_grad_dict:
                        inputs_grad_dict[name] = v
                var_dict[slot_name] = var_list
            else:
                nplist_value_temp = None
                name_temp = None
                if isinstance(np_list[name], list):
                    nplist_value_temp = np_list[name][0]
                    name_temp = name
                else:
                    nplist_value_temp = np_list[name]
                    name_temp = unique_name.generate("%s_out" % (name))
                v = create_var(nplist_value_temp, name_temp, is_input,
                               if_return_inputs_grad_dict)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v

        if if_return_inputs_grad_dict:
            return var_dict, inputs_grad_dict
        else:
            return var_dict

L
lujun 已提交
611
    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
J
juncaipeng 已提交
612
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
L
lujun 已提交
613
        with fluid.dygraph.base.guard(place=place):
M
minqiyang 已提交
614 615
            block = fluid.default_main_program().global_block()

616
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
M
minqiyang 已提交
617

618 619 620
            # prepare input variable
            inputs = self.append_input_output_for_dygraph(op_proto, self.inputs,
                                                          True, False, block)
M
minqiyang 已提交
621 622

            # prepare output variable
623 624 625 626 627 628 629 630 631
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
M
minqiyang 已提交
632 633 634 635
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
636
                attrs=attrs_outputs if hasattr(self, "attrs") else None)
M
minqiyang 已提交
637
            return outputs
638

639 640 641 642 643 644
    def _calc_output(self,
                     place,
                     parallel=False,
                     no_check_set=None,
                     loss=None,
                     enable_inplace=None,
645
                     for_inplace_test=None):
646 647
        program = Program()
        block = program.global_block()
648
        op = self._append_ops(block)
649 650 651 652 653

        inputs = self._get_inputs(block)
        outputs = self._get_outputs(block)
        feed_map = self.feed_var(inputs, place)

654
        if for_inplace_test:
C
cc 已提交
655 656
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
657 658
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
659 660
            for out_name in op.output_arg_names:
                var = block.var(out_name)
661 662
                if 0 in var.shape:
                    var.persistable = True
663
        original_program = program
664 665
        if parallel:
            use_cuda = False
666
            if isinstance(place, fluid.CUDAPlace):
667
                use_cuda = True
668 669 670
            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                loss_name=loss.name if loss else None, places=place)
            program = compiled_prog
671 672 673 674
        fetch_list = getattr(self, "fetch_list", [])
        # if the fetch_list is customized by user, we use it directly.
        # if not, fill the fetch_list by the user configured outputs in test.
        if len(fetch_list) == 0:
M
minqiyang 已提交
675
            for var_name, var in six.iteritems(outputs):
676 677
                if no_check_set is not None and var_name in no_check_set:
                    continue
Y
Yang Yang(Tony) 已提交
678 679
                if isinstance(var, list):
                    for v in var:
680
                        fetch_list.append(v.name)
Y
Yang Yang(Tony) 已提交
681
                else:
682
                    fetch_list.append(var.name)
683 684 685 686
        # if the fetch_list still empty, fill the fetch_list by the operator output.
        if len(fetch_list) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                fetch_list.append(str(out_name))
687 688 689 690 691 692 693 694 695

        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace

            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                build_strategy=build_strategy, places=place)
            program = compiled_prog

696
        executor = Executor(place)
697 698 699 700
        outs = executor.run(program,
                            feed=feed_map,
                            fetch_list=fetch_list,
                            return_numpy=False)
701 702
        self.op = op
        self.program = original_program
703 704 705 706
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list
Y
Yang Yang(Tony) 已提交
707

708 709 710 711 712 713 714 715 716
    def _compare_expect_and_actual_outputs(self,
                                           place,
                                           fetch_list,
                                           expect_outs,
                                           actual_outs,
                                           inplace_atol=None):
        """Compare expect outs and actual outs of an tested op.

        Args:
C
cc 已提交
717
            place (CPUPlace | CUDAPlace): The place where the op runs.
718 719 720 721 722 723 724 725 726 727
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
C
cc 已提交
728
            # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
729 730 731
            # computational consistency.
            # When inplace_atol is not None, the inplace check uses numpy.allclose
            # to check inplace result instead of numpy.array_equal.
732 733
            expect_out = np.array(expect_outs[i])
            actual_out = np.array(actual_outs[i])
734 735 736
            if inplace_atol is not None:
                self.assertTrue(
                    np.allclose(
737
                        expect_out, actual_out, atol=inplace_atol),
738 739
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
740 741
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__)
742 743
            else:
                self.assertTrue(
744
                    np.array_equal(expect_out, actual_out),
745 746
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
747 748
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__ + '\n')
749 750 751 752 753 754 755 756

    def _construct_grad_program_from_forward(self, fwd_program, grad_op_desc,
                                             op_grad_to_var):
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
757
            op_grad_to_var (dict): The relation of variables in grad op and its forward op.
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
        for arg in grad_op_desc.input_arg_names(
        ) + grad_op_desc.output_arg_names():
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
                fwd_var_name)
            grad_var = grad_block.create_var(
                name=arg,
                dtype=fwd_var.dtype,
                shape=fwd_var.shape,
                type=fwd_var.type,
                persistable=False)

C
cc 已提交
784 785
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

    def _construct_grad_feed_map_from_forward(self, place, fwd_res,
                                              grad_op_desc, op_grad_to_var):
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
801
            place (CPUPlace | CUDAPlace): The place where the op runs.
802 803 804
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
805
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op.
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)
        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
C
cc 已提交
837

838
        Args:
C
cc 已提交
839 840
            op_desc (OpDesc): The op_desc of current op.
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op.
841
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
C
cc 已提交
842

843 844 845 846 847 848 849 850 851 852 853 854 855 856
        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
C
cc 已提交
857
                # get grad_op_desc
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                    op_desc, set(), [])
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
                        if grad_op_desc.type(
                        ) not in visited_ops and _dfs_grad_op(
                                grad_op_desc, fwd_op_desc=op_desc):
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

    def _check_forward_inplace(self,
                               place,
                               no_check_set=None,
                               inplace_atol=None):
881
        """Check the inplace correctness of given op (self.op_type).
882
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
C
cc 已提交
883

884
        Args:
C
cc 已提交
885
            place (CPUPlace | CUDAPlace): The place where the op runs.
886 887 888 889
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
890 891
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
892 893
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
894 895 896 897 898 899 900 901 902 903
        expect_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=False,
            for_inplace_test=True)
        actual_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=True,
            for_inplace_test=True)
904
        # compare expect_outs and actual_outs
905 906 907 908 909 910
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
911 912 913 914 915 916 917 918 919 920 921 922 923
        return expect_res

    def _calc_grad_output(self,
                          place,
                          fwd_res,
                          grad_op_desc,
                          enable_inplace=None):
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
924
            place (CPUPlace | CUDAPlace): The place where the op runs.
925 926 927 928 929 930 931 932 933
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
934
        grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(fwd_op_desc,
935
                                                                  set(), [])
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
        grad_program = self._construct_grad_program_from_forward(
            fwd_program, grad_op_desc, op_grad_to_var)
        grad_feed_map = self._construct_grad_feed_map_from_forward(
            place, fwd_res, grad_op_desc, op_grad_to_var)
        grad_fetch_list = grad_op_desc.output_arg_names()
        exe = Executor(place)
        program = grad_program
        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace
            compiled_program = fluid.CompiledProgram(
                grad_program).with_data_parallel(
                    loss_name="", build_strategy=build_strategy, places=place)
            program = compiled_program
        outs = exe.run(program,
                       feed=grad_feed_map,
                       fetch_list=grad_fetch_list,
                       return_numpy=False)
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

    def _check_grad_inplace(self,
                            place,
                            fwd_res,
                            grad_op_desc,
                            inplace_atol=None):
961
        """Check the inplace correctness of given grad_op_desc.
962 963 964 965 966 967

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
C
cc 已提交
968
            place (CPUPlace | CUDAPlace): The place where the op runs.
969 970 971 972 973 974
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
975 976
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
977 978 979 980 981 982 983 984 985 986 987 988
        """
        expect_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=False)
        actual_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=True)
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
        return expect_res
989

990 991 992 993 994 995 996 997 998 999
    def check_inplace_output_with_place(self,
                                        place,
                                        no_check_set=None,
                                        inplace_atol=None):
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
C
cc 已提交
1000
            place (CPUPlace | CUDAPlace): The place where the op runs.
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)

        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True)
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
1016 1017
        if hasattr(self, 'attrs') and bool(self.attrs.get('use_xpu', False)):
            return
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
                        inplace_atol=inplace_atol)
                else:
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True)
            else:
1031 1032
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn
                # skip op that use_mkldnn currently
1033
                flags_use_mkldnn = fluid.core.globals()["FLAGS_use_mkldnn"]
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
                attrs_use_mkldnn = hasattr(
                    self,
                    'attrs') and bool(self.attrs.get('use_mkldnn', False))
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
                        place, fwd_res, op_desc, inplace_atol=inplace_atol)
1046
                else:
1047 1048
                    res[op_desc] = self._calc_grad_output(place, fwd_res,
                                                          op_desc)
1049

1050 1051
    def check_output_with_place(self,
                                place,
1052
                                atol=0,
1053
                                no_check_set=None,
M
minqiyang 已提交
1054
                                equal_nan=False,
1055
                                check_dygraph=True,
1056
                                inplace_atol=None):
1057 1058 1059 1060 1061
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST:
            atol = 0

1062 1063 1064 1065 1066 1067 1068 1069
        if self.is_bfloat16_op():
            check_dygraph = False
            if hasattr(self, 'force_fp32_output') and getattr(
                    self, 'force_fp32_output'):
                atol = 1e-2
            else:
                atol = 2

1070 1071 1072 1073
        if no_check_set is not None:
            if self.op_type not in no_check_set_white_list.no_check_set_white_list:
                raise AssertionError(
                    "no_check_set of op %s must be set to None." % self.op_type)
1074

L
lujun 已提交
1075 1076
        if check_dygraph:
            dygraph_outs = self._calc_dygraph_output(
M
minqiyang 已提交
1077
                place, no_check_set=no_check_set)
1078
        outs, fetch_list = self._calc_output(place, no_check_set=no_check_set)
Y
Yang Yang(Tony) 已提交
1079
        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
1080 1081
            if out_name not in self.outputs:
                continue
1082 1083
            if no_check_set is not None and out_name in no_check_set:
                continue
1084

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
            def find_imperative_actual(target_name, dygraph_outs, place):
                with fluid.dygraph.base.guard(place=place):
                    for name in dygraph_outs:
                        if name == target_name:
                            return dygraph_outs[name][0]
                        var_list = dygraph_outs[name]
                        for i, var in enumerate(var_list):
                            if var.name == target_name:
                                return dygraph_outs[name][i]
                    self.assertTrue(False, "Found failed {} {}".format(
                        dygraph_outs.keys(), target_name))

Y
Yang Yang(Tony) 已提交
1097 1098
            def find_actual(target_name, fetch_list):
                found = [
1099 1100
                    i for i, var_name in enumerate(fetch_list)
                    if var_name == target_name
Y
Yang Yang(Tony) 已提交
1101 1102 1103 1104 1105 1106
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

1107 1108
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
1109 1110 1111
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
1112 1113
                for item in sub_out:
                    sub_out_name, expect = item[0], item[1]
L
lujun 已提交
1114
                    if check_dygraph:
1115 1116
                        imperative_actual = find_imperative_actual(
                            sub_out_name, dygraph_outs, place)
1117 1118
                        imperative_actual_t = np.array(imperative_actual.value()
                                                       .get_tensor())
Y
Yang Yang(Tony) 已提交
1119
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
1120 1121
                    actual = outs[idx]
                    actual_t = np.array(actual)
1122 1123
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
1124 1125
                    self.assertTrue(
                        np.allclose(
1126
                            actual_t, expect_t, atol=atol, equal_nan=equal_nan),
Y
Yang Yang(Tony) 已提交
1127 1128
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
L
lujun 已提交
1129
                    if check_dygraph:
M
minqiyang 已提交
1130 1131 1132 1133 1134 1135 1136
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + sub_out_name + ") has diff at " +
L
lujun 已提交
1137
                            str(place) + " in dygraph mode")
1138 1139
                    if isinstance(expect, tuple):
                        self.assertListEqual(
1140 1141
                            actual.recursive_sequence_lengths(), expect[1],
                            "Output (" + sub_out_name +
Q
QI JUN 已提交
1142
                            ") has different lod at " + str(place))
1143 1144
                        if check_dygraph:
                            self.assertListEqual(
1145
                                imperative_actual.value().get_tensor()
1146 1147 1148 1149
                                .recursive_sequence_lengths(), expect[1],
                                "Output (" + out_name +
                                ") has different lod at " + str(place) +
                                " in dygraph mode")
1150
            else:
L
lujun 已提交
1151
                if check_dygraph:
1152 1153
                    imperative_actual = find_imperative_actual(
                        out_name, dygraph_outs, place)
1154 1155
                    imperative_actual_t = np.array(imperative_actual.value()
                                                   .get_tensor())
Y
Yang Yang(Tony) 已提交
1156
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
1157 1158
                actual = outs[idx]
                actual_t = np.array(actual)
1159

1160
                expect = self.outputs[out_name]
1161
                expect_t = expect[0] if isinstance(expect, tuple) else expect
1162 1163 1164 1165 1166

                if actual_t.dtype == np.uint16 and expect_t.dtype == np.float32:
                    actual_t = convert_uint16_to_float(actual_t)
                    atol = 0.03

1167 1168
                self.assertTrue(
                    np.allclose(
1169
                        actual_t, expect_t, atol=atol, equal_nan=equal_nan),
E
emailweixu 已提交
1170
                    "Output (" + out_name + ") has diff at " + str(place) +
D
dzhwinter 已提交
1171
                    "\nExpect " + str(expect_t) + "\n" + "But Got" +
1172
                    str(actual_t) + " in class " + self.__class__.__name__)
L
lujun 已提交
1173
                if check_dygraph:
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
                    if six.moves.reduce(
                            lambda x, y: x * y, imperative_actual_t.shape,
                            1) == 0 and six.moves.reduce(
                                lambda x, y: x * y, expect_t.shape, 1) == 0:
                        pass
                    else:
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + out_name + ") has diff at " +
                            str(place) + "\nExpect " + str(expect_t) + "\n" +
                            "But Got" + str(imperative_actual_t) + " in class "
                            + self.__class__.__name__)
1190
                if isinstance(expect, tuple):
1191 1192
                    self.assertListEqual(actual.recursive_sequence_lengths(),
                                         expect[1], "Output (" + out_name +
1193
                                         ") has different lod at " + str(place))
L
lujun 已提交
1194
                    if check_dygraph:
M
minqiyang 已提交
1195
                        self.assertListEqual(
1196
                            imperative_actual.value().get_tensor()
M
minqiyang 已提交
1197 1198
                            .recursive_sequence_lengths(), expect[1],
                            "Output (" + out_name + ") has different lod at " +
L
lujun 已提交
1199
                            str(place) + " in dygraph mode")
1200

C
cc 已提交
1201
        # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
1202 1203
        # computational consistency.
        # For example, group_norm uses AtomicAdd on CUDAPlace, which do not ensure
C
cc 已提交
1204
        # computation order when multiple threads write the same address. So the
L
Leo Chen 已提交
1205 1206 1207
        # result of group_norm is non-deterministic when datatype is float.
        # When inplace_atol is not None, the inplace check uses numpy.allclose
        # to check inplace result instead of numpy.array_equal.
1208 1209
        if inplace_atol is not None:
            warnings.warn(
L
Leo Chen 已提交
1210 1211
                "inplace_atol should only be set when op doesn't ensure computational consistency, please check it!"
            )
1212
        # Check inplace for given op, its grad op, its grad_grad op, etc.
C
cc 已提交
1213
        # No effect on original OpTest
1214 1215 1216 1217
        # Currently not support ParallelExecutor on XPUPlace.
        if not paddle.is_compiled_with_xpu():
            self.check_inplace_output_with_place(
                place, no_check_set=no_check_set, inplace_atol=inplace_atol)
1218

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
        if check_dygraph:
            return outs, dygraph_outs, fetch_list
        else:
            return outs, fetch_list

    def check_compile_vs_runtime(self, fetch_list, fetch_outs):
        def find_fetch_index(target_name, fetch_list):
            found = [
                i for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            if len(found) == 0:
                return -1
            else:
                self.assertTrue(
                    len(found) == 1,
                    "Found {} {}".format(len(found), target_name))
                return found[0]

        for name in self.op.desc.output_names():
            var_names = self.op.desc.output(name)
            for var_name in var_names:
                i = find_fetch_index(var_name, fetch_list)
                if i == -1:
                    # The output is dispensiable or intermediate.
                    break
                out = fetch_outs[i]
                if isinstance(out, core.LoDTensor):
                    lod_level_runtime = len(out.lod())
                else:
                    if isinstance(out, core.LoDTensorArray):
                        warnings.warn(
                            "The check of LoDTensorArray's lod_level is not implemented now!"
                        )
                    lod_level_runtime = 0

                var = self.program.global_block().var(var_name)
                if var.type == core.VarDesc.VarType.LOD_TENSOR:
                    lod_level_compile = var.lod_level
                else:
                    lod_level_compile = 0
                self.assertEqual(
                    lod_level_compile, lod_level_runtime,
                    "The lod_level of Output (" + name +
                    ") is different between compile-time and runtime (" +
                    str(lod_level_compile) + " vs " + str(lod_level_runtime) +
                    ")")

1267
    def _get_places(self):
D
dzhwinter 已提交
1268 1269 1270 1271 1272 1273
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
                    self.op_type):
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
W
Wu Yi 已提交
1274 1275
                else:
                    return []
D
dzhwinter 已提交
1276 1277
            else:
                return []
1278
        places = [fluid.CPUPlace()]
1279 1280 1281
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
        if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type)\
           and not cpu_only:
D
dzhwinter 已提交
1282
            places.append(core.CUDAPlace(0))
1283 1284
        return places

M
minqiyang 已提交
1285 1286 1287 1288
    def check_output(self,
                     atol=1e-5,
                     no_check_set=None,
                     equal_nan=False,
1289
                     check_dygraph=True,
1290
                     inplace_atol=None):
1291
        self.__class__.op_type = self.op_type
1292 1293 1294 1295
        if (hasattr(self, "use_mkldnn") and self.use_mkldnn == True) or \
            (hasattr(self, "attrs") and "use_mkldnn" in self.attrs and \
                    self.attrs["use_mkldnn"] == True):
            self.__class__.use_mkldnn = True
C
cc 已提交
1296

1297 1298 1299 1300 1301
        if (hasattr(self, "use_xpu") and self.use_xpu == True) or \
            (hasattr(self, "attrs") and "use_xpu" in self.attrs and \
                    self.attrs["use_xpu"] == True):
            self.__class__.use_xpu = True

1302
        places = self._get_places()
Q
qijun 已提交
1303
        for place in places:
1304 1305 1306 1307 1308 1309
            res = self.check_output_with_place(place, atol, no_check_set,
                                               equal_nan, check_dygraph)
            if check_dygraph:
                outs, dygraph_outs, fetch_list = res
            else:
                outs, fetch_list = res
1310
            if self.op_type not in compile_vs_runtime_white_list.COMPILE_RUN_OP_WHITE_LIST:
1311
                self.check_compile_vs_runtime(fetch_list, outs)
Q
qijun 已提交
1312

1313
    def check_output_customized(self, checker):
1314
        places = self._get_places()
1315 1316 1317
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
1318
            outs.sort(key=len)
1319 1320
            checker(outs)

D
Dun 已提交
1321 1322
    def _assert_is_close(self, numeric_grads, analytic_grads, names,
                         max_relative_error, msg_prefix):
M
minqiyang 已提交
1323
        for a, b, name in six.moves.zip(numeric_grads, analytic_grads, names):
1324 1325 1326 1327 1328 1329
            # It asserts np.abs(a - b) / np.abs(a) < max_relative_error, in which
            # max_relative_error is 1e-7. According to the value of np.abs(a), we
            # change np.abs(a) to achieve dynamic threshold. For example, if
            # the value of np.abs(a) is between 1e-10 and 1e-8, we set np.abs(a)*=1e4.
            # Therefore, it asserts np.abs(a - b) / (np.abs(a)*1e4) < max_relative_error,
            # which is the same as np.abs(a - b) / np.abs(a) < max_relative_error*1e4.
1330
            abs_a = np.abs(a)
1331 1332 1333 1334 1335 1336 1337
            if self.dtype == np.float64 and \
                self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
                abs_a[abs_a < 1e-10] = 1e-3
                abs_a[np.logical_and(abs_a > 1e-10, abs_a <= 1e-8)] *= 1e4
                abs_a[np.logical_and(abs_a > 1e-8, abs_a <= 1e-6)] *= 1e2
            else:
                abs_a[abs_a < 1e-3] = 1
1338 1339 1340 1341 1342 1343

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
1344 1345 1346
                return ("Operator %s error, %s variable %s (shape: %s, dtype: %s) max gradient diff %e over limit %e, "
                    "the first error element is %d, expected %e, but got %e.") \
                    % (self.op_type, msg_prefix, name, str(a.shape), self.dtype, max_diff, max_relative_error,
1347
                    offset, a.flatten()[offset], b.flatten()[offset])
1348 1349 1350

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

1351 1352 1353 1354 1355 1356 1357
    def _check_grad_helper(self):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        self.__class__.op_type = self.op_type
        self.__class__.exist_check_grad = True
        if self.dtype == np.float64:
            self.__class__.exist_fp64_check_grad = True

1358 1359
    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
1360
                   output_names,
1361
                   no_grad_set=None,
1362
                   numeric_grad_delta=0.005,
1363
                   in_place=False,
Q
Qiao Longfei 已提交
1364
                   max_relative_error=0.005,
1365
                   user_defined_grads=None,
1366
                   user_defined_grad_outputs=None,
1367
                   check_dygraph=True):
1368
        self._check_grad_helper()
1369
        places = self._get_places()
1370
        for place in places:
1371 1372 1373 1374
            self.check_grad_with_place(
                place, inputs_to_check, output_names, no_grad_set,
                numeric_grad_delta, in_place, max_relative_error,
                user_defined_grads, user_defined_grad_outputs, check_dygraph)
1375 1376 1377 1378 1379 1380 1381 1382 1383

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
1384
                              user_defined_grads=None,
1385
                              user_defined_grad_outputs=None,
1386
                              check_dygraph=True):
1387
        self.scope = core.Scope()
Q
qijun 已提交
1388
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
1389
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
1390
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
P
phlrain 已提交
1391

1392
        self._check_grad_helper()
1393 1394 1395 1396
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7
1397

P
phlrain 已提交
1398 1399 1400
        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
1401 1402 1403 1404 1405 1406 1407

        # oneDNN numeric gradient should use CPU kernel
        use_onednn = False
        if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"] == True:
            op_attrs["use_mkldnn"] = False
            use_onednn = True

P
phlrain 已提交
1408 1409 1410 1411 1412 1413 1414
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list)
Y
Yu Yang 已提交
1415

1416 1417 1418
        if use_onednn:
            op_attrs["use_mkldnn"] = True

1419 1420
        if no_grad_set is None:
            no_grad_set = set()
1421 1422
        else:
            if (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST
1423 1424 1425
                ) and (
                    self.op_type not in no_grad_set_white_list.NOT_CHECK_OP_LIST
                ) and (not self.is_bfloat16_op()):
1426 1427
                raise AssertionError("no_grad_set must be None, op_type is " +
                                     self.op_type + " Op.")
1428

1429 1430 1431 1432 1433 1434 1435 1436
        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)
            tensor_to_check = self.scope.find_var(input_to_check).get_tensor()
            tensor_size = six.moves.reduce(lambda a, b: a * b,
                                           tensor_to_check.shape(), 1)
            if tensor_size < 100:
                self.__class__.input_shape_is_large = False

Y
Yancey 已提交
1437 1438 1439
        if not type(output_names) is list:
            output_names = [output_names]

Q
Qiao Longfei 已提交
1440
        numeric_grads = user_defined_grads or [
1441
            get_numeric_gradient(
1442
                place,
1443 1444 1445 1446
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
1447
                output_names,
1448
                delta=numeric_grad_delta,
C
chengduo 已提交
1449
                in_place=in_place) for input_to_check in inputs_to_check
1450
        ]
1451

1452
        analytic_grads = self._get_gradient(inputs_to_check, place,
1453 1454
                                            output_names, no_grad_set,
                                            user_defined_grad_outputs)
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
        # comparison of bf16 results will happen as fp32
        # loop over list of grads and convert bf16 to fp32
        fp32_grads = []
        for grad in analytic_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
                max_relative_error = 0.03
            fp32_grads.append(grad)
        analytic_grads = fp32_grads

D
Dun 已提交
1465 1466 1467
        self._assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                              max_relative_error,
                              "Gradient Check On %s" % str(place))
Q
qijun 已提交
1468

1469
        if check_dygraph:
1470 1471 1472
            dygraph_grad = self._get_dygraph_grad(
                inputs_to_check, place, output_names, user_defined_grad_outputs,
                no_grad_set)
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
            self._assert_is_close(numeric_grads, dygraph_grad, inputs_to_check,
                                  max_relative_error,
                                  "Gradient Check On %s" % str(place))

    def _find_var_in_dygraph(self, output_vars, name):
        if name in output_vars:
            return output_vars[name]
        else:
            for output_vars_index in output_vars:
                for output_vars_selected in output_vars[output_vars_index]:
                    if output_vars_selected.name == name:
                        return output_vars_selected

    def _get_dygraph_grad(self,
                          inputs_to_check,
                          place,
                          output_names,
1490
                          user_defined_grad_outputs=None,
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
                          no_grad_set=None):
        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
                op_proto, self.inputs, True, True, block)

            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs_outputs if hasattr(self, "attrs") else None)

            outputs_valid = {}
            for output_name in output_names:
                outputs_valid[output_name] = self._find_var_in_dygraph(
                    outputs, output_name)

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
            if user_defined_grad_outputs is None:
                if len(outputs_valid) == 1:
                    loss = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
                    for outputs_valid_key in outputs_valid:
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[outputs_valid_key]},
                            outputs={"Out": [loss]},
                            attrs=None)
                else:
                    avg_sum = []
                    for cur_loss in outputs_valid:
                        cur_avg_loss = block.create_var(
                            dtype=self.dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
                            stop_gradient=False)
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[cur_loss]},
                            outputs={"Out": [cur_avg_loss]},
                            attrs=None)
                        avg_sum.append(cur_avg_loss)
                    loss_sum = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
1556
                    block.append_op(
1557 1558 1559
                        type='sum',
                        inputs={"X": avg_sum},
                        outputs={"Out": loss_sum},
1560
                        attrs=None)
1561
                    loss = block.create_var(
1562 1563 1564
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
1565 1566
                        stop_gradient=False,
                        shape=[1])
1567
                    block.append_op(
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
                        type='scale',
                        inputs={"X": loss_sum},
                        outputs={"Out": loss},
                        attrs={'scale': 1.0 / float(len(avg_sum))})
                loss.backward()
                fetch_list_grad = []
                for inputs_to_check_name in inputs_to_check:
                    a = inputs_grad_dict[inputs_to_check_name].gradient()
                    fetch_list_grad.append(a)
                return fetch_list_grad
            else:
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                grad_outputs = []
                for grad_out_value in user_defined_grad_outputs:
                    grad_outputs.append(paddle.to_tensor(grad_out_value))
C
chentianyu03 已提交
1585 1586 1587 1588
                # delete the inputs which no need to calculate grad
                for no_grad_val in no_grad_set:
                    del (inputs[no_grad_val])

1589 1590 1591 1592 1593
                grad_inputs = paddle.grad(
                    outputs=fluid.layers.utils.flatten(outputs),
                    inputs=fluid.layers.utils.flatten(inputs),
                    grad_outputs=grad_outputs)
                return [grad.numpy() for grad in grad_inputs]
1594

Y
Yu Yang 已提交
1595 1596 1597 1598 1599
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
1600
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
1601 1602
        return tensor

K
Kexin Zhao 已提交
1603
    @staticmethod
K
Kexin Zhao 已提交
1604 1605
    def np_dtype_to_fluid_dtype(input):
        return input
K
Kexin Zhao 已提交
1606

D
dzhwinter 已提交
1607 1608 1609 1610 1611 1612 1613 1614
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

1615 1616 1617 1618 1619
    def _get_gradient(self,
                      input_to_check,
                      place,
                      output_names,
                      no_grad_set,
1620
                      user_defined_grad_outputs=None,
1621
                      parallel=False):
Y
Yu Yang 已提交
1622
        prog = Program()
1623
        scope = core.Scope()
Y
Yu Yang 已提交
1624
        block = prog.global_block()
1625
        self._append_ops(block)
Y
Yu Yang 已提交
1626

1627
        inputs = self._get_inputs(block)
1628
        outputs = self._get_outputs(block)
1629
        feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
1630

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
        if user_defined_grad_outputs is None:
            loss = append_loss_ops(block, output_names)
            param_grad_list = append_backward(
                loss=loss,
                parameter_list=input_to_check,
                no_grad_set=no_grad_set)
            fetch_list = [g for p, g in param_grad_list]
        else:
            assert parallel is False, "unsupported parallel mode when giving custom grad outputs."
            # user_defined_grad_outputs here are numpy arrays
            if not isinstance(user_defined_grad_outputs, list):
                user_defined_grad_outputs = [user_defined_grad_outputs]
            grad_outputs = []
            for grad_out_value in user_defined_grad_outputs:
                # `presistable` is used to avoid executor create new var in local scope
                var = block.create_var(
                    shape=grad_out_value.shape,
                    dtype=grad_out_value.dtype,
                    persistable=True)
                true_var = scope.var(var.name)
                tensor = true_var.get_tensor()
                tensor.set(grad_out_value, place)
                grad_outputs.append(var)
            targets = [
                outputs[name] for name in outputs if name in output_names
            ]
1657
            inputs = [inputs[name] for name in input_to_check if name in inputs]
1658 1659 1660 1661
            grad_inputs = paddle.static.gradients(targets, inputs, grad_outputs,
                                                  no_grad_set)
            fetch_list = grad_inputs

1662 1663
        if parallel:
            use_cuda = False
1664
            if isinstance(place, fluid.CUDAPlace):
1665
                use_cuda = True
1666 1667 1668 1669
            compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
                loss_name=loss.name, places=place)
            prog = compiled_prog
        executor = fluid.Executor(place)
1670 1671
        return list(
            map(np.array,
1672 1673 1674 1675 1676
                executor.run(prog,
                             feed_dict,
                             fetch_list,
                             scope=scope,
                             return_numpy=False)))