op_test.py 77.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

B
baojun 已提交
17
import os
18
import unittest
19
import warnings
20
import numpy as np
21
import random
M
minqiyang 已提交
22
import six
23
import struct
24
import time
25
import itertools
Y
Yu Yang 已提交
26
import collections
M
minqiyang 已提交
27
from collections import defaultdict
28

29
import paddle
30 31
import paddle.fluid as fluid
import paddle.fluid.core as core
32 33 34
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
35
from paddle.fluid.framework import Program, OpProtoHolder, Variable
36 37 38 39 40
from paddle.fluid.tests.unittests.testsuite import (
    create_op,
    set_input,
    append_input_output,
    append_loss_ops, )
41
from paddle.fluid import unique_name
42 43 44 45 46 47 48
from paddle.fluid.tests.unittests.white_list import (
    op_accuracy_white_list,
    check_shape_white_list,
    compile_vs_runtime_white_list,
    no_check_set_white_list,
    op_threshold_white_list,
    no_grad_set_white_list, )
49 50


51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
def check_out_dtype(api_fn, in_specs, expect_dtypes, target_index=0, **configs):
    """
    Determines whether dtype of output tensor is as expected.

    Args:
        api_fn(callable):  paddle api function
        in_specs(list[tuple]): list of shape and dtype information for constructing input tensor of api_fn, such as [(shape, dtype), (shape, dtype)].
        expected_dtype(list[str]): expected dtype of output tensor.
        target_index(int): indicate which one from in_specs to infer the dtype of output.
        config(dict): other arguments of paddle api function

    Example:
        check_out_dtype(fluid.layers.pad_constant_like, [([2,3,2,3], 'float64'), ([1, 3, 1,3], )], ['float32', 'float64', 'int64'], target_index=1, pad_value=0.)

    """
    paddle.enable_static()
    for i, expect_dtype in enumerate(expect_dtypes):
        with paddle.static.program_guard(paddle.static.Program()):
            input_t = []
            for index, spec in enumerate(in_specs):
                if len(spec) == 1:
                    shape = spec[0]
                    dtype = expect_dtype if target_index == index else 'float32'
                elif len(spec) == 2:
                    shape, dtype = spec
                else:
                    raise ValueError(
                        "Value of in_specs[{}] should contains two elements: [shape, dtype]".
                        format(index))
                input_t.append(
                    paddle.static.data(
                        name='data_%s' % index, shape=shape, dtype=dtype))

            out = api_fn(*input_t, **configs)
            out_dtype = fluid.data_feeder.convert_dtype(out.dtype)

            if out_dtype != expect_dtype:
                raise ValueError(
                    "Expected out.dtype is {}, but got {} from {}.".format(
                        expect_dtype, out_dtype, api_fn.__name__))


93 94 95 96 97 98 99 100
def _set_use_system_allocator(value=None):
    USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
    old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
    value = old_value if value is None else value
    core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
    return old_value


101 102 103 104
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
M
minqiyang 已提交
105
    for i in six.moves.xrange(len(prob)):
106 107 108 109
        prob[i] /= prob_sum[i]
    return prob


110 111
def get_numeric_gradient(place,
                         scope,
112 113 114
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
115
                         output_names,
116
                         delta=0.005,
C
chengduo 已提交
117
                         in_place=False):
Y
Yu Yang 已提交
118
    # FIXME: change this method by compile time concepts
119
    set_input(scope, op, inputs, place)
120 121

    def product(dim):
M
minqiyang 已提交
122
        return six.moves.reduce(lambda a, b: a * b, dim, 1)
123 124

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
125 126
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
127
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
128
        tensor_to_check_dtype = np.float32
129
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
130
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
131 132 133 134
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
135 136
    elif tensor_to_check_dtype == core.VarDesc.VarType.BF16:
        tensor_to_check_dtype = np.float32
137 138 139 140
    else:
        raise ValueError("Not supported data type " + str(
            tensor_to_check_dtype))

C
chengduo 已提交
141 142 143 144
    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
145 146 147 148
            output_numpy = np.array(scope.find_var(output_name).get_tensor())
            if tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
                output_numpy = convert_uint16_to_float(output_numpy)
            sum.append(output_numpy.astype(tensor_to_check_dtype).mean())
C
chengduo 已提交
149 150
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

151 152 153
    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
154 155 156 157
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
158 159 160 161 162
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            numpy_tensor = numpy_tensor.flatten()
            return struct.unpack('<f', struct.pack('<I', numpy_tensor[i]
                                                   << 16))[0]
D
dzhwinter 已提交
163
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
164
            return tensor._get_float_element(i)
165
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
166
            return tensor._get_double_element(i)
167 168 169
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
170 171

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
172 173 174 175 176
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
177
            numpy_tensor = numpy_tensor.reshape(shape)
D
dzhwinter 已提交
178
            tensor.set(numpy_tensor, place)
179 180 181 182 183 184 185
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = np.uint16(copy_bits_from_float_to_uint16(e))
            numpy_tensor = numpy_tensor.reshape(shape)
            tensor.set(numpy_tensor, place)
D
dzhwinter 已提交
186
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
187
            tensor._set_float_element(i, e)
188
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
189
            tensor._set_double_element(i, e)
190 191 192
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
193

194 195
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
M
minqiyang 已提交
196
    for i in six.moves.xrange(tensor_size):
197
        if in_place:
198
            set_input(scope, op, inputs, place)
199 200

        # get one input element throw it's index i.
201
        origin = __get_elem__(tensor_to_check, i)
202 203
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
204
        __set_elem__(tensor_to_check, i, x_pos)
205 206 207
        y_pos = get_output()

        if in_place:
208
            set_input(scope, op, inputs, place)
209 210

        x_neg = origin - delta
211
        __set_elem__(tensor_to_check, i, x_neg)
212 213
        y_neg = get_output()

214
        __set_elem__(tensor_to_check, i, origin)
215 216
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
217
    return gradient_flat.reshape(tensor_to_check.shape())
218 219


220 221
def skip_check_grad_ci(reason=None):
    """Decorator to skip check_grad CI.
C
cc 已提交
222

223
       Check_grad is required for Op test cases. However, there are some special
C
cc 已提交
224
       cases that do not need to do check_grad. This decorator is used to skip the
225
       check_grad of the above cases.
C
cc 已提交
226 227

       Note: the execution of unit test will not be skipped. It just avoids check_grad
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
       checking in tearDownClass method by setting a `no_need_check_grad` flag.

       Example:
           @skip_check_grad_ci(reason="For inference, check_grad is not required.")
           class TestInference(OpTest):
    """
    if not isinstance(reason, str):
        raise AssertionError("The reason for skipping check_grad is required.")

    def wrapper(cls):
        cls.no_need_check_grad = True
        return cls

    return wrapper


244 245 246 247
def copy_bits_from_float_to_uint16(f):
    return struct.unpack('<I', struct.pack('<f', f))[0] >> 16


248 249 250 251
def convert_float_to_uint16(float_list, data_format="NCHW"):
    if data_format == "NHWC":
        float_list = np.transpose(float_list, [0, 3, 1, 2])

252 253 254
    new_output = []
    for x in np.nditer(float_list):
        new_output.append(np.uint16(copy_bits_from_float_to_uint16(x)))
255
    new_output = np.reshape(new_output, float_list.shape).view(np.uint16)
256

257 258 259
    if data_format == "NHWC":
        new_output = np.transpose(new_output, [0, 2, 3, 1])
    return new_output
260 261


262 263 264 265 266 267
def convert_uint16_to_float(in_list):
    in_list = np.asarray(in_list)
    out = np.vectorize(
        lambda x: struct.unpack('<f', struct.pack('<I', x << 16))[0],
        otypes=[np.float32])(in_list.flat)
    return np.reshape(out, in_list.shape)
268 269


270
class OpTest(unittest.TestCase):
271 272 273 274 275
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
276
        cls.call_once = False
277
        cls.dtype = None
278
        cls.outputs = {}
279
        cls.input_shape_is_large = True
280 281 282 283

        np.random.seed(123)
        random.seed(124)

284 285 286 287
        if paddle.is_compiled_with_npu():
            cls._use_system_allocator = _set_use_system_allocator(False)
        else:
            cls._use_system_allocator = _set_use_system_allocator(True)
288

289 290
    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
291
        """Restore random seeds"""
292 293 294
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

295 296
        _set_use_system_allocator(cls._use_system_allocator)

297 298 299 300
        def is_empty_grad_op(op_type):
            all_op_kernels = core._get_all_register_op_kernels()
            grad_op = op_type + '_grad'
            if grad_op in all_op_kernels.keys():
J
juncaipeng 已提交
301
                if is_mkldnn_op_test():
302 303 304 305 306 307 308 309
                    grad_op_kernels = all_op_kernels[grad_op]
                    for grad_op_kernel in grad_op_kernels:
                        if 'MKLDNN' in grad_op_kernel:
                            return False
                else:
                    return False
            return True

310 311 312
        def is_xpu_op_test():
            return hasattr(cls, "use_xpu") and cls.use_xpu == True

J
juncaipeng 已提交
313
        def is_mkldnn_op_test():
314
            return hasattr(cls, "use_mkldnn") and cls.use_mkldnn == True
J
juncaipeng 已提交
315

316 317 318
        def is_rocm_op_test():
            return core.is_compiled_with_rocm()

319 320 321
        def is_npu_op_test():
            return hasattr(cls, "use_npu") and cls.use_npu == True

322 323
        if not hasattr(cls, "op_type"):
            raise AssertionError(
324 325
                "This test do not have op_type in class attrs, "
                "please set self.__class__.op_type=the_real_op_type manually.")
326

J
juncaipeng 已提交
327 328
        # case in NO_FP64_CHECK_GRAD_CASES and op in NO_FP64_CHECK_GRAD_OP_LIST should be fixed
        if not hasattr(cls, "no_need_check_grad") \
329
            and not is_empty_grad_op(cls.op_type):
J
juncaipeng 已提交
330
            if cls.dtype is None or \
331 332
                (cls.dtype == np.float16 \
                    and cls.op_type not in op_accuracy_white_list.NO_FP16_CHECK_GRAD_OP_LIST \
J
juncaipeng 已提交
333 334 335 336
                    and not hasattr(cls, "exist_check_grad")):
                raise AssertionError("This test of %s op needs check_grad." %
                                     cls.op_type)

337
            # check for op test with fp64 precision, but not check mkldnn op test for now
J
juncaipeng 已提交
338 339
            if cls.dtype in [np.float32, np.float64] \
                and cls.op_type not in op_accuracy_white_list.NO_FP64_CHECK_GRAD_OP_LIST \
340
                and not hasattr(cls, 'exist_fp64_check_grad') \
341
                and not is_xpu_op_test() \
342
                and not is_mkldnn_op_test() \
343 344
                and not is_rocm_op_test() \
                and not is_npu_op_test():
J
juncaipeng 已提交
345 346 347 348
                raise AssertionError(
                    "This test of %s op needs check_grad with fp64 precision." %
                    cls.op_type)

349
            if not cls.input_shape_is_large \
350 351 352 353
                and cls.op_type not in check_shape_white_list.NEED_TO_FIX_OP_LIST:
                raise AssertionError(
                    "Input's shape should be large than or equal to 100 for " +
                    cls.op_type + " Op.")
354

355 356 357 358 359
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

360 361 362
    def is_bfloat16_op(self):
        return self.dtype == np.uint16 or (
            hasattr(self, 'mkldnn_data_type') and
363 364 365
            getattr(self, 'mkldnn_data_type') is "bfloat16") or (
                hasattr(self, 'attrs') and 'mkldnn_data_type' in self.attrs and
                self.attrs['mkldnn_data_type'] == 'bfloat16')
366

367
    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
J
juncaipeng 已提交
368 369 370 371
        def is_np_data(input):
            return isinstance(input, (np.ndarray, np.generic))

        def infer_dtype(numpy_dict, dtype_set):
372 373 374
            assert isinstance(
                numpy_dict,
                dict), "self.inputs, self.outputs must be numpy_dict"
J
juncaipeng 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
            # the inputs are as follows:
            # case 1: inputs = {'X': x}
            # case 2: inputs = {'X': (x, x_lod)}
            # case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
            # case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
            # TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
            for _, var_value in six.iteritems(numpy_dict):
                if is_np_data(var_value):  # case 1
                    dtype_set.add(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):  # case 2, 3, 4
                    for sub_val_value in var_value:
                        if is_np_data(sub_val_value):  # case 2
                            dtype_set.add(sub_val_value.dtype)
                        elif len(sub_val_value) > 1 and is_np_data(
                                sub_val_value[1]):  # case 3
                            dtype_set.add(sub_val_value[1].dtype)
                        elif len(sub_val_value) > 1 and isinstance(sub_val_value[1], (list, tuple)) \
                            and is_np_data(sub_val_value[1][0]): # case 4
                            dtype_set.add(sub_val_value[1][0].dtype)

        # infer dtype from inputs, and dtype means the precision of the test
        # collect dtype of all inputs
        dtype_set = set()
        infer_dtype(inputs, dtype_set)
        dtype_list = [
            np.dtype(np.float64), np.dtype(np.float32), np.dtype(np.float16),
401 402 403
            np.dtype(np.int64), np.dtype(np.int32), np.dtype(np.uint16),
            np.dtype(np.int16), np.dtype(np.int8), np.dtype(np.uint8),
            np.dtype(np.bool)
J
juncaipeng 已提交
404 405 406 407 408 409
        ]
        # check the dtype in dtype_list in order, select the first dtype that in dtype_set
        for dtype in dtype_list:
            if dtype in dtype_set:
                self.dtype = dtype
                break
410 411
        # save dtype in class attr
        self.__class__.dtype = self.dtype
412

Y
Yang Yang(Tony) 已提交
413 414 415 416 417 418
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
419
                    if isinstance(np_value, tuple):
420
                        tensor.set(np_value[0], place)
421
                        tensor.set_recursive_sequence_lengths(np_value[1])
422
                    else:
423
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
424 425 426 427
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
428
                    tensor.set(self.inputs[var_name][0], place)
429 430
                    tensor.set_recursive_sequence_lengths(self.inputs[var_name][
                        1])
Y
Yang Yang(Tony) 已提交
431
                else:
432
                    tensor.set(self.inputs[var_name], place)
Y
Yang Yang(Tony) 已提交
433 434 435
                feed_map[var_name] = tensor
        return feed_map

436
    def _append_ops(self, block):
J
juncaipeng 已提交
437
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
438 439 440 441
        if (hasattr(self, "use_mkldnn") and self.use_mkldnn == True) or \
            (hasattr(self, "attrs") and "use_mkldnn" in self.attrs and \
                    self.attrs["use_mkldnn"] == True):
            self.__class__.use_mkldnn = True
C
cc 已提交
442

443 444 445 446 447
        if (hasattr(self, "use_xpu") and self.use_xpu == True) or \
            (hasattr(self, "attrs") and "use_xpu" in self.attrs and \
                    self.attrs["use_xpu"] == True):
            self.__class__.use_xpu = True

Y
Yang Yang(Tony) 已提交
448
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
449 450 451 452 453 454
        "infer datatype from inputs and outputs for this test case"
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        inputs = append_input_output(block, op_proto, self.inputs, True,
                                     self.dtype)
        outputs = append_input_output(block, op_proto, self.outputs, False,
                                      self.dtype)
P
phlrain 已提交
455 456 457 458 459 460 461 462 463

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True)

Y
Yang Yang(Tony) 已提交
464 465 466 467 468
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=self.attrs if hasattr(self, "attrs") else dict())
C
cc 已提交
469
        # infer variable type and infer shape in compile-time
Q
QI JUN 已提交
470 471
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
472

473 474
        return op

475 476
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
M
minqiyang 已提交
477
        for name, value in six.iteritems(numpy_inputs):
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

M
minqiyang 已提交
497 498 499 500
    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
L
lujun 已提交
501
            v = fluid.dygraph.base.to_variable(value=data)
502
            v.value().get_tensor().set_recursive_sequence_lengths(lod)
M
minqiyang 已提交
503 504
            return v
        else:
L
lujun 已提交
505
            return fluid.dygraph.base.to_variable(value)
M
minqiyang 已提交
506

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
    def get_sequence_batch_size_1_input(self, lod=None, shape=None):
        """Get LoD input data whose batch size is 1.
        All sequence related OP unittests should call this function to contain the case of batch size = 1.
        Args:
            lod (list[list of int], optional): Length-based LoD, length of lod[0] should be 1. Default: [[13]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod) : LoD input data whose batch size is 1.
        """
        if lod is None:
            lod = [[13]]
        if shape is None:
            shape = [13, 23]
        assert len(lod[0]) == 1
        assert lod[0][0] == shape[0]
        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
    def lod_has_single_zero(self, lod):
        for i in range(len(lod) - 2):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] != 0:
                return True
        return False

    def lod_has_continuous_zero(self, lod):
        for i in range(len(lod) - 3):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] == 0 and lod[
                    i + 3] != 0:
                return True
        return False

    def get_sequence_instance_size_0_input(self, lod=None, shape=None):
        """Get LoD input data whose instance size is 0.
        All sequence related OP unittests should call this function to contain the case of instance size is 0.
        Args:
            lod (list[list of int], optional): Length-based LoD, lod[0]'s size must at least eight, lod[0] must at least two zeros at the beginning and at least two zeros at the end, the middle position of lod[0] contains a single zero and multiple zero. Default: [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod): LoD input data whose instance size is 0.
        """
        if lod is None:
            lod = [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]]
        if shape is None:
            shape = [12, 10]
        assert len(lod[0]) >= 8
        assert lod[0][0] == 0 and lod[0][1] == 0 and lod[0][-1] == 0 and lod[0][
            -2] == 0
        assert self.lod_has_single_zero(lod[0]) is True
        assert self.lod_has_continuous_zero(lod[0]) is True
        assert sum(lod[0]) == shape[0]

        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
    def append_input_output_for_dygraph(self, op_proto, np_list, is_input,
                                        if_return_inputs_grad_dict, block):
        def create_var(np_value, name, is_input, if_return_inputs_grad_dict):
            np_value_temp = np_value
            has_lod = False
            lod_temp = None
            if isinstance(np_value, tuple):
                np_value_temp = np_value[0]
                has_lod = True
                lod_temp = np_value[1]

            if is_input:
                v = self._create_var_from_numpy(np_value_temp)
                if if_return_inputs_grad_dict:
                    v.stop_gradient = False
                if has_lod:
577
                    v.value().get_tensor().set_recursive_sequence_lengths(
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
                        lod_temp)
            else:
                v = block.create_var(
                    name=name,
                    dtype=np_value_temp.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False)

            return v

        # prepare variable for input or output
        var_dict = defaultdict(list)
        if if_return_inputs_grad_dict:
            inputs_grad_dict = defaultdict()
        proto_list = op_proto.inputs if is_input else op_proto.outputs
        for var_proto in proto_list:
            name = var_proto.name
            if (name not in np_list) and var_proto.dispensable:
                continue
            if name not in np_list:
                assert var_proto.intermediate, "{} not found".format(name)
                v = block.create_var(
                    dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v
                continue
            if var_proto.duplicable:
                assert isinstance(
                    np_list[name],
                    list), "Duplicable {} should be set as list".format(name)
                var_list = []
                slot_name = name
                for (name, np_value) in np_list[name]:
                    v = create_var(np_value, name, is_input,
                                   if_return_inputs_grad_dict)
                    var_list.append(v)
                    if if_return_inputs_grad_dict:
                        inputs_grad_dict[name] = v
                var_dict[slot_name] = var_list
            else:
                nplist_value_temp = None
                name_temp = None
                if isinstance(np_list[name], list):
                    nplist_value_temp = np_list[name][0]
                    name_temp = name
                else:
                    nplist_value_temp = np_list[name]
                    name_temp = unique_name.generate("%s_out" % (name))
                v = create_var(nplist_value_temp, name_temp, is_input,
                               if_return_inputs_grad_dict)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v

        if if_return_inputs_grad_dict:
            return var_dict, inputs_grad_dict
        else:
            return var_dict

L
lujun 已提交
639
    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
J
juncaipeng 已提交
640
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
L
lujun 已提交
641
        with fluid.dygraph.base.guard(place=place):
M
minqiyang 已提交
642 643
            block = fluid.default_main_program().global_block()

644
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
M
minqiyang 已提交
645

646 647 648
            # prepare input variable
            inputs = self.append_input_output_for_dygraph(op_proto, self.inputs,
                                                          True, False, block)
M
minqiyang 已提交
649 650

            # prepare output variable
651 652 653 654 655 656 657 658 659
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
M
minqiyang 已提交
660 661 662 663
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
664
                attrs=attrs_outputs if hasattr(self, "attrs") else None)
M
minqiyang 已提交
665
            return outputs
666

667 668 669 670 671 672
    def _calc_output(self,
                     place,
                     parallel=False,
                     no_check_set=None,
                     loss=None,
                     enable_inplace=None,
673
                     for_inplace_test=None):
674 675
        program = Program()
        block = program.global_block()
676
        op = self._append_ops(block)
677 678 679 680 681

        inputs = self._get_inputs(block)
        outputs = self._get_outputs(block)
        feed_map = self.feed_var(inputs, place)

682
        if for_inplace_test:
C
cc 已提交
683 684
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
685 686
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
687 688
            for out_name in op.output_arg_names:
                var = block.var(out_name)
689 690
                if 0 in var.shape:
                    var.persistable = True
691
        original_program = program
692 693
        if parallel:
            use_cuda = False
694
            if isinstance(place, fluid.CUDAPlace):
695
                use_cuda = True
696 697 698
            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                loss_name=loss.name if loss else None, places=place)
            program = compiled_prog
699 700 701 702
        fetch_list = getattr(self, "fetch_list", [])
        # if the fetch_list is customized by user, we use it directly.
        # if not, fill the fetch_list by the user configured outputs in test.
        if len(fetch_list) == 0:
M
minqiyang 已提交
703
            for var_name, var in six.iteritems(outputs):
704 705
                if no_check_set is not None and var_name in no_check_set:
                    continue
Y
Yang Yang(Tony) 已提交
706 707
                if isinstance(var, list):
                    for v in var:
708
                        fetch_list.append(v.name)
Y
Yang Yang(Tony) 已提交
709
                else:
710
                    fetch_list.append(var.name)
711 712 713 714
        # if the fetch_list still empty, fill the fetch_list by the operator output.
        if len(fetch_list) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                fetch_list.append(str(out_name))
715 716 717 718 719 720 721 722 723

        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace

            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                build_strategy=build_strategy, places=place)
            program = compiled_prog

724
        executor = Executor(place)
725 726 727 728
        outs = executor.run(program,
                            feed=feed_map,
                            fetch_list=fetch_list,
                            return_numpy=False)
729 730
        self.op = op
        self.program = original_program
731 732 733 734
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list
Y
Yang Yang(Tony) 已提交
735

736 737 738 739 740 741 742 743 744
    def _compare_expect_and_actual_outputs(self,
                                           place,
                                           fetch_list,
                                           expect_outs,
                                           actual_outs,
                                           inplace_atol=None):
        """Compare expect outs and actual outs of an tested op.

        Args:
C
cc 已提交
745
            place (CPUPlace | CUDAPlace): The place where the op runs.
746 747 748 749 750 751 752 753 754 755
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
C
cc 已提交
756
            # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
757 758 759
            # computational consistency.
            # When inplace_atol is not None, the inplace check uses numpy.allclose
            # to check inplace result instead of numpy.array_equal.
760 761
            expect_out = np.array(expect_outs[i])
            actual_out = np.array(actual_outs[i])
762 763 764
            if inplace_atol is not None:
                self.assertTrue(
                    np.allclose(
765
                        expect_out, actual_out, atol=inplace_atol),
766 767
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
768 769
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__)
770 771
            else:
                self.assertTrue(
772
                    np.array_equal(expect_out, actual_out),
773 774
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
775 776
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__ + '\n')
777 778 779 780 781 782 783 784

    def _construct_grad_program_from_forward(self, fwd_program, grad_op_desc,
                                             op_grad_to_var):
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
785
            op_grad_to_var (dict): The relation of variables in grad op and its forward op.
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
        for arg in grad_op_desc.input_arg_names(
        ) + grad_op_desc.output_arg_names():
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
                fwd_var_name)
            grad_var = grad_block.create_var(
                name=arg,
                dtype=fwd_var.dtype,
                shape=fwd_var.shape,
                type=fwd_var.type,
                persistable=False)

C
cc 已提交
812 813
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

    def _construct_grad_feed_map_from_forward(self, place, fwd_res,
                                              grad_op_desc, op_grad_to_var):
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
829
            place (CPUPlace | CUDAPlace): The place where the op runs.
830 831 832
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
833
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op.
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)
        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
C
cc 已提交
865

866
        Args:
C
cc 已提交
867 868
            op_desc (OpDesc): The op_desc of current op.
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op.
869
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
C
cc 已提交
870

871 872 873 874 875 876 877 878 879 880 881 882 883 884
        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
C
cc 已提交
885
                # get grad_op_desc
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                    op_desc, set(), [])
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
                        if grad_op_desc.type(
                        ) not in visited_ops and _dfs_grad_op(
                                grad_op_desc, fwd_op_desc=op_desc):
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

    def _check_forward_inplace(self,
                               place,
                               no_check_set=None,
                               inplace_atol=None):
909
        """Check the inplace correctness of given op (self.op_type).
910
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
C
cc 已提交
911

912
        Args:
C
cc 已提交
913
            place (CPUPlace | CUDAPlace): The place where the op runs.
914 915 916 917
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
918 919
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
920 921
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
922 923 924 925 926 927 928 929 930 931
        expect_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=False,
            for_inplace_test=True)
        actual_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=True,
            for_inplace_test=True)
932
        # compare expect_outs and actual_outs
933 934 935 936 937 938
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
939 940 941 942 943 944 945 946 947 948 949 950 951
        return expect_res

    def _calc_grad_output(self,
                          place,
                          fwd_res,
                          grad_op_desc,
                          enable_inplace=None):
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
952
            place (CPUPlace | CUDAPlace): The place where the op runs.
953 954 955 956 957 958 959 960 961
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
962
        grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(fwd_op_desc,
963
                                                                  set(), [])
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
        grad_program = self._construct_grad_program_from_forward(
            fwd_program, grad_op_desc, op_grad_to_var)
        grad_feed_map = self._construct_grad_feed_map_from_forward(
            place, fwd_res, grad_op_desc, op_grad_to_var)
        grad_fetch_list = grad_op_desc.output_arg_names()
        exe = Executor(place)
        program = grad_program
        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace
            compiled_program = fluid.CompiledProgram(
                grad_program).with_data_parallel(
                    loss_name="", build_strategy=build_strategy, places=place)
            program = compiled_program
        outs = exe.run(program,
                       feed=grad_feed_map,
                       fetch_list=grad_fetch_list,
                       return_numpy=False)
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

    def _check_grad_inplace(self,
                            place,
                            fwd_res,
                            grad_op_desc,
                            inplace_atol=None):
989
        """Check the inplace correctness of given grad_op_desc.
990 991 992 993 994 995

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
C
cc 已提交
996
            place (CPUPlace | CUDAPlace): The place where the op runs.
997 998 999 1000 1001 1002
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1003 1004
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
        """
        expect_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=False)
        actual_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=True)
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
        return expect_res
1017

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
    def check_inplace_output_with_place(self,
                                        place,
                                        no_check_set=None,
                                        inplace_atol=None):
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
C
cc 已提交
1028
            place (CPUPlace | CUDAPlace): The place where the op runs.
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)

        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True)
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
1044 1045
        if hasattr(self, 'attrs') and bool(self.attrs.get('use_xpu', False)):
            return
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
                        inplace_atol=inplace_atol)
                else:
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True)
            else:
1059 1060
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn
                # skip op that use_mkldnn currently
1061
                flags_use_mkldnn = fluid.core.globals()["FLAGS_use_mkldnn"]
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
                attrs_use_mkldnn = hasattr(
                    self,
                    'attrs') and bool(self.attrs.get('use_mkldnn', False))
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
                        place, fwd_res, op_desc, inplace_atol=inplace_atol)
1074
                else:
1075 1076
                    res[op_desc] = self._calc_grad_output(place, fwd_res,
                                                          op_desc)
1077

1078 1079
    def check_output_with_place(self,
                                place,
1080
                                atol=0,
1081
                                no_check_set=None,
M
minqiyang 已提交
1082
                                equal_nan=False,
1083
                                check_dygraph=True,
1084
                                inplace_atol=None):
1085 1086 1087 1088 1089
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST:
            atol = 0

1090 1091 1092 1093 1094 1095 1096 1097
        if self.is_bfloat16_op():
            check_dygraph = False
            if hasattr(self, 'force_fp32_output') and getattr(
                    self, 'force_fp32_output'):
                atol = 1e-2
            else:
                atol = 2

1098 1099 1100 1101
        if no_check_set is not None:
            if self.op_type not in no_check_set_white_list.no_check_set_white_list:
                raise AssertionError(
                    "no_check_set of op %s must be set to None." % self.op_type)
1102

L
lujun 已提交
1103 1104
        if check_dygraph:
            dygraph_outs = self._calc_dygraph_output(
M
minqiyang 已提交
1105
                place, no_check_set=no_check_set)
1106
        outs, fetch_list = self._calc_output(place, no_check_set=no_check_set)
1107

Y
Yang Yang(Tony) 已提交
1108
        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
1109 1110
            if out_name not in self.outputs:
                continue
1111 1112
            if no_check_set is not None and out_name in no_check_set:
                continue
1113

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
            def find_imperative_actual(target_name, dygraph_outs, place):
                with fluid.dygraph.base.guard(place=place):
                    for name in dygraph_outs:
                        if name == target_name:
                            return dygraph_outs[name][0]
                        var_list = dygraph_outs[name]
                        for i, var in enumerate(var_list):
                            if var.name == target_name:
                                return dygraph_outs[name][i]
                    self.assertTrue(False, "Found failed {} {}".format(
                        dygraph_outs.keys(), target_name))

Y
Yang Yang(Tony) 已提交
1126 1127
            def find_actual(target_name, fetch_list):
                found = [
1128 1129
                    i for i, var_name in enumerate(fetch_list)
                    if var_name == target_name
Y
Yang Yang(Tony) 已提交
1130 1131 1132 1133 1134 1135
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

1136 1137
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
1138 1139 1140
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
1141 1142
                for item in sub_out:
                    sub_out_name, expect = item[0], item[1]
L
lujun 已提交
1143
                    if check_dygraph:
1144 1145
                        imperative_actual = find_imperative_actual(
                            sub_out_name, dygraph_outs, place)
1146 1147
                        imperative_actual_t = np.array(imperative_actual.value()
                                                       .get_tensor())
Y
Yang Yang(Tony) 已提交
1148
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
1149 1150
                    actual = outs[idx]
                    actual_t = np.array(actual)
1151 1152
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
1153 1154
                    self.assertTrue(
                        np.allclose(
1155
                            actual_t, expect_t, atol=atol, equal_nan=equal_nan),
Y
Yang Yang(Tony) 已提交
1156 1157
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
L
lujun 已提交
1158
                    if check_dygraph:
M
minqiyang 已提交
1159 1160 1161 1162 1163 1164 1165
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + sub_out_name + ") has diff at " +
L
lujun 已提交
1166
                            str(place) + " in dygraph mode")
1167 1168
                    if isinstance(expect, tuple):
                        self.assertListEqual(
1169 1170
                            actual.recursive_sequence_lengths(), expect[1],
                            "Output (" + sub_out_name +
Q
QI JUN 已提交
1171
                            ") has different lod at " + str(place))
1172 1173
                        if check_dygraph:
                            self.assertListEqual(
1174
                                imperative_actual.value().get_tensor()
1175 1176 1177 1178
                                .recursive_sequence_lengths(), expect[1],
                                "Output (" + out_name +
                                ") has different lod at " + str(place) +
                                " in dygraph mode")
1179
            else:
L
lujun 已提交
1180
                if check_dygraph:
1181 1182
                    imperative_actual = find_imperative_actual(
                        out_name, dygraph_outs, place)
1183 1184
                    imperative_actual_t = np.array(imperative_actual.value()
                                                   .get_tensor())
Y
Yang Yang(Tony) 已提交
1185
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
1186 1187
                actual = outs[idx]
                actual_t = np.array(actual)
1188

1189
                expect = self.outputs[out_name]
1190
                expect_t = expect[0] if isinstance(expect, tuple) else expect
1191

1192 1193 1194
                if actual_t.dtype == np.uint16 and expect_t.dtype in [
                        np.float32, np.float64
                ]:
1195
                    actual_t = convert_uint16_to_float(actual_t)
W
wuhuanzhou 已提交
1196 1197 1198
                    rtol = 1.e-2
                else:
                    rtol = 1.e-5
1199

1200 1201 1202 1203
                if expect_t.dtype == np.uint16 and actual_t.dtype == np.uint16:
                    expect_t = convert_uint16_to_float(expect_t)
                    actual_t = convert_uint16_to_float(actual_t)
                    atol = max(atol, 0.03)
1204 1205 1206 1207 1208
                # NOTE(zhiqiu): np.allclose([], [1.]) returns True
                # see details: https://stackoverflow.com/questions/38331703/why-does-numpys-broadcasting-sometimes-allow-comparing-arrays-of-different-leng
                if expect_t.size == 0:
                    self.assertTrue(actual_t.size == 0)

1209 1210
                self.assertTrue(
                    np.allclose(
W
wuhuanzhou 已提交
1211 1212 1213 1214 1215
                        actual_t,
                        expect_t,
                        rtol=rtol,
                        atol=atol,
                        equal_nan=equal_nan),
E
emailweixu 已提交
1216
                    "Output (" + out_name + ") has diff at " + str(place) +
D
dzhwinter 已提交
1217
                    "\nExpect " + str(expect_t) + "\n" + "But Got" +
1218
                    str(actual_t) + " in class " + self.__class__.__name__)
L
lujun 已提交
1219
                if check_dygraph:
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
                    if six.moves.reduce(
                            lambda x, y: x * y, imperative_actual_t.shape,
                            1) == 0 and six.moves.reduce(
                                lambda x, y: x * y, expect_t.shape, 1) == 0:
                        pass
                    else:
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + out_name + ") has diff at " +
                            str(place) + "\nExpect " + str(expect_t) + "\n" +
                            "But Got" + str(imperative_actual_t) + " in class "
                            + self.__class__.__name__)
1236
                if isinstance(expect, tuple):
1237 1238
                    self.assertListEqual(actual.recursive_sequence_lengths(),
                                         expect[1], "Output (" + out_name +
1239
                                         ") has different lod at " + str(place))
L
lujun 已提交
1240
                    if check_dygraph:
M
minqiyang 已提交
1241
                        self.assertListEqual(
1242
                            imperative_actual.value().get_tensor()
M
minqiyang 已提交
1243 1244
                            .recursive_sequence_lengths(), expect[1],
                            "Output (" + out_name + ") has different lod at " +
L
lujun 已提交
1245
                            str(place) + " in dygraph mode")
1246

C
cc 已提交
1247
        # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
1248 1249
        # computational consistency.
        # For example, group_norm uses AtomicAdd on CUDAPlace, which do not ensure
C
cc 已提交
1250
        # computation order when multiple threads write the same address. So the
L
Leo Chen 已提交
1251 1252 1253
        # result of group_norm is non-deterministic when datatype is float.
        # When inplace_atol is not None, the inplace check uses numpy.allclose
        # to check inplace result instead of numpy.array_equal.
1254 1255
        if inplace_atol is not None:
            warnings.warn(
L
Leo Chen 已提交
1256 1257
                "inplace_atol should only be set when op doesn't ensure computational consistency, please check it!"
            )
1258
        # Check inplace for given op, its grad op, its grad_grad op, etc.
C
cc 已提交
1259
        # No effect on original OpTest
1260
        # Currently not support ParallelExecutor on XPUPlace.
1261 1262
        if not paddle.is_compiled_with_xpu(
        ) and not paddle.is_compiled_with_npu():
1263 1264
            self.check_inplace_output_with_place(
                place, no_check_set=no_check_set, inplace_atol=inplace_atol)
1265

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
        if check_dygraph:
            return outs, dygraph_outs, fetch_list
        else:
            return outs, fetch_list

    def check_compile_vs_runtime(self, fetch_list, fetch_outs):
        def find_fetch_index(target_name, fetch_list):
            found = [
                i for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            if len(found) == 0:
                return -1
            else:
                self.assertTrue(
                    len(found) == 1,
                    "Found {} {}".format(len(found), target_name))
                return found[0]

        for name in self.op.desc.output_names():
            var_names = self.op.desc.output(name)
            for var_name in var_names:
                i = find_fetch_index(var_name, fetch_list)
                if i == -1:
                    # The output is dispensiable or intermediate.
                    break
                out = fetch_outs[i]
                if isinstance(out, core.LoDTensor):
                    lod_level_runtime = len(out.lod())
                else:
                    if isinstance(out, core.LoDTensorArray):
                        warnings.warn(
                            "The check of LoDTensorArray's lod_level is not implemented now!"
                        )
                    lod_level_runtime = 0

                var = self.program.global_block().var(var_name)
                if var.type == core.VarDesc.VarType.LOD_TENSOR:
                    lod_level_compile = var.lod_level
                else:
                    lod_level_compile = 0
                self.assertEqual(
                    lod_level_compile, lod_level_runtime,
                    "The lod_level of Output (" + name +
                    ") is different between compile-time and runtime (" +
                    str(lod_level_compile) + " vs " + str(lod_level_runtime) +
                    ")")

1314
    def _get_places(self):
D
dzhwinter 已提交
1315 1316 1317 1318 1319 1320
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
                    self.op_type):
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
W
Wu Yi 已提交
1321 1322
                else:
                    return []
D
dzhwinter 已提交
1323 1324
            else:
                return []
1325
        places = [fluid.CPUPlace()]
1326 1327 1328
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
        if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type)\
           and not cpu_only:
D
dzhwinter 已提交
1329
            places.append(core.CUDAPlace(0))
1330 1331
        return places

M
minqiyang 已提交
1332 1333 1334 1335
    def check_output(self,
                     atol=1e-5,
                     no_check_set=None,
                     equal_nan=False,
1336
                     check_dygraph=True,
1337
                     inplace_atol=None):
1338
        self.__class__.op_type = self.op_type
1339 1340 1341 1342
        if (hasattr(self, "use_mkldnn") and self.use_mkldnn == True) or \
            (hasattr(self, "attrs") and "use_mkldnn" in self.attrs and \
                    self.attrs["use_mkldnn"] == True):
            self.__class__.use_mkldnn = True
C
cc 已提交
1343

1344 1345 1346 1347 1348
        if (hasattr(self, "use_xpu") and self.use_xpu == True) or \
            (hasattr(self, "attrs") and "use_xpu" in self.attrs and \
                    self.attrs["use_xpu"] == True):
            self.__class__.use_xpu = True

1349
        places = self._get_places()
Q
qijun 已提交
1350
        for place in places:
1351 1352 1353 1354 1355 1356
            res = self.check_output_with_place(place, atol, no_check_set,
                                               equal_nan, check_dygraph)
            if check_dygraph:
                outs, dygraph_outs, fetch_list = res
            else:
                outs, fetch_list = res
1357
            if self.op_type not in compile_vs_runtime_white_list.COMPILE_RUN_OP_WHITE_LIST:
1358
                self.check_compile_vs_runtime(fetch_list, outs)
Q
qijun 已提交
1359

P
pangyoki 已提交
1360
    def check_output_customized(self, checker, custom_place=None):
1361
        places = self._get_places()
P
pangyoki 已提交
1362 1363
        if custom_place:
            places.append(custom_place)
1364 1365 1366
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
1367
            outs.sort(key=len)
1368 1369
            checker(outs)

D
Dun 已提交
1370 1371
    def _assert_is_close(self, numeric_grads, analytic_grads, names,
                         max_relative_error, msg_prefix):
M
minqiyang 已提交
1372
        for a, b, name in six.moves.zip(numeric_grads, analytic_grads, names):
1373 1374 1375 1376 1377 1378
            # It asserts np.abs(a - b) / np.abs(a) < max_relative_error, in which
            # max_relative_error is 1e-7. According to the value of np.abs(a), we
            # change np.abs(a) to achieve dynamic threshold. For example, if
            # the value of np.abs(a) is between 1e-10 and 1e-8, we set np.abs(a)*=1e4.
            # Therefore, it asserts np.abs(a - b) / (np.abs(a)*1e4) < max_relative_error,
            # which is the same as np.abs(a - b) / np.abs(a) < max_relative_error*1e4.
1379
            abs_a = np.abs(a)
1380 1381 1382 1383 1384
            if self.dtype == np.float64 and \
                self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
                abs_a[abs_a < 1e-10] = 1e-3
                abs_a[np.logical_and(abs_a > 1e-10, abs_a <= 1e-8)] *= 1e4
                abs_a[np.logical_and(abs_a > 1e-8, abs_a <= 1e-6)] *= 1e2
1385 1386
            elif self.is_bfloat16_op():
                abs_a[abs_a < 1e-2] = 1
1387 1388
            else:
                abs_a[abs_a < 1e-3] = 1
1389 1390 1391 1392 1393 1394

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
1395 1396 1397
                return ("Operator %s error, %s variable %s (shape: %s, dtype: %s) max gradient diff %e over limit %e, "
                    "the first error element is %d, expected %e, but got %e.") \
                    % (self.op_type, msg_prefix, name, str(a.shape), self.dtype, max_diff, max_relative_error,
1398
                    offset, a.flatten()[offset], b.flatten()[offset])
1399 1400 1401

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

1402 1403 1404 1405 1406 1407 1408
    def _check_grad_helper(self):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        self.__class__.op_type = self.op_type
        self.__class__.exist_check_grad = True
        if self.dtype == np.float64:
            self.__class__.exist_fp64_check_grad = True

1409 1410
    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
1411
                   output_names,
1412
                   no_grad_set=None,
1413
                   numeric_grad_delta=0.005,
1414
                   in_place=False,
Q
Qiao Longfei 已提交
1415
                   max_relative_error=0.005,
1416
                   user_defined_grads=None,
1417
                   user_defined_grad_outputs=None,
1418
                   check_dygraph=True):
1419
        self._check_grad_helper()
1420
        places = self._get_places()
1421
        for place in places:
1422 1423 1424 1425
            self.check_grad_with_place(
                place, inputs_to_check, output_names, no_grad_set,
                numeric_grad_delta, in_place, max_relative_error,
                user_defined_grads, user_defined_grad_outputs, check_dygraph)
1426 1427 1428 1429 1430 1431 1432 1433 1434

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
1435
                              user_defined_grads=None,
1436
                              user_defined_grad_outputs=None,
1437
                              check_dygraph=True):
1438
        self.scope = core.Scope()
Q
qijun 已提交
1439
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
1440
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
1441
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
P
phlrain 已提交
1442

1443 1444 1445
        if self.is_bfloat16_op():
            check_dygraph = False

1446
        self._check_grad_helper()
1447 1448 1449 1450
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7
1451

P
phlrain 已提交
1452 1453 1454
        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
1455 1456 1457 1458 1459 1460 1461

        # oneDNN numeric gradient should use CPU kernel
        use_onednn = False
        if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"] == True:
            op_attrs["use_mkldnn"] = False
            use_onednn = True

P
phlrain 已提交
1462 1463 1464 1465 1466 1467 1468
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list)
Y
Yu Yang 已提交
1469

1470 1471 1472
        if use_onednn:
            op_attrs["use_mkldnn"] = True

1473 1474
        if no_grad_set is None:
            no_grad_set = set()
1475 1476
        else:
            if (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST
1477 1478 1479
                ) and (
                    self.op_type not in no_grad_set_white_list.NOT_CHECK_OP_LIST
                ) and (not self.is_bfloat16_op()):
1480 1481
                raise AssertionError("no_grad_set must be None, op_type is " +
                                     self.op_type + " Op.")
1482

1483 1484 1485 1486 1487 1488 1489 1490
        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)
            tensor_to_check = self.scope.find_var(input_to_check).get_tensor()
            tensor_size = six.moves.reduce(lambda a, b: a * b,
                                           tensor_to_check.shape(), 1)
            if tensor_size < 100:
                self.__class__.input_shape_is_large = False

Y
Yancey 已提交
1491 1492 1493
        if not type(output_names) is list:
            output_names = [output_names]

1494 1495 1496 1497 1498 1499 1500 1501 1502
        # FIXME: Replace numeric_place with place to calculate numeric_grads.
        # NOTE(liym27): There is an unknown error when call op.run() on NPUPlace, which
        # needs to be fixed.
        if hasattr(self.__class__,
                   "use_npu") and self.__class__.use_npu == True:
            numeric_place = paddle.CPUPlace()
        else:
            numeric_place = place

Q
Qiao Longfei 已提交
1503
        numeric_grads = user_defined_grads or [
1504
            get_numeric_gradient(
1505
                numeric_place,
1506 1507 1508 1509
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
1510
                output_names,
1511
                delta=numeric_grad_delta,
C
chengduo 已提交
1512
                in_place=in_place) for input_to_check in inputs_to_check
1513
        ]
1514

1515
        analytic_grads = self._get_gradient(inputs_to_check, place,
1516 1517
                                            output_names, no_grad_set,
                                            user_defined_grad_outputs)
1518

1519 1520
        # comparison of bf16 results will happen as fp32
        # loop over list of grads and convert bf16 to fp32
1521
        fp32_analytic_grads = []
1522 1523 1524
        for grad in analytic_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
1525
                max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
1526 1527 1528 1529 1530 1531 1532
            fp32_analytic_grads.append(grad)
        analytic_grads = fp32_analytic_grads

        fp32_numeric_grads = []
        for grad in numeric_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
1533
                max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
1534 1535
            fp32_numeric_grads.append(grad)
        numeric_grads = fp32_numeric_grads
1536

D
Dun 已提交
1537 1538 1539
        self._assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                              max_relative_error,
                              "Gradient Check On %s" % str(place))
Q
qijun 已提交
1540

1541
        if check_dygraph:
1542 1543 1544
            dygraph_grad = self._get_dygraph_grad(
                inputs_to_check, place, output_names, user_defined_grad_outputs,
                no_grad_set)
1545 1546 1547 1548
            fp32_grads = []
            for grad in dygraph_grad:
                if grad.dtype == np.uint16:
                    grad = convert_uint16_to_float(grad)
1549
                    max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
1550 1551
                fp32_grads.append(grad)
            dygraph_grad = fp32_grads
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
            self._assert_is_close(numeric_grads, dygraph_grad, inputs_to_check,
                                  max_relative_error,
                                  "Gradient Check On %s" % str(place))

    def _find_var_in_dygraph(self, output_vars, name):
        if name in output_vars:
            return output_vars[name]
        else:
            for output_vars_index in output_vars:
                for output_vars_selected in output_vars[output_vars_index]:
                    if output_vars_selected.name == name:
                        return output_vars_selected

    def _get_dygraph_grad(self,
                          inputs_to_check,
                          place,
                          output_names,
1569
                          user_defined_grad_outputs=None,
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
                          no_grad_set=None):
        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
                op_proto, self.inputs, True, True, block)

            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs_outputs if hasattr(self, "attrs") else None)

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
            if self.dtype == np.uint16:
                cast_inputs = self._find_var_in_dygraph(outputs,
                                                        output_names[0])
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape)
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32
                    })
                outputs = {output_names[0]: cast_outputs}

1611 1612 1613 1614 1615
            outputs_valid = {}
            for output_name in output_names:
                outputs_valid[output_name] = self._find_var_in_dygraph(
                    outputs, output_name)

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
            if user_defined_grad_outputs is None:
                if len(outputs_valid) == 1:
                    loss = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
                    for outputs_valid_key in outputs_valid:
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[outputs_valid_key]},
                            outputs={"Out": [loss]},
                            attrs=None)
                else:
                    avg_sum = []
                    for cur_loss in outputs_valid:
                        cur_avg_loss = block.create_var(
                            dtype=self.dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
                            stop_gradient=False)
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[cur_loss]},
                            outputs={"Out": [cur_avg_loss]},
                            attrs=None)
                        avg_sum.append(cur_avg_loss)
                    loss_sum = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
1650
                    block.append_op(
1651 1652 1653
                        type='sum',
                        inputs={"X": avg_sum},
                        outputs={"Out": loss_sum},
1654
                        attrs=None)
1655
                    loss = block.create_var(
1656 1657 1658
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
1659 1660
                        stop_gradient=False,
                        shape=[1])
1661
                    block.append_op(
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
                        type='scale',
                        inputs={"X": loss_sum},
                        outputs={"Out": loss},
                        attrs={'scale': 1.0 / float(len(avg_sum))})
                loss.backward()
                fetch_list_grad = []
                for inputs_to_check_name in inputs_to_check:
                    a = inputs_grad_dict[inputs_to_check_name].gradient()
                    fetch_list_grad.append(a)
                return fetch_list_grad
            else:
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                grad_outputs = []
                for grad_out_value in user_defined_grad_outputs:
                    grad_outputs.append(paddle.to_tensor(grad_out_value))
C
chentianyu03 已提交
1679 1680 1681 1682
                # delete the inputs which no need to calculate grad
                for no_grad_val in no_grad_set:
                    del (inputs[no_grad_val])

1683 1684 1685 1686 1687
                grad_inputs = paddle.grad(
                    outputs=fluid.layers.utils.flatten(outputs),
                    inputs=fluid.layers.utils.flatten(inputs),
                    grad_outputs=grad_outputs)
                return [grad.numpy() for grad in grad_inputs]
1688

Y
Yu Yang 已提交
1689 1690 1691 1692 1693
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
1694
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
1695 1696
        return tensor

K
Kexin Zhao 已提交
1697
    @staticmethod
K
Kexin Zhao 已提交
1698 1699
    def np_dtype_to_fluid_dtype(input):
        return input
K
Kexin Zhao 已提交
1700

D
dzhwinter 已提交
1701 1702 1703 1704 1705 1706 1707 1708
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

1709 1710 1711 1712 1713
    def _get_gradient(self,
                      input_to_check,
                      place,
                      output_names,
                      no_grad_set,
1714
                      user_defined_grad_outputs=None,
1715
                      parallel=False):
Y
Yu Yang 已提交
1716
        prog = Program()
1717
        scope = core.Scope()
Y
Yu Yang 已提交
1718
        block = prog.global_block()
1719
        self._append_ops(block)
Y
Yu Yang 已提交
1720

1721
        inputs = self._get_inputs(block)
1722
        outputs = self._get_outputs(block)
1723
        feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
1724

1725
        if user_defined_grad_outputs is None:
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
            if self.dtype == np.uint16:
                cast_inputs = list(map(block.var, output_names))
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape)
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32
                    })
                cast_op.desc.infer_var_type(block.desc)
                cast_op.desc.infer_shape(block.desc)
                output_names = [cast_outputs.name]
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
            loss = append_loss_ops(block, output_names)
            param_grad_list = append_backward(
                loss=loss,
                parameter_list=input_to_check,
                no_grad_set=no_grad_set)
            fetch_list = [g for p, g in param_grad_list]
        else:
            assert parallel is False, "unsupported parallel mode when giving custom grad outputs."
            # user_defined_grad_outputs here are numpy arrays
            if not isinstance(user_defined_grad_outputs, list):
                user_defined_grad_outputs = [user_defined_grad_outputs]
            grad_outputs = []
            for grad_out_value in user_defined_grad_outputs:
                # `presistable` is used to avoid executor create new var in local scope
                var = block.create_var(
                    shape=grad_out_value.shape,
                    dtype=grad_out_value.dtype,
                    persistable=True)
                true_var = scope.var(var.name)
                tensor = true_var.get_tensor()
                tensor.set(grad_out_value, place)
                grad_outputs.append(var)
            targets = [
                outputs[name] for name in outputs if name in output_names
            ]
1766
            inputs = [inputs[name] for name in input_to_check if name in inputs]
1767 1768 1769 1770
            grad_inputs = paddle.static.gradients(targets, inputs, grad_outputs,
                                                  no_grad_set)
            fetch_list = grad_inputs

1771 1772
        if parallel:
            use_cuda = False
1773
            if isinstance(place, fluid.CUDAPlace):
1774
                use_cuda = True
1775 1776 1777 1778
            compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
                loss_name=loss.name, places=place)
            prog = compiled_prog
        executor = fluid.Executor(place)
1779 1780
        return list(
            map(np.array,
1781 1782 1783 1784 1785
                executor.run(prog,
                             feed_dict,
                             fetch_list,
                             scope=scope,
                             return_numpy=False)))