Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c11d9b30
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c11d9b30
编写于
10月 28, 2020
作者:
J
Jacek Czaja
提交者:
GitHub
10月 28, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[oneDNN ] conv2d fwd&bwd optimization (#27871)
上级
d932b561
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
88 addition
and
38 deletion
+88
-38
paddle/fluid/operators/mkldnn/conv_mkldnn_op.cc
paddle/fluid/operators/mkldnn/conv_mkldnn_op.cc
+50
-38
paddle/fluid/platform/mkldnn_helper.h
paddle/fluid/platform/mkldnn_helper.h
+4
-0
paddle/fluid/platform/mkldnn_reuse.h
paddle/fluid/platform/mkldnn_reuse.h
+18
-0
python/paddle/fluid/tests/unittests/mkldnn/test_conv2d_bf16_mkldnn_op.py
...luid/tests/unittests/mkldnn/test_conv2d_bf16_mkldnn_op.py
+2
-0
python/paddle/fluid/tests/unittests/mkldnn/test_conv2d_mkldnn_op.py
...dle/fluid/tests/unittests/mkldnn/test_conv2d_mkldnn_op.py
+2
-0
python/paddle/fluid/tests/unittests/mkldnn/test_fusion_gru_bf16_mkldnn_op.py
.../tests/unittests/mkldnn/test_fusion_gru_bf16_mkldnn_op.py
+2
-0
python/paddle/fluid/tests/unittests/op_test.py
python/paddle/fluid/tests/unittests/op_test.py
+10
-0
未找到文件。
paddle/fluid/operators/mkldnn/conv_mkldnn_op.cc
浏览文件 @
c11d9b30
...
...
@@ -211,22 +211,8 @@ class ConvMKLDNNHandlerT
* ('any') which lets a primitive (convolution in this case) choose
* the memory format preferred for best performance
*/
// TODO(jczaja): This is workaround to make grad op UT's numerical
// gradient computation proper as this op is called directly without
// fetch op following it , so numercial grad is computed (in python)
// using block formats which will give wrong results
const
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
auto
chosen_memory_format
=
is_test
?
MKLDNNMemoryFormat
::
any
:
platform
::
data_format_to_memory_format
(
data_format
);
// Check the format for user's special output
if
(
chosen_memory_format
!=
MKLDNNMemoryFormat
::
any
)
{
if
(
is_conv3d
)
{
chosen_memory_format
=
platform
::
MKLDNNFormatForSize
(
src_tz
.
size
(),
chosen_memory_format
);
}
}
auto
chosen_memory_format
=
MKLDNNMemoryFormat
::
any
;
auto
data_type
=
mkldnn
::
memory
::
data_type
::
f32
;
if
(
ctx
.
Attr
<
std
::
string
>
(
"mkldnn_data_type"
)
==
"bfloat16"
||
std
::
is_same
<
T_out
,
platform
::
bfloat16
>::
value
)
...
...
@@ -351,14 +337,16 @@ class ConvMKLDNNHandlerT
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireResidualMemory
(
const
framework
::
Tensor
*
residual_param
)
{
const
T
*
residual_data
=
residual_param
->
data
<
T
>
();
void
*
residual_data
=
residual_param
->
type
()
==
framework
::
DataTypeTrait
<
T_out
>::
DataType
()
?
to_void_cast
<
T_out
>
(
residual_param
->
data
<
T_out
>
())
:
to_void_cast
<
T
>
(
residual_param
->
data
<
T
>
());
auto
user_residual_md
=
platform
::
MKLDNNMemDesc
(
framework
::
vectorize
(
residual_param
->
dims
()),
framework
::
ToMKLDNNDataType
(
residual_param
->
type
()),
residual_param
->
format
());
return
this
->
AcquireMemoryFromPrimitive
(
user_residual_md
,
to_void_cast
<
T
>
(
residual_data
),
return
this
->
AcquireMemoryFromPrimitive
(
user_residual_md
,
residual_data
,
"@user_residual_data_mem_p"
);
}
...
...
@@ -973,22 +961,8 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
* the memory format preferred for best performance
*/
// TODO(jczaja): Once GRAD NHWC is working then format 'any'
// should be used exclusively. But till forward pass enforce
// NCHW for training we need to have NCHW here as well
// to avoid performance degradation in relu_grad and pool2d_grad
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
auto
chosen_memory_format
=
platform
::
data_format_to_memory_format
(
data_format
);
auto
chosen_memory_format
=
MKLDNNMemoryFormat
::
any
;
weights_format
=
MKLDNNMemoryFormat
::
any
;
// Check the format for user's special output
if
(
chosen_memory_format
!=
MKLDNNMemoryFormat
::
any
)
{
if
(
is_conv3d
)
{
chosen_memory_format
=
platform
::
MKLDNNFormatForSize
(
src_tz
.
size
(),
chosen_memory_format
);
}
}
auto
src_md
=
platform
::
MKLDNNMemDesc
(
src_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
...
...
@@ -1055,9 +1029,12 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
const
size_t
size
=
handler
.
GetDiffWeightsMemorySize
();
filter_grad_data
=
filter_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
size
);
// For convoluition with groups write filter grad into
// oneDNN buffer and then we reorder it into filter_grad tensor
auto
diff_weights_memory_p
=
handler
.
AcquireDiffWeightsMemoryFromWeightsPrimitive
(
reinterpret_cast
<
void
*>
(
filter_grad_data
));
g
>
1
?
handler
.
AcquireDiffWeightsMemoryFromWeightsPrimitive
()
:
handler
.
AcquireDiffWeightsMemoryFromWeightsPrimitive
(
reinterpret_cast
<
void
*>
(
filter_grad_data
));
auto
conv_bwd_weights_p
=
handler
.
AcquireConvolutionBackwardWeights
();
...
...
@@ -1072,8 +1049,43 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
// in OneDNN groups in convolution are treated as separate dimension
// which is not the case in paddlepaddle
auto
filter_fmt
=
GetMKLDNNFormat
(
*
diff_weights_memory_p
);
filter_grad
->
set_format
(
platform
::
MKLDNNFormatForSize
(
g
>
1
?
weights_tz
.
size
()
-
1
:
weights_tz
.
size
(),
filter_fmt
));
// For convolution with groups convert from blocked to NCHW
// otherwise there will be problems in next operators working on this data
if
(
g
>
1
)
{
memory
::
data_type
in_type
=
framework
::
ToMKLDNNDataType
(
filter_grad
->
type
());
// for 3d conv with groups (six dimensional data reorder to goidhw)
// for 2d conv with groups (five dimensional data reorder to goihw)
mkldnn
::
memory
::
format_tag
out_format
=
weights_tz
.
size
()
==
6
?
mkldnn
::
memory
::
format_tag
::
goidhw
:
mkldnn
::
memory
::
format_tag
::
goihw
;
const
std
::
string
key
=
platform
::
CreateKey
(
weights_tz
,
filter_fmt
,
out_format
,
in_type
);
platform
::
ReorderMKLDNNHandler
handler
(
weights_tz
,
filter_grad
->
type
(),
in_type
,
dev_ctx
,
mkldnn_engine
,
key
);
auto
reorder_dst_memory_p
=
handler
.
AcquireDstMemory
(
filter_grad
,
out_format
,
ctx
.
GetPlace
());
auto
reorder_p
=
handler
.
AcquireReorder
(
reorder_dst_memory_p
,
diff_weights_memory_p
);
reorder_p
->
execute
(
astream
,
*
diff_weights_memory_p
,
*
reorder_dst_memory_p
);
astream
.
wait
();
// So here we have a data in goihw , which can be interpreted as OIHW
// (OIDHW for conv3d)
// because filter_grad shape is set for OIHW (OIDHW for conv3d)
mkldnn
::
memory
::
format_tag
target_format
=
weights_tz
.
size
()
==
6
?
mkldnn
::
memory
::
format_tag
::
oidhw
:
mkldnn
::
memory
::
format_tag
::
oihw
;
filter_grad
->
set_format
(
target_format
);
}
else
{
filter_grad
->
set_format
(
filter_fmt
);
}
}
if
(
input_grad
)
{
auto
weights_memory_p
=
handler
.
AcquireWeightsMemoryFromDataPrimitive
(
...
...
paddle/fluid/platform/mkldnn_helper.h
浏览文件 @
c11d9b30
...
...
@@ -289,6 +289,10 @@ inline mkldnn::memory::format_tag GetMKLDNNFormat(
strides
[
3
]
>=
strides
[
4
]
&&
strides
[
4
]
>=
strides
[
1
])
{
return
mkldnn
::
memory
::
format_tag
::
Acdeb16a
;
}
if
(
strides
[
0
]
>=
strides
[
1
]
&&
strides
[
1
]
>=
strides
[
2
]
&&
strides
[
2
]
>=
strides
[
3
]
&&
strides
[
3
]
>=
strides
[
4
])
{
return
mkldnn
::
memory
::
format_tag
::
Abcde16a
;
}
}
else
if
(
inner_blks
[
0
]
==
16
&&
inner_idxs
[
0
]
==
1
)
{
if
(
strides
[
0
]
>=
strides
[
1
]
&&
strides
[
1
]
>=
strides
[
2
]
&&
strides
[
2
]
>=
strides
[
3
]
&&
strides
[
3
]
>=
strides
[
4
])
{
...
...
paddle/fluid/platform/mkldnn_reuse.h
浏览文件 @
c11d9b30
...
...
@@ -346,6 +346,18 @@ class MKLDNNHandler {
return
mem_p
;
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireMemoryFromPrimitive
(
mkldnn
::
memory
::
desc
md
,
const
std
::
string
&
suffix
)
{
const
auto
local_key
=
key_
+
suffix
;
auto
mem_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx_
.
GetBlob
(
local_key
));
if
(
mem_p
==
nullptr
)
{
mem_p
=
std
::
make_shared
<
mkldnn
::
memory
>
(
md
,
engine_
);
dev_ctx_
.
SetBlob
(
local_key
,
mem_p
);
}
return
mem_p
;
}
// This incarnation of AcquireMemory can call user function eg. custom reorder
// or preprocessing routine if needed
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireMemory
(
...
...
@@ -1199,6 +1211,12 @@ class ConvMKLDNNTemplateHandler : public MKLDNNHandler {
conv_bwd_weights_pd_
->
diff_weights_desc
(),
ptr
,
"@diff_weights_mem_p"
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDiffWeightsMemoryFromWeightsPrimitive
(
void
)
{
return
this
->
AcquireMemoryFromPrimitive
(
conv_bwd_weights_pd_
->
diff_weights_desc
(),
"@diff_weights_mem_p"
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDiffDstMemoryFromDataPrimitive
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_memory_p
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
...
...
python/paddle/fluid/tests/unittests/mkldnn/test_conv2d_bf16_mkldnn_op.py
浏览文件 @
c11d9b30
...
...
@@ -216,4 +216,6 @@ class TestWithInput1x1Filter1x1(TestConv2DBf16Op):
if
__name__
==
'__main__'
:
from
paddle
import
enable_static
enable_static
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/mkldnn/test_conv2d_mkldnn_op.py
浏览文件 @
c11d9b30
...
...
@@ -233,4 +233,6 @@ class TestMKLDNNDilations(TestConv2DMKLDNNOp):
if
__name__
==
'__main__'
:
from
paddle
import
enable_static
enable_static
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/mkldnn/test_fusion_gru_bf16_mkldnn_op.py
浏览文件 @
c11d9b30
...
...
@@ -110,4 +110,6 @@ class TestFusionGRUINT8MKLDNNOp3(TestFusionGRUBF16MKLDNNOp):
if
__name__
==
"__main__"
:
from
paddle
import
enable_static
enable_static
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/op_test.py
浏览文件 @
c11d9b30
...
...
@@ -1320,6 +1320,13 @@ class OpTest(unittest.TestCase):
cache_list
=
None
if
hasattr
(
self
,
"cache_name_list"
):
cache_list
=
self
.
cache_name_list
# oneDNN numeric gradient should use CPU kernel
use_onednn
=
False
if
"use_mkldnn"
in
op_attrs
and
op_attrs
[
"use_mkldnn"
]
==
True
:
op_attrs
[
"use_mkldnn"
]
=
False
use_onednn
=
True
self
.
op
=
create_op
(
self
.
scope
,
self
.
op_type
,
...
...
@@ -1328,6 +1335,9 @@ class OpTest(unittest.TestCase):
op_attrs
,
cache_list
=
cache_list
)
if
use_onednn
:
op_attrs
[
"use_mkldnn"
]
=
True
if
no_grad_set
is
None
:
no_grad_set
=
set
()
else
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录