op_test.py 84.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

B
baojun 已提交
17
import os
18
import unittest
19
import warnings
20
import numpy as np
21
import random
M
minqiyang 已提交
22
import six
23
import struct
24
import time
25
import itertools
Y
Yu Yang 已提交
26
import collections
M
minqiyang 已提交
27
from collections import defaultdict
28
from copy import copy
29

30
import paddle
31 32
import paddle.fluid as fluid
import paddle.fluid.core as core
33
from paddle.fluid.framework import _test_eager_guard
34 35 36
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
A
arlesniak 已提交
37
from paddle.fluid.framework import Program, OpProtoHolder, Variable, _current_expected_place
38 39 40 41 42
from paddle.fluid.tests.unittests.testsuite import (
    create_op,
    set_input,
    append_input_output,
    append_loss_ops, )
43
from paddle.fluid import unique_name
44 45 46 47 48 49 50
from paddle.fluid.tests.unittests.white_list import (
    op_accuracy_white_list,
    check_shape_white_list,
    compile_vs_runtime_white_list,
    no_check_set_white_list,
    op_threshold_white_list,
    no_grad_set_white_list, )
51 52


53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
def check_out_dtype(api_fn, in_specs, expect_dtypes, target_index=0, **configs):
    """
    Determines whether dtype of output tensor is as expected.

    Args:
        api_fn(callable):  paddle api function
        in_specs(list[tuple]): list of shape and dtype information for constructing input tensor of api_fn, such as [(shape, dtype), (shape, dtype)].
        expected_dtype(list[str]): expected dtype of output tensor.
        target_index(int): indicate which one from in_specs to infer the dtype of output.
        config(dict): other arguments of paddle api function

    Example:
        check_out_dtype(fluid.layers.pad_constant_like, [([2,3,2,3], 'float64'), ([1, 3, 1,3], )], ['float32', 'float64', 'int64'], target_index=1, pad_value=0.)

    """
    paddle.enable_static()
    for i, expect_dtype in enumerate(expect_dtypes):
        with paddle.static.program_guard(paddle.static.Program()):
            input_t = []
            for index, spec in enumerate(in_specs):
                if len(spec) == 1:
                    shape = spec[0]
                    dtype = expect_dtype if target_index == index else 'float32'
                elif len(spec) == 2:
                    shape, dtype = spec
                else:
                    raise ValueError(
                        "Value of in_specs[{}] should contains two elements: [shape, dtype]".
                        format(index))
                input_t.append(
                    paddle.static.data(
                        name='data_%s' % index, shape=shape, dtype=dtype))

            out = api_fn(*input_t, **configs)
            out_dtype = fluid.data_feeder.convert_dtype(out.dtype)

            if out_dtype != expect_dtype:
                raise ValueError(
                    "Expected out.dtype is {}, but got {} from {}.".format(
                        expect_dtype, out_dtype, api_fn.__name__))


95 96 97 98 99 100 101 102
def _set_use_system_allocator(value=None):
    USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
    old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
    value = old_value if value is None else value
    core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
    return old_value


103 104 105 106
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
M
minqiyang 已提交
107
    for i in six.moves.xrange(len(prob)):
108 109 110 111
        prob[i] /= prob_sum[i]
    return prob


112 113
def get_numeric_gradient(place,
                         scope,
114 115 116
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
117
                         output_names,
118
                         delta=0.005,
C
chengduo 已提交
119
                         in_place=False):
Y
Yu Yang 已提交
120
    # FIXME: change this method by compile time concepts
121
    set_input(scope, op, inputs, place)
122 123

    def product(dim):
M
minqiyang 已提交
124
        return six.moves.reduce(lambda a, b: a * b, dim, 1)
125 126

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
127 128
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
129
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
130
        tensor_to_check_dtype = np.float32
131
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
132
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
133 134 135 136
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
137 138
    elif tensor_to_check_dtype == core.VarDesc.VarType.BF16:
        tensor_to_check_dtype = np.float32
L
Lijunhui 已提交
139 140 141 142
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX64:
        tensor_to_check_dtype = np.complex64
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX128:
        tensor_tp_check_dtype = np.complex128
143
    else:
144 145
        raise ValueError("Not supported data type " + str(tensor_to_check_dtype)
                         + ", tensor name : " + str(input_to_check))
146

C
chengduo 已提交
147 148 149 150
    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
151
            output_numpy = np.array(scope.find_var(output_name).get_tensor())
Y
Yiqun Liu 已提交
152 153 154
            # numpy.dtype does not have bfloat16, thus we use numpy.uint16 to
            # store bfloat16 data, and need to be converted to float to check
            # the floating precision.
155 156 157
            if tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
                output_numpy = convert_uint16_to_float(output_numpy)
            sum.append(output_numpy.astype(tensor_to_check_dtype).mean())
C
chengduo 已提交
158 159
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

160 161 162
    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
163 164 165 166
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
167 168 169 170 171
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            numpy_tensor = numpy_tensor.flatten()
            return struct.unpack('<f', struct.pack('<I', numpy_tensor[i]
                                                   << 16))[0]
D
dzhwinter 已提交
172
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
173
            return tensor._get_float_element(i)
174
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
175
            return tensor._get_double_element(i)
176 177 178
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
179 180

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
181 182 183 184 185
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
186
            numpy_tensor = numpy_tensor.reshape(shape)
D
dzhwinter 已提交
187
            tensor.set(numpy_tensor, place)
188 189 190 191 192 193 194
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = np.uint16(copy_bits_from_float_to_uint16(e))
            numpy_tensor = numpy_tensor.reshape(shape)
            tensor.set(numpy_tensor, place)
D
dzhwinter 已提交
195
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
196
            tensor._set_float_element(i, e)
197
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
198
            tensor._set_double_element(i, e)
199 200 201
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
202

203 204
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
M
minqiyang 已提交
205
    for i in six.moves.xrange(tensor_size):
206
        if in_place:
207
            set_input(scope, op, inputs, place)
208 209

        # get one input element throw it's index i.
210
        origin = __get_elem__(tensor_to_check, i)
211 212
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
213
        __set_elem__(tensor_to_check, i, x_pos)
214 215 216
        y_pos = get_output()

        if in_place:
217
            set_input(scope, op, inputs, place)
218 219

        x_neg = origin - delta
220
        __set_elem__(tensor_to_check, i, x_neg)
221 222
        y_neg = get_output()

223
        __set_elem__(tensor_to_check, i, origin)
224 225
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
226
    return gradient_flat.reshape(tensor_to_check.shape())
227 228


229 230
def skip_check_grad_ci(reason=None):
    """Decorator to skip check_grad CI.
C
cc 已提交
231

232
       Check_grad is required for Op test cases. However, there are some special
C
cc 已提交
233
       cases that do not need to do check_grad. This decorator is used to skip the
234
       check_grad of the above cases.
C
cc 已提交
235 236

       Note: the execution of unit test will not be skipped. It just avoids check_grad
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
       checking in tearDownClass method by setting a `no_need_check_grad` flag.

       Example:
           @skip_check_grad_ci(reason="For inference, check_grad is not required.")
           class TestInference(OpTest):
    """
    if not isinstance(reason, str):
        raise AssertionError("The reason for skipping check_grad is required.")

    def wrapper(cls):
        cls.no_need_check_grad = True
        return cls

    return wrapper


253 254 255 256
def copy_bits_from_float_to_uint16(f):
    return struct.unpack('<I', struct.pack('<f', f))[0] >> 16


257 258 259 260
def convert_float_to_uint16(float_list, data_format="NCHW"):
    if data_format == "NHWC":
        float_list = np.transpose(float_list, [0, 3, 1, 2])

261 262 263
    new_output = []
    for x in np.nditer(float_list):
        new_output.append(np.uint16(copy_bits_from_float_to_uint16(x)))
264
    new_output = np.reshape(new_output, float_list.shape).view(np.uint16)
265

266 267 268
    if data_format == "NHWC":
        new_output = np.transpose(new_output, [0, 2, 3, 1])
    return new_output
269 270


271 272 273 274 275 276
def convert_uint16_to_float(in_list):
    in_list = np.asarray(in_list)
    out = np.vectorize(
        lambda x: struct.unpack('<f', struct.pack('<I', x << 16))[0],
        otypes=[np.float32])(in_list.flat)
    return np.reshape(out, in_list.shape)
277 278


279
class OpTest(unittest.TestCase):
280 281 282 283 284
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
285
        cls.call_once = False
286
        cls.dtype = None
287
        cls.outputs = {}
288
        cls.input_shape_is_large = True
289 290 291 292

        np.random.seed(123)
        random.seed(124)

293 294 295 296
        if paddle.is_compiled_with_npu():
            cls._use_system_allocator = _set_use_system_allocator(False)
        else:
            cls._use_system_allocator = _set_use_system_allocator(True)
297

298 299
    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
300
        """Restore random seeds"""
301 302 303
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

304 305
        _set_use_system_allocator(cls._use_system_allocator)

306 307 308 309
        def is_empty_grad_op(op_type):
            all_op_kernels = core._get_all_register_op_kernels()
            grad_op = op_type + '_grad'
            if grad_op in all_op_kernels.keys():
J
juncaipeng 已提交
310
                if is_mkldnn_op_test():
311 312 313 314 315 316 317 318
                    grad_op_kernels = all_op_kernels[grad_op]
                    for grad_op_kernel in grad_op_kernels:
                        if 'MKLDNN' in grad_op_kernel:
                            return False
                else:
                    return False
            return True

319 320 321
        def is_xpu_op_test():
            return hasattr(cls, "use_xpu") and cls.use_xpu == True

J
juncaipeng 已提交
322
        def is_mkldnn_op_test():
323
            return hasattr(cls, "use_mkldnn") and cls.use_mkldnn == True
J
juncaipeng 已提交
324

325 326 327
        def is_rocm_op_test():
            return core.is_compiled_with_rocm()

328 329 330
        def is_npu_op_test():
            return hasattr(cls, "use_npu") and cls.use_npu == True

331 332 333
        def is_mlu_op_test():
            return hasattr(cls, "use_mlu") and cls.use_mlu == True

334 335
        if not hasattr(cls, "op_type"):
            raise AssertionError(
336 337
                "This test do not have op_type in class attrs, "
                "please set self.__class__.op_type=the_real_op_type manually.")
338

J
juncaipeng 已提交
339 340
        # case in NO_FP64_CHECK_GRAD_CASES and op in NO_FP64_CHECK_GRAD_OP_LIST should be fixed
        if not hasattr(cls, "no_need_check_grad") \
341
            and not is_empty_grad_op(cls.op_type):
J
juncaipeng 已提交
342
            if cls.dtype is None or \
343 344
                (cls.dtype == np.float16 \
                    and cls.op_type not in op_accuracy_white_list.NO_FP16_CHECK_GRAD_OP_LIST \
J
juncaipeng 已提交
345 346 347 348
                    and not hasattr(cls, "exist_check_grad")):
                raise AssertionError("This test of %s op needs check_grad." %
                                     cls.op_type)

349
            # check for op test with fp64 precision, but not check mkldnn op test for now
J
juncaipeng 已提交
350 351
            if cls.dtype in [np.float32, np.float64] \
                and cls.op_type not in op_accuracy_white_list.NO_FP64_CHECK_GRAD_OP_LIST \
352
                and not hasattr(cls, 'exist_fp64_check_grad') \
353
                and not is_xpu_op_test() \
354
                and not is_mkldnn_op_test() \
355
                and not is_rocm_op_test() \
356 357
                and not is_npu_op_test() \
                and not is_mlu_op_test():
J
juncaipeng 已提交
358 359 360 361
                raise AssertionError(
                    "This test of %s op needs check_grad with fp64 precision." %
                    cls.op_type)

362
            if not cls.input_shape_is_large \
363 364 365 366
                and cls.op_type not in check_shape_white_list.NEED_TO_FIX_OP_LIST:
                raise AssertionError(
                    "Input's shape should be large than or equal to 100 for " +
                    cls.op_type + " Op.")
367

368 369 370 371 372
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

373
    def is_bfloat16_op(self):
Y
Yiqun Liu 已提交
374 375
        # self.dtype is the dtype of inputs, and is set in infer_dtype_from_inputs_outputs.
        # Make sure this function is called after calling infer_dtype_from_inputs_outputs.
376
        return self.dtype == np.uint16 or (
Y
Yiqun Liu 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
            hasattr(self, 'output_dtype') and
            self.output_dtype == np.uint16) or (
                hasattr(self, 'mkldnn_data_type') and
                getattr(self, 'mkldnn_data_type') is "bfloat16") or (
                    hasattr(self, 'attrs') and
                    'mkldnn_data_type' in self.attrs and
                    self.attrs['mkldnn_data_type'] == 'bfloat16')

    def is_mkldnn_op(self):
        return (hasattr(self, "use_mkldnn") and self.use_mkldnn == True) or (
            hasattr(self, "attrs") and "use_mkldnn" in self.attrs and
            self.attrs["use_mkldnn"] == True)

    def is_xpu_op(self):
        return (hasattr(self, "use_xpu") and self.use_xpu == True) or (
            hasattr(self, "attrs") and "use_xpu" in self.attrs and
            self.attrs["use_xpu"] == True)
394

395
    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
J
juncaipeng 已提交
396 397 398 399
        def is_np_data(input):
            return isinstance(input, (np.ndarray, np.generic))

        def infer_dtype(numpy_dict, dtype_set):
400 401 402
            assert isinstance(
                numpy_dict,
                dict), "self.inputs, self.outputs must be numpy_dict"
J
juncaipeng 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
            # the inputs are as follows:
            # case 1: inputs = {'X': x}
            # case 2: inputs = {'X': (x, x_lod)}
            # case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
            # case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
            # TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
            for _, var_value in six.iteritems(numpy_dict):
                if is_np_data(var_value):  # case 1
                    dtype_set.add(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):  # case 2, 3, 4
                    for sub_val_value in var_value:
                        if is_np_data(sub_val_value):  # case 2
                            dtype_set.add(sub_val_value.dtype)
                        elif len(sub_val_value) > 1 and is_np_data(
                                sub_val_value[1]):  # case 3
                            dtype_set.add(sub_val_value[1].dtype)
                        elif len(sub_val_value) > 1 and isinstance(sub_val_value[1], (list, tuple)) \
                            and is_np_data(sub_val_value[1][0]): # case 4
                            dtype_set.add(sub_val_value[1][0].dtype)

        # infer dtype from inputs, and dtype means the precision of the test
        # collect dtype of all inputs
Y
Yiqun Liu 已提交
425 426
        input_dtype_set = set()
        infer_dtype(inputs, input_dtype_set)
J
juncaipeng 已提交
427 428
        dtype_list = [
            np.dtype(np.float64), np.dtype(np.float32), np.dtype(np.float16),
429 430 431
            np.dtype(np.int64), np.dtype(np.int32), np.dtype(np.uint16),
            np.dtype(np.int16), np.dtype(np.int8), np.dtype(np.uint8),
            np.dtype(np.bool)
J
juncaipeng 已提交
432 433 434
        ]
        # check the dtype in dtype_list in order, select the first dtype that in dtype_set
        for dtype in dtype_list:
Y
Yiqun Liu 已提交
435
            if dtype in input_dtype_set:
J
juncaipeng 已提交
436 437
                self.dtype = dtype
                break
Y
Yiqun Liu 已提交
438
        # save input dtype in class attr
439
        self.__class__.dtype = self.dtype
440

Y
Yiqun Liu 已提交
441 442 443 444 445 446 447 448
        # infer dtype of outputs
        output_dtype_set = set()
        infer_dtype(outputs, output_dtype_set)
        for dtype in dtype_list:
            if dtype in output_dtype_set:
                self.output_dtype = dtype
                break

Y
Yang Yang(Tony) 已提交
449 450 451 452 453 454
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
455
                    if isinstance(np_value, tuple):
456
                        tensor.set(np_value[0], place)
457
                        tensor.set_recursive_sequence_lengths(np_value[1])
458
                    else:
459
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
460 461 462 463
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
464
                    tensor.set(self.inputs[var_name][0], place)
465 466
                    tensor.set_recursive_sequence_lengths(self.inputs[var_name][
                        1])
Y
Yang Yang(Tony) 已提交
467
                else:
468
                    tensor.set(self.inputs[var_name], place)
Y
Yang Yang(Tony) 已提交
469 470 471
                feed_map[var_name] = tensor
        return feed_map

472
    def _append_ops(self, block):
J
juncaipeng 已提交
473
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
Y
Yiqun Liu 已提交
474
        if self.is_mkldnn_op():
475
            self.__class__.use_mkldnn = True
C
cc 已提交
476

Y
Yiqun Liu 已提交
477
        if self.is_xpu_op():
478 479
            self.__class__.use_xpu = True

Y
Yang Yang(Tony) 已提交
480
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
481 482 483 484 485 486
        "infer datatype from inputs and outputs for this test case"
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        inputs = append_input_output(block, op_proto, self.inputs, True,
                                     self.dtype)
        outputs = append_input_output(block, op_proto, self.outputs, False,
                                      self.dtype)
P
phlrain 已提交
487 488 489 490 491 492 493 494 495

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True)

Y
Yang Yang(Tony) 已提交
496 497 498 499
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
500
            attrs=copy(self.attrs) if hasattr(self, "attrs") else dict())
C
cc 已提交
501
        # infer variable type and infer shape in compile-time
Q
QI JUN 已提交
502 503
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
504

505 506
        return op

507 508
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
M
minqiyang 已提交
509
        for name, value in six.iteritems(numpy_inputs):
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

M
minqiyang 已提交
529 530 531 532
    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
L
lujun 已提交
533
            v = fluid.dygraph.base.to_variable(value=data)
534
            v.value().get_tensor().set_recursive_sequence_lengths(lod)
M
minqiyang 已提交
535 536
            return v
        else:
L
lujun 已提交
537
            return fluid.dygraph.base.to_variable(value)
M
minqiyang 已提交
538

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
    def get_sequence_batch_size_1_input(self, lod=None, shape=None):
        """Get LoD input data whose batch size is 1.
        All sequence related OP unittests should call this function to contain the case of batch size = 1.
        Args:
            lod (list[list of int], optional): Length-based LoD, length of lod[0] should be 1. Default: [[13]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod) : LoD input data whose batch size is 1.
        """
        if lod is None:
            lod = [[13]]
        if shape is None:
            shape = [13, 23]
        assert len(lod[0]) == 1
        assert lod[0][0] == shape[0]
        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
    def lod_has_single_zero(self, lod):
        for i in range(len(lod) - 2):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] != 0:
                return True
        return False

    def lod_has_continuous_zero(self, lod):
        for i in range(len(lod) - 3):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] == 0 and lod[
                    i + 3] != 0:
                return True
        return False

    def get_sequence_instance_size_0_input(self, lod=None, shape=None):
        """Get LoD input data whose instance size is 0.
        All sequence related OP unittests should call this function to contain the case of instance size is 0.
        Args:
            lod (list[list of int], optional): Length-based LoD, lod[0]'s size must at least eight, lod[0] must at least two zeros at the beginning and at least two zeros at the end, the middle position of lod[0] contains a single zero and multiple zero. Default: [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod): LoD input data whose instance size is 0.
        """
        if lod is None:
            lod = [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]]
        if shape is None:
            shape = [12, 10]
        assert len(lod[0]) >= 8
        assert lod[0][0] == 0 and lod[0][1] == 0 and lod[0][-1] == 0 and lod[0][
            -2] == 0
        assert self.lod_has_single_zero(lod[0]) is True
        assert self.lod_has_continuous_zero(lod[0]) is True
        assert sum(lod[0]) == shape[0]

        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
    def append_input_output_for_dygraph(self, op_proto, np_list, is_input,
                                        if_return_inputs_grad_dict, block):
        def create_var(np_value, name, is_input, if_return_inputs_grad_dict):
            np_value_temp = np_value
            has_lod = False
            lod_temp = None
            if isinstance(np_value, tuple):
                np_value_temp = np_value[0]
                has_lod = True
                lod_temp = np_value[1]

            if is_input:
                v = self._create_var_from_numpy(np_value_temp)
                if if_return_inputs_grad_dict:
                    v.stop_gradient = False
                if has_lod:
609
                    v.value().get_tensor().set_recursive_sequence_lengths(
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
                        lod_temp)
            else:
                v = block.create_var(
                    name=name,
                    dtype=np_value_temp.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False)

            return v

        # prepare variable for input or output
        var_dict = defaultdict(list)
        if if_return_inputs_grad_dict:
            inputs_grad_dict = defaultdict()
        proto_list = op_proto.inputs if is_input else op_proto.outputs
        for var_proto in proto_list:
            name = var_proto.name
            if (name not in np_list) and var_proto.dispensable:
                continue
            if name not in np_list:
                assert var_proto.intermediate, "{} not found".format(name)
                v = block.create_var(
                    dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v
                continue
            if var_proto.duplicable:
                assert isinstance(
                    np_list[name],
                    list), "Duplicable {} should be set as list".format(name)
                var_list = []
                slot_name = name
                for (name, np_value) in np_list[name]:
                    v = create_var(np_value, name, is_input,
                                   if_return_inputs_grad_dict)
                    var_list.append(v)
                    if if_return_inputs_grad_dict:
                        inputs_grad_dict[name] = v
                var_dict[slot_name] = var_list
            else:
                nplist_value_temp = None
                name_temp = None
                if isinstance(np_list[name], list):
                    nplist_value_temp = np_list[name][0]
                    name_temp = name
                else:
                    nplist_value_temp = np_list[name]
                    name_temp = unique_name.generate("%s_out" % (name))
                v = create_var(nplist_value_temp, name_temp, is_input,
                               if_return_inputs_grad_dict)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v

        if if_return_inputs_grad_dict:
            return var_dict, inputs_grad_dict
        else:
            return var_dict

L
lujun 已提交
671
    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
J
juncaipeng 已提交
672
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
L
lujun 已提交
673
        with fluid.dygraph.base.guard(place=place):
M
minqiyang 已提交
674 675
            block = fluid.default_main_program().global_block()

676
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
M
minqiyang 已提交
677

678 679 680
            # prepare input variable
            inputs = self.append_input_output_for_dygraph(op_proto, self.inputs,
                                                          True, False, block)
M
minqiyang 已提交
681 682

            # prepare output variable
683 684 685 686 687 688 689 690 691
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
M
minqiyang 已提交
692 693 694 695
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
696
                attrs=attrs_outputs if hasattr(self, "attrs") else None)
M
minqiyang 已提交
697
            return outputs
698

699 700 701 702 703 704
    def _calc_output(self,
                     place,
                     parallel=False,
                     no_check_set=None,
                     loss=None,
                     enable_inplace=None,
705
                     for_inplace_test=None):
706 707
        program = Program()
        block = program.global_block()
708
        op = self._append_ops(block)
709 710 711 712 713

        inputs = self._get_inputs(block)
        outputs = self._get_outputs(block)
        feed_map = self.feed_var(inputs, place)

714
        if for_inplace_test:
C
cc 已提交
715 716
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
717 718
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
719 720
            for out_name in op.output_arg_names:
                var = block.var(out_name)
721 722
                if 0 in var.shape:
                    var.persistable = True
723
        original_program = program
724 725
        if parallel:
            use_cuda = False
726
            if isinstance(place, fluid.CUDAPlace):
727
                use_cuda = True
728 729 730
            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                loss_name=loss.name if loss else None, places=place)
            program = compiled_prog
731 732 733 734
        fetch_list = getattr(self, "fetch_list", [])
        # if the fetch_list is customized by user, we use it directly.
        # if not, fill the fetch_list by the user configured outputs in test.
        if len(fetch_list) == 0:
M
minqiyang 已提交
735
            for var_name, var in six.iteritems(outputs):
736 737
                if no_check_set is not None and var_name in no_check_set:
                    continue
Y
Yang Yang(Tony) 已提交
738 739
                if isinstance(var, list):
                    for v in var:
740
                        fetch_list.append(v.name)
Y
Yang Yang(Tony) 已提交
741
                else:
742
                    fetch_list.append(var.name)
743 744 745 746
        # if the fetch_list still empty, fill the fetch_list by the operator output.
        if len(fetch_list) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                fetch_list.append(str(out_name))
747 748 749 750 751 752 753 754 755

        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace

            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                build_strategy=build_strategy, places=place)
            program = compiled_prog

756
        executor = Executor(place)
757 758 759 760
        outs = executor.run(program,
                            feed=feed_map,
                            fetch_list=fetch_list,
                            return_numpy=False)
761 762
        self.op = op
        self.program = original_program
763 764 765 766
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list
Y
Yang Yang(Tony) 已提交
767

768 769 770 771 772 773 774 775 776
    def _compare_expect_and_actual_outputs(self,
                                           place,
                                           fetch_list,
                                           expect_outs,
                                           actual_outs,
                                           inplace_atol=None):
        """Compare expect outs and actual outs of an tested op.

        Args:
C
cc 已提交
777
            place (CPUPlace | CUDAPlace): The place where the op runs.
778 779 780 781 782 783 784 785 786 787
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
C
cc 已提交
788
            # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
789 790 791
            # computational consistency.
            # When inplace_atol is not None, the inplace check uses numpy.allclose
            # to check inplace result instead of numpy.array_equal.
792 793
            expect_out = np.array(expect_outs[i])
            actual_out = np.array(actual_outs[i])
794 795 796
            if inplace_atol is not None:
                self.assertTrue(
                    np.allclose(
797
                        expect_out, actual_out, atol=inplace_atol),
798 799
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
800 801
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__)
802 803
            else:
                self.assertTrue(
804
                    np.array_equal(expect_out, actual_out),
805 806
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
807 808
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__ + '\n')
809 810 811 812 813 814 815 816

    def _construct_grad_program_from_forward(self, fwd_program, grad_op_desc,
                                             op_grad_to_var):
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
817
            op_grad_to_var (dict): The relation of variables in grad op and its forward op.
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
        for arg in grad_op_desc.input_arg_names(
        ) + grad_op_desc.output_arg_names():
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
                fwd_var_name)
            grad_var = grad_block.create_var(
                name=arg,
                dtype=fwd_var.dtype,
                shape=fwd_var.shape,
                type=fwd_var.type,
                persistable=False)

C
cc 已提交
844 845
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

    def _construct_grad_feed_map_from_forward(self, place, fwd_res,
                                              grad_op_desc, op_grad_to_var):
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
861
            place (CPUPlace | CUDAPlace): The place where the op runs.
862 863 864
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
865
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op.
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)
        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
C
cc 已提交
897

898
        Args:
C
cc 已提交
899 900
            op_desc (OpDesc): The op_desc of current op.
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op.
901
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
C
cc 已提交
902

903 904 905 906 907 908 909 910 911 912 913 914 915 916
        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
C
cc 已提交
917
                # get grad_op_desc
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                    op_desc, set(), [])
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
                        if grad_op_desc.type(
                        ) not in visited_ops and _dfs_grad_op(
                                grad_op_desc, fwd_op_desc=op_desc):
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

    def _check_forward_inplace(self,
                               place,
                               no_check_set=None,
                               inplace_atol=None):
941
        """Check the inplace correctness of given op (self.op_type).
942
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
C
cc 已提交
943

944
        Args:
C
cc 已提交
945
            place (CPUPlace | CUDAPlace): The place where the op runs.
946 947 948 949
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
950 951
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
952 953
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
954 955 956 957 958 959 960 961 962 963
        expect_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=False,
            for_inplace_test=True)
        actual_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=True,
            for_inplace_test=True)
964
        # compare expect_outs and actual_outs
965 966 967 968 969 970
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
971 972 973 974 975 976 977 978 979 980 981 982 983
        return expect_res

    def _calc_grad_output(self,
                          place,
                          fwd_res,
                          grad_op_desc,
                          enable_inplace=None):
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
984
            place (CPUPlace | CUDAPlace): The place where the op runs.
985 986 987 988 989 990 991 992 993
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
994
        grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(fwd_op_desc,
995
                                                                  set(), [])
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
        grad_program = self._construct_grad_program_from_forward(
            fwd_program, grad_op_desc, op_grad_to_var)
        grad_feed_map = self._construct_grad_feed_map_from_forward(
            place, fwd_res, grad_op_desc, op_grad_to_var)
        grad_fetch_list = grad_op_desc.output_arg_names()
        exe = Executor(place)
        program = grad_program
        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace
            compiled_program = fluid.CompiledProgram(
                grad_program).with_data_parallel(
                    loss_name="", build_strategy=build_strategy, places=place)
            program = compiled_program
        outs = exe.run(program,
                       feed=grad_feed_map,
                       fetch_list=grad_fetch_list,
                       return_numpy=False)
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

    def _check_grad_inplace(self,
                            place,
                            fwd_res,
                            grad_op_desc,
                            inplace_atol=None):
1021
        """Check the inplace correctness of given grad_op_desc.
1022 1023 1024 1025 1026 1027

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
C
cc 已提交
1028
            place (CPUPlace | CUDAPlace): The place where the op runs.
1029 1030 1031 1032 1033 1034
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1035 1036
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
        """
        expect_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=False)
        actual_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=True)
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
        return expect_res
1049

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
    def check_inplace_output_with_place(self,
                                        place,
                                        no_check_set=None,
                                        inplace_atol=None):
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
C
cc 已提交
1060
            place (CPUPlace | CUDAPlace): The place where the op runs.
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)

        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True)
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
1076 1077
        if hasattr(self, 'attrs') and bool(self.attrs.get('use_xpu', False)):
            return
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
                        inplace_atol=inplace_atol)
                else:
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True)
            else:
1091 1092
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn
                # skip op that use_mkldnn currently
1093
                flags_use_mkldnn = fluid.core.globals()["FLAGS_use_mkldnn"]
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
                attrs_use_mkldnn = hasattr(
                    self,
                    'attrs') and bool(self.attrs.get('use_mkldnn', False))
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
                        place, fwd_res, op_desc, inplace_atol=inplace_atol)
1106
                else:
1107 1108
                    res[op_desc] = self._calc_grad_output(place, fwd_res,
                                                          op_desc)
1109

1110 1111
    def check_output_with_place(self,
                                place,
1112
                                atol=0,
1113
                                no_check_set=None,
M
minqiyang 已提交
1114
                                equal_nan=False,
1115
                                check_dygraph=True,
1116 1117
                                inplace_atol=None,
                                check_eager=False):
1118 1119 1120 1121 1122
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST:
            atol = 0

1123
        if self.is_bfloat16_op():
Y
Yiqun Liu 已提交
1124 1125
            if self.is_mkldnn_op():
                check_dygraph = False
1126
                check_eager = False
Y
Yiqun Liu 已提交
1127 1128 1129 1130 1131
                if hasattr(self, 'force_fp32_output') and getattr(
                        self, 'force_fp32_output'):
                    atol = 1e-2
                else:
                    atol = 2
1132
            else:
Y
Yiqun Liu 已提交
1133
                atol = 1e-2
1134

1135 1136 1137 1138
        if no_check_set is not None:
            if self.op_type not in no_check_set_white_list.no_check_set_white_list:
                raise AssertionError(
                    "no_check_set of op %s must be set to None." % self.op_type)
1139

L
lujun 已提交
1140 1141
        if check_dygraph:
            dygraph_outs = self._calc_dygraph_output(
M
minqiyang 已提交
1142
                place, no_check_set=no_check_set)
1143 1144 1145 1146
        if check_eager:
            with _test_eager_guard():
                eager_dygraph_outs = self._calc_dygraph_output(
                    place, no_check_set=no_check_set)
1147
        outs, fetch_list = self._calc_output(place, no_check_set=no_check_set)
1148

Y
Yang Yang(Tony) 已提交
1149
        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
1150 1151
            if out_name not in self.outputs:
                continue
1152 1153
            if no_check_set is not None and out_name in no_check_set:
                continue
1154

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
            def find_imperative_actual(target_name, dygraph_outs, place):
                with fluid.dygraph.base.guard(place=place):
                    for name in dygraph_outs:
                        if name == target_name:
                            return dygraph_outs[name][0]
                        var_list = dygraph_outs[name]
                        for i, var in enumerate(var_list):
                            if var.name == target_name:
                                return dygraph_outs[name][i]
                    self.assertTrue(False, "Found failed {} {}".format(
                        dygraph_outs.keys(), target_name))

Y
Yang Yang(Tony) 已提交
1167 1168
            def find_actual(target_name, fetch_list):
                found = [
1169 1170
                    i for i, var_name in enumerate(fetch_list)
                    if var_name == target_name
Y
Yang Yang(Tony) 已提交
1171 1172 1173 1174 1175 1176
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

1177 1178
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
1179 1180 1181
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
1182 1183
                for item in sub_out:
                    sub_out_name, expect = item[0], item[1]
L
lujun 已提交
1184
                    if check_dygraph:
1185 1186
                        imperative_actual = find_imperative_actual(
                            sub_out_name, dygraph_outs, place)
1187 1188
                        imperative_actual_t = np.array(imperative_actual.value()
                                                       .get_tensor())
1189 1190 1191 1192 1193 1194 1195
                    if check_eager:
                        with _test_eager_guard():
                            eager_imperative_actual = find_imperative_actual(
                                sub_out_name, eager_dygraph_outs, place)
                            eager_imperative_actual_t = eager_imperative_actual.numpy(
                            )

Y
Yang Yang(Tony) 已提交
1196
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
1197 1198
                    actual = outs[idx]
                    actual_t = np.array(actual)
1199 1200
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
1201 1202
                    self.assertTrue(
                        np.allclose(
1203
                            actual_t, expect_t, atol=atol, equal_nan=equal_nan),
Y
Yang Yang(Tony) 已提交
1204 1205
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
L
lujun 已提交
1206
                    if check_dygraph:
M
minqiyang 已提交
1207 1208 1209 1210 1211 1212 1213
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + sub_out_name + ") has diff at " +
L
lujun 已提交
1214
                            str(place) + " in dygraph mode")
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
                    if check_eager:
                        with _test_eager_guard():
                            self.assertTrue(
                                np.allclose(
                                    eager_imperative_actual_t,
                                    expect_t,
                                    atol=atol,
                                    equal_nan=equal_nan),
                                "Output (" + sub_out_name + ") has diff at " +
                                str(place) + " in eager dygraph mode")
1225 1226
                    if isinstance(expect, tuple):
                        self.assertListEqual(
1227 1228
                            actual.recursive_sequence_lengths(), expect[1],
                            "Output (" + sub_out_name +
Q
QI JUN 已提交
1229
                            ") has different lod at " + str(place))
1230 1231
                        if check_dygraph:
                            self.assertListEqual(
1232
                                imperative_actual.value().get_tensor()
1233 1234 1235 1236
                                .recursive_sequence_lengths(), expect[1],
                                "Output (" + out_name +
                                ") has different lod at " + str(place) +
                                " in dygraph mode")
1237 1238 1239 1240 1241 1242 1243 1244
                        if check_eager:
                            with _test_eager_guard():
                                self.assertListEqual(
                                    eager_imperative_actual.value().get_tensor()
                                    .recursive_sequence_lengths(), expect[1],
                                    "Output (" + out_name +
                                    ") has different lod at " + str(place) +
                                    " in eager dygraph mode")
1245
            else:
L
lujun 已提交
1246
                if check_dygraph:
1247 1248
                    imperative_actual = find_imperative_actual(
                        out_name, dygraph_outs, place)
1249 1250
                    imperative_actual_t = np.array(imperative_actual.value()
                                                   .get_tensor())
1251 1252 1253 1254 1255 1256 1257
                if check_eager:
                    with _test_eager_guard():
                        eager_imperative_actual = find_imperative_actual(
                            out_name, eager_dygraph_outs, place)
                        eager_imperative_actual_t = eager_imperative_actual.numpy(
                        )

Y
Yang Yang(Tony) 已提交
1258
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
1259 1260
                actual = outs[idx]
                actual_t = np.array(actual)
1261

1262
                expect = self.outputs[out_name]
1263
                expect_t = expect[0] if isinstance(expect, tuple) else expect
1264

Y
Yiqun Liu 已提交
1265
                # np.uint16 represents bfloat16
1266 1267 1268
                if actual_t.dtype == np.uint16 and expect_t.dtype in [
                        np.float32, np.float64
                ]:
1269
                    actual_t = convert_uint16_to_float(actual_t)
W
wuhuanzhou 已提交
1270 1271 1272
                    rtol = 1.e-2
                else:
                    rtol = 1.e-5
1273

1274 1275 1276 1277
                if expect_t.dtype == np.uint16 and actual_t.dtype == np.uint16:
                    expect_t = convert_uint16_to_float(expect_t)
                    actual_t = convert_uint16_to_float(actual_t)
                    atol = max(atol, 0.03)
Y
Yiqun Liu 已提交
1278

1279 1280 1281 1282 1283
                # NOTE(zhiqiu): np.allclose([], [1.]) returns True
                # see details: https://stackoverflow.com/questions/38331703/why-does-numpys-broadcasting-sometimes-allow-comparing-arrays-of-different-leng
                if expect_t.size == 0:
                    self.assertTrue(actual_t.size == 0)

1284 1285
                self.assertTrue(
                    np.allclose(
W
wuhuanzhou 已提交
1286 1287 1288
                        actual_t,
                        expect_t,
                        atol=atol,
Y
Yiqun Liu 已提交
1289
                        rtol=rtol,
W
wuhuanzhou 已提交
1290
                        equal_nan=equal_nan),
E
emailweixu 已提交
1291
                    "Output (" + out_name + ") has diff at " + str(place) +
D
dzhwinter 已提交
1292
                    "\nExpect " + str(expect_t) + "\n" + "But Got" +
1293
                    str(actual_t) + " in class " + self.__class__.__name__)
L
lujun 已提交
1294
                if check_dygraph:
Y
Yiqun Liu 已提交
1295 1296 1297 1298 1299 1300
                    if self.is_bfloat16_op():
                        if imperative_actual_t.dtype == np.uint16:
                            imperative_actual_t = convert_uint16_to_float(
                                imperative_actual_t)
                        if expect_t.dtype == np.uint16:
                            expect_t = convert_uint16_to_float(expect_t)
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
                    if six.moves.reduce(
                            lambda x, y: x * y, imperative_actual_t.shape,
                            1) == 0 and six.moves.reduce(
                                lambda x, y: x * y, expect_t.shape, 1) == 0:
                        pass
                    else:
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
Y
Yiqun Liu 已提交
1312
                                rtol=rtol,
1313 1314 1315 1316 1317
                                equal_nan=equal_nan),
                            "Output (" + out_name + ") has diff at " +
                            str(place) + "\nExpect " + str(expect_t) + "\n" +
                            "But Got" + str(imperative_actual_t) + " in class "
                            + self.__class__.__name__)
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
                if check_eager:
                    with _test_eager_guard():
                        if self.is_bfloat16_op():
                            if eager_imperative_actual_t.dtype == np.uint16:
                                eager_imperative_actual_t = convert_uint16_to_float(
                                    eager_imperative_actual_t)
                            if expect_t.dtype == np.uint16:
                                expect_t = convert_uint16_to_float(expect_t)
                        if six.moves.reduce(lambda x, y: x * y,
                                            eager_imperative_actual_t.shape,
                                            1) == 0 and six.moves.reduce(
                                                lambda x, y: x * y,
                                                expect_t.shape, 1) == 0:
                            pass
                        else:
                            self.assertTrue(
                                np.allclose(
                                    eager_imperative_actual_t,
                                    expect_t,
                                    atol=atol,
                                    rtol=rtol,
                                    equal_nan=equal_nan),
                                "Output (" + out_name + ") has diff at " +
                                str(place) + "\nExpect " + str(expect_t) + "\n"
                                + "But Got" + str(eager_imperative_actual_t) +
                                " in class " + self.__class__.__name__)
1344
                if isinstance(expect, tuple):
1345 1346
                    self.assertListEqual(actual.recursive_sequence_lengths(),
                                         expect[1], "Output (" + out_name +
1347
                                         ") has different lod at " + str(place))
L
lujun 已提交
1348
                    if check_dygraph:
M
minqiyang 已提交
1349
                        self.assertListEqual(
1350
                            imperative_actual.value().get_tensor()
M
minqiyang 已提交
1351 1352
                            .recursive_sequence_lengths(), expect[1],
                            "Output (" + out_name + ") has different lod at " +
1353 1354 1355 1356 1357 1358 1359 1360 1361
                            str(place) + " in eager dygraph mode")
                    if check_eager:
                        with _test_eager_guard():
                            self.assertListEqual(
                                eager_imperative_actual.value().get_tensor()
                                .recursive_sequence_lengths(), expect[1],
                                "Output (" + out_name +
                                ") has different lod at " + str(place) +
                                " in eager dygraph mode")
1362

C
cc 已提交
1363
        # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
1364 1365
        # computational consistency.
        # For example, group_norm uses AtomicAdd on CUDAPlace, which do not ensure
C
cc 已提交
1366
        # computation order when multiple threads write the same address. So the
L
Leo Chen 已提交
1367 1368 1369
        # result of group_norm is non-deterministic when datatype is float.
        # When inplace_atol is not None, the inplace check uses numpy.allclose
        # to check inplace result instead of numpy.array_equal.
1370 1371
        if inplace_atol is not None:
            warnings.warn(
L
Leo Chen 已提交
1372 1373
                "inplace_atol should only be set when op doesn't ensure computational consistency, please check it!"
            )
1374
        # Check inplace for given op, its grad op, its grad_grad op, etc.
C
cc 已提交
1375
        # No effect on original OpTest
1376
        # Currently not support ParallelExecutor on XPUPlace.
1377
        if not paddle.is_compiled_with_xpu(
1378 1379
        ) and not paddle.is_compiled_with_npu(
        ) and not paddle.is_compiled_with_mlu():
1380 1381
            self.check_inplace_output_with_place(
                place, no_check_set=no_check_set, inplace_atol=inplace_atol)
1382

1383 1384 1385
        if check_eager:
            return outs, dygraph_outs, eager_dygraph_outs, fetch_list
        elif check_dygraph:
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
            return outs, dygraph_outs, fetch_list
        else:
            return outs, fetch_list

    def check_compile_vs_runtime(self, fetch_list, fetch_outs):
        def find_fetch_index(target_name, fetch_list):
            found = [
                i for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            if len(found) == 0:
                return -1
            else:
                self.assertTrue(
                    len(found) == 1,
                    "Found {} {}".format(len(found), target_name))
                return found[0]

        for name in self.op.desc.output_names():
            var_names = self.op.desc.output(name)
            for var_name in var_names:
                i = find_fetch_index(var_name, fetch_list)
                if i == -1:
                    # The output is dispensiable or intermediate.
                    break
                out = fetch_outs[i]
                if isinstance(out, core.LoDTensor):
                    lod_level_runtime = len(out.lod())
                else:
                    if isinstance(out, core.LoDTensorArray):
                        warnings.warn(
                            "The check of LoDTensorArray's lod_level is not implemented now!"
                        )
                    lod_level_runtime = 0

                var = self.program.global_block().var(var_name)
                if var.type == core.VarDesc.VarType.LOD_TENSOR:
                    lod_level_compile = var.lod_level
                else:
                    lod_level_compile = 0
                self.assertEqual(
                    lod_level_compile, lod_level_runtime,
                    "The lod_level of Output (" + name +
                    ") is different between compile-time and runtime (" +
                    str(lod_level_compile) + " vs " + str(lod_level_runtime) +
                    ")")

1433
    def _get_places(self):
D
dzhwinter 已提交
1434 1435 1436 1437 1438 1439
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
                    self.op_type):
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
W
Wu Yi 已提交
1440 1441
                else:
                    return []
D
dzhwinter 已提交
1442 1443
            else:
                return []
1444
        places = [fluid.CPUPlace()]
1445 1446 1447
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
        if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type)\
           and not cpu_only:
D
dzhwinter 已提交
1448
            places.append(core.CUDAPlace(0))
1449 1450
        return places

M
minqiyang 已提交
1451 1452 1453 1454
    def check_output(self,
                     atol=1e-5,
                     no_check_set=None,
                     equal_nan=False,
1455
                     check_dygraph=True,
1456 1457
                     inplace_atol=None,
                     check_eager=False):
1458
        self.__class__.op_type = self.op_type
Y
Yiqun Liu 已提交
1459
        if self.is_mkldnn_op():
1460
            self.__class__.use_mkldnn = True
C
cc 已提交
1461

Y
Yiqun Liu 已提交
1462
        if self.is_xpu_op():
1463 1464
            self.__class__.use_xpu = True

1465
        places = self._get_places()
Q
qijun 已提交
1466
        for place in places:
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
            res = self.check_output_with_place(
                place,
                atol,
                no_check_set,
                equal_nan,
                check_dygraph,
                inplace_atol,
                check_eager=check_eager)
            if check_eager:
                assert check_dygraph == True
                outs, dygraph_outs, eager_dygraph_outs, fetch_list = res
            elif check_dygraph:
1479 1480 1481
                outs, dygraph_outs, fetch_list = res
            else:
                outs, fetch_list = res
1482
            if self.op_type not in compile_vs_runtime_white_list.COMPILE_RUN_OP_WHITE_LIST:
1483
                self.check_compile_vs_runtime(fetch_list, outs)
Q
qijun 已提交
1484

P
pangyoki 已提交
1485
    def check_output_customized(self, checker, custom_place=None):
1486
        places = self._get_places()
P
pangyoki 已提交
1487 1488
        if custom_place:
            places.append(custom_place)
1489 1490 1491
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
1492
            outs.sort(key=len)
1493 1494
            checker(outs)

1495 1496 1497 1498 1499 1500
    def check_output_with_place_customized(self, checker, place):
        outs = self.calc_output(place)
        outs = [np.array(out) for out in outs]
        outs.sort(key=len)
        checker(outs)

D
Dun 已提交
1501 1502
    def _assert_is_close(self, numeric_grads, analytic_grads, names,
                         max_relative_error, msg_prefix):
M
minqiyang 已提交
1503
        for a, b, name in six.moves.zip(numeric_grads, analytic_grads, names):
1504 1505 1506 1507 1508 1509
            # It asserts np.abs(a - b) / np.abs(a) < max_relative_error, in which
            # max_relative_error is 1e-7. According to the value of np.abs(a), we
            # change np.abs(a) to achieve dynamic threshold. For example, if
            # the value of np.abs(a) is between 1e-10 and 1e-8, we set np.abs(a)*=1e4.
            # Therefore, it asserts np.abs(a - b) / (np.abs(a)*1e4) < max_relative_error,
            # which is the same as np.abs(a - b) / np.abs(a) < max_relative_error*1e4.
1510
            abs_a = np.abs(a)
1511 1512 1513 1514 1515
            if self.dtype == np.float64 and \
                self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
                abs_a[abs_a < 1e-10] = 1e-3
                abs_a[np.logical_and(abs_a > 1e-10, abs_a <= 1e-8)] *= 1e4
                abs_a[np.logical_and(abs_a > 1e-8, abs_a <= 1e-6)] *= 1e2
1516 1517
            elif self.is_bfloat16_op():
                abs_a[abs_a < 1e-2] = 1
1518 1519
            else:
                abs_a[abs_a < 1e-3] = 1
1520 1521 1522 1523 1524 1525

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
1526 1527 1528
                return ("Operator %s error, %s variable %s (shape: %s, dtype: %s) max gradient diff %e over limit %e, "
                    "the first error element is %d, expected %e, but got %e.") \
                    % (self.op_type, msg_prefix, name, str(a.shape), self.dtype, max_diff, max_relative_error,
1529
                    offset, a.flatten()[offset], b.flatten()[offset])
1530 1531 1532

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

1533 1534 1535 1536 1537 1538 1539
    def _check_grad_helper(self):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        self.__class__.op_type = self.op_type
        self.__class__.exist_check_grad = True
        if self.dtype == np.float64:
            self.__class__.exist_fp64_check_grad = True

1540 1541
    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
1542
                   output_names,
1543
                   no_grad_set=None,
1544
                   numeric_grad_delta=0.005,
1545
                   in_place=False,
Q
Qiao Longfei 已提交
1546
                   max_relative_error=0.005,
1547
                   user_defined_grads=None,
1548
                   user_defined_grad_outputs=None,
1549 1550
                   check_dygraph=True,
                   check_eager=False):
1551
        self._check_grad_helper()
1552
        places = self._get_places()
1553
        for place in places:
1554
            self.check_grad_with_place(
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
                place,
                inputs_to_check,
                output_names,
                no_grad_set,
                numeric_grad_delta,
                in_place,
                max_relative_error,
                user_defined_grads,
                user_defined_grad_outputs,
                check_dygraph,
                check_eager=check_eager)
1566 1567 1568 1569 1570 1571 1572 1573 1574

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
1575
                              user_defined_grads=None,
1576
                              user_defined_grad_outputs=None,
1577
                              check_dygraph=True,
1578 1579
                              numeric_place=None,
                              check_eager=False):
1580
        self.scope = core.Scope()
Q
qijun 已提交
1581
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
1582
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
1583
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
P
phlrain 已提交
1584

Y
Yiqun Liu 已提交
1585 1586
        self._check_grad_helper()
        if self.is_bfloat16_op() and self.is_mkldnn_op():
1587
            check_dygraph = False
1588
            check_eager = False
1589

1590 1591 1592 1593
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7
1594

P
phlrain 已提交
1595 1596 1597
        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
1598 1599 1600 1601 1602 1603 1604

        # oneDNN numeric gradient should use CPU kernel
        use_onednn = False
        if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"] == True:
            op_attrs["use_mkldnn"] = False
            use_onednn = True

P
phlrain 已提交
1605 1606 1607 1608 1609 1610 1611
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list)
Y
Yu Yang 已提交
1612

1613 1614 1615
        if use_onednn:
            op_attrs["use_mkldnn"] = True

1616 1617
        if no_grad_set is None:
            no_grad_set = set()
1618 1619
        else:
            if (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST
1620 1621 1622
                ) and (
                    self.op_type not in no_grad_set_white_list.NOT_CHECK_OP_LIST
                ) and (not self.is_bfloat16_op()):
1623 1624
                raise AssertionError("no_grad_set must be None, op_type is " +
                                     self.op_type + " Op.")
1625

1626 1627 1628 1629 1630 1631 1632 1633
        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)
            tensor_to_check = self.scope.find_var(input_to_check).get_tensor()
            tensor_size = six.moves.reduce(lambda a, b: a * b,
                                           tensor_to_check.shape(), 1)
            if tensor_size < 100:
                self.__class__.input_shape_is_large = False

Y
Yancey 已提交
1634 1635 1636
        if not type(output_names) is list:
            output_names = [output_names]

1637 1638 1639
        if numeric_place is None:
            numeric_place = place

Q
Qiao Longfei 已提交
1640
        numeric_grads = user_defined_grads or [
1641
            get_numeric_gradient(
1642
                numeric_place,
1643 1644 1645 1646
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
1647
                output_names,
1648
                delta=numeric_grad_delta,
C
chengduo 已提交
1649
                in_place=in_place) for input_to_check in inputs_to_check
1650
        ]
1651
        analytic_grads = self._get_gradient(inputs_to_check, place,
1652 1653
                                            output_names, no_grad_set,
                                            user_defined_grad_outputs)
1654 1655
        # comparison of bf16 results will happen as fp32
        # loop over list of grads and convert bf16 to fp32
1656
        fp32_analytic_grads = []
1657 1658 1659
        for grad in analytic_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
1660
                max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
1661 1662 1663 1664 1665 1666 1667
            fp32_analytic_grads.append(grad)
        analytic_grads = fp32_analytic_grads

        fp32_numeric_grads = []
        for grad in numeric_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
1668
                max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
1669 1670
            fp32_numeric_grads.append(grad)
        numeric_grads = fp32_numeric_grads
1671

D
Dun 已提交
1672 1673 1674
        self._assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                              max_relative_error,
                              "Gradient Check On %s" % str(place))
Q
qijun 已提交
1675

1676
        if check_dygraph:
1677 1678 1679
            dygraph_grad = self._get_dygraph_grad(
                inputs_to_check, place, output_names, user_defined_grad_outputs,
                no_grad_set)
1680 1681 1682 1683
            fp32_grads = []
            for grad in dygraph_grad:
                if grad.dtype == np.uint16:
                    grad = convert_uint16_to_float(grad)
1684
                    max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
1685 1686
                fp32_grads.append(grad)
            dygraph_grad = fp32_grads
1687 1688 1689 1690
            self._assert_is_close(numeric_grads, dygraph_grad, inputs_to_check,
                                  max_relative_error,
                                  "Gradient Check On %s" % str(place))

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
        if check_eager:
            with _test_eager_guard():
                eager_dygraph_grad = self._get_dygraph_grad(
                    inputs_to_check, place, output_names,
                    user_defined_grad_outputs, no_grad_set)
                fp32_grads = []
                for grad in eager_dygraph_grad:
                    if grad.dtype == np.uint16:
                        grad = convert_uint16_to_float(grad)
                        max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
                    fp32_grads.append(grad)
                eager_dygraph_grad = fp32_grads
                self._assert_is_close(numeric_grads, eager_dygraph_grad,
                                      inputs_to_check, max_relative_error,
                                      "Gradient Check On %s" % str(place))

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
    def _find_var_in_dygraph(self, output_vars, name):
        if name in output_vars:
            return output_vars[name]
        else:
            for output_vars_index in output_vars:
                for output_vars_selected in output_vars[output_vars_index]:
                    if output_vars_selected.name == name:
                        return output_vars_selected

    def _get_dygraph_grad(self,
                          inputs_to_check,
                          place,
                          output_names,
1720
                          user_defined_grad_outputs=None,
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
                          no_grad_set=None):
        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
                op_proto, self.inputs, True, True, block)

            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs_outputs if hasattr(self, "attrs") else None)

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
            if self.dtype == np.uint16:
                cast_inputs = self._find_var_in_dygraph(outputs,
                                                        output_names[0])
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape)
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32
                    })
                outputs = {output_names[0]: cast_outputs}

1762 1763 1764 1765 1766
            outputs_valid = {}
            for output_name in output_names:
                outputs_valid[output_name] = self._find_var_in_dygraph(
                    outputs, output_name)

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
            if user_defined_grad_outputs is None:
                if len(outputs_valid) == 1:
                    loss = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
                    for outputs_valid_key in outputs_valid:
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[outputs_valid_key]},
                            outputs={"Out": [loss]},
                            attrs=None)
                else:
                    avg_sum = []
                    for cur_loss in outputs_valid:
                        cur_avg_loss = block.create_var(
                            dtype=self.dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
                            stop_gradient=False)
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[cur_loss]},
                            outputs={"Out": [cur_avg_loss]},
                            attrs=None)
                        avg_sum.append(cur_avg_loss)
                    loss_sum = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
1801
                    block.append_op(
1802 1803 1804
                        type='sum',
                        inputs={"X": avg_sum},
                        outputs={"Out": loss_sum},
1805
                        attrs=None)
1806
                    loss = block.create_var(
1807 1808 1809
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
1810 1811
                        stop_gradient=False,
                        shape=[1])
1812
                    block.append_op(
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
                        type='scale',
                        inputs={"X": loss_sum},
                        outputs={"Out": loss},
                        attrs={'scale': 1.0 / float(len(avg_sum))})
                loss.backward()
                fetch_list_grad = []
                for inputs_to_check_name in inputs_to_check:
                    a = inputs_grad_dict[inputs_to_check_name].gradient()
                    fetch_list_grad.append(a)
                return fetch_list_grad
            else:
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                grad_outputs = []
                for grad_out_value in user_defined_grad_outputs:
                    grad_outputs.append(paddle.to_tensor(grad_out_value))
C
chentianyu03 已提交
1830 1831 1832 1833
                # delete the inputs which no need to calculate grad
                for no_grad_val in no_grad_set:
                    del (inputs[no_grad_val])

1834 1835 1836 1837 1838
                grad_inputs = paddle.grad(
                    outputs=fluid.layers.utils.flatten(outputs),
                    inputs=fluid.layers.utils.flatten(inputs),
                    grad_outputs=grad_outputs)
                return [grad.numpy() for grad in grad_inputs]
1839

Y
Yu Yang 已提交
1840 1841 1842 1843 1844
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
1845
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
1846 1847
        return tensor

K
Kexin Zhao 已提交
1848
    @staticmethod
K
Kexin Zhao 已提交
1849 1850
    def np_dtype_to_fluid_dtype(input):
        return input
K
Kexin Zhao 已提交
1851

D
dzhwinter 已提交
1852 1853 1854 1855 1856 1857 1858 1859
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

1860 1861 1862 1863 1864
    def _get_gradient(self,
                      input_to_check,
                      place,
                      output_names,
                      no_grad_set,
1865
                      user_defined_grad_outputs=None,
1866
                      parallel=False):
Y
Yu Yang 已提交
1867
        prog = Program()
1868
        scope = core.Scope()
Y
Yu Yang 已提交
1869
        block = prog.global_block()
1870
        self._append_ops(block)
Y
Yu Yang 已提交
1871

1872
        inputs = self._get_inputs(block)
1873
        outputs = self._get_outputs(block)
1874
        feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
1875

1876
        if user_defined_grad_outputs is None:
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
            if self.dtype == np.uint16:
                cast_inputs = list(map(block.var, output_names))
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape)
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32
                    })
                cast_op.desc.infer_var_type(block.desc)
                cast_op.desc.infer_shape(block.desc)
                output_names = [cast_outputs.name]
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
            loss = append_loss_ops(block, output_names)
            param_grad_list = append_backward(
                loss=loss,
                parameter_list=input_to_check,
                no_grad_set=no_grad_set)
            fetch_list = [g for p, g in param_grad_list]
        else:
            assert parallel is False, "unsupported parallel mode when giving custom grad outputs."
            # user_defined_grad_outputs here are numpy arrays
            if not isinstance(user_defined_grad_outputs, list):
                user_defined_grad_outputs = [user_defined_grad_outputs]
            grad_outputs = []
            for grad_out_value in user_defined_grad_outputs:
                # `presistable` is used to avoid executor create new var in local scope
                var = block.create_var(
                    shape=grad_out_value.shape,
                    dtype=grad_out_value.dtype,
                    persistable=True)
                true_var = scope.var(var.name)
                tensor = true_var.get_tensor()
                tensor.set(grad_out_value, place)
                grad_outputs.append(var)
            targets = [
                outputs[name] for name in outputs if name in output_names
            ]
1917
            inputs = [inputs[name] for name in input_to_check if name in inputs]
1918 1919 1920 1921
            grad_inputs = paddle.static.gradients(targets, inputs, grad_outputs,
                                                  no_grad_set)
            fetch_list = grad_inputs

1922 1923
        if parallel:
            use_cuda = False
1924
            if isinstance(place, fluid.CUDAPlace):
1925
                use_cuda = True
1926 1927 1928 1929
            compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
                loss_name=loss.name, places=place)
            prog = compiled_prog
        executor = fluid.Executor(place)
1930 1931
        return list(
            map(np.array,
1932 1933 1934 1935 1936
                executor.run(prog,
                             feed_dict,
                             fetch_list,
                             scope=scope,
                             return_numpy=False)))
A
arlesniak 已提交
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949


class OpTestTool:
    @classmethod
    def skip_if(cls, condition: object, reason: str):
        return unittest.skipIf(condition, reason)

    @classmethod
    def skip_if_not_cpu_bf16(cls):
        return OpTestTool.skip_if(
            not (isinstance(_current_expected_place(), core.CPUPlace) and
                 core.supports_bfloat16()),
            "Place does not support BF16 evaluation")
1950 1951 1952 1953 1954 1955

    @classmethod
    def skip_if_not_cpu(cls):
        return OpTestTool.skip_if(
            not isinstance(_current_expected_place(), core.CPUPlace),
            "OneDNN supports only CPU for now")