manipulation.py 184.0 KB
Newer Older
L
Ligoml 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
# TODO: define functions to manipulate a tensor

myq406450149's avatar
myq406450149 已提交
17
import numpy as np
18

19
import paddle
20
from paddle import _C_ops
21
from paddle.tensor import fill_constant
22
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only
23

24
from ..base.data_feeder import (
25 26 27 28 29
    check_dtype,
    check_type,
    check_variable_and_dtype,
    convert_dtype,
)
30
from ..base.framework import Variable
31 32 33 34 35
from ..framework import (
    LayerHelper,
    convert_np_dtype_to_dtype_,
    core,
    dygraph_only,
36
    in_dynamic_mode,
37
    in_new_ir_mode,
38 39
)
from .creation import _complex_to_real_dtype, _real_to_complex_dtype, zeros
40

41 42
__all__ = []

W
Wilber 已提交
43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
def tensor_array_to_tensor(input, axis=1, use_stack=False, name=None):
    r"""
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]

    Args:
        input(TensorArray): A TensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Tensor: The concatenated or stacked tensor variable.
        Tensor: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.

    Examples:
        .. code-block:: python

            import numpy
            import paddle
            x0 = paddle.assign(numpy.random.rand(2, 2).astype("float32"))
            x1 = paddle.assign(numpy.random.rand(2, 2).astype("float32"))
            i = paddle.full(shape=[1], dtype="int64", fill_value=0)
            array = paddle.tensor.array.create_array(dtype='float32')
            paddle.tensor.array.array_write(x0, i, array)
            paddle.tensor.array.array_write(x1, i + 1, array)
            output, output_index = paddle.tensor.manipulation.tensor_array_to_tensor(input=array)
    """
124
    if in_dynamic_mode():
125 126 127 128 129 130 131
        assert isinstance(
            input, list
        ), "The 'input' in tensor_array_to_tensor must be list"
        from paddle import concat, stack

        op = stack if use_stack else concat
        res = op(input, axis=axis)
132
        sizes = paddle.to_tensor(np.array([int(x.shape[axis]) for x in input]))
133
        return res, sizes
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    else:
        check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
        if isinstance(input, list):
            for i, input_x in enumerate(input):
                check_type(
                    input_x,
                    'input[' + str(i) + ']',
                    Variable,
                    'tensor_array_to_tensor',
                )
        helper = LayerHelper('tensor_array_to_tensor', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input},
            outputs={'Out': [out], 'OutIndex': [out_index]},
            attrs={'axis': axis, 'use_stack': use_stack},
        )
        return out, out_index
156 157


158 159 160
def cast(x, dtype):
    """

161
    Take in the Tensor :attr:`x` with :attr:`x.dtype` and cast it
162 163 164 165
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.

    Args:
166
        x (Tensor): An input N-D Tensor with data type bool, float16,
167
            float32, float64, int32, int64, uint8.
168
        dtype (np.dtype|str): Data type of the output:
169 170 171
            bool, float16, float32, float64, int8, int32, int64, uint8.

    Returns:
L
Ligoml 已提交
172
        Tensor, A Tensor with the same shape as input's.
173 174 175 176 177 178 179 180 181

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
    """
X
xiongkun 已提交
182 183
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
184
    if in_dynamic_mode():
185
        return _C_ops.cast(x, dtype)
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
    else:
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'uint8',
                'uint16',
            ],
            'cast',
        )
        check_dtype(
            dtype,
            'dtype',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int8',
                'int16',
                'int32',
                'int64',
                'uint8',
                'uint16',
            ],
            'cast',
        )
220

221 222 223 224 225 226 227 228 229 230
        helper = LayerHelper('cast', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=dtype, stop_gradient=x.stop_gradient
        )
        helper.append_op(
            type='cast',
            inputs={'X': [x]},
            outputs={'Out': [out]},
            attrs={'in_dtype': x.dtype, 'out_dtype': out.dtype},
        )
231 232 233
        return out


234 235 236 237 238 239 240 241 242 243 244 245
@inplace_apis_in_dygraph_only
def cast_(x, dtype):
    """
    Inplace version of ``cast`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_cast`.
    """
    if in_dynamic_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        return _C_ops.cast_(x, dtype)


246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
def slice(input, axes, starts, ends):
    """
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
    Following examples will explain how slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
            Then:
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
280

281 282 283
    Args:
        input (Tensor): A ``Tensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to .
284 285
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, each element of
                it should be integer or 0-D int Tensor with shape []. If ``starts`` is an Tensor, it should be an 1-D Tensor.
286
                It represents starting indices of corresponding axis in ``axes``.
287 288
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, each element of
                it should be integer or 0-D int Tensor with shape []. If ``ends`` is an Tensor, it should be an 1-D Tensor .
289 290 291
                It represents ending indices of corresponding axis in ``axes``.

    Returns:
L
Ligoml 已提交
292
        Tensor, A ``Tensor``. The data type is same as ``input``.
293 294 295 296 297 298 299 300 301 302 303 304 305

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 5, 6], dtype='float32')
            # example 1:
            # attr starts is a list which doesn't contain tensor.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = paddle.slice(input, axes=axes, starts=starts, ends=ends)
Z
zyfncg 已提交
306
            # sliced_1 is input[1:3, 0:2, 2:4].
307 308 309 310 311

            # example 2:
            # attr starts is a list which contain tensor.
            minus_3 = paddle.full([1], -3, "int32")
            sliced_2 = paddle.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
Z
zyfncg 已提交
312
            # sliced_2 is input[1:3, 0:2, 2:4].
313
    """
314
    if in_dynamic_mode():
315 316 317 318 319 320 321 322
        attrs = ()
        starts_tensor = None
        ends_tensor = None

        if isinstance(axes, (list, tuple)):
            axes = list(axes)
            if len(axes) == 0:
                raise ValueError(
323 324
                    "Input axes should not be an empty list/tuple."
                )
325 326 327 328 329 330 331 332
            for i in range(len(axes)):
                if axes[i] < 0:
                    axes[i] = max(0, axes[i] + len(input.shape))
                else:
                    axes[i] = min(len(input.shape) - 1, axes[i])

        else:
            raise ValueError(
333 334 335 336
                "Input axes must be a python list or tuple, but reveived {}".format(
                    type(axes)
                )
            )
337

338
        infer_flags = [1 for i in range(len(axes))]
339 340 341

        if isinstance(starts, (list, tuple)):
            starts = [
W
wanghuancoder 已提交
342
                item.item(0) if isinstance(item, core.eager.Tensor) else item
343 344
                for item in starts
            ]
W
wanghuancoder 已提交
345
        elif isinstance(starts, core.eager.Tensor):
346
            tensor_t = starts.numpy(False)
347
            starts = list(tensor_t)
348
            infer_flags = [-1 for i in range(len(axes))]
349 350 351

        if isinstance(ends, (list, tuple)):
            ends = [
W
wanghuancoder 已提交
352
                item.item(0) if isinstance(item, core.eager.Tensor) else item
353
                for item in ends
354
            ]
W
wanghuancoder 已提交
355
        elif isinstance(ends, core.eager.Tensor):
356
            tensor_t = ends.numpy(False)
357
            ends = list(tensor_t)
358
            infer_flags = [-1 for i in range(len(axes))]
359

360
        return _C_ops.slice(input, axes, starts, ends, infer_flags, [])
361
    else:
362 363 364 365 366 367 368 369
        if not isinstance(starts, (list, tuple, Variable)):
            raise ValueError(
                "Input starts must be an Variable, python list or tuple."
            )
        if not isinstance(ends, (list, tuple, Variable)):
            raise ValueError(
                "Input ends must be an Variable, python list or tuple."
            )
370

371 372 373 374
        helper = LayerHelper('slice', **locals())

        inputs = {'Input': input}
        attrs = {'axes': axes}
375
        infer_flags = [1 for i in range(len(axes))]
376 377 378 379 380

        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
381
            infer_flags = [-1 for i in range(len(axes))]
382 383
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
384 385 386 387
            if paddle.utils._contain_var(starts):
                inputs[
                    'StartsTensorList'
                ] = paddle.utils._convert_to_tensor_list(starts)
388 389 390 391 392 393 394 395
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
            else:
                attrs['starts'] = starts
396

397 398 399 400
        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
401
            infer_flags = [-1 for i in range(len(axes))]
402 403
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
404 405 406 407
            if paddle.utils._contain_var(ends):
                inputs['EndsTensorList'] = paddle.utils._convert_to_tensor_list(
                    ends
                )
408 409 410 411 412 413 414 415
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
            else:
                attrs['ends'] = ends
416

417 418 419 420
        # infer_flags
        attrs['infer_flags'] = infer_flags
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('input')
421
        )
422 423
        helper.append_op(
            type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out}
424
        )
425

426
        return out
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441


def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
L
Ligoml 已提交
442
        Tensor, A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
479
    if in_dynamic_mode():
480
        return _C_ops.transpose(x, perm)
481
    else:
482 483 484 485 486 487 488 489 490 491
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
492
                'uint16',
493 494 495 496
                'complex64',
                'complex128',
            ],
            'transpose',
497
        )
498 499 500 501
        check_type(perm, 'perm', (list, tuple), 'transpose')
        if isinstance(perm, tuple):
            perm = list(perm)
        if len(perm) != len(x.shape):
502
            raise ValueError(
503 504
                "Input(perm) is the permutation of dimensions of Input(x), "
                "its length should be equal to dimensions of Input(x), "
505 506 507 508
                "but received dimension of Input(x) is {}, "
                "the length of Input(perm) is {}.".format(
                    len(x.shape), len(perm)
                )
509
            )
510 511 512 513 514 515 516
        for idx, dim in enumerate(perm):
            if dim >= len(x.shape):
                raise ValueError(
                    "Each element in Input(perm) should be less than Input(x)'s dimension, "
                    "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                    "dimension %d." % (idx, perm[idx], len(x.shape))
                )
517

518 519 520 521 522 523 524 525 526 527
        helper = LayerHelper('transpose', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='transpose2',
            inputs={'X': [x]},
            outputs={'Out': [out], 'XShape': [x_shape]},
            attrs={'axis': perm},
        )
        return out
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544


def unstack(x, axis=0, num=None):
    """
    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.

    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised.

    Args:
        x (Tensor): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.

    Returns:
L
Ligoml 已提交
545
        list(Tensor), The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.
546 547 548 549 550 551 552 553 554

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.ones(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = paddle.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]

    """
555 556 557 558
    if not (-x.ndim <= axis < x.ndim):
        raise ValueError(
            '`axis` must be in the range [-{0}, {0})'.format(x.ndim)
        )
W
wanghuancoder 已提交
559 560
    if num is not None and (num < 0 or num > x.shape[axis]):
        raise ValueError(f'`num` must be in the range [0, {x.shape[axis]})')
561
    if in_dynamic_mode():
562
        if num is None:
563 564 565
            num = x.shape[axis]
        if num == 0:
            return []
566
        return _C_ops.unstack(x, axis, num)
567 568
    else:
        helper = LayerHelper('unstack', **locals())
569
        if num is None:
570 571 572 573
            if axis is None or x.shape[axis] <= 0:
                raise ValueError('unknown unstack number')
            else:
                num = x.shape[axis]
574

575 576 577
        outs = []
        for _ in range(num):
            outs.append(helper.create_variable_for_type_inference(x.dtype))
578

579 580 581 582 583 584 585
        helper.append_op(
            type='unstack',
            inputs={'X': [x]},
            outputs={'Y': outs},
            attrs={'axis': axis, 'num': num},
        )
        return outs
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    Reset the values of `input` according to the shard it beloning to.
    Every value in `input` must be a non-negative integer, and
    the parameter `index_num` represents the integer above the maximum
    value of `input`. Thus, all values in `input` must be in the range
    [0, index_num) and each value can be regarded as the offset to the beginning
    of the range. The range is further split into multiple shards. Specifically,
    we first compute the `shard_size` according to the following formula,
    which represents the number of integers each shard can hold. So for the
    i'th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size).
    ::

        shard_size = (index_num + nshards - 1) // nshards

    For each value `v` in `input`, we reset it to a new value according to the
    following formula:
    ::
606

607 608 609 610 611 612 613 614 615 616
        v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value

    That is, the value `v` is set to the new offset within the range represented by the shard `shard_id`
    if it in the range. Otherwise, we reset it to be `ignore_value`.

    Args:
        input (Tensor): Input tensor with data type int64 or int32. It's last dimension must be 1.
        index_num (int): An integer represents the integer above the maximum value of `input`.
        nshards (int): The number of shards.
        shard_id (int): The index of the current shard.
L
LoneRanger 已提交
617
        ignore_value (int, optional): An integer value out of sharded index range. The default value is -1.
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633

    Returns:
        Tensor.

    Examples:
        .. code-block:: python

            import paddle
            label = paddle.to_tensor([[16], [1]], "int64")
            shard_label = paddle.shard_index(input=label,
                                             index_num=20,
                                             nshards=2,
                                             shard_id=0)
            print(shard_label)
            # [[-1], [1]]
    """
634
    if in_dynamic_mode():
635 636 637
        return _C_ops.shard_index(
            input, index_num, nshards, shard_id, ignore_value
        )
638 639 640 641 642

    check_variable_and_dtype(input, 'input', ['int64', 'int32'], 'shard_index')
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
643 644 645
        raise ValueError(
            'The shard_id(%d) should be in [0, %d)' % (shard_id, nshards)
        )
646 647

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
648 649 650 651 652 653 654 655 656 657 658 659
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value,
        },
        stop_gradient=True,
    )
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
    return out


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1 (input is a 2-D Tensor):
            Input:
                X.shape = [3, 5]
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
                shape = [2, 2, -1]
                offsets = [0, 0, 1]
            Output:
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]

    Parameters:
        x (Tensor): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
703
        shape (list|tuple|Tensor, optional): The output shape is specified
704 705 706 707 708 709 710 711 712 713 714
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
            the same as the dimension size of `x`. If a Tensor, it should be a 1-D Tensor.
            When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
            must be the same as the dimension size of `x`. If a Tensor, it should be a 1-D
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
715
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
716 717

    Returns:
L
Ligoml 已提交
718
        Tensor, The cropped Tensor has same data type with `x`.
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748

    Examples:

        .. code-block:: python

            import paddle
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
            # x.shape = [3, 3]
            # x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

            # shape can be a 1-D Tensor or list or tuple.
            shape = paddle.to_tensor([2, 2], dtype='int32')
            # shape = [2, 2]
            # shape = (2, 2)
            out = paddle.crop(x, shape)
            # out.shape = [2, 2]
            # out = [[1,2], [4,5]]

            # offsets can be a 1-D Tensor or list or tuple.
            offsets = paddle.to_tensor([0, 1], dtype='int32')
            # offsets = [1, 0]
            # offsets = (1, 1)
            out = paddle.crop(x, shape, offsets)
            # out.shape = [2, 2]
            # if offsets = [0, 0], out = [[1,2], [4,5]]
            # if offsets = [0, 1], out = [[2,3], [5,6]]
            # if offsets = [1, 0], out = [[4,5], [7,8]]
            # if offsets = [1, 1], out = [[5,6], [8,9]]

    """
749

750
    helper = LayerHelper('crop_tensor', **locals())
751 752 753 754 755 756 757 758 759
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'crop_tensor'
    )
    check_type(
        shape, 'shape', (list, tuple, Variable, type(None)), 'crop_tensor'
    )
    check_type(
        offsets, 'offsets', (list, tuple, Variable, type(None)), 'crop_tensor'
    )
760 761 762 763

    if offsets is None:
        offsets = [0] * len(x.shape)

P
PuQing 已提交
764 765 766
    if shape is None:
        shape = x.shape

767
    if in_dynamic_mode():
768
        return _C_ops.crop(x, shape, offsets)
769

770 771 772 773 774 775 776 777
    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
778 779
                % type(shape_val)
            )
780 781 782
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
783 784
                % str(shape_val)
            )
785 786 787
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
788 789
                % str(shape_val)
            )
790 791 792 793 794

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
795 796
                % type(offset_val)
            )
797 798 799
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
800 801
                % str(offset_val)
            )
802 803 804 805 806

    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
        attrs['offsets'] = [-1] * len(x.shape)
807
    elif paddle.utils._contain_var(offsets):
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
        new_offsets_tensor = []
        offsets_attr = []
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
                offsets_attr.append(-1)
            else:
                _attr_offsets_check(dim)
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
                offsets_attr.append(dim)
        ipts['OffsetsTensor'] = new_offsets_tensor
        attrs['offsets'] = offsets_attr
    else:
        for offset in offsets:
            _attr_offsets_check(offset)
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
831
    elif paddle.utils._contain_var(shape):
832 833 834 835 836 837 838 839 840 841
        new_shape_tensor = []
        shape_attr = []
        for dim_size in shape:
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
                shape_attr.append(0)
            else:
                _attr_shape_check(dim_size)
                temp_out = helper.create_variable_for_type_inference('int32')
842 843 844
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
845 846 847 848 849 850 851 852 853
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
        for dim_size in shape:
            _attr_shape_check(dim_size)
        attrs['shape'] = shape

854 855 856 857 858 859
    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs,
    )
860 861 862
    return out


863 864 865 866 867 868 869 870 871
@dygraph_only
def fill_(x, value):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with value inplace.

    Args:
872 873
        x (Tensor): ``x`` is the Tensor we want to filled data inplace
        value (Scale): ``value`` is the value to be filled in x
874 875

    Returns:
L
Ligoml 已提交
876
        x(Tensor), Tensor x filled with value inplace
877 878 879 880 881 882 883 884 885 886 887 888 889 890

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.fill_(0)
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
    if not isinstance(value, (float, int)):
        raise TypeError(
891 892 893
            "The type of 'value'  must be int or float, but received %s."
            % (type(value))
        )
894
    return _C_ops.fill_(x, value)
895 896 897 898 899 900 901 902 903 904 905


@dygraph_only
def zero_(x):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with zero inplace.

    Args:
906
        x (Tensor): ``x`` is the Tensor we want to filled with zero inplace
907 908

    Returns:
L
Ligoml 已提交
909
        x (Tensor), Tensor x filled with zero inplace
910 911 912 913 914 915 916 917 918 919 920 921

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.zero_()
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
922
    return _C_ops.fill_(x, 0.0)
923 924


925 926 927
@dygraph_only
def fill_diagonal_(x, value, offset=0, wrap=False, name=None):
    """
928 929
    Note:
        This API is ONLY available in Dygraph mode.
930

931
    This function fill the value into the x Tensor's diagonal inplace.
932

933 934 935 936 937 938
    Args:
        x(Tensor): ``x`` is the original Tensor
        value(Scale): ``value`` is the value to filled in x
        offset(int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        wrap(bool,optional): the diagonal 'wrapped' after N columns for tall matrices.
        name(str,optional): Name for the operation (optional, default is None)
939

940
    Returns:
L
Ligoml 已提交
941
        Tensor, Tensor with diagonal filled with value.
942

943 944 945 946 947 948 949
    Examples:
        .. code-block:: python
            import paddle
            x = paddle.ones((4, 3)) * 2
            x.fill_diagonal_(1.0)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]
    """
950
    if in_dynamic_mode():
951
        if len(x.shape) == 2:
952 953
            return _C_ops.fill_diagonal_(x, value, offset, wrap)
        return _C_ops.fill_diagonal_(x, value, offset, True)
Z
zhiboniu 已提交
954

955

956 957
def _fill_diagonal_tensor_impl(x, y, offset=0, dim1=0, dim2=1, inplace=False):
    inshape = x.shape
958 959 960 961 962 963 964
    assert dim1 < len(inshape) and dim1 >= -len(
        inshape
    ), 'dim1 should between [-rank,rank) in fill_diagonal_tensor_'
    assert dim2 < len(inshape) and dim2 >= -len(
        inshape
    ), 'dim2 should between [-rank,rank) in fill_diagonal_tensor_'
    assert len(inshape) >= 2, 'Tensor dims should >= 2 in fill_diagonal_tensor_'
965 966 967 968 969 970 971
    dim1 %= len(inshape)
    dim2 %= len(inshape)

    predshape = []
    for i in range(len(inshape)):
        if i != dim1 and i != dim2:
            predshape.append(inshape[i])
972 973 974 975
    diaglen = min(
        min(inshape[dim1], inshape[dim1] + offset),
        min(inshape[dim2], inshape[dim2] - offset),
    )
976
    predshape.append(diaglen)
977
    assert tuple(predshape) == tuple(
978
        y.shape
979
    ), f"the y shape should be {predshape}"
980 981 982 983
    if len(y.shape) == 1:
        y = y.reshape([1, -1])

    if inplace:
984 985
        return _C_ops.fill_diagonal_tensor_(x, y, offset, dim1, dim2)
    return _C_ops.fill_diagonal_tensor(x, y, offset, dim1, dim2)
986 987 988 989


def fill_diagonal_tensor_(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
990 991
    Note:
        This API is ONLY available in Dygraph mode.
992 993 994 995

    This function fill the source Tensor y into the x Tensor's diagonal inplace.

    Args:
996 997 998 999 1000 1001
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1002 1003

    Returns:
L
Ligoml 已提交
1004
        Tensor, Tensor with diagonal filled with y.
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            x.fill_diagonal_tensor_(y)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
1017 1018 1019
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=True
    )
1020 1021 1022 1023 1024 1025 1026


def fill_diagonal_tensor(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
    This function fill the source Tensor y into the x Tensor's diagonal.

    Args:
1027 1028 1029 1030 1031 1032
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1033 1034

    Returns:
L
Ligoml 已提交
1035
        Tensor, Tensor with diagonal filled with y.
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            nx = x.fill_diagonal_tensor(y)
            print(nx.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
1048 1049 1050
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=False
    )
1051 1052


Z
zhiboniu 已提交
1053 1054 1055
@dygraph_only
def tolist(x):
    """
1056 1057
    Note:
        This API is ONLY available in Dygraph mode.
Z
zhiboniu 已提交
1058 1059 1060 1061

    This function translate the paddle.Tensor to python list.

    Args:
1062
        x (Tensor): ``x`` is the Tensor we want to translate to list.
Z
zhiboniu 已提交
1063 1064

    Returns:
L
Ligoml 已提交
1065
        list, A list that contain the same value of current Tensor.
Z
zhiboniu 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080


    Examples:
        .. code-block:: python

            import paddle

            t = paddle.to_tensor([0,1,2,3,4])
            expectlist = t.tolist()
            print(expectlist)   #[0, 1, 2, 3, 4]

            expectlist = paddle.tolist(t)
            print(expectlist)   #[0, 1, 2, 3, 4]

    """
1081
    # TODO(zhouwei): will remove 0-D Tensor.numpy() hack
1082
    return x.numpy(False).tolist()
Z
zhiboniu 已提交
1083 1084


1085 1086 1087
def concat(x, axis=0, name=None):
    """

1088 1089
    Concatenates the input along the axis. It doesn't support 0-D Tensor because it requires a certain axis, and 0-D Tensor
    doesn't have any axis.
1090 1091

    Args:
1092
        x (list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16,
1093
            float32, float64, int32, int64, int8, uint8. All the Tensors in ``x`` must have same data type.
1094
        axis (int|Tensor, optional): Specify the axis to operate on the input Tensors.
1095
            Tt should be integer or 0-D int Tensor with shape []. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
1096
            it works the same way as ``axis+R``. Default is 0.
1097
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1098 1099

    Returns:
L
Ligoml 已提交
1100
        Tensor, A Tensor with the same data type as ``x``.
1101 1102 1103

    Examples:
        .. code-block:: python
1104

1105
            import paddle
1106

1107 1108 1109 1110 1111 1112
            x1 = paddle.to_tensor([[1, 2, 3],
                                   [4, 5, 6]])
            x2 = paddle.to_tensor([[11, 12, 13],
                                   [14, 15, 16]])
            x3 = paddle.to_tensor([[21, 22],
                                   [23, 24]])
1113 1114 1115
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
1116 1117 1118
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
1119 1120 1121 1122 1123 1124 1125 1126 1127
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
1128
    input = x
1129
    if in_dynamic_mode():
1130 1131 1132 1133
        if isinstance(axis, Variable):
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
1134
        return _C_ops.concat(input, axis)
1135 1136 1137 1138
    elif in_new_ir_mode():
        if not isinstance(input, paddle.ir.Value):
            input = [t for t in input if t.shape.count(0) == 0]
        return _C_ops.concat(input, axis)
1139 1140
    else:
        check_type(input, 'input', (list, tuple, Variable), 'concat')
1141
        if not isinstance(input, Variable):
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
            for id, x in enumerate(input):
                check_variable_and_dtype(
                    x,
                    'input[' + str(id) + ']',
                    [
                        'bool',
                        'float16',
                        'float32',
                        'float64',
                        'int32',
                        'int64',
                        'int8',
                        'unit8',
W
wangzhen38 已提交
1155
                        'uint16',
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
                    ],
                    'concat',
                )
                if x.dtype != input[0].dtype:
                    raise TypeError(
                        "All the Tensors in the input must have the same data type."
                    )
        else:
            input = [input]
        check_type(axis, 'axis', (int, Variable), 'concat')
1166

1167 1168 1169 1170 1171
        if isinstance(axis, Variable):
            check_dtype(
                axis.dtype,
                'axis',
                ['int32', 'int64'],
1172
                'concat',
1173
                "The data type of axis must be int32 or int64 when axis is a Tensor",
1174
            )
1175

1176 1177 1178
        helper = LayerHelper('concat', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
1179
        )
1180

1181 1182 1183
        if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            # NOTE(liym27): Don't remove this if branch!
            # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
1184
            # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static graph mode.
1185

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
            assert len(input) == 1, (
                "If the elements of 'input' in concat are Variable(LoDTensorArray), "
                "number of the elements must be 1, but received %s."
                % len(input)
            )
            out_index = helper.create_variable_for_type_inference(dtype="int32")
            helper.append_op(
                type='tensor_array_to_tensor',
                inputs={'X': input[0]},
                outputs={'Out': [out], 'OutIndex': [out_index]},
                attrs={'axis': axis, 'use_stack': False},
            )
1198
        else:
1199 1200 1201 1202 1203 1204 1205
            inputs = {'X': input}
            attrs = {}
            if isinstance(axis, Variable):
                axis.stop_gradient = True
                inputs['AxisTensor'] = axis
            else:
                attrs['axis'] = axis
1206

1207 1208 1209 1210 1211 1212 1213
            helper.append_op(
                type='concat',
                inputs=inputs,
                outputs={'Out': [out]},
                attrs=attrs,
            )
        return out
1214 1215


1216 1217
def broadcast_tensors(input, name=None):
    """
1218
    Broadcast a list of tensors following broadcast semantics
1219

1220
    Note:
1221 1222 1223
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

    .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1224 1225

    Args:
1226
        input (list|tuple): ``input`` is a Tensor list or Tensor tuple which is with data type bool,
1227 1228
            float16, float32, float64, int32, int64. All the Tensors in ``input`` must have same data type.
            Currently we only support tensors with rank no greater than 5.
1229
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1230 1231

    Returns:
L
Ligoml 已提交
1232
        list(Tensor), The list of broadcasted tensors following the same order as ``input``.
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245

    Examples:
        .. code-block:: python

            import paddle
            x1 = paddle.rand([1, 2, 3, 4]).astype('float32')
            x2 = paddle.rand([1, 2, 1, 4]).astype('float32')
            x3 = paddle.rand([1, 1, 3, 1]).astype('float32')
            out1, out2, out3 = paddle.broadcast_tensors(input=[x1, x2, x3])
            # out1, out2, out3: tensors broadcasted from x1, x2, x3 with shape [1,2,3,4]
    """

    num_inputs = len(input)
1246
    if in_dynamic_mode():
1247
        return _C_ops.broadcast_tensors(input)
1248 1249 1250
    else:
        check_type(input, 'input', (list, tuple), 'broadcast_tensors')
        if num_inputs < 1:
1251
            raise TypeError(
1252
                "At least 1 tensor is needed to perform broadcast_tensors"
1253
            )
1254

1255 1256 1257 1258 1259
        # Check input types
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
C
co63oc 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268
                [
                    'bool',
                    'float16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'uint16',
                ],
1269 1270 1271 1272 1273 1274
                'broadcast_tensors',
            )
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type."
                )
1275

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
        # Check bcast semantics
        output_shape_r_last_tensor_index = []
        output_shape_r = []

        # Use while loop due to weird behaviour of "range()"
        j = 0
        while j < len(input):
            tensor = input[j]
            shape = list(reversed(tensor.shape))

            i = 0
            while i < len(shape):
                if len(output_shape_r) <= i:
                    output_shape_r.append(shape[i])
                    output_shape_r_last_tensor_index.append(j)
                else:
                    invalid = (
                        output_shape_r[i] != shape[i]
                        and output_shape_r[i] != 1
                        and shape[i] != 1
                    )
                    if invalid:
                        last_index = output_shape_r_last_tensor_index[i]
                        raise TypeError(
                            "Input tensors to broadcast_tensors does not follow bcast semantics"
1301
                            f"Tensor {last_index} conflicts with Tensor {j} in reversed dimension {i}"
1302 1303 1304 1305 1306 1307 1308 1309
                        )
                    if output_shape_r[i] <= shape[i]:
                        output_shape_r[i] = shape[i]
                        output_shape_r_last_tensor_index[i] = j
                i += 1  # while i < len(shape)
            j += 1  # while j < len(input)

        helper = LayerHelper('broadcast_tensors', **locals())
1310
        i = 0
1311 1312 1313 1314 1315
        out = []
        while i < num_inputs:
            out.append(
                helper.create_variable_for_type_inference(
                    dtype=helper.input_dtype()
1316 1317
                )
            )
1318
            i += 1
1319

1320 1321 1322 1323 1324 1325 1326
        inputs = {'X': input}
        helper.append_op(
            type='broadcast_tensors',
            inputs=inputs,
            outputs={'Out': out},
            attrs={},
        )
1327

1328
        return out
1329 1330


Y
yaoxuefeng 已提交
1331
def flip(x, axis, name=None):
W
Wilber 已提交
1332
    """
Y
yaoxuefeng 已提交
1333
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
1334 1335

    Args:
Y
yaoxuefeng 已提交
1336
        x (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
1337
            should be float32, float64, int32, int64, bool.
R
Roc 已提交
1338
        axis (list|tuple|int): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
1339
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
Wilber 已提交
1340 1341

    Returns:
L
Ligoml 已提交
1342
        Tensor, Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
1343 1344 1345 1346 1347

    Examples:
        .. code-block:: python

          import paddle
Y
yaoxuefeng 已提交
1348 1349

          image_shape=(3, 2, 2)
1350
          img = paddle.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
R
Roc 已提交
1351 1352
          tmp = paddle.flip(img, [0,1])
          print(tmp) # [[[10,11],[8, 9]], [[6, 7],[4, 5]], [[2, 3],[0, 1]]]
Y
yaoxuefeng 已提交
1353

R
Roc 已提交
1354 1355
          out = paddle.flip(tmp,-1)
          print(out) # [[[11,10],[9, 8]], [[7, 6],[5, 4]], [[3, 2],[1, 0]]]
W
Wilber 已提交
1356
    """
R
Roc 已提交
1357 1358
    if isinstance(axis, int):
        axis = [axis]
H
hong 已提交
1359

1360
    if in_dynamic_mode():
1361
        return _C_ops.flip(x, axis)
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
    else:
        helper = LayerHelper("flip", **locals())
        check_type(x, 'X', (Variable), 'flip')
        dtype = helper.input_dtype('x')
        check_dtype(
            dtype,
            'X',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
            'flip',
        )
        check_type(axis, 'axis', (list, tuple), 'flip')
        if name is None:
            out = helper.create_variable_for_type_inference(dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=dtype, persistable=False
            )
H
hong 已提交
1379

1380 1381 1382 1383 1384 1385 1386
        helper.append_op(
            type="flip",
            inputs={"X": x},
            outputs={"Out": out},
            attrs={"axis": axis},
        )
        return out
1387 1388


Z
zmxdream 已提交
1389 1390
def rot90(x, k=1, axes=[0, 1], name=None):
    """
1391
    Rotate a n-D tensor by 90 degrees. The rotation direction and times are specified by axes and the absolute value of k. Rotation direction is from axes[0] towards axes[1] if k > 0, and from axes[1] towards axes[0] for k < 0.
Z
zmxdream 已提交
1392 1393 1394

    Args:
        x (Tensor): The input Tensor(or LoDTensor). The data type of the input Tensor x
Z
zmxdream 已提交
1395
            should be float16, float32, float64, int32, int64, bool. float16 is only supported on gpu.
Z
zmxdream 已提交
1396 1397
        k (int, optional): Direction and number of times to rotate, default value: 1.
        axes (list|tuple, optional): Axes to rotate, dimension must be 2. default value: [0, 1].
Z
zmxdream 已提交
1398 1399 1400 1401
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
1402
        Tensor, Tensor or LoDTensor calculated by rot90 layer. The data type is same with input x.
Z
zmxdream 已提交
1403 1404 1405 1406 1407 1408 1409 1410

    Examples:
        .. code-block:: python

          import paddle

          data = paddle.arange(4)
          data = paddle.reshape(data, (2, 2))
1411
          print(data)
Z
zmxdream 已提交
1412 1413 1414
          #[[0, 1],
          # [2, 3]]

Z
zmxdream 已提交
1415
          y = paddle.rot90(data, 1, [0, 1])
1416
          print(y)
Z
zmxdream 已提交
1417 1418 1419
          #[[1, 3],
          # [0, 2]]

Z
zmxdream 已提交
1420
          y= paddle.rot90(data, -1, [0, 1])
1421
          print(y)
Z
zmxdream 已提交
1422 1423 1424
          #[[2, 0],
          # [3, 1]]

Z
zmxdream 已提交
1425 1426
          data2 = paddle.arange(8)
          data2 = paddle.reshape(data2, (2,2,2))
1427
          print(data2)
Z
zmxdream 已提交
1428 1429 1430 1431 1432
          #[[[0, 1],
          #  [2, 3]],
          # [[4, 5],
          #  [6, 7]]]

Z
zmxdream 已提交
1433
          y = paddle.rot90(data2, 1, [1, 2])
Z
zmxdream 已提交
1434 1435 1436 1437 1438
          print(y)
          #[[[1, 3],
          #  [0, 2]],
          # [[5, 7],
          #  [4, 6]]]
Z
zmxdream 已提交
1439 1440 1441 1442 1443
    """

    helper = LayerHelper("rot90", **locals())
    check_type(x, 'X', (Variable), 'rot90')
    dtype = helper.input_dtype('x')
1444 1445 1446 1447 1448 1449
    check_dtype(
        dtype,
        'X',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'rot90',
    )
Z
zmxdream 已提交
1450 1451 1452 1453 1454
    check_type(axes, 'axes', (list, tuple), 'rot90')

    input_total_dims = len(x.shape)
    total_rot_dims = len(axes)
    if total_rot_dims != 2:
1455 1456
        raise ValueError(
            "expected total rotation axes == 2, but got axes = {}".format(
1457 1458 1459
                total_rot_dims
            )
        )
Z
zmxdream 已提交
1460
    if input_total_dims < 2:
1461 1462
        raise ValueError(
            "expected total dims >= 2, but got total dims = {}".format(
1463 1464 1465
                input_total_dims
            )
        )
Z
zmxdream 已提交
1466 1467 1468

    if not (axes[0] != axes[1] and abs(axes[0] - axes[1]) != input_total_dims):
        raise ValueError(
1469 1470 1471 1472
            "expected rotation axes to be different, but got axis0 = {}, and axis1 = {}".format(
                axes[0], axes[1]
            )
        )
Z
zmxdream 已提交
1473 1474

    if not (axes[0] < input_total_dims and axes[0] >= -input_total_dims):
1475
        raise ValueError(f"Rotation axis0 out of range, axis0 = {axes[0]}")
Z
zmxdream 已提交
1476
    if not (axes[1] < input_total_dims and axes[1] >= -input_total_dims):
1477
        raise ValueError(f"Rotation axis1 out of range, axis1 = {axes[1]}")
Z
zmxdream 已提交
1478

Z
zmxdream 已提交
1479
    k %= 4
Z
zmxdream 已提交
1480 1481 1482 1483 1484 1485
    if k == 0:
        return x
    if k == 2:
        return flip(flip(x, axes[0]), axes[1])

    axes_list = list(range(0, input_total_dims))
1486 1487 1488 1489
    (axes_list[axes[0]], axes_list[axes[1]]) = (
        axes_list[axes[1]],
        axes_list[axes[0]],
    )
Z
zmxdream 已提交
1490 1491 1492 1493 1494 1495 1496
    if k == 1:
        return transpose(flip(x, axes[1]), axes_list)
    else:
        # k == 3
        return flip(transpose(x, axes_list), axes[1])


1497
def flatten(x, start_axis=0, stop_axis=-1, name=None):
1498
    r"""
1499 1500
    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

1501
    Note:
1502
        The output Tensor will share data with origin Tensor and doesn't have a Tensor copy in ``dygraph`` mode.
1503
        If you want to use the Tensor copy version, please use `Tensor.clone` like ``flatten_clone_x = x.flatten().clone()``.
1504

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
1519
            Out.shape = (3, 100 * 100, 4)
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
张春乔 已提交
1534
        x (Tensor): A tensor of number of dimentions >= axis. A tensor with data type float16, float32,
1535
                      float64, int8, int32, int64, uint8.
1536 1537
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
1538
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1539 1540

    Returns:
L
Ligoml 已提交
1541
        Tensor, A tensor with the contents of the input tensor, with input \
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Examples:

        .. code-block:: python

            import paddle

            image_shape=(2, 3, 4, 4)
1552

Y
yaoxuefeng 已提交
1553 1554
            x = paddle.arange(end=image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3])
            img = paddle.reshape(x, image_shape)
1555

1556 1557
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
1558 1559 1560 1561

            # out shares data with img in dygraph mode
            img[0, 0, 0, 0] = -1
            print(out[0, 0, 0]) # [-1]
1562 1563
    """
    if not (isinstance(x, Variable)):
Y
yaoxuefeng 已提交
1564
        raise ValueError("The input x should be a Tensor")
1565 1566

    x_dim = len(x.shape)
1567 1568 1569
    if x_dim == 0:
        if not (isinstance(start_axis, int)) or start_axis not in [0, -1]:
            raise ValueError(
1570
                "The start_axis should be int, and should be 0 or -1 when the input tensor is a 0-D-Tensor"
1571 1572 1573
            )
        if not (isinstance(stop_axis, int)) or stop_axis not in [0, -1]:
            raise ValueError(
1574
                "The stop_axis should be int, and should be 0 or -1 when the input tensor is a 0-D-Tensor"
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
            )
    else:
        if (
            not (isinstance(start_axis, int))
            or (start_axis > x_dim - 1)
            or start_axis < -x_dim
        ):
            raise ValueError(
                "The start_axis should be a int, and in range [-rank(x), rank(x))"
            )
        if (
            not (isinstance(stop_axis, int))
            or (stop_axis > x_dim - 1)
            or stop_axis < -x_dim
        ):
            raise ValueError(
                "The stop_axis should be a int, and in range [-rank(x), rank(x))"
            )
        if start_axis < 0:
            start_axis = start_axis + x_dim
        if stop_axis < 0:
            stop_axis = stop_axis + x_dim
        if start_axis > stop_axis:
            raise ValueError("The stop_axis should be larger than stat_axis")
1599

1600
    if in_dynamic_mode():
1601
        return _C_ops.flatten(x, start_axis, stop_axis)
1602
    else:
W
Weilong Wu 已提交
1603 1604 1605
        check_variable_and_dtype(
            x,
            'x',
X
xiaoguoguo626807 已提交
1606 1607 1608 1609 1610 1611 1612 1613 1614
            [
                'float16',
                'float32',
                'float64',
                'int8',
                'int16',
                'int32',
                'int64',
                'uint8',
1615
                'uint16',
X
xiaoguoguo626807 已提交
1616
            ],
W
Weilong Wu 已提交
1617 1618
            'flatten',
        )
1619 1620 1621 1622 1623 1624 1625 1626
        helper = LayerHelper('flatten', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='flatten_contiguous_range',
            inputs={"X": x},
            outputs={'Out': out, 'XShape': x_shape},
            attrs={"start_axis": start_axis, "stop_axis": stop_axis},
1627
        )
1628
        return out
1629 1630


1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
@inplace_apis_in_dygraph_only
def flatten_(x, start_axis=0, stop_axis=-1, name=None):
    """
    Inplace version of ``flatten`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_flatten`.
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Tensor")

    x_dim = len(x.shape)
1641 1642 1643 1644 1645
    if (
        not (isinstance(start_axis, int))
        or (start_axis > x_dim - 1)
        or start_axis < -x_dim
    ):
1646
        raise ValueError(
1647 1648 1649 1650 1651 1652 1653
            "The start_axis should be a int, and in range [-rank(x), rank(x))"
        )
    if (
        not (isinstance(stop_axis, int))
        or (stop_axis > x_dim - 1)
        or stop_axis < -x_dim
    ):
1654
        raise ValueError(
1655 1656
            "The stop_axis should be a int, and in range [-rank(x), rank(x))"
        )
1657 1658 1659 1660 1661 1662 1663
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1664
    if in_dynamic_mode():
1665
        return _C_ops.flatten_(x, start_axis, stop_axis)
1666

1667

Y
yaoxuefeng 已提交
1668
def roll(x, shifts, axis=None, name=None):
1669
    """
1670 1671 1672
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that
    roll beyond the last position are re-introduced at the first according to 'shifts'.
    If a axis is not specified,
1673 1674 1675
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
1676
        x (Tensor): The x tensor as input.
1677
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
1678
                           of the `x` tensor are shifted.
Y
Yuang Liu 已提交
1679
        axis (int|list|tuple, optional): axis(axes) along which to roll. Default: None
C
Chen Long 已提交
1680 1681 1682
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                For more information, please refer to :ref:`api_guide_Name` .

1683 1684

    Returns:
L
Ligoml 已提交
1685
        Tensor, A Tensor with same data type as `x`.
1686 1687 1688

    Examples:
        .. code-block:: python
1689

1690 1691
            import paddle

1692 1693 1694
            x = paddle.to_tensor([[1.0, 2.0, 3.0],
                                  [4.0, 5.0, 6.0],
                                  [7.0, 8.0, 9.0]])
Y
yaoxuefeng 已提交
1695
            out_z1 = paddle.roll(x, shifts=1)
Y
yaoxuefeng 已提交
1696
            print(out_z1)
Y
yaoxuefeng 已提交
1697 1698 1699 1700
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
Y
yaoxuefeng 已提交
1701
            print(out_z2)
Y
yaoxuefeng 已提交
1702 1703 1704
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
Y
Yuang Liu 已提交
1705 1706 1707 1708 1709
            out_z3 = paddle.roll(x, shifts=1, axis=1)
            print(out_z3)
            #[[3. 1. 2.]
            # [6. 4. 5.]
            # [9. 7. 8.]]
1710
    """
Y
yaoxuefeng 已提交
1711
    origin_shape = x.shape
1712 1713
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
1714 1715 1716 1717
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
1718
    if axis is not None:
Y
yaoxuefeng 已提交
1719 1720 1721
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
1722 1723 1724 1725
                    "axis is out of range, it should be in range [{}, {}), but received {}".format(
                        -len_origin_shape, len_origin_shape, axis
                    )
                )
S
sunli 已提交
1726 1727 1728
    else:
        axis = []

1729
    if in_dynamic_mode():
1730
        return _C_ops.roll(x, shifts, axis)
1731
    else:
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
        check_variable_and_dtype(
            x,
            'dtype',
            [
                'float16',
                'float32',
                'uint16',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'roll',
        )
1747 1748
        helper = LayerHelper("roll", **locals())
        check_type(axis, 'axis', (list, tuple), 'roll')
F
From00 已提交
1749

1750
        out = helper.create_variable_for_type_inference(x.dtype)
1751

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
        if isinstance(shifts, Variable):
            helper.append_op(
                type='roll',
                inputs={'X': x, "ShiftsTensor": shifts},
                outputs={'Out': out},
                attrs={'axis': axis},
            )
        else:
            check_type(shifts, 'shifts', (list, tuple), 'roll')
            helper.append_op(
                type='roll',
                inputs={'X': x},
                outputs={'Out': out},
                attrs={'axis': axis, 'shifts': shifts},
            )
        return out
1768 1769


L
Leo Chen 已提交
1770
def stack(x, axis=0, name=None):
1771
    """
1772
    Stacks all the input tensors ``x`` along ``axis`` dimemsion.
L
Leo Chen 已提交
1773
    All tensors must be of the same shape and same dtype.
1774 1775 1776

    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked
L
Leo Chen 已提交
1777
    tensor is [A, N, B], etc.
1778

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
1814
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
1815 1816 1817 1818 1819 1820 1821 1822

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
1823
        x (list[Tensor]|tuple[Tensor]): Input ``x`` can be a ``list`` or ``tuple`` of tensors, the Tensors in ``x``
1824
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
1825
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
1826
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``.
L
Leo Chen 已提交
1827
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
1828
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1829

1830
    Returns:
L
Ligoml 已提交
1831
        Tensor, The stacked tensor with same data type as input.
1832

1833
    Example:
1834
        .. code-block:: python
L
Leo Chen 已提交
1835

1836
            import paddle
1837

L
Leo Chen 已提交
1838 1839 1840
            x1 = paddle.to_tensor([[1.0, 2.0]])
            x2 = paddle.to_tensor([[3.0, 4.0]])
            x3 = paddle.to_tensor([[5.0, 6.0]])
1841

L
Leo Chen 已提交
1842 1843
            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
L
Leo Chen 已提交
1844
            print(out)
L
Leo Chen 已提交
1845 1846 1847
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
1848

1849 1850 1851 1852 1853 1854
        out = paddle.stack([x1, x2, x3], axis=-2)
        print(out.shape)  # [1, 3, 2]
        print(out)
        # [[[1., 2.],
        #   [3., 4.],
        #   [5., 6.]]]
L
Leo Chen 已提交
1855
    """
1856 1857
    axis = 0 if axis is None else axis

1858
    if in_dynamic_mode():
1859
        return _C_ops.stack(x, axis)
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
    else:
        if not isinstance(x, list) and not isinstance(x, tuple):
            # NOTE:(zhiqiu) Only support Variable as input if the Variable is a LOD_TENSOR_ARRAY create by create_array, array_write, array_read, etc.
            # In that case, Variable is array of tensors indeed.
            if (
                isinstance(x, Variable)
                and x.desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY
            ):
                x = [x]
            else:
                raise TypeError(
1871
                    "The type of '{}' in {} must be {}, but received {}".format(
1872 1873 1874 1875 1876 1877
                        'x',
                        'stack',
                        'list[Tensor], tuple[Tensor] or TensorArray',
                        type(x),
                    )
                )
1878

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
        helper = LayerHelper('stack', **locals())

        out = helper.create_variable_for_type_inference(x[0].dtype)
        if x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            assert len(x) == 1, (
                "If the elements of 'x' in stack are Variable(LoDTensorArray), "
                "number of the elements must be 1, but received %s." % len(x)
            )
            out_index = helper.create_variable_for_type_inference(dtype="int32")

            for i in x:
                check_variable_and_dtype(
                    i,
1892
                    'x',
C
ccrrong 已提交
1893 1894 1895 1896 1897 1898 1899 1900
                    [
                        'float16',
                        'float32',
                        'float64',
                        'int32',
                        'int64',
                        'uint16',
                    ],
1901 1902
                    'stack',
                )
1903

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
            helper.append_op(
                type='tensor_array_to_tensor',
                inputs={'X': x[0]},
                outputs={'Out': [out], 'OutIndex': [out_index]},
                attrs={'axis': axis, 'use_stack': True},
            )
        else:
            helper.append_op(
                type='stack',
                inputs={'X': x},
                outputs={'Y': out},
                attrs={'axis': axis},
1916 1917
            )

1918
        return out
1919 1920


1921
def split(x, num_or_sections, axis=0, name=None):
1922 1923
    """
    Split the input tensor into multiple sub-Tensors.
1924

1925
    Args:
1926
        x (Tensor): A N-D Tensor. The data type is bool, bfloat16, float16, float32, float64, uint8, int8, int32 or int64.
1927
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
1928 1929 1930 1931
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
1932 1933
        axis (int|Tensor, optional): The axis along which to split, it can be a integer or a ``0-D Tensor``
            with shape [] and data type  ``int32`` or ``int64``.
1934 1935 1936
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
1937
    Returns:
L
Ligoml 已提交
1938
        list(Tensor), The list of segmented Tensors.
1939

1940 1941
    Example:
        .. code-block:: python
1942

1943
            import paddle
1944

L
Leo Chen 已提交
1945 1946
            # x is a Tensor of shape [3, 9, 5]
            x = paddle.rand([3, 9, 5])
1947

L
Leo Chen 已提交
1948 1949 1950 1951
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=1)
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1952 1953

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
L
Leo Chen 已提交
1954 1955 1956
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1957 1958

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
L
Leo Chen 已提交
1959 1960 1961
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1962

L
Leo Chen 已提交
1963
            # axis is negative, the real axis is (rank(x) + axis)=1
1964
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
L
Leo Chen 已提交
1965 1966 1967
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1968
    """
1969 1970
    input = x
    dim = axis
1971
    if in_dynamic_mode():
1972 1973 1974 1975 1976
        if isinstance(dim, Variable):
            dim = dim.item(0)
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input.shape) + dim) if dim < 0 else dim

1977
        if isinstance(num_or_sections, (list, tuple)):
1978
            if paddle.utils._contain_var(num_or_sections):
1979 1980
                for index, item in enumerate(num_or_sections):
                    if isinstance(item, Variable):
1981
                        num_or_sections[index] = num_or_sections[index].item()
1982
        elif not isinstance(num_or_sections, int):
1983 1984
            raise TypeError(
                "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but "
1985 1986
                "received %s." % (type(num_or_sections))
            )
1987 1988 1989 1990 1991
        if isinstance(num_or_sections, int):
            return _C_ops.split_with_num(input, num_or_sections, dim)
        else:
            return _C_ops.split(input, num_or_sections, dim)
    else:
1992 1993 1994 1995 1996 1997 1998 1999
        if paddle.ir.core._use_new_ir_api():
            if not isinstance(num_or_sections, int):
                return paddle._ir_ops.split(input, num_or_sections, dim)
            else:
                raise NotImplementedError(
                    "_ir_ops.split_with_num is not implemented, please change sections as list"
                )

2000 2001 2002 2003 2004
        check_variable_and_dtype(
            input,
            'input',
            [
                'bool',
2005
                'bfloat16',
2006
                'float16',
2007
                'uint16',
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
                'int8',
            ],
            'split',
        )
        check_type(
            num_or_sections, 'num_or_sections', (list, int, tuple), 'split'
        )
        check_type(dim, 'dim', (int, Variable), 'split')
        if isinstance(dim, Variable):
            check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split')
2023

2024
        helper = LayerHelper('split', **locals())
2025

2026 2027 2028 2029 2030
        input_shape = input.shape
        inputs = {'X': input}
        attrs = {
            'num': num_or_sections if isinstance(num_or_sections, int) else 0
        }
2031

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
        def _get_SectionsTensorList(one_list):
            tensor_list = []
            unk_dim_idx = -1
            for idx, dim_size in enumerate(one_list):
                if isinstance(dim_size, Variable):
                    dim_size.stop_gradient = True
                    tensor_list.append(dim_size)
                else:
                    assert isinstance(dim_size, int)
                    if dim_size == -1:
                        assert unk_dim_idx == -1, (
                            "Only one value of 'num_or_section' in split can "
                            "be -1. But received num_or_section[%d] is also -1."
                            % idx
                        )
                        unk_dim_idx = idx
                    temp_out = helper.create_variable_for_type_inference(
                        'int32'
2050
                    )
2051 2052 2053 2054 2055
                    fill_constant(
                        [1], 'int32', dim_size, force_cpu=True, out=temp_out
                    )
                    tensor_list.append(temp_out)
            return tensor_list
2056

2057 2058 2059 2060 2061 2062 2063 2064 2065
        if isinstance(dim, Variable):
            dim.stop_gradient = True
            inputs['AxisTensor'] = dim
        else:
            assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
            dim = (len(input_shape) + dim) if dim < 0 else dim
            attrs['axis'] = dim

        if isinstance(num_or_sections, int):
X
xiongkun 已提交
2066
            assert num_or_sections > 0, 'num_or_sections must be than 0.'
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
            if isinstance(dim, int) and input_shape[dim] > 0:
                assert input_shape[dim] % num_or_sections == 0, (
                    "The input's size along the split dimension "
                    "must be evenly divisible by Attr(num_or_sections). "
                    "But %d is not evenly divisible by %d. "
                    % (num_or_sections, input_shape[dim])
                )
            num = num_or_sections
        else:
            if isinstance(dim, int) and input_shape[dim] > 0:
                assert (
                    len(num_or_sections) <= input_shape[dim]
                ), 'len(num_or_sections) must not be more than input.shape[dim].'
            num = len(num_or_sections)
2081 2082 2083 2084
            attrs['sections'] = [
                -1 if isinstance(ele, Variable) else ele
                for ele in num_or_sections
            ]
2085
            if paddle.utils._contain_var(num_or_sections):
2086 2087 2088 2089 2090 2091 2092
                inputs['SectionsTensorList'] = _get_SectionsTensorList(
                    num_or_sections
                )

        outs = [
            helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
2093
            )
2094 2095 2096 2097
            for i in range(num)
        ]
        helper.append_op(
            type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs
2098
        )
2099
        return outs
2100 2101


2102 2103 2104
def vsplit(x, num_or_sections, name=None):
    """
    Split the input tensor into multiple sub-Tensors along the vertical axis, which is equivalent to ``paddle.split`` with ``axis=0``.
2105

2106 2107
    Args:
        x (Tensor): A Tensor whose dimension must be greater than 1. The data type is bool, float16, float32, float64, uint8, int8, int32 or int64.
2108
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
2109 2110 2111 2112 2113 2114 2115 2116
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of axis 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list[Tensor], The list of segmented Tensors.
2117

2118 2119
    Example:
        .. code-block:: python
2120

2121
            import paddle
2122

2123 2124
            # x is a Tensor of shape [8, 6, 7]
            x = paddle.rand([8, 6, 7])
2125
            out0, out1 = paddle.vsplit(x, num_or_sections=2)
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
            print(out0.shape)  # [4, 6, 7]
            print(out1.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[1, 3, 4])
            print(out0.shape)  # [1, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[2, 3, -1])
            print(out0.shape)  # [2, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [3, 6, 7]
    """
    if x.ndim < 2:
        raise ValueError(
2139 2140 2141 2142
            "The input tensor's dimension must be greater than 1, but got {}".format(
                x.ndim
            )
        )
2143 2144 2145
    return split(x, num_or_sections, axis=0, name=name)


L
Leo Chen 已提交
2146
def squeeze(x, axis=None, name=None):
2147
    """
2148 2149 2150 2151
    Squeeze the dimension(s) of size 1 of input tensor x's shape.

    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2152
    please use `Tensor.clone` like ``squeeze_clone_x = x.squeeze().clone()``.
2153

2154 2155
    If axis is provided, it will remove the dimension(s) by given axis that of size 1.
    If the dimension of given axis is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
2156
    If axis is not provided, all dims equal of size 1 will be removed.
2157 2158 2159 2160 2161 2162

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
2163 2164
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
2165
          Output:
L
Leo Chen 已提交
2166
            out.shape = [3, 5]
2167 2168 2169 2170

        Case2:

          Input:
L
Leo Chen 已提交
2171 2172 2173 2174
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
2175

L
Leo Chen 已提交
2176 2177 2178
        Case4:

          Input:
2179
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
2180
            axis = [0, 2, 3]
2181
          Output:
L
Leo Chen 已提交
2182
            out.shape = [3, 5]
2183

L
Leo Chen 已提交
2184
        Case4:
2185 2186

          Input:
2187
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x).
L
Leo Chen 已提交
2188
            axis = [-2]
2189
          Output:
L
Leo Chen 已提交
2190
            out.shape = [1, 3, 5]
2191 2192

    Args:
2193
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
2194
        axis (int|list|tuple, optional): An integer or list/tuple of integers, indicating the dimensions to be squeezed. Default is None.
2195 2196 2197
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
2198 2199 2200
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
L
Ligoml 已提交
2201
        Tensor, Squeezed Tensor with the same data type as input Tensor.
2202 2203 2204

    Examples:
        .. code-block:: python
2205

2206
            import paddle
2207

L
Leo Chen 已提交
2208 2209
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
2210 2211

            print(x.shape)  # [5, 1, 10]
L
Leo Chen 已提交
2212
            print(output.shape)  # [5, 10]
2213

2214 2215 2216 2217
            # output shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(output[0, 0]) # [10.]

2218
    """
L
Leo Chen 已提交
2219 2220 2221 2222 2223 2224
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
2225

2226 2227
    input = x
    axes = axis
2228
    if in_dynamic_mode():
2229
        return _C_ops.squeeze(input, axes)
2230 2231 2232 2233 2234 2235 2236
    else:
        helper = LayerHelper("squeeze", **locals())
        check_variable_and_dtype(
            input,
            'input',
            [
                'float16',
2237
                'uint16',
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
                'float32',
                'float64',
                'bool',
                'int8',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'squeeze',
        )
2249

2250 2251 2252 2253
        check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'squeeze')
        attrs = {}
        if isinstance(axes, Variable):
            axes.stop_gradient = True
2254
            attrs["axes"] = axes
2255
        elif isinstance(axes, (list, tuple)):
2256 2257
            if paddle.utils._contain_var(axes):
                attrs["axes"] = paddle.utils._convert_to_tensor_list(axes)
2258 2259
            else:
                attrs["axes"] = axes
2260

2261 2262 2263 2264 2265 2266 2267 2268
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type="squeeze2",
            inputs={"X": input},
            attrs=attrs,
            outputs={"Out": out, "XShape": x_shape},
        )
2269

2270
        return out
2271 2272


2273
@inplace_apis_in_dygraph_only
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
def squeeze_(x, axis=None, name=None):
    """
    Inplace version of ``squeeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_squeeze`.
    """
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)

2286 2287
    input = x
    axes = axis
2288
    if in_dynamic_mode():
2289
        return _C_ops.squeeze_(input, axes)
2290 2291


2292 2293 2294 2295 2296 2297 2298 2299
def unique_consecutive(
    x,
    return_inverse=False,
    return_counts=False,
    axis=None,
    dtype="int64",
    name=None,
):
Z
Zman 已提交
2300
    """
D
duanboqiang 已提交
2301 2302
    Eliminates all but the first element from every consecutive group of equivalent elements.

2303
    Note:
Z
Zman 已提交
2304 2305
        This function is different from :ref:`api_paddle_unique` in the sense that this function
        only eliminates consecutive duplicate values. This semantics is similar to :ref:`api_paddle_unique` in C++.
D
duanboqiang 已提交
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320

    Args:
        x(Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique consecutive tensor. Default is False.
        return_counts(bool, optional): If True, also return the counts for each unique consecutive element.
            Default is False.
        axis(int, optional): The axis to apply unique consecutive. If None, the input will be flattened.
            Default is None.
        dtype(np.dtype|str, optional): The data type `inverse` tensor: int32 or int64.
            Default: int64.
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default is None.

    Returns:
Z
Zman 已提交
2321 2322 2323 2324 2325 2326
        - out (Tensor), the unique consecutive tensor for x.
        - inverse (Tensor), the element of the input tensor corresponds to
            the index of the elements in the unique consecutive tensor for x.
            inverse is provided only if return_inverse is True.
        - counts (Tensor), the counts of the every unique consecutive element in the input tensor.
            counts is provided only if return_counts is True.
D
duanboqiang 已提交
2327 2328 2329 2330

    Example:
        .. code-block:: python

2331
            import paddle
D
duanboqiang 已提交
2332 2333

            x = paddle.to_tensor([1, 1, 2, 2, 3, 1, 1, 2])
2334
            output = paddle.unique_consecutive(x) #
2335 2336 2337 2338
            print(output)
            # Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 3, 1, 2])

D
duanboqiang 已提交
2339
            _, inverse, counts = paddle.unique_consecutive(x, return_inverse=True, return_counts=True)
2340 2341 2342 2343 2344 2345
            print(inverse)
            # Tensor(shape=[8], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [0, 0, 1, 1, 2, 3, 3, 4])
            print(counts)
            # Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [2, 2, 1, 2, 1])
D
duanboqiang 已提交
2346 2347

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
2348
            output = paddle.unique_consecutive(x, axis=0) #
2349 2350 2351 2352 2353
            print(output)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1],
            #         [2, 1, 3]])
D
duanboqiang 已提交
2354 2355

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
2356
            output = paddle.unique_consecutive(x, axis=0) #
2357 2358 2359 2360 2361
            print(output)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1],
            #         [2, 1, 3]])
D
duanboqiang 已提交
2362 2363 2364 2365 2366 2367 2368
    """

    if axis is None:
        axis = []
    else:
        axis = [axis]
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2369
    if in_dynamic_mode():
2370
        out, inverse, counts = _C_ops.unique_consecutive(
2371 2372
            x, return_inverse, return_counts, axis, attr_dtype
        )
2373 2374 2375 2376 2377 2378 2379 2380
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
2381 2382
    else:
        check_variable_and_dtype(
2383
            x,
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
            "input",
            ['float32', 'float64', 'int32', 'int64'],
            'unique_consecutive',
        )
        check_type(return_inverse, 'return_inverse', bool, 'unique_consecutive')
        check_type(return_counts, 'return_counts', bool, 'unique_consecutive')
        check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique_consecutive')
        if len(axis) != 0:
            check_type(axis[0], 'axis', int, 'unique_consecutive')
        helper = LayerHelper('unique_consecutive', **locals())
        attrs = {
            'dtype': attr_dtype,
            "return_inverse": return_inverse,
            "return_counts": return_counts,
            "axis": axis,
        }
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True
2402
        )
2403 2404 2405 2406 2407 2408 2409
        inverse = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        counts = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        outputs = {"Out": out, "Index": inverse, "Counts": counts}
D
duanboqiang 已提交
2410 2411 2412 2413 2414
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
2415 2416 2417 2418 2419 2420
        helper.append_op(
            type="unique_consecutive",
            inputs={"X": x},
            attrs=attrs,
            outputs=outputs,
        )
D
duanboqiang 已提交
2421 2422 2423 2424 2425
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)


2426 2427 2428 2429 2430 2431 2432 2433 2434
def unique(
    x,
    return_index=False,
    return_inverse=False,
    return_counts=False,
    axis=None,
    dtype="int64",
    name=None,
):
2435
    r"""
Z
Zhang Ting 已提交
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
    Returns the unique elements of `x` in ascending order.

    Args:
        x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
        return_index(bool, optional): If True, also return the indices of the input tensor that
            result in the unique Tensor.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique tensor.
        return_counts(bool, optional): If True, also return the counts for each unique element.
        axis(int, optional): The axis to apply unique. If None, the input will be flattened.
            Default: None.
Z
Zhang Ting 已提交
2447 2448
        dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
            Default: int64.
Z
Zhang Ting 已提交
2449 2450 2451
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default: None.

2452
    Returns:
2453
        tuple (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is \
Z
Zhang Ting 已提交
2454 2455 2456 2457 2458
            provided only if `return_index` is True. `inverse` is provided only if `return_inverse` \
            is True. `counts` is provided only if `return_counts` is True.

    Examples:
        .. code-block:: python
2459

Z
Zhang Ting 已提交
2460 2461
            import paddle

2462
            x = paddle.to_tensor([2, 3, 3, 1, 5, 3])
Z
Zhang Ting 已提交
2463
            unique = paddle.unique(x)
2464 2465 2466 2467
            print(unique)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 3, 5])

Z
Zhang Ting 已提交
2468
            _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
2469 2470 2471 2472 2473 2474 2475 2476 2477
            print(indices)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [3, 0, 1, 4])
            print(inverse)
            # Tensor(shape=[6], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 2, 0, 3, 2])
            print(counts)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 1, 3, 1])
Z
Zhang Ting 已提交
2478

2479
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
Z
Zhang Ting 已提交
2480
            unique = paddle.unique(x)
2481 2482 2483
            print(unique)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [0, 1, 2, 3])
Z
Zhang Ting 已提交
2484 2485

            unique = paddle.unique(x, axis=0)
2486 2487 2488 2489
            print(unique)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1]])
Z
Zhang Ting 已提交
2490 2491 2492 2493 2494
    """
    if axis is None:
        axis = []
    else:
        axis = [axis]
Z
Zhang Ting 已提交
2495
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2496
    if in_dynamic_mode():
2497 2498 2499
        out, indices, inverse, counts = _C_ops.unique(
            x, return_index, return_inverse, return_counts, axis, attr_dtype
        )
Z
Zhang Ting 已提交
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)
2512 2513
    else:
        check_variable_and_dtype(
2514 2515 2516 2517
            x,
            "input",
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'unique',
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
        )
        check_type(return_index, 'return_index', bool, 'unique')
        check_type(return_inverse, 'return_inverse', bool, 'unique')
        check_type(return_counts, 'return_counts', bool, 'unique')
        check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique')
        if len(axis) != 0:
            check_type(axis[0], 'axis', int, 'unique')

        helper = LayerHelper('unique', **locals())
        attrs = {
            'dtype': attr_dtype,
            "return_index": return_index,
            "return_inverse": return_inverse,
            "return_counts": return_counts,
            "axis": axis,
            "is_sorted": True,
        }
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True
        )
        indices = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        inverse = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        counts = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        outputs = {
            "Out": out,
            "Indices": indices,
            "Index": inverse,
            "Counts": counts,
        }
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
Z
Zhang Ting 已提交
2560

2561 2562 2563
        helper.append_op(
            type="unique", inputs={"X": x}, attrs=attrs, outputs=outputs
        )
Z
Zhang Ting 已提交
2564

2565 2566
        if len(outs) == 1:
            return outs[0]
Z
Zhang Ting 已提交
2567

2568
        return tuple(outs)
Z
Zhang Ting 已提交
2569 2570


2571
def unsqueeze(x, axis, name=None):
2572
    """
2573 2574 2575
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
2576

2577 2578
    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2579 2580
    please use `Tensor.clone` like ``unsqueeze_clone_x = x.unsqueeze(-1).clone()``.

2581
    Args:
2582
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: bfloat16, float16, float32, float64, bool, int8, int32, int64.
2583
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` .
2584
                                    If ``axis`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
2585 2586 2587
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
2588 2589

    Returns:
L
Ligoml 已提交
2590
        Tensor, Unsqueezed Tensor with the same data type as input Tensor.
2591 2592 2593

    Examples:
        .. code-block:: python
2594

2595 2596
            import paddle

2597 2598
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
2599

2600 2601
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
2602 2603

            out2 = paddle.unsqueeze(x, axis=[0, 2])
2604
            print(out2.shape)  # [1, 5, 1, 10]
2605

L
Leo Chen 已提交
2606
            axis = paddle.to_tensor([0, 1, 2])
2607
            out3 = paddle.unsqueeze(x, axis=axis)
2608
            print(out3.shape)  # [1, 1, 1, 5, 10]
2609 2610 2611 2612 2613 2614

            # out1, out2, out3 share data with x in dygraph mode
            x[0, 0] = 10.
            print(out1[0, 0, 0]) # [10.]
            print(out2[0, 0, 0, 0]) # [10.]
            print(out3[0, 0, 0, 0, 0]) # [10.]
2615

2616
    """
2617 2618
    input = x
    axes = axis
2619
    if in_dynamic_mode():
2620 2621 2622
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
2623
            axes = axes.tolist()
2624 2625
        elif isinstance(axes, (list, tuple)):
            axes = [
2626
                item.item(0) if isinstance(item, Variable) else item
2627 2628
                for item in axes
            ]
2629
        return _C_ops.unsqueeze(input, axes)
2630 2631 2632 2633 2634 2635
    else:
        check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
        check_variable_and_dtype(
            input,
            'input',
            [
2636
                'uint16',
2637
                'float16',
2638
                'uint16',
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
                'float32',
                'float64',
                'bool',
                'int8',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'unsqueeze',
        )
        helper = LayerHelper("unsqueeze2", **locals())
        inputs = {"X": input}
        attrs = {}
2654

2655 2656 2657 2658 2659 2660
        if isinstance(axes, int):
            axes = [axes]
        if isinstance(axes, Variable):
            axes.stop_gradient = True
            inputs["AxesTensor"] = axes
        elif isinstance(axes, (list, tuple)):
2661 2662 2663 2664
            if paddle.utils._contain_var(axes):
                inputs["AxesTensorList"] = paddle.utils._convert_to_tensor_list(
                    axes
                )
2665 2666
            else:
                attrs["axes"] = axes
2667

2668 2669 2670 2671 2672 2673 2674 2675
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type="unsqueeze2",
            inputs=inputs,
            attrs=attrs,
            outputs={"Out": out, "XShape": x_shape},
        )
2676

2677
        return out
2678 2679


2680
@inplace_apis_in_dygraph_only
2681 2682 2683 2684 2685
def unsqueeze_(x, axis, name=None):
    """
    Inplace version of ``unsqueeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_unsqueeze`.
    """
2686 2687 2688 2689 2690
    input = x
    axes = axis
    if isinstance(axes, int):
        axes = [axes]
    elif isinstance(axes, Variable):
2691
        axes = axes.tolist()
2692 2693
    elif isinstance(axes, (list, tuple)):
        axes = [
2694
            item.item(0) if isinstance(item, Variable) else item
2695
            for item in axes
2696
        ]
2697
    return _C_ops.unsqueeze_(input, axes)
2698 2699


2700
def gather(x, index, axis=None, name=None):
2701
    """
2702 2703
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
2704 2705 2706 2707 2708 2709

    .. code-block:: text


                Given:

2710
                x = [[1, 2],
2711 2712 2713
                     [3, 4],
                     [5, 6]]

2714 2715
                index = [1, 2]
                axis=[0]
2716 2717 2718

                Then:

2719
                out = [[3, 4],
2720
                       [5, 6]]
2721

2722
    Args:
2723
        x (Tensor): The source input tensor with rank>=1. Supported data type is
2724 2725
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
2726
        index (Tensor): The index input tensor with rank=0 or rank=1. Data type is int32 or int64.
2727
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
2728 2729
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
2730 2731

    Returns:
2732
        output (Tensor), If the index is a 1-D tensor, the output is a tensor with the same shape as ``x``. If the index is a 0-D tensor, the output will reduce the dimension where the axis pointing.
2733

2734 2735 2736 2737 2738 2739
    Examples:

        .. code-block:: python

            import paddle

2740 2741
            input = paddle.to_tensor([[1,2],[3,4],[5,6]])
            index = paddle.to_tensor([0,1])
2742 2743
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
2744
    """
2745 2746
    if axis is None:
        axis = 0
2747

2748
    if in_dynamic_mode():
2749
        return _C_ops.gather(x, index, axis)
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
    else:
        check_variable_and_dtype(
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'uint8',
2762
                'uint16',
2763 2764
            ],
            'gather',
2765
        )
2766
        check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
2767

2768 2769
        if isinstance(axis, Variable):
            check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')
2770

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
        helper = LayerHelper('gather', **locals())
        dtype = helper.input_dtype('x')
        out = helper.create_variable_for_type_inference(dtype)
        if not isinstance(axis, Variable):
            helper.append_op(
                type="gather",
                inputs={"X": x, "Index": index},
                attrs={'axis': axis, 'overwrite': False},
                outputs={"Out": out},
            )
        else:
            helper.append_op(
                type="gather",
                inputs={"X": x, "Index": index, "Axis": axis},
                attrs={"overwrite": False},
                outputs={"Out": out},
            )
2788

2789
        return out
myq406450149's avatar
myq406450149 已提交
2790 2791 2792 2793


def unbind(input, axis=0):
    """
S
swtkiwi 已提交
2794

myq406450149's avatar
myq406450149 已提交
2795
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
2796

myq406450149's avatar
myq406450149 已提交
2797
    Args:
L
Leo Chen 已提交
2798
        input (Tensor): The input variable which is an N-D Tensor, data type being bool, float16, float32, float64, int32 or int64.
2799
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind.
2800
            If :math:`axis < 0`, the dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
myq406450149's avatar
myq406450149 已提交
2801
    Returns:
L
Ligoml 已提交
2802
        list(Tensor), The list of segmented Tensor variables.
myq406450149's avatar
myq406450149 已提交
2803 2804 2805

    Example:
        .. code-block:: python
2806

myq406450149's avatar
myq406450149 已提交
2807
            import paddle
2808

C
Chen Long 已提交
2809 2810
            # input is a Tensor which shape is [3, 4, 5]
            input = paddle.rand([3, 4, 5])
2811

2812
            [x0, x1, x2] = paddle.unbind(input, axis=0)
myq406450149's avatar
myq406450149 已提交
2813 2814 2815
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
C
Chen Long 已提交
2816

2817
            [x0, x1, x2, x3] = paddle.unbind(input, axis=1)
myq406450149's avatar
myq406450149 已提交
2818 2819 2820 2821 2822
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]
    """
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
    if not isinstance(axis, (int)):
        raise TypeError(
            "The type of 'axis'  must be int, but received %s." % (type(axis))
        )

    if axis not in range(-input.ndim, input.ndim):
        raise ValueError(
            f'The axis must in range({-input.ndim}, {input.ndim}).'
        )

2833
    if in_dynamic_mode():
2834
        return _C_ops.unbind(input, axis)
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
    else:
        if isinstance(axis, np.generic):
            axis = np.asscalar(axis)
        input_shape = input.shape
        axis_ = axis if axis >= 0 else len(input_shape) + axis
        num = input_shape[axis_]
        helper = LayerHelper("unbind", **locals())
        check_type(input, 'input', (Variable), 'unbind')
        dtype = helper.input_dtype()
        check_dtype(
张春乔 已提交
2845 2846
            dtype,
            'unbind',
2847 2848 2849 2850 2851 2852 2853 2854 2855
            [
                'bool',
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
张春乔 已提交
2856
            'unbind',
2857
        )
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
        outs = [
            helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
            for i in range(num)
        ]
        helper.append_op(
            type="unbind",
            inputs={"X": input},
            outputs={"Out": outs},
            attrs={"axis": axis},
        )
        return outs
L
lilong12 已提交
2871 2872


S
ShenLiang 已提交
2873 2874 2875 2876
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
2877

S
ShenLiang 已提交
2878
    .. code-block:: python
2879
        :name: code-example1
2880

H
hg-1099255210 已提交
2881
        import paddle
S
ShenLiang 已提交
2882
        #input:
H
hg-1099255210 已提交
2883 2884
        x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
        index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
S
ShenLiang 已提交
2885 2886
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
H
hg-1099255210 已提交
2887
        updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
S
ShenLiang 已提交
2888 2889 2890 2891
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
H
hg-1099255210 已提交
2892
                x[index[i]] = paddle.zeros([2])
S
ShenLiang 已提交
2893 2894 2895 2896 2897 2898
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
H
hg-1099255210 已提交
2899
        out = paddle.to_tensor([[3, 3], [6, 6], [1, 1]])
S
ShenLiang 已提交
2900 2901
        out.shape # [3, 2]

2902
    **NOTICE**: The order in which updates are applied is nondeterministic,
S
ShenLiang 已提交
2903 2904 2905 2906
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
2907 2908
        index (Tensor): The index is a 1-D or 0-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): Update input with updates parameter based on index. When the index is a 1-D tensor, the updates shape should be the same as input, and dim value with dim > 1 should be the same as input. When the index is a 0-D tensor, the updates should be a (N-1)-D tensor, the ith dim of the updates should be queal with the (i+1)th dim of the input.
H
hg-1099255210 已提交
2909
        overwrite (bool, optional): The mode that updating the output when there are same indices.
2910

S
sunzhongkai588 已提交
2911
            If True, use the overwrite mode to update the output of the same index,
H
hg-1099255210 已提交
2912
            if False, use the accumulate mode to update the output of the same index. Default value is True.
2913

S
ShenLiang 已提交
2914
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2915

S
ShenLiang 已提交
2916
    Returns:
L
Ligoml 已提交
2917
        Tensor, The output is a Tensor with the same shape as x.
S
ShenLiang 已提交
2918 2919 2920

    Examples:
        .. code-block:: python
2921

S
ShenLiang 已提交
2922 2923
            import paddle

2924 2925 2926
            x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
            index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
            updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
2927

S
ShenLiang 已提交
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
2948
    if in_dynamic_mode():
2949
        return _C_ops.scatter(x, index, updates, overwrite)
J
Jiabin Yang 已提交
2950
    else:
2951 2952 2953
        check_variable_and_dtype(
            x,
            'dtype',
Z
zxcd 已提交
2954
            ['float32', 'float64', 'float16', 'int32', 'int64', 'uint16'],
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
            'scatter',
        )
        check_type(overwrite, 'overwrite', bool, 'scatter')
        helper = LayerHelper('scatter', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type="scatter",
            inputs={"X": x, "Ids": index, "Updates": updates},
            attrs={'overwrite': overwrite},
            outputs={"Out": out},
        )
        return out
S
ShenLiang 已提交
2967 2968


2969
@inplace_apis_in_dygraph_only
2970 2971 2972 2973 2974
def scatter_(x, index, updates, overwrite=True, name=None):
    """
    Inplace version of ``scatter`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_scatter`.
    """
2975
    return _C_ops.scatter_(x, index, updates, overwrite)
2976 2977


2978
def scatter_nd_add(x, index, updates, name=None):
2979
    r"""
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020

    Output is obtained by applying sparse addition to a single value
    or slice in a Tensor.

    :attr:`x` is a Tensor with ndim :math:`R`
    and :attr:`index` is a Tensor with ndim :math:`K` . Thus, :attr:`index`
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
    is a Tensor with ndim :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + x.shape[index.shape[-1]:]` .

    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`x` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text

        Given:

        * Case 1:
            x = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:

            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            x = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            x.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:

            output = [[67, 19], [-16, -27]]

    Args:
Z
Zeng Jinle 已提交
3021
        x (Tensor): The x input. Its dtype should be int32, int64, float32, float64.
3022 3023 3024 3025 3026 3027 3028
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= x.ndim.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd_add op, and it must have the same dtype
                            as x. It must have the shape index.shape[:-1] + x.shape[index.shape[-1]:].
        name (str|None): The output tensor name. If set None, the layer will be named automatically.

    Returns:
L
Ligoml 已提交
3029
        output (Tensor), The output is a tensor with the same shape and dtype as x.
3030 3031 3032 3033 3034 3035 3036 3037 3038

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32')
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
C
Chen Long 已提交
3039 3040 3041
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype='int64')
3042

3043
            output = paddle.scatter_nd_add(x, index, updates)
C
Chen Long 已提交
3044 3045
            print(output.shape)
            # [3, 5, 9, 10]
3046
    """
3047
    if in_dynamic_mode():
3048
        return _C_ops.scatter_nd_add(x, index, updates)
3049
    else:
3050 3051
        if x.dtype != updates.dtype:
            raise ValueError("x and updates must have same data type.")
3052

3053 3054 3055 3056 3057 3058 3059 3060 3061
        helper = LayerHelper('scatter_nd_add', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        output = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="scatter_nd_add",
            inputs={"X": x, "Index": index, "Updates": updates},
            outputs={"Out": output},
        )
        return output
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)`
    is equal to :code:`scatter_nd_add(paddle.zeros(shape, updates.dtype), index, updates)` .
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated.
    Because of the numerical approximation issues, the different order of repeated elements
    in :attr:`index` may cause different results. The specific calculation method can be
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
3078
        index (Tensor): The index input with ndim >= 1 and index.shape[-1] <= len(shape).
3079 3080 3081 3082 3083 3084 3085
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd op. Its dtype should be float32, float64.
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
        name (str|None): The output Tensor name. If set None, the layer will be named automatically.

    Returns:
L
Ligoml 已提交
3086
        output (Tensor), The output is a tensor with the same type as :attr:`updates` .
3087 3088 3089 3090 3091 3092 3093

    Examples:

        .. code-block:: python

            import paddle

3094 3095 3096
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype="int64")
3097 3098 3099 3100 3101 3102
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
            shape = [3, 5, 9, 10]

            output = paddle.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)
3103 3104


3105 3106 3107
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
3108

3109 3110 3111
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
3112 3113
        axis (int|Tensor, optional): The axis along which to split, it can be a integer or a ``0-D Tensor``
            with shape [] and data type  ``int32`` or ``int64``.
3114 3115 3116 3117
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
L
Ligoml 已提交
3118
        list(Tensor), The list of segmented Tensors.
3119

3120
    Examples:
3121
        .. code-block:: python
3122

3123
            import paddle
3124

3125
            x = paddle.rand([3, 9, 5])
3126

3127
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=1)
3128 3129 3130 3131
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

3132

3133 3134 3135 3136 3137 3138 3139 3140
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
3141
    return split(x, num_or_sections=chunks, axis=axis, name=name)
3142 3143


L
lilong12 已提交
3144 3145
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
3146 3147

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
3148
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
3149 3150 3151

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
3152
    Args:
I
Infinity_lee 已提交
3153
        x (Tensor): The input tensor, its data type should be bool, float16, float32, float64, int32 or int64.
3154
        repeat_times (list|tuple|Tensor): The number of repeating times. If repeat_times is a list or tuple, all its elements
L
lilong12 已提交
3155 3156 3157
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
3158
    Returns:
3159
        N-D Tensor. The data type is the same as ``x``. The size of the i-th dimension is equal to ``x[i] * repeat_times[i]``.
L
lilong12 已提交
3160

L
lilong12 已提交
3161 3162
    Examples:
        .. code-block:: python
L
lilong12 已提交
3163

L
lilong12 已提交
3164
            import paddle
L
lilong12 已提交
3165

3166
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3167
            out = paddle.tile(data, repeat_times=[2, 1])
3168 3169 3170 3171
            print(out)
            # Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3],
            #         [1, 2, 3]])
L
lilong12 已提交
3172

3173
            out = paddle.tile(data, repeat_times=(2, 2))
3174 3175 3176 3177
            print(out)
            # Tensor(shape=[2, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3, 1, 2, 3],
            #         [1, 2, 3, 1, 2, 3]])
L
lilong12 已提交
3178

3179
            repeat_times = paddle.to_tensor([1, 2], dtype='int32')
L
lilong12 已提交
3180
            out = paddle.tile(data, repeat_times=repeat_times)
3181 3182 3183
            print(out)
            # Tensor(shape=[1, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3, 1, 2, 3]])
L
lilong12 已提交
3184
    """
3185
    if in_dynamic_mode():
3186
        if isinstance(repeat_times, core.eager.Tensor):
3187 3188 3189
            assert (
                repeat_times.ndim == 1
            ), "Only support ndim == 1 while repeat_times is a Tensor."
3190
            repeat_times = repeat_times.tolist()
3191

3192
        return _C_ops.tile(x, repeat_times)
3193
    else:
3194 3195 3196 3197 3198
        check_type(
            repeat_times, 'repeat_times', (list, tuple, Variable), 'tile'
        )
        if isinstance(repeat_times, Variable):
            assert (
3199 3200
                repeat_times.numel() == 1
            ), 'repeat_times must be a Tensor with one element.'
3201 3202 3203 3204
        else:
            for elem in repeat_times:
                if isinstance(elem, Variable):
                    assert (
3205 3206
                        elem.numel() == 1
                    ), 'Elements in repeat_times must be Tensor with one element or integers.'
3207 3208 3209 3210
                else:
                    type_tuple = (int, np.int32, np.int64)
                    assert isinstance(
                        elem, type_tuple
3211
                    ), 'Elements in repeat_times must be Tensor with one element or integers.'
3212

3213
        check_variable_and_dtype(
I
Infinity_lee 已提交
3214 3215
            x,
            'x',
Y
yangjianfengo1 已提交
3216 3217 3218
            [
                'bool',
                'float16',
Y
yangjianfengo1 已提交
3219
                'uint16',
Y
yangjianfengo1 已提交
3220 3221 3222 3223 3224
                'float32',
                'float64',
                'int32',
                'int64',
            ],
I
Infinity_lee 已提交
3225
            'tile',
3226
        )
3227 3228 3229 3230 3231 3232
        if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
            raise ValueError(
                "When the date type is bool for the input 'x' of tile op, you "
                "must set its stop_gradient to be True by "
                "some_var.stop_gradient == True supporting some_var is the input."
            )
3233

3234
        helper = LayerHelper('tile', **locals())
L
lilong12 已提交
3235

3236 3237
        inputs = {"X": [x]}
        attrs = {}
L
lilong12 已提交
3238

3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
        def get_attr_repeat_times(list_repeat_times):
            attrs_repeat_times = []
            for idx, times in enumerate(list_repeat_times):
                if isinstance(times, Variable):
                    attrs_repeat_times.append(-1)
                else:
                    attrs_repeat_times.append(times)
                    assert (
                        times > 0
                    ), "All elements in repeat_times must be positive for tile."
            return attrs_repeat_times

        if isinstance(repeat_times, Variable):
            repeat_times.stop_gradient = True
            inputs['RepeatTimes'] = repeat_times
            attrs['repeat_times'] = [-1]
        elif isinstance(repeat_times, (list, tuple)):
            attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
3257 3258 3259 3260
            if paddle.utils._contain_var(repeat_times):
                inputs[
                    'repeat_times_tensor'
                ] = paddle.utils._convert_to_tensor_list(repeat_times)
L
lilong12 已提交
3261

3262 3263 3264 3265 3266 3267
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='tile', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
3268 3269


L
lilong12 已提交
3270 3271 3272 3273 3274
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

3275
    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 0.
L
lilong12 已提交
3276 3277 3278

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
3279
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
3280 3281 3282
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
3283
        N-D Tensor, A Tensor with the same shape as ``y``. The data type is the same as ``x``.
L
lilong12 已提交
3284 3285 3286 3287 3288 3289

    Examples:
        .. code-block:: python

            import paddle

3290 3291
            data_x = paddle.to_tensor([1, 2, 3], 'int32')
            data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
L
lilong12 已提交
3292
            out = paddle.expand_as(data_x, data_y)
3293 3294 3295 3296
            print(out)
            # Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3],
            #         [1, 2, 3]])
L
lilong12 已提交
3297
    """
3298
    if in_dynamic_mode():
3299
        return _C_ops.expand_as(x, None, y.shape)
3300 3301 3302 3303
    else:
        check_variable_and_dtype(
            x,
            'x',
3304 3305 3306 3307 3308 3309 3310 3311 3312
            [
                'bool',
                'float32',
                'float64',
                'int32',
                'int64',
                'float16',
                'uint16',
            ],
3313 3314 3315
            'expand_as',
        )
        check_type(y, 'y', Variable, 'expand_as')
H
hong 已提交
3316

3317 3318 3319 3320 3321 3322 3323 3324
        if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
            raise ValueError(
                "When the data type of input 'x' for expand_as is bool, "
                "you must set its stop_gradient to be False by "
                "some_var.stop_gradient = True, supporting "
                "some_var as the input 'x'."
            )
        inputs = {"X": [x], "Y": [y]}
L
lilong12 已提交
3325

3326 3327 3328 3329 3330 3331 3332 3333
        helper = LayerHelper('expand_as', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='expand_as_v2',
            inputs=inputs,
            attrs={'target_shape': y.shape},
            outputs={'Out': out},
3334
        )
3335
        return out
L
lilong12 已提交
3336 3337


3338 3339 3340 3341 3342
def broadcast_to(x, shape, name=None):
    """

    Broadcast the input tensor to a given shape.

3343
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to broadcast to must have a value 0.
3344 3345 3346


    Args:
张春乔 已提交
3347
        x (Tensor): The input tensor, its data type is bool, float16, float32, float64, int32 or int64.
3348
        shape (list|tuple|Tensor): The result shape after broadcasting. The data type is int32. If shape is a list or tuple, all its elements
3349
            should be integers or 0-D or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
3350
            The value -1 in shape means keeping the corresponding dimension unchanged.
3351
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3352
    Returns:
L
Ligoml 已提交
3353
        N-D Tensor, A Tensor with the given shape. The data type is the same as ``x``.
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([1, 2, 3], dtype='int32')
            out = paddle.broadcast_to(data, shape=[2, 3])
            print(out)
            # [[1, 2, 3], [1, 2, 3]]
    """
3365
    if in_dynamic_mode():
3366
        return _C_ops.expand(x, shape)
3367
    else:
3368 3369 3370
        if isinstance(shape, Variable):
            assert len(shape.shape) == 1, 'shape must be an 1-D Tensor.'
        else:
3371
            type_tuple = (int, np.int32, np.int64)
3372 3373 3374 3375 3376 3377 3378 3379 3380
            for elem in shape:
                if isinstance(elem, Variable):
                    assert (
                        len(elem.shape) == 1
                    ), 'Elements in shape must be 1-D Tensors or integers.'
                else:
                    assert isinstance(
                        elem, type_tuple
                    ), 'Elements in shape must be 1-D Tensors or integers.'
3381

3382 3383 3384
        check_variable_and_dtype(
            x,
            'x',
3385 3386 3387 3388 3389 3390 3391 3392 3393
            [
                'bool',
                'uint16',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
3394
            'broadcast_to',
3395
        )
3396 3397 3398 3399 3400 3401 3402 3403
        check_type(shape, 'shape', (list, tuple, Variable), 'broadcast_to')
        if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
            raise ValueError(
                "When the data type of input 'x' for broadcast_to is bool, "
                "you must set its stop_gradient to be False by "
                "some_var.stop_gradient = True, supporting "
                "some_var as the input."
            )
3404

3405 3406
        inputs = {"X": [x]}
        attrs = {}
3407

3408
        helper = LayerHelper('expand', **locals())
3409

3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
        def get_attr_expand_shape(list_expand_shape):
            attrs_expand_shape = []
            for idx, shape in enumerate(list_expand_shape):
                if isinstance(shape, Variable):
                    attrs_expand_shape.append(-1)
                else:
                    attrs_expand_shape.append(shape)
                    assert (
                        shape > 0 or shape == -1
                    ), "All elements in shape of broadcast_to must be positive or -1."
            return attrs_expand_shape
3421

3422 3423 3424 3425 3426
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs['Shape'] = shape
        elif isinstance(shape, (list, tuple)):
            attrs['shape'] = get_attr_expand_shape(shape)
3427 3428 3429 3430
            if paddle.utils._contain_var(shape):
                inputs[
                    'expand_shapes_tensor'
                ] = paddle.utils._convert_to_tensor_list(shape)
3431

3432 3433 3434 3435 3436 3437
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
3438 3439


3440 3441 3442 3443 3444
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

3445
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. And the number of dimensions of ``x`` should be less than the number of elements in ``shape``. The dimension to expand must have a value 0.
3446 3447

    Args:
C
Chen Long 已提交
3448
        x (Tensor): The input Tensor, its data type is bool, float32, float64, int32 or int64.
L
lilong12 已提交
3449
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
3450
            should be integers or 0-D or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
L
lilong12 已提交
3451
            The value -1 in shape means keeping the corresponding dimension unchanged.
3452 3453 3454
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
3455
        N-D Tensor, A Tensor with the given shape. The data type is the same as ``x``.
3456 3457 3458 3459 3460 3461

    Examples:
        .. code-block:: python

            import paddle

3462
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3463
            out = paddle.expand(data, shape=[2, 3])
3464
            print(out)
3465 3466
            # [[1, 2, 3], [1, 2, 3]]
    """
3467
    if in_dynamic_mode():
3468
        return _C_ops.expand(x, shape)
3469
    else:
3470
        if isinstance(shape, Variable):
3471
            assert shape.numel() == 1, 'shape must be a Tensor with one element'
3472 3473 3474 3475
        else:
            for elem in shape:
                if isinstance(elem, Variable):
                    assert (
3476 3477
                        elem.numel() == 1
                    ), 'Elements in shape must be Tensor with one element or integers.'
3478 3479 3480 3481
                else:
                    type_tuple = (int, np.int32, np.int64)
                    assert isinstance(
                        elem, type_tuple
3482
                    ), 'Elements in shape must be Tensor with one element or integers.'
3483

3484 3485 3486
        check_variable_and_dtype(
            x,
            'x',
3487 3488 3489 3490 3491 3492 3493 3494 3495
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
3496
            'expand',
3497
        )
3498 3499 3500 3501 3502 3503 3504 3505
        check_type(shape, 'shape', (list, tuple, Variable), 'expand')
        if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
            raise ValueError(
                "When the data type of input 'x' for expand is bool, "
                "you must set its stop_gradient to be False by "
                "some_var.stop_gradient = True, supporting "
                "some_var as the input."
            )
3506

3507 3508
        inputs = {"X": [x]}
        attrs = {}
3509

3510
        helper = LayerHelper('expand', **locals())
3511

3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
        def get_attr_expand_shape(list_expand_shape):
            attrs_expand_shape = []
            for idx, shape in enumerate(list_expand_shape):
                if isinstance(shape, Variable):
                    attrs_expand_shape.append(-2)
                else:
                    attrs_expand_shape.append(shape)
                    assert (
                        shape > 0 or shape == -1
                    ), "All elements in shape of expand must be positive or -1."
            return attrs_expand_shape
3523

3524 3525 3526 3527 3528
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs['Shape'] = shape
        elif isinstance(shape, (list, tuple)):
            attrs['shape'] = get_attr_expand_shape(shape)
3529 3530 3531 3532
            if paddle.utils._contain_var(shape):
                inputs[
                    'expand_shapes_tensor'
                ] = paddle.utils._convert_to_tensor_list(shape)
3533

3534 3535 3536 3537 3538 3539
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
L
lilong12 已提交
3540 3541


3542 3543
def reshape(x, shape, name=None):
    """
3544
    Changes the shape of ``x`` without changing its data.
3545

3546
    Note that the output Tensor will share data with origin Tensor and doesn't
3547 3548
    have a Tensor copy in ``dygraph`` mode.
    If you want to use the Tensor copy version, please use `Tensor.clone` like
3549 3550
    ``reshape_clone_x = x.reshape([-1]).clone()``.

3551 3552
    Some tricks exist when specifying the target shape.

3553
        - 1. -1 means the value of this dimension is inferred from the total element number of x and remaining dimensions. Thus one and only one dimension can be set -1.
3554

3555
        - 2. 0 means the actual dimension value is going to be copied from the corresponding dimension of x. The index of 0s in shape can not exceed the dimension of x.
3556 3557 3558

    Here are some examples to explain it.

3559
        - 1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [6, 8], the reshape operator will transform x into a 2-D tensor with shape [6, 8] and leaving x's data unchanged.
3560

3561
        - 2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape specified is [2, 3, -1, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this case, one dimension of the target shape is set to -1, the value of this dimension is inferred from the total element number of x and remaining dimensions.
3562

3563
        - 3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case, besides -1, 0 means the actual dimension value is going to be copied from the corresponding dimension of x.
3564 3565

    Args:
3566 3567
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        shape (list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
3568
                        The data type is ``int32`` . If ``shape`` is a list or tuple, each element of it should be integer or Tensor with shape [].
3569
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
3570
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3571 3572

    Returns:
L
Ligoml 已提交
3573
        Tensor, A reshaped Tensor with the same data type as ``x``.
3574 3575 3576 3577 3578 3579

    Examples:
        .. code-block:: python

            import paddle

3580 3581
            x = paddle.rand([2, 4, 6], dtype="float32")
            positive_four = paddle.full([1], 4, "int32")
3582

3583 3584 3585
            out = paddle.reshape(x, [-1, 0, 3, 2])
            print(out)
            # the shape is [2,4,3,2].
3586

3587 3588
            out = paddle.reshape(x, shape=[positive_four, 12])
            print(out)
3589
            # the shape of out_2 is [4, 12].
3590

3591
            shape_tensor = paddle.to_tensor([8, 6], dtype=paddle.int32)
3592
            out = paddle.reshape(x, shape=shape_tensor)
3593
            print(out.shape)
3594
            # the shape is [8, 6].
3595 3596 3597 3598 3599
            # out shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(out[0, 0])
            # the value is [10.]

3600
    """
3601
    if in_dynamic_mode():
3602
        if isinstance(shape, (list, tuple)):
3603 3604 3605 3606 3607 3608 3609 3610
            new_shape = []
            for ele in shape:
                if isinstance(ele, core.eager.Tensor):
                    new_shape.append(ele.item())
                else:
                    new_shape.append(ele)

            if new_shape == x.shape:
3611 3612
                out = x
            else:
3613
                out = _C_ops.reshape(x, new_shape)
3614
        elif isinstance(shape, core.eager.Tensor):
3615
            shape.stop_gradient = True
3616
            out = _C_ops.reshape(x, shape)
3617 3618 3619
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
3620 3621
                " got '{}.'".format(type(shape))
            )
3622

3623
        return out
3624
    else:
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
        check_variable_and_dtype(
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'bool',
                'uint16',
            ],
            'reshape',
        )
        check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
3641

3642 3643 3644 3645 3646 3647
        def get_attr_shape(list_shape):
            unk_dim_idx = -1
            attrs_shape = []
            for dim_idx, dim_size in enumerate(list_shape):
                if isinstance(dim_size, Variable):
                    attrs_shape.append(-1)
3648
                else:
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
                    attrs_shape.append(dim_size)
                    if dim_size == -1:
                        assert unk_dim_idx == -1, (
                            "Only one dimension value of 'shape' in reshape can "
                            "be -1. But received shape[%d] is also -1.\n"
                            "\n\t# N = x.shape()[2]\t\t# N is an int. "
                            "(NOT recommend under @to_static)\n\tN = paddle.shape(x)[2]\t\t"
                            "# N is a Tensor. (Recommend)\n\tz = paddle.reshape([N, -1, 4])"
                            "\t# z.shape is [-1, -1, 4]\n\n"
                            "    If your target shape in Reshape represents dynamic shape, "
                            "please turn it into a Tensor under @to_static. See above example for details."
                            % dim_idx
                        )
                        unk_dim_idx = dim_idx
                    elif dim_size == 0:
                        assert dim_idx < len(x.shape), (
                            "The index of 0 in `shape` must be less than "
                            "the input tensor X's dimensions. "
                            "But received shape[%d] = 0, X's dimensions = %d."
                            % (dim_idx, len(x.shape))
                        )
                    else:
                        assert dim_size > 0, (
                            "Each dimension value of 'shape' in reshape must not "
                            "be negative except one unknown dimension. "
                            "But received shape[%d] = %s."
                            % (dim_idx, str(dim_size))
                        )
            return attrs_shape

        inputs = {"X": x}
        attrs = {}
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs["Shape"] = shape
        elif isinstance(shape, (list, tuple)):
            attrs["shape"] = get_attr_shape(shape)
3686 3687 3688 3689
            if paddle.utils._contain_var(shape):
                inputs['ShapeTensor'] = paddle.utils._convert_to_tensor_list(
                    shape
                )
3690

3691
        helper = LayerHelper("reshape2", **locals())
3692 3693 3694 3695 3696 3697 3698
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="reshape2",
            inputs=inputs,
            attrs=attrs,
            outputs={"Out": out, "XShape": x_shape},
3699
        )
3700

3701
        return out
3702 3703


3704
@inplace_apis_in_dygraph_only
3705 3706 3707 3708 3709
def reshape_(x, shape, name=None):
    """
    Inplace version of ``reshape`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_reshape`.
    """
3710
    if in_dynamic_mode():
3711 3712 3713
        tmp_tensor_type = core.eager.Tensor
        if isinstance(shape, (list, tuple)):
            shape = [
3714
                item.item(0) if isinstance(item, tmp_tensor_type) else item
3715
                for item in shape
3716
            ]
3717 3718 3719 3720
            if shape == x.shape:
                out = x
            else:
                out = _C_ops.reshape_(x, shape)
3721 3722
        elif isinstance(shape, tmp_tensor_type):
            shape.stop_gradient = True
3723
            out = _C_ops.reshape_(x, shape)
3724 3725 3726
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
3727 3728
                " got '{}.'".format(type(shape))
            )
3729

3730
        return out
3731 3732


3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
3752 3753 3754 3755 3756 3757 3758
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
3759 3760 3761 3762

            * Case 1:
                index = [[1]]

3763 3764
                gather_nd(x, index)
                         = [x[1, :, :]]
3765 3766 3767 3768 3769 3770 3771
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

3772 3773
                gather_nd(x, index)
                         = [x[0, 2, :]]
3774 3775 3776 3777 3778
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

3779 3780
                gather_nd(x, index)
                         = [x[1, 2, 3]]
3781 3782 3783
                         = [23]

    Args:
张春乔 已提交
3784
        x (Tensor): The input Tensor which it's data type should be bool, float16, float32, float64, int32, int64.
3785 3786
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
3787
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3788 3789

    Returns:
L
Ligoml 已提交
3790
        output (Tensor), A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
3791

3792 3793 3794
    Examples:

        .. code-block:: python
3795

3796
            import paddle
3797

3798 3799 3800
            x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]],
                                  [[7, 8], [9, 10], [11, 12]]])
            index = paddle.to_tensor([[0, 1]])
3801

3802 3803 3804
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """
3805
    if in_dynamic_mode():
3806
        return _C_ops.gather_nd(x, index)
3807
    else:
3808 3809 3810
        check_variable_and_dtype(
            x,
            'x',
张春乔 已提交
3811 3812 3813
            [
                'bool',
                'float16',
3814
                'uint16',
张春乔 已提交
3815 3816 3817 3818 3819 3820
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
            ],
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
            'gather_np',
        )
        check_variable_and_dtype(
            index, 'index', ['int32', 'int64'], 'gather_np'
        )
        helper = LayerHelper('gather_nd', **locals())
        dtype = helper.input_dtype()
        output = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="gather_nd",
            inputs={"X": x, "Index": index},
            outputs={"Out": output},
        )
        return output
3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882


def strided_slice(x, axes, starts, ends, strides, name=None):
    """
    This operator produces a slice of ``x`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
                strides = [1, 1]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
                strides = [1, 3]
            Then:
                result = [ [2], ]
3883

3884
    Args:
3885
        x (Tensor): An N-D ``Tensor``. The data type is ``bool``, ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
3886 3887
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
3888 3889 3890 3891 3892 3893 3894 3895 3896
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of it should be
            integers or Tensors with shape []. If ``starts`` is an Tensor, it should be an 1-D Tensor.
            It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of it should be
            integers or Tensors with shape []. If ``ends`` is an Tensor, it should be an 1-D Tensor.
            It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Tensor): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of it should be
            integers or Tensors with shape []. If ``strides`` is an Tensor, it should be an 1-D Tensor.
            It represents slice step of corresponding axis in ``axes``.
3897 3898 3899 3900
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
3901
        Tensor, A ``Tensor`` with the same dimension as ``x``. The data type is same as ``x``.
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.zeros(shape=[3,4,5,6], dtype="float32")
            # example 1:
            # attr starts is a list which doesn't contain Tensor.
            axes = [1, 2, 3]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = paddle.strided_slice(x, axes=axes, starts=starts, ends=ends, strides=strides_1)
3916
            # sliced_1 is x[:, 1:3:1, 0:2:1, 2:4:1].
3917 3918
            # example 2:
            # attr starts is a list which contain tensor Tensor.
3919
            minus_3 = paddle.full(shape=[1], fill_value=-3, dtype='int32')
3920 3921 3922
            sliced_2 = paddle.strided_slice(x, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is x[:, 1:3:1, 0:2:1, 2:4:2].
    """
3923
    if in_dynamic_mode():
3924
        return _C_ops.strided_slice(x, axes, starts, ends, strides)
3925 3926
    else:
        helper = LayerHelper('strided_slice', **locals())
3927

3928 3929 3930
        check_variable_and_dtype(
            x,
            'x',
3931 3932 3933 3934 3935 3936 3937 3938 3939
            [
                'bool',
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
            'strided_slice',
        )
        check_type(axes, 'axes', (list, tuple), 'strided_slice')
        check_type(starts, 'starts', (list, tuple, Variable), 'strided_slice')
        check_type(ends, 'ends', (list, tuple, Variable), 'strided_slice')
        check_type(strides, 'strides', (list, tuple, Variable), 'strided_slice')

        def check_list_elements_dtype(list_input, input_name):
            if isinstance(list_input, Variable):
                check_dtype(
W
wanghuancoder 已提交
3950 3951 3952 3953
                    list_input.dtype,
                    input_name,
                    ['int32', 'int64'],
                    'strided_slice',
3954
                )
3955
            else:
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
                for i, var in enumerate(list_input):
                    var_name = input_name + '[' + str(i) + ']'
                    if isinstance(var, Variable):
                        check_dtype(
                            var.dtype, var_name, ['int32'], 'strided_slice'
                        )

        check_list_elements_dtype(axes, 'axes')
        check_list_elements_dtype(starts, 'starts')
        check_list_elements_dtype(ends, 'ends')
        check_list_elements_dtype(strides, 'strides')

        def get_new_list_tensor(old_list):
            new_list_tensor = []
            for dim in old_list:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_list_tensor.append(dim)
                else:
                    assert isinstance(dim, int)
                    temp_out = helper.create_variable_for_type_inference(
                        'int32'
                    )
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out
                    )
                    new_list_tensor.append(temp_out)
            return new_list_tensor
3984 3985

        inputs = {'Input': x}
3986
        attrs = {'axes': axes}
3987
        infer_flags = [1 for i in range(len(axes))]
3988 3989 3990 3991 3992 3993
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
3994
            if paddle.utils._contain_var(starts):
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
            else:
                attrs['starts'] = starts

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
4011
            if paddle.utils._contain_var(ends):
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
            else:
                attrs['ends'] = ends

        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
4028
            if paddle.utils._contain_var(strides):
4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
            else:
                attrs['strides'] = strides
        attrs['infer_flags'] = infer_flags
4039 4040 4041 4042 4043 4044 4045 4046 4047
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('x')
        )
        helper.append_op(
            type='strided_slice',
            inputs=inputs,
            attrs=attrs,
            outputs={'Out': out},
        )
4048

4049
        return out
F
From00 已提交
4050 4051 4052 4053


def tensordot(x, y, axes=2, name=None):
    r"""
4054
    This function computes a contraction, which sum the product of elements from two tensors along the given axes.
F
From00 已提交
4055 4056

    Args:
4057
        x (Tensor): The left tensor for contraction with data type ``float16`` or ``float32`` or ``float64``.
F
From00 已提交
4058 4059 4060
        y (Tensor): The right tensor for contraction with the same data type as ``x``.
        axes (int|tuple|list|Tensor, optional):  The axes to contract for ``x`` and ``y``, defaulted to integer ``2``.

4061
            1. It could be a non-negative integer ``n``,
F
From00 已提交
4062
               in which the function will sum over the last ``n`` axes of ``x`` and the first ``n`` axes of ``y`` in order.
4063 4064

            2. It could be a 1-d tuple or list with data type ``int``, in which ``x`` and ``y`` will be contracted along the same given axes.
F
From00 已提交
4065
               For example, ``axes`` =[0, 1] applies contraction along the first two axes for ``x`` and the first two axes for ``y``.
4066 4067 4068 4069

            3. It could be a tuple or list containing one or two 1-d tuple|list|Tensor with data type ``int``.
               When containing one tuple|list|Tensor, the data in tuple|list|Tensor specified the same axes for ``x`` and ``y`` to contract.
               When containing two tuple|list|Tensor, the first will be applied to ``x`` and the second to ``y``.
F
From00 已提交
4070
               When containing more than two tuple|list|Tensor, only the first two axis sequences will be used while the others will be ignored.
4071 4072 4073

            4. It could be a tensor, in which the ``axes`` tensor will be translated to a python list
               and applied the same rules described above to determine the contraction axes.
F
From00 已提交
4074
               Note that the ``axes`` with Tensor type is ONLY available in Dygraph mode.
4075
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
F
From00 已提交
4076 4077
                             For more information, please refer to :ref:`api_guide_Name` .

4078
    Return:
L
Ligoml 已提交
4079
        Output (Tensor), The contraction result with the same data type as ``x`` and ``y``.
F
From00 已提交
4080
        In general, :math:`output.ndim = x.ndim + y.ndim - 2 \times n_{axes}`, where :math:`n_{axes}` denotes the number of axes to be contracted.
4081

F
From00 已提交
4082
    NOTES:
4083
        1. This function supports tensor broadcast,
F
From00 已提交
4084
           the size in the corresponding dimensions of ``x`` and ``y`` should be equal, or applies to the broadcast rules.
4085 4086 4087 4088 4089
        2. This function also supports axes expansion,
           when the two given axis sequences for ``x`` and ``y`` are of different lengths,
           the shorter sequence will expand the same axes as the longer one at the end.
           For example, if ``axes`` =[[0, 1, 2, 3], [1, 0]],
           the axis sequence for ``x`` is [0, 1, 2, 3],
F
From00 已提交
4090
           while the corresponding axis sequences for ``y`` will be expanded from [1, 0] to [1, 0, 2, 3].
4091

F
From00 已提交
4092 4093 4094 4095 4096 4097 4098 4099
    Examples:
        .. code-block:: python

            import paddle

            data_type = 'float64'

            # For two 2-d tensor x and y, the case axes=0 is equivalent to outer product.
4100
            # Note that tensordot supports empty axis sequence, so all the axes=0, axes=[], axes=[[]], and axes=[[],[]] are equivalent cases.
F
From00 已提交
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
            x = paddle.arange(4, dtype=data_type).reshape([2, 2])
            y = paddle.arange(4, dtype=data_type).reshape([2, 2])
            z = paddle.tensordot(x, y, axes=0)
            # z = [[[[0., 0.],
            #        [0., 0.]],
            #
            #       [[0., 1.],
            #        [2., 3.]]],
            #
            #
            #      [[[0., 2.],
            #        [4., 6.]],
            #
            #       [[0., 3.],
            #        [6., 9.]]]]


            # For two 1-d tensor x and y, the case axes=1 is equivalent to inner product.
            x = paddle.arange(10, dtype=data_type)
            y = paddle.arange(10, dtype=data_type)
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.dot(x, y)
4123
            # z1 = z2 = 285.
F
From00 已提交
4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161


            # For two 2-d tensor x and y, the case axes=1 is equivalent to matrix multiplication.
            x = paddle.arange(6, dtype=data_type).reshape([2, 3])
            y = paddle.arange(12, dtype=data_type).reshape([3, 4])
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.matmul(x, y)
            # z1 = z2 =  [[20., 23., 26., 29.],
            #             [56., 68., 80., 92.]]


            # When axes is a 1-d int list, x and y will be contracted along the same given axes.
            # Note that axes=[1, 2] is equivalent to axes=[[1, 2]], axes=[[1, 2], []], axes=[[1, 2], [1]], and axes=[[1, 2], [1, 2]].
            x = paddle.arange(24, dtype=data_type).reshape([2, 3, 4])
            y = paddle.arange(36, dtype=data_type).reshape([3, 3, 4])
            z = paddle.tensordot(x, y, axes=[1, 2])
            # z =  [[506. , 1298., 2090.],
            #       [1298., 3818., 6338.]]


            # When axes is a list containing two 1-d int list, the first will be applied to x and the second to y.
            x = paddle.arange(60, dtype=data_type).reshape([3, 4, 5])
            y = paddle.arange(24, dtype=data_type).reshape([4, 3, 2])
            z = paddle.tensordot(x, y, axes=([1, 0], [0, 1]))
            # z =  [[4400., 4730.],
            #       [4532., 4874.],
            #       [4664., 5018.],
            #       [4796., 5162.],
            #       [4928., 5306.]]


            # Thanks to the support of axes expansion, axes=[[0, 1, 3, 4], [1, 0, 3, 4]] can be abbreviated as axes= [[0, 1, 3, 4], [1, 0]].
            x = paddle.arange(720, dtype=data_type).reshape([2, 3, 4, 5, 6])
            y = paddle.arange(720, dtype=data_type).reshape([3, 2, 4, 5, 6])
            z = paddle.tensordot(x, y, axes=[[0, 1, 3, 4], [1, 0]])
            # z = [[23217330., 24915630., 26613930., 28312230.],
            #      [24915630., 26775930., 28636230., 30496530.],
            #      [26613930., 28636230., 30658530., 32680830.],
4162
            #      [28312230., 30496530., 32680830., 34865130.]]
F
From00 已提交
4163 4164
    """
    op_type = 'tensordot'
4165
    input_dtype = ['float16', 'float32', 'float64']
F
From00 已提交
4166 4167 4168 4169 4170 4171

    check_variable_and_dtype(x, 'x', input_dtype, op_type)
    check_variable_and_dtype(y, 'y', input_dtype, op_type)
    check_type(axes, 'axes', (int, tuple, list, Variable), op_type)

    def _var_to_list(var):
4172
        if in_dynamic_mode():
F
From00 已提交
4173 4174
            return tolist(var)
        raise TypeError(
4175 4176 4177
            "The 'axes' with type 'Tensor' in "
            + op_type
            + " is not available in static graph mode, "
F
From00 已提交
4178 4179 4180 4181 4182 4183 4184
            "please convert its type to int|Tuple|List, or use dynamic graph mode."
        )

    axes_x = []
    axes_y = []
    if np.issubdtype(type(axes), np.integer):
        assert axes >= 0, (
4185 4186 4187 4188
            "The 'axes' in "
            + op_type
            + f" should not be negative, but received axes={axes}."
        )
F
From00 已提交
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
        axes_x = range(x.ndim - axes, x.ndim)
        axes_y = range(axes)
    else:
        if isinstance(axes, Variable):
            axes = _var_to_list(axes)

        if not axes or np.issubdtype(type(axes[0]), np.integer):
            axes_x = axes
        else:
            axes_x = axes[0]
            if len(axes) > 1:
                axes_y = axes[1]

            if isinstance(axes_x, Variable):
                axes_x = _var_to_list(axes_x)
            if isinstance(axes_y, Variable):
                axes_y = _var_to_list(axes_y)

    axes_x, axes_y = list(axes_x), list(axes_y)
    len_axes_x, len_axes_y = len(axes_x), len(axes_y)
    if len_axes_x < len_axes_y:
        axes_x.extend(axes_y[len_axes_x:])
    elif len_axes_y < len_axes_x:
        axes_y.extend(axes_x[len_axes_y:])

    shape_x, shape_y = list(x.shape), list(y.shape)
    need_contracted_dim_x = np.zeros((x.ndim), dtype=bool)
    need_contracted_dim_y = np.zeros((y.ndim), dtype=bool)
    contraction_size = 1
    for i in range(len(axes_x)):
        dim_x, dim_y = axes_x[i], axes_y[i]
        sx, sy = shape_x[dim_x], shape_y[dim_y]
        if sx == 1:
            shape_y[dim_y] = 1
            y = y.sum(dim_y).reshape(shape_y)
        elif sy == 1:
            shape_x[dim_x] = 1
            x = x.sum(dim_x).reshape(shape_x)
        else:
4228 4229 4230 4231 4232
            assert sx == sy, (
                "The dimensional size for 'x' and 'y' in "
                + op_type
                + f" should match each other, but 'x' has size {sx} in dim {dim_x} while 'y' has size {sy} in dim {dim_y}."
            )
F
From00 已提交
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256

        need_contracted_dim_x[dim_x] = True
        need_contracted_dim_y[dim_y] = True
        contraction_size *= shape_x[dim_x]

    perm_x = []
    perm_y = []
    shape_out = []
    not_contraction_size_x = 1
    not_contraction_size_y = 1
    for i in range(x.ndim):
        if not need_contracted_dim_x[i]:
            perm_x.append(i)
            shape_out.append(shape_x[i])
            not_contraction_size_x *= shape_x[i]
    perm_x.extend(axes_x)
    perm_y.extend(axes_y)
    for i in range(y.ndim):
        if not need_contracted_dim_y[i]:
            perm_y.append(i)
            shape_out.append(shape_y[i])
            not_contraction_size_y *= shape_y[i]

    x = x.transpose(perm=perm_x).reshape(
4257 4258
        [not_contraction_size_x, contraction_size]
    )
F
From00 已提交
4259
    y = y.transpose(perm=perm_y).reshape(
4260 4261
        [contraction_size, not_contraction_size_y]
    )
F
From00 已提交
4262 4263
    out = x.matmul(y).reshape(shape_out)
    return out
4264 4265 4266


def as_complex(x, name=None):
4267 4268
    """Transform a real tensor to a complex tensor.

4269 4270 4271
    The data type of the input tensor is 'float32' or 'float64', and the data
    type of the returned tensor is 'complex64' or 'complex128', respectively.

4272
    The shape of the input tensor is ``(* ,2)``, (``*`` means arbitary shape), i.e.
4273 4274 4275 4276 4277 4278 4279 4280
    the size of the last axis shoule be 2, which represent the real and imag part
    of a complex number. The shape of the returned tensor is ``(*,)``.

    Args:
        x (Tensor): The input tensor. Data type is 'float32' or 'float64'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4281
        Tensor, The output. Data type is 'complex64' or 'complex128', with the same precision as the input.
4282

4283 4284 4285 4286 4287 4288
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
4289
            print(y)
4290

4291 4292 4293
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(gpu:0), stop_gradient=True,
            #        [[1j      , (2+3j)  , (4+5j)  ],
            #         [(6+7j)  , (8+9j)  , (10+11j)]])
4294
    """
4295
    if in_dynamic_mode():
4296
        return _C_ops.as_complex(x)
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'as_complex')
        op_type = "as_complex"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": x}
        out = helper.create_variable_for_type_inference(
            dtype=_real_to_complex_dtype(x.dtype)
        )
        outputs = {"Out": out}
        attrs = {}
        helper.append_op(
            type=op_type, inputs=inputs, attrs=attrs, outputs=outputs
        )
        return out
4311 4312 4313


def as_real(x, name=None):
4314 4315 4316
    """Transform a complex tensor to a real tensor.

    The data type of the input tensor is 'complex64' or 'complex128', and the data
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
    type of the returned tensor is 'float32' or 'float64', respectively.

    When the shape of the input tensor is ``(*, )``, (``*`` means arbitary shape),
    the shape of the output tensor is ``(*, 2)``, i.e. the shape of the output is
    the shape of the input appended by an extra ``2``.

    Args:
        x (Tensor): The input tensor. Data type is 'complex64' or 'complex128'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4328
        Tensor, The output. Data type is 'float32' or 'float64', with the same precision as the input.
4329

4330 4331 4332 4333 4334 4335 4336
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            z = paddle.as_real(y)
4337
            print(z)
4338

4339 4340 4341 4342
            # Tensor(shape=[2, 3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[0. , 1. ],
            #          [2. , 3. ],
            #          [4. , 5. ]],
4343

4344 4345 4346
            #         [[6. , 7. ],
            #          [8. , 9. ],
            #          [10., 11.]]])
4347
    """
4348
    if in_dynamic_mode():
4349
        return _C_ops.as_real(x)
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
    else:
        check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'as_real')
        op_type = "as_real"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": x}
        out = helper.create_variable_for_type_inference(
            dtype=_complex_to_real_dtype(x.dtype)
        )
        outputs = {"Out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
        return out
4361 4362


K
kuizhiqing 已提交
4363 4364 4365 4366 4367 4368 4369 4370 4371
def repeat_interleave(x, repeats, axis=None, name=None):
    """

    Returns a new tensor which repeats the ``x`` tensor along dimension ``axis`` using
    the entries in ``repeats`` which is a int or a Tensor.

    Args:
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        repeats (Tensor or int): The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis.
4372
        axis (int, optional): The dimension in which we manipulate. Default: None, the output tensor is flatten.
K
kuizhiqing 已提交
4373 4374 4375 4376 4377
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4378
        Tensor, A Tensor with same data type as ``x``.
K
kuizhiqing 已提交
4379

4380 4381 4382 4383 4384
    Examples:
        .. code-block:: python

            import paddle

K
kuizhiqing 已提交
4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            repeats  = paddle.to_tensor([3, 2, 1], dtype='int32')

            paddle.repeat_interleave(x, repeats, 1)
            # [[1, 1, 1, 2, 2, 3],
            #  [4, 4, 4, 5, 5, 6]]

            paddle.repeat_interleave(x, 2, 0)
            # [[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]]

            paddle.repeat_interleave(x, 2, None)
            # [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]
    """

    if axis is None:
        x = paddle.flatten(x)
        axis = 0
4402
    if in_dynamic_mode():
S
seemingwang 已提交
4403
        if isinstance(repeats, Variable):
4404 4405
            return _C_ops.repeat_interleave_with_tensor_index(x, repeats, axis)
        return _C_ops.repeat_interleave(x, repeats, axis)
K
kuizhiqing 已提交
4406 4407

    helper = LayerHelper("repeat_interleave", **locals())
4408 4409 4410 4411 4412 4413
    check_variable_and_dtype(
        x,
        'x',
        ['float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.repeat_interleave',
    )
K
kuizhiqing 已提交
4414 4415 4416

    out = helper.create_variable_for_type_inference(x.dtype)

4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
    helper.append_op(
        type='repeat_interleave',
        inputs={
            'X': x,
            'RepeatsTensor': repeats if isinstance(repeats, Variable) else None,
        },
        outputs={'Out': out},
        attrs={
            'dim': axis,
            'Repeats': repeats if isinstance(repeats, int) else 0,
        },
    )
K
kuizhiqing 已提交
4429 4430 4431
    return out


4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
def moveaxis(x, source, destination, name=None):
    """
    Move the axis of tensor from ``source`` position to ``destination`` position.

    Other axis that have not been moved remain their original order.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, int32, int64, float32, float64, complex64, complex128.
        source(int|tuple|list): ``source`` position of axis that will be moved. Each element must be unique and integer.
        destination(int|tuple|list(int)): ``destination`` position of axis that has been moved. Each element must be unique and integer.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4446
        Tensor, A new tensor whose axis have been moved.
4447 4448 4449

    Examples:
        .. code-block:: python
4450

4451 4452 4453 4454 4455 4456 4457
            import paddle

            x = paddle.ones([3, 2, 4])
            paddle.moveaxis(x, [0, 1], [1, 2]).shape
            # [4, 3, 2]

            x = paddle.ones([2, 3])
4458
            paddle.moveaxis(x, 0, 1).shape # equivalent to paddle.t(x)
4459
            # [3, 2]
4460 4461 4462 4463 4464
    """
    src = [source] if isinstance(source, int) else source
    dst = [destination] if isinstance(destination, int) else destination

    assert len(src) == len(
4465 4466
        dst
    ), "'source' must have the same number with 'destination'"
4467

4468
    if len(src) != len(set(src)):
4469
        raise ValueError("Each elemment of 'source' must be unique!")
4470
    if len(dst) != len(set(dst)):
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
        raise ValueError("Each elemment of 'destination' must be unique!")

    ndim = len(x.shape)

    # perm is the new order after move axis
    perm = list(range(ndim))
    src_dims = list(range(ndim))
    dst_dims = list(range(ndim))

    for i, axis in enumerate(zip(src, dst)):
4481 4482 4483
        assert isinstance(
            axis[0], int
        ), "Each elemment of 'source' must be integer."
4484
        if axis[0] < 0:
4485 4486 4487
            assert (
                axis[0] >= -ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4488 4489
            src[i] += ndim
        else:
4490 4491 4492
            assert (
                axis[0] < ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4493

4494 4495 4496
        assert isinstance(
            axis[1], int
        ), "Each elemment of 'source' must be integer."
4497
        if axis[1] < 0:
4498 4499 4500
            assert (
                axis[1] >= -ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4501 4502
            dst[i] += ndim
        else:
4503 4504 4505
            assert (
                axis[1] < ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4506 4507 4508 4509 4510 4511 4512
        perm[dst[i]] = src[i]
        src_dims.remove(src[i])
        dst_dims.remove(dst[i])

    for i in range(len(src_dims)):
        perm[dst_dims[i]] = src_dims[i]

4513
    if in_dynamic_mode():
4514
        out = _C_ops.transpose(x, perm)
4515
        return out
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
    else:
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'moveaxis',
        )
4532

4533 4534 4535 4536 4537 4538 4539 4540 4541
        helper = LayerHelper('moveaxis', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='transpose2',
            inputs={'X': [x]},
            outputs={'Out': [out], 'XShape': [x_shape]},
            attrs={'axis': perm},
        )
4542 4543
        return out

4544

4545 4546 4547
def non_negative_axis(arr, axis):
    ndim = len(arr.shape)
    if axis >= 0:
4548 4549 4550
        assert (
            axis < ndim
        ), "'axis'  must be in the range of [-{0}, {0})".format(ndim)
4551
    else:
4552 4553 4554
        assert (
            axis >= -ndim
        ), "'axis'  must be in the range of [-{0}, {0})".format(ndim)
4555 4556 4557 4558 4559 4560
        axis += ndim

    return axis


def infer_broadcast_shape(arr, indices, axis):
4561
    # This function is used in take/put_along_axis
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
    broadcast_shape_list = list(arr.shape)
    broadcast_shape_list[axis] = list(indices.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    for i in range(len(arr.shape)):
        if arr.shape[i] < indices.shape[i]:
            # if indices matrix has larger size than arr matrix, do not broadcast.
            return None
    return broadcast_shape


4572 4573 4574 4575 4576
def take_along_axis(arr, indices, axis):
    """
    Take values from the input array by given indices matrix along the designated axis.

    Args:
4577
        arr (Tensor) : The input Tensor. Supported data types are float32 and float64.
4578
        indices (Tensor) : Indices to take along each 1d slice of arr. This must match the dimension of arr,
4579
            and need to broadcast against arr. Supported data type are int and int64.
4580
        axis (int) : The axis to take 1d slices along.
4581

4582
    Returns:
L
Ligoml 已提交
4583
        Tensor, The indexed element, same dtype with arr
4584

4585 4586 4587 4588 4589
    Examples:
        .. code-block:: python

            import paddle

4590 4591
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7,8,9]])
            index = paddle.to_tensor([[0]])
4592 4593 4594 4595 4596
            axis = 0
            result = paddle.take_along_axis(x, index, axis)
            print(result)
            # [[1, 2, 3]]
    """
4597
    if len(arr.shape) != len(indices.shape):
4598
        raise ValueError(
4599 4600
            "`indices` and `arr` must have the same number of dimensions!"
        )
4601 4602 4603 4604 4605
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
    if not broadcast_shape:
        # if indices matrix have larger size than arr, arr should broadcast into indices shape.
        broadcast_shape = indices.shape
4606
    if in_dynamic_mode():
4607
        indices = paddle.broadcast_to(indices, broadcast_shape)
4608 4609 4610 4611
        broadcast_shape_list = list(broadcast_shape)
        broadcast_shape_list[axis] = list(arr.shape)[axis]
        broadcast_shape = tuple(broadcast_shape_list)
        arr = paddle.broadcast_to(arr, broadcast_shape)
4612 4613 4614 4615 4616
        return _C_ops.take_along_axis(arr, indices, axis)
    else:
        check_variable_and_dtype(
            arr,
            'x',
4617 4618 4619 4620 4621 4622 4623 4624 4625
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
                'uint16',
            ],
4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
            'take_along_axis',
        )
        check_variable_and_dtype(
            indices, 'index', ['int32', 'int64'], 'take_along_axis'
        )
        indices = paddle.broadcast_to(indices, broadcast_shape)
        broadcast_shape_list = list(broadcast_shape)
        broadcast_shape_list[axis] = list(arr.shape)[axis]
        broadcast_shape = tuple(broadcast_shape_list)
        arr = paddle.broadcast_to(arr, broadcast_shape)
        helper = LayerHelper('take_along_axis', **locals())
        dtype = helper.input_dtype()
        result = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="take_along_axis",
            inputs={"Input": arr, "Index": indices},
            attrs={"Axis": axis},
            outputs={"Result": result},
        )
        return result
4646 4647 4648 4649 4650 4651 4652 4653 4654 4655


def put_along_axis(arr, indices, values, axis, reduce='assign'):
    """
    Put values into the destination array by given indices matrix along the designated axis.

    Args:
        arr (Tensor) : The Destination Tensor. Supported data types are float32 and float64.
        indices (Tensor) : Indices to put along each 1d slice of arr. This must match the dimension of arr,
            and need to broadcast against arr. Supported data type are int and int64.
4656
        axis (int) : The axis to put 1d slices along.
G
gouzil 已提交
4657 4658 4659
        reduce (str, optional): The reduce operation, default is 'assign', support 'add', 'assign', 'mul' and 'multiply'.

    Returns:
L
Ligoml 已提交
4660
        Tensor, The indexed element, same dtype with arr
4661

4662 4663 4664 4665 4666
    Examples:
        .. code-block:: python

            import paddle

4667 4668
            x = paddle.to_tensor([[10, 30, 20], [60, 40, 50]])
            index = paddle.to_tensor([[0]])
4669 4670 4671 4672 4673 4674 4675 4676
            value = 99
            axis = 0
            result = paddle.put_along_axis(x, index, value, axis)
            print(result)
            # [[99, 99, 99],
            # [60, 40, 50]]

    """
4677
    if len(arr.shape) != len(indices.shape):
4678
        raise ValueError(
4679 4680
            "`indices` and `arr` must have the same number of dimensions!"
        )
4681 4682
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
4683
    if in_dynamic_mode():
4684 4685 4686 4687 4688
        values = (
            paddle.to_tensor(values)
            if not isinstance(values, paddle.Tensor)
            else values
        )
4689 4690 4691
        if broadcast_shape:
            indices = paddle.broadcast_to(indices, broadcast_shape)
        values = paddle.broadcast_to(values, indices.shape)
4692 4693 4694 4695 4696
        return _C_ops.put_along_axis(arr, indices, values, axis, reduce)
    else:
        check_variable_and_dtype(
            arr,
            'x',
4697 4698 4699 4700 4701 4702 4703 4704 4705
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
                'uint16',
            ],
4706
            'put_along_axis',
4707
        )
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
        check_variable_and_dtype(
            indices, 'index', ['int32', 'int64'], 'put_along_axis'
        )
        if broadcast_shape:
            indices = paddle.broadcast_to(indices, broadcast_shape)
        values = paddle.broadcast_to(values, indices.shape)
        helper = LayerHelper('put_along_axis', **locals())
        dtype = helper.input_dtype()
        result = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="put_along_axis",
            inputs={"Input": arr, "Index": indices, "Value": values},
            attrs={"Axis": axis, "Reduce": reduce},
            outputs={"Result": result},
        )
        return result
4724 4725 4726 4727 4728


@inplace_apis_in_dygraph_only
def put_along_axis_(arr, indices, values, axis, reduce='assign'):
    r"""
4729
    Inplace version of ``put_along_axis`` API, the output Tensor will be inplaced with input ``arr``.
4730 4731
    Please refer to :ref:`api_tensor_put_along_axis`.
    """
4732
    if len(arr.shape) != len(indices.shape):
4733
        raise ValueError(
4734 4735
            "`indices` and `arr` must have the same number of dimensions!"
        )
4736 4737
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
4738 4739 4740 4741 4742
    values = (
        paddle.to_tensor(values)
        if not isinstance(values, paddle.Tensor)
        else values
    )
4743 4744 4745
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4746
    return _C_ops.put_along_axis_(arr, indices, values, axis, reduce)
4747 4748


L
Li Min 已提交
4749 4750 4751 4752 4753 4754 4755 4756
def index_add(x, index, axis, value, name=None):
    """
    Adds the elements of the input tensor with value tensor by selecting the indices in the order given in index.

    Args:
        x (Tensor) : The Destination Tensor. Supported data types are int32, int64, float16, float32, float64.
        index (Tensor): The 1-D Tensor containing the indices to index.
            The data type of ``index`` must be int32 or int64.
4757
        axis (int): The dimension in which we index.
L
Li Min 已提交
4758 4759 4760 4761
        value (Tensor): The tensor used to add the elements along the target axis.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
L
Ligoml 已提交
4762
        Tensor, same dimention and dtype with x.
L
Li Min 已提交
4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1, 1], [1, 1, 1]], dtype="float32")
            outplace_res = paddle.index_add(input_tensor, index, 0, value)
4774 4775 4776 4777 4778
            print(outplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 2., 2.],
            #         [1., 1., 1.],
            #         [2., 2., 2.]])
L
Li Min 已提交
4779
    """
4780
    if in_dynamic_mode():
L
Li Min 已提交
4781 4782 4783 4784
        return _C_ops.index_add(x, index, value, axis)

    helper = LayerHelper("index_add", **locals())
    check_variable_and_dtype(
4785 4786
        x,
        'x',
4787
        ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
4788 4789 4790 4791 4792 4793 4794 4795
        'paddle.tensor.manipulation.index_add',
    )
    check_variable_and_dtype(
        index,
        'index',
        ['int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
L
Li Min 已提交
4796
    check_variable_and_dtype(
4797 4798
        value,
        'add_value',
4799
        ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
4800 4801
        'paddle.tensor.manipulation.index_add',
    )
L
Li Min 已提交
4802 4803 4804

    out = helper.create_variable_for_type_inference(x.dtype)

4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
    helper.append_op(
        type='index_add',
        inputs={
            'X': x,
            'Index': index,
            'AddValue': value,
        },
        outputs={'Out': out},
        attrs={'axis': axis},
    )
L
Li Min 已提交
4815 4816 4817 4818 4819 4820 4821
    return out


@inplace_apis_in_dygraph_only
def index_add_(x, index, axis, value, name=None):
    """
    Inplace version of ``index_add`` API, the output Tensor will be inplaced with input ``x``.
4822
    Please refer to :ref:`api_paddle_index_add`.
4823

L
Li Min 已提交
4824 4825 4826 4827 4828 4829 4830 4831 4832 4833
    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1], [1, 1], [1, 1]], dtype="float32")
            inplace_res = paddle.index_add_(input_tensor, index, 1, value)
4834 4835 4836 4837 4838
            print(inplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 1., 2.],
            #         [2., 1., 2.],
            #         [2., 1., 2.]])
L
Li Min 已提交
4839 4840 4841 4842
    """
    return _C_ops.index_add_(x, index, value, axis)


傅剑寒 已提交
4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
@inplace_apis_in_dygraph_only
def index_put_(x, indices, value, accumulate=False, name=None):
    """
    Puts values from the tensor values into the tensor x using the indices specified in indices (which is a tuple of Tensors).
    The expression paddle.index_put_(x, indices, values) is equivalent to tensor[indices] = values. Returns x.
    If accumulate is True, the elements in values are added to x. If accumulate is False, the behavior is undefined if indices contain duplicate elements.

    Args:
        x (Tensor) : The Source Tensor. Supported data types are int32, int64, float16, float32, float64, bool.
        indices (Tuple of Tensor): The tuple of Tensor containing the indices to index.
4853
            The data type of ``tensor in indices`` must be int32, int64 or bool.
傅剑寒 已提交
4854 4855 4856 4857 4858 4859 4860 4861 4862
        value (Tensor): The tensor used to be assigned to x.
        accummulate (Bool, optional): Whether the elements in values are added to x. Default: False.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        Tensor, same dimention and dtype with x.

    Examples:
        .. code-block:: python
4863

傅剑寒 已提交
4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893
            import paddle

            x = paddle.zeros([3, 3])
            value = paddle.ones([3])
            ix1 = paddle.to_tensor([0,1,2])
            ix2 = paddle.to_tensor([1,2,1])
            indices=(ix1,ix2)

            out = paddle.index_put_(x,indices,value)
            print(x)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0., 1., 0.],
            #         [0., 0., 1.],
            #         [0., 1., 0.]])
            print(out)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0., 1., 0.],
            #         [0., 0., 1.],
            #         [0., 1., 0.]])
    """
    return _C_ops.index_put_(x, indices, value, accumulate)


def index_put(x, indices, value, accumulate=False, name=None):
    """
    Outplace version of ``index_put_`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_index_put`.

    Examples:
        .. code-block:: python
4894

傅剑寒 已提交
4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
            import paddle

            x = paddle.zeros([3, 3])
            value = paddle.ones([3])
            ix1 = paddle.to_tensor([0,1,2])
            ix2 = paddle.to_tensor([1,2,1])
            indices=(ix1,ix2)

            out = paddle.index_put(x,indices,value)
            print(x)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0., 0., 0.],
            #         [0., 0., 0.],
            #         [0., 0., 0.]])
            print(out)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0., 1., 0.],
            #         [0., 0., 1.],
            #         [0., 1., 0.]])
    """
4915
    if in_dynamic_mode():
傅剑寒 已提交
4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
        return _C_ops.index_put(x, indices, value, accumulate)

    helper = LayerHelper("index_put", **locals())
    check_variable_and_dtype(
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'paddle.tensor.manipulation.index_put',
    )
    check_variable_and_dtype(
        value,
        'value',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'paddle.tensor.manipulation.index_put',
    )

    out = helper.create_variable_for_type_inference(x.dtype)

    helper.append_op(
        type='index_put',
        inputs={
            'x': x,
            'indices': indices,
            'value': value,
        },
        outputs={'out': out},
        attrs={'accumulate': accumulate},
    )
    return out


4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014
def unflatten(x, axis, shape, name=None):
    """
    Expand a certain dimension of the input x Tensor into a desired shape.

    Args:
        x (Tensor) : An N-D Tensor. The data type is float16, float32, float64, int16, int32, int64, bool, uint16.
        axis (int): :attr:`axis` to be unflattened, specified as an index into `x.shape`.
        shape (list|tuple|Tensor): Unflatten :attr:`shape` on the specified :attr:`axis`. At most one dimension of the target :attr:`shape` can be -1.
            If the input :attr:`shape` does not contain -1 , the product of all elements in ``shape`` should be equal to ``x.shape[axis]``.
            The data type is `int` . If :attr:`shape` is a list or tuple, the elements of it should be integers or Tensors with shape [].
            If :attr:`shape` is an Tensor, it should be an 1-D Tensor.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        Tensor, return the unflatten tensor of :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.randn(shape=[4, 6, 8])
            shape = [2, 3]
            axis = 1
            res = paddle.unflatten(x, axis, shape)
            print(res.shape)
            # [4, 2, 3, 8]

            x = paddle.randn(shape=[4, 6, 8])
            shape = (-1, 2)
            axis = -1
            res = paddle.unflatten(x, axis, shape)
            print(res.shape)
            # [4, 6, 4, 2]

            x = paddle.randn(shape=[4, 6, 8])
            shape = paddle.to_tensor([2, 2])
            axis = 0
            res = paddle.unflatten(x, axis, shape)
            print(res.shape)
            # [2, 2, 6, 8]
    """

    # determine whether the input axis is valid.
    axis = non_negative_axis(x, axis)
    if isinstance(shape, (list, tuple)):
        new_shape = (
            list(x.shape[:axis]) + list(shape) + list(x.shape[axis + 1 :])
        )
    elif isinstance(shape, Variable):
        # The data type returned by `paddle.shape` is only 'int32'.
        new_shape = paddle.concat(
            [
                paddle.shape(x)[:axis],
                paddle.cast(shape, 'int32'),
                paddle.shape(x)[axis + 1 :],
            ]
        )
    else:
        raise TypeError(
            "The data type of x should be one of ['List', 'Tuple', 'Tensor'], but got {}".format(
                type(shape)
            )
        )
    x = x.reshape(new_shape)
    return x


W
wanghuancoder 已提交
5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036
@dygraph_only
def as_strided(x, shape, stride, offset=0, name=None):
    """
    View x with specified shape, stride and offset.

    Note that the output Tensor will share data with origin Tensor and doesn't
    have a Tensor copy in ``dygraph`` mode.

    Args:
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        shape (list|tuple): Define the target shape. Each element of it should be integer.
        stride (list|tuple): Define the target stride. Each element of it should be integer.
        offset (int): Define the target Tensor's offset from x's holder. Default: 0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, A as_strided Tensor with the same data type as ``x``.

    Examples:
        .. code-block:: python

            import paddle
5037
            paddle.base.set_flags({"FLAGS_use_stride_kernel": True})
W
wanghuancoder 已提交
5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068

            x = paddle.rand([2, 4, 6], dtype="float32")

            out = paddle.as_strided(x, [8, 6], [6, 1])
            print(out)
            # the shape is [8, 6].
            # the stride is [6, 1].
    """
    return _C_ops.as_strided(x, shape, stride, offset)


@dygraph_only
def view(x, shape_or_dtype, name=None):
    """
    View x with specified shape or dtype.

    Note that the output Tensor will share data with origin Tensor and doesn't
    have a Tensor copy in ``dygraph`` mode.

    Args:
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        shape_or_dtype (list|tuple|np.dtype|str|VarType): Define the target shape or dtype. If list or tuple, shape_or_dtype represents shape, each element of it should be integer. If np.dtype or str or VarType, shape_or_dtype represents dtype, it can be bool, float16, float32, float64, int8, int32, int64, uint8.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, A viewed Tensor with the same data as ``x``.

    Examples:
        .. code-block:: python

            import paddle
5069
            paddle.base.set_flags({"FLAGS_use_stride_kernel": True})
W
wanghuancoder 已提交
5070 5071 5072 5073 5074 5075 5076 5077

            x = paddle.rand([2, 4, 6], dtype="float32")

            out = paddle.view(x, [8, 6])
            print(out)


            import paddle
5078
            paddle.base.set_flags({"FLAGS_use_stride_kernel": True})
W
wanghuancoder 已提交
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112

            x = paddle.rand([2, 4, 6], dtype="float32")

            out = paddle.view(x, "uint8")
            print(out)
    """
    if isinstance(shape_or_dtype, (list, tuple)):
        return _C_ops.view_shape(x, shape_or_dtype)
    else:
        if not isinstance(shape_or_dtype, core.VarDesc.VarType):
            shape_or_dtype = convert_np_dtype_to_dtype_(shape_or_dtype)
        return _C_ops.view_dtype(x, shape_or_dtype)


@dygraph_only
def view_as(x, other, name=None):
    """
    View x with other's shape.

    Note that the output Tensor will share data with origin Tensor and doesn't
    have a Tensor copy in ``dygraph`` mode.

    Args:
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        other (Tensor): The result tensor has the same size as other.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, A viewed Tensor with the same shape as ``other``.

    Examples:
        .. code-block:: python

            import paddle
5113
            paddle.base.set_flags({"FLAGS_use_stride_kernel": True})
W
wanghuancoder 已提交
5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145

            x = paddle.rand([2, 4, 6], dtype="float32")
            y = paddle.rand([8, 6], dtype="float32")

            out = paddle.view_as(x, y)
            print(out)
    """
    return _C_ops.view_shape(x, other.shape)


@dygraph_only
def unfold(x, axis, size, step, name=None):
    """
    View x with specified shape, stride and offset, which contains all slices of size from x in the dimension axis.

    Note that the output Tensor will share data with origin Tensor and doesn't
    have a Tensor copy in ``dygraph`` mode.

    Args:
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        axis (int): The axis along which the input is unfolded.
        size (int): The size of each slice that is unfolded.
        step (int): The step between each slice.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, A unfold Tensor with the same data type as ``x``.

    Examples:
        .. code-block:: python

            import paddle
5146
            paddle.base.set_flags({"FLAGS_use_stride_kernel": True})
W
wanghuancoder 已提交
5147 5148 5149 5150 5151 5152 5153 5154 5155

            x = paddle.arange(9, dtype="float64")

            out = paddle.unfold(x, 0, 2, 4)
            print(out) # [[0, 1], [4, 5]]
    """
    return _C_ops.tensor_unfold(x, axis, size, step)


5156 5157 5158 5159 5160 5161 5162
# TODO(dev): We need avoid implementing it by this way.
__METHODS = {
    'fill_': fill_,
    'zero_': zero_,
    'fill_diagonal_': fill_diagonal_,
    'fill_diagonal_tensor_': fill_diagonal_tensor_,
    "fill_diagonal_tensor": fill_diagonal_tensor,
5163
    'tolist': tolist,
5164 5165 5166
}
for name, func in __METHODS.items():
    setattr(core.eager.Tensor, name, func)