Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3fc56aa0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3fc56aa0
编写于
7月 01, 2021
作者:
S
sunli
提交者:
GitHub
7月 01, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
roll optimize (#32880)
上级
07fadc4e
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
149 addition
and
120 deletion
+149
-120
paddle/fluid/operators/roll_op.cc
paddle/fluid/operators/roll_op.cc
+24
-11
paddle/fluid/operators/roll_op.cu
paddle/fluid/operators/roll_op.cu
+104
-95
paddle/fluid/operators/roll_op.h
paddle/fluid/operators/roll_op.h
+16
-4
python/paddle/fluid/tests/unittests/test_roll_op.py
python/paddle/fluid/tests/unittests/test_roll_op.py
+1
-0
python/paddle/tensor/manipulation.py
python/paddle/tensor/manipulation.py
+4
-10
未找到文件。
paddle/fluid/operators/roll_op.cc
浏览文件 @
3fc56aa0
...
...
@@ -13,8 +13,10 @@
// limitations under the License.
#include "paddle/fluid/operators/roll_op.h"
#include <memory>
#include <vector>
#include "paddle/fluid/framework/op_version_registry.h"
namespace
paddle
{
...
...
@@ -37,12 +39,22 @@ class RollOp : public framework::OperatorWithKernel {
auto
dims
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int64_t
>>
(
"axis"
);
auto
shifts
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int64_t
>>
(
"shifts"
);
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
shifts
.
size
(),
platform
::
errors
::
InvalidArgument
(
"Attr(dims).size() should be equl to "
"Attr(shifts).size(). But received "
"Attr(dims).size() = %d, Attr(shifts).size() = %d"
,
dims
.
size
(),
shifts
.
size
()));
if
(
dims
.
size
()
!=
0
)
{
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
shifts
.
size
(),
platform
::
errors
::
InvalidArgument
(
"When dims.size() != 0, dims.size() "
"should be equal to "
"shifts.size(). But received "
"dims.size() = %d, shifts.size() = %d"
,
dims
.
size
(),
shifts
.
size
()));
}
else
{
PADDLE_ENFORCE_EQ
(
shifts
.
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"When dims.size() == 0, shifts.size() "
"should be equal to 1, But received "
"shifts.size() = %d"
,
shifts
.
size
()));
}
ctx
->
SetOutputDim
(
"Out"
,
ctx
->
GetInputDim
(
"X"
));
auto
type
=
ctx
->
GetInputsVarType
(
"X"
)[
0
];
...
...
@@ -95,7 +107,7 @@ class RollOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
std
::
vector
<
int64_t
>>
(
"axis"
,
"Axis along which to roll. It must have the same size "
"with shifts
.
"
)
"with shifts
or size == 0
"
)
.
SetDefault
({});
AddComment
(
R"DOC(
Roll the tensor along the given dimension(s).
...
...
@@ -151,8 +163,9 @@ REGISTER_OP_VERSION(roll)
paddle
::
framework
::
compatible
::
OpVersionDesc
()
.
NewAttr
(
"axis"
,
"(std::vector<int64_t>) Axis along which to roll. "
"It must have the same size with shifts."
,
"It must have the same size with shifts
, or size = 0
."
,
std
::
vector
<
int64_t
>
())
.
DeleteAttr
(
"dims"
,
"(std::vector<int64_t>) Dims along which to roll. "
"It must have the same size with shifts."
));
.
DeleteAttr
(
"dims"
,
"(std::vector<int64_t>) Dims along which to roll. "
"It must have the same size with shifts, or size = 0."
));
paddle/fluid/operators/roll_op.cu
浏览文件 @
3fc56aa0
...
...
@@ -13,6 +13,7 @@
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/roll_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
...
...
@@ -24,26 +25,31 @@ using platform::PADDLE_CUDA_NUM_THREADS;
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
template
<
typename
T
>
__global__
void
roll_cuda_kernel
(
const
T
*
input
,
T
*
output
,
int64_t
N
,
int64_t
*
shifts
,
int64_t
*
strides
,
int64_t
*
sizes
,
int64_t
nums
)
{
template
<
typename
T
,
size_t
Rank
>
__global__
void
RollCudaKernel
(
const
T
*
input
,
T
*
output
,
int64_t
N
,
paddle
::
framework
::
Array
<
int64_t
,
Rank
>
shifts
,
paddle
::
framework
::
Array
<
int64_t
,
Rank
>
strides
,
paddle
::
framework
::
Array
<
int64_t
,
Rank
>
sizes
)
{
int64_t
idx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
idx
>=
N
)
{
return
;
}
int64_t
output_idx
=
idx
;
int64_t
dim_idx
,
dim_idx_shift
;
for
(
int64_t
i
=
0
;
i
<
nums
;
i
++
)
{
dim_idx
=
idx
%
(
strides
[
i
]
*
sizes
[
i
])
/
strides
[
i
];
#pragma unroll Rank
for
(
size_t
i
=
0
;
i
<
Rank
;
i
++
)
{
dim_idx
=
(
idx
/
strides
[
i
])
%
sizes
[
i
];
dim_idx_shift
=
(
dim_idx
+
shifts
[
i
])
%
sizes
[
i
];
output_idx
=
output_idx
+
(
dim_idx_shift
-
dim_idx
)
*
strides
[
i
];
}
output
[
output_idx
]
=
input
[
idx
];
}
template
<
typename
DeviceContext
,
typename
T
>
class
RollCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
template
<
typename
T
>
class
RollKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
...
...
@@ -61,50 +67,62 @@ class RollCUDAKernel : public framework::OpKernel<T> {
auto
input_dim
=
in
->
dims
();
auto
stride_dim
=
framework
::
stride
(
input_dim
);
int64_t
dim
,
size
;
size_t
gpu_memory_size_
=
sizeof
(
int64_t
)
*
nums
;
std
::
vector
<
int64_t
>
strides
,
sizes
;
strides
.
resize
(
nums
);
sizes
.
resize
(
nums
);
paddle
::
memory
::
AllocationPtr
shifts_gpu
=
memory
::
Alloc
(
context
.
GetPlace
(),
gpu_memory_size_
);
paddle
::
memory
::
AllocationPtr
strides_gpu
=
memory
::
Alloc
(
context
.
GetPlace
(),
gpu_memory_size_
);
paddle
::
memory
::
AllocationPtr
sizes_gpu
=
memory
::
Alloc
(
context
.
GetPlace
(),
gpu_memory_size_
);
for
(
size_t
i
=
0
;
i
<
nums
;
i
++
)
{
dim
=
dims
[
i
]
>=
0
?
dims
[
i
]
:
dims
[
i
]
+
input_dim
.
size
();
size
=
input_dim
[
dim
];
shifts
[
i
]
=
(
shifts
[
i
]
%
size
+
size
)
%
size
;
strides
[
i
]
=
stride_dim
[
dim
];
sizes
[
i
]
=
size
;
std
::
vector
<
int64_t
>
strides
(
nums
),
sizes
(
nums
);
if
(
dims
.
size
()
==
0
)
{
strides
[
0
]
=
1
;
sizes
[
0
]
=
numel
;
shifts
[
0
]
=
(
shifts
[
0
]
%
numel
+
numel
)
%
numel
;
}
else
{
for
(
size_t
i
=
0
;
i
<
nums
;
i
++
)
{
int
dim
=
dims
[
i
]
>=
0
?
dims
[
i
]
:
dims
[
i
]
+
input_dim
.
size
();
int64_t
size
=
input_dim
[
dim
];
shifts
[
i
]
=
(
shifts
[
i
]
%
size
+
size
)
%
size
;
strides
[
i
]
=
stride_dim
[
dim
];
sizes
[
i
]
=
size
;
}
}
#define CALL_ROLL_CUDA_KERNEL(N) \
case N: { \
paddle::framework::Array<int64_t, N> _strides; \
paddle::framework::Array<int64_t, N> _shifts; \
paddle::framework::Array<int64_t, N> _sizes; \
for (size_t idx = 0; idx < N; ++idx) { \
_strides[idx] = strides[idx]; \
_shifts[idx] = shifts[idx]; \
_sizes[idx] = sizes[idx]; \
} \
RollCudaKernel< \
T, \
N><<<(numel + PADDLE_CUDA_NUM_THREADS - 1) / PADDLE_CUDA_NUM_THREADS, \
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(in_data, out_data, numel, \
_shifts, _strides, _sizes); \
break; \
}
switch
(
nums
)
{
CALL_ROLL_CUDA_KERNEL
(
1
);
CALL_ROLL_CUDA_KERNEL
(
2
);
CALL_ROLL_CUDA_KERNEL
(
3
);
CALL_ROLL_CUDA_KERNEL
(
4
);
CALL_ROLL_CUDA_KERNEL
(
5
);
CALL_ROLL_CUDA_KERNEL
(
6
);
CALL_ROLL_CUDA_KERNEL
(
7
);
CALL_ROLL_CUDA_KERNEL
(
8
);
CALL_ROLL_CUDA_KERNEL
(
9
);
default:
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"shifts.size() should be less than 10, But received shifts.size() "
"= %d"
,
shifts
.
size
()));
}
paddle
::
memory
::
Copy
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
shifts_gpu
->
place
()),
shifts_gpu
->
ptr
(),
platform
::
CPUPlace
(),
shifts
.
data
(),
gpu_memory_size_
,
stream
);
paddle
::
memory
::
Copy
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
strides_gpu
->
place
()),
strides_gpu
->
ptr
(),
platform
::
CPUPlace
(),
strides
.
data
(),
gpu_memory_size_
,
stream
);
paddle
::
memory
::
Copy
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
sizes_gpu
->
place
()),
sizes_gpu
->
ptr
(),
platform
::
CPUPlace
(),
sizes
.
data
(),
gpu_memory_size_
,
stream
);
int64_t
*
shifts_ptr
=
reinterpret_cast
<
int64_t
*>
(
shifts_gpu
->
ptr
());
int64_t
*
strides_ptr
=
reinterpret_cast
<
int64_t
*>
(
strides_gpu
->
ptr
());
int64_t
*
sizes_ptr
=
reinterpret_cast
<
int64_t
*>
(
sizes_gpu
->
ptr
());
roll_cuda_kernel
<<<
(
numel
+
PADDLE_CUDA_NUM_THREADS
-
1
)
/
PADDLE_CUDA_NUM_THREADS
,
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
in_data
,
out_data
,
numel
,
shifts_ptr
,
strides_ptr
,
sizes_ptr
,
nums
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
RollGradCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
template
<
typename
T
>
class
RollGradKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
...
...
@@ -121,46 +139,38 @@ class RollGradCUDAKernel : public framework::OpKernel<T> {
auto
input_dim
=
in
->
dims
();
auto
stride_dim
=
framework
::
stride
(
input_dim
);
int64_t
dim
,
size
;
size_t
gpu_memory_size_
=
sizeof
(
int64_t
)
*
nums
;
std
::
vector
<
int64_t
>
strides
,
sizes
;
strides
.
resize
(
nums
);
sizes
.
resize
(
nums
);
paddle
::
memory
::
AllocationPtr
shifts_gpu
=
memory
::
Alloc
(
context
.
GetPlace
(),
gpu_memory_size_
);
paddle
::
memory
::
AllocationPtr
strides_gpu
=
memory
::
Alloc
(
context
.
GetPlace
(),
gpu_memory_size_
);
paddle
::
memory
::
AllocationPtr
sizes_gpu
=
memory
::
Alloc
(
context
.
GetPlace
(),
gpu_memory_size_
);
for
(
size_t
i
=
0
;
i
<
nums
;
i
++
)
{
dim
=
dims
[
i
]
>=
0
?
dims
[
i
]
:
dims
[
i
]
+
input_dim
.
size
();
size
=
input_dim
[
dim
];
shifts
[
i
]
=
((
0
-
shifts
[
i
])
%
size
+
size
)
%
size
;
strides
[
i
]
=
stride_dim
[
dim
];
sizes
[
i
]
=
size
;
std
::
vector
<
int64_t
>
strides
(
nums
),
sizes
(
nums
);
if
(
dims
.
size
()
==
0
)
{
strides
[
0
]
=
1
;
sizes
[
0
]
=
numel
;
shifts
[
0
]
=
((
-
shifts
[
0
])
%
numel
+
numel
)
%
numel
;
}
else
{
for
(
size_t
i
=
0
;
i
<
nums
;
i
++
)
{
int
dim
=
dims
[
i
]
>=
0
?
dims
[
i
]
:
dims
[
i
]
+
input_dim
.
size
();
int64_t
size
=
input_dim
[
dim
];
shifts
[
i
]
=
((
-
shifts
[
i
])
%
size
+
size
)
%
size
;
strides
[
i
]
=
stride_dim
[
dim
];
sizes
[
i
]
=
size
;
}
}
paddle
::
memory
::
Copy
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
shifts_gpu
->
place
()),
shifts_gpu
->
ptr
(),
platform
::
CPUPlace
(),
shifts
.
data
(),
gpu_memory_size_
,
stream
);
paddle
::
memory
::
Copy
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
strides_gpu
->
place
()),
strides_gpu
->
ptr
(),
platform
::
CPUPlace
(),
strides
.
data
(),
gpu_memory_size_
,
stream
);
paddle
::
memory
::
Copy
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
sizes_gpu
->
place
()),
sizes_gpu
->
ptr
(),
platform
::
CPUPlace
(),
sizes
.
data
(),
gpu_memory_size_
,
stream
);
int64_t
*
shifts_ptr
=
reinterpret_cast
<
int64_t
*>
(
shifts_gpu
->
ptr
());
int64_t
*
strides_ptr
=
reinterpret_cast
<
int64_t
*>
(
strides_gpu
->
ptr
());
int64_t
*
sizes_ptr
=
reinterpret_cast
<
int64_t
*>
(
sizes_gpu
->
ptr
());
roll_cuda_kernel
<<<
(
numel
+
PADDLE_CUDA_NUM_THREADS
-
1
)
/
PADDLE_CUDA_NUM_THREADS
,
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
in_data
,
out_data
,
numel
,
shifts_ptr
,
strides_ptr
,
sizes_ptr
,
nums
);
switch
(
nums
)
{
CALL_ROLL_CUDA_KERNEL
(
1
);
CALL_ROLL_CUDA_KERNEL
(
2
);
CALL_ROLL_CUDA_KERNEL
(
3
);
CALL_ROLL_CUDA_KERNEL
(
4
);
CALL_ROLL_CUDA_KERNEL
(
5
);
CALL_ROLL_CUDA_KERNEL
(
6
);
CALL_ROLL_CUDA_KERNEL
(
7
);
CALL_ROLL_CUDA_KERNEL
(
8
);
CALL_ROLL_CUDA_KERNEL
(
9
);
default:
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"shifts.size() should be less than 10, But received shifts.size() "
"= %d"
,
shifts
.
size
()));
}
}
};
...
...
@@ -169,13 +179,12 @@ class RollGradCUDAKernel : public framework::OpKernel<T> {
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
roll
,
ops
::
Roll
CUDA
Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
Roll
CUDA
Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
Roll
CUDA
Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
Roll
CUDA
Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
roll
,
ops
::
RollKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
RollKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
RollKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
RollKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
REGISTER_OP_CUDA_KERNEL
(
roll_grad
,
ops
::
RollGradCUDAKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
RollGradCUDAKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
RollGradCUDAKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
RollGradCUDAKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
roll_grad
,
ops
::
RollGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
RollGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
RollGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
RollGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
paddle/fluid/operators/roll_op.h
浏览文件 @
3fc56aa0
...
...
@@ -88,7 +88,13 @@ class RollKernel : public framework::OpKernel<T> {
TensorToVector
(
input
,
context
.
device_context
(),
&
out_vec
);
size_t
nums
=
shifts
.
size
();
const
DDim
input_dim
=
input
.
dims
();
DDim
input_dim
=
input
.
dims
();
// axis = none, reshape to 1-D tensor
if
(
dims
.
size
()
==
0
)
{
dims
.
push_back
(
0l
);
input_dim
=
framework
::
Dim
<
1
>
(
out_vec
.
size
());
}
for
(
size_t
i
=
0
;
i
<
nums
;
i
++
)
{
PADDLE_ENFORCE_EQ
(
...
...
@@ -101,7 +107,7 @@ class RollKernel : public framework::OpKernel<T> {
}
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
framework
::
TensorFromVector
(
out_vec
,
context
.
device_context
(),
output
);
output
->
Resize
(
input
_dim
);
output
->
Resize
(
input
.
dims
()
);
}
};
...
...
@@ -120,14 +126,20 @@ class RollGradKernel : public framework::OpKernel<T> {
TensorToVector
(
input
,
context
.
device_context
(),
&
out_vec
);
size_t
nums
=
shifts
.
size
();
const
DDim
input_dim
=
input
.
dims
();
DDim
input_dim
=
input
.
dims
();
// axis = none, reshape to 1-D tensor
if
(
dims
.
size
()
==
0
)
{
dims
.
push_back
(
0l
);
input_dim
=
framework
::
Dim
<
1
>
(
out_vec
.
size
());
}
for
(
size_t
i
=
0
;
i
<
nums
;
i
++
)
{
shift_along_dim
(
out_vec
.
data
(),
input_dim
,
dims
[
i
],
0
-
shifts
[
i
]);
}
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
framework
::
TensorFromVector
(
out_vec
,
context
.
device_context
(),
output
);
output
->
Resize
(
input
_dim
);
output
->
Resize
(
input
.
dims
()
);
}
};
...
...
python/paddle/fluid/tests/unittests/test_roll_op.py
浏览文件 @
3fc56aa0
...
...
@@ -63,6 +63,7 @@ class TestRollAPI(unittest.TestCase):
def
test_roll_op_api
(
self
):
self
.
input_data
()
paddle
.
enable_static
()
# case 1:
with
program_guard
(
Program
(),
Program
()):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
-
1
,
3
])
...
...
python/paddle/tensor/manipulation.py
浏览文件 @
3fc56aa0
...
...
@@ -459,28 +459,22 @@ def roll(x, shifts, axis=None, name=None):
if
axis
:
check_type
(
axis
,
'axis'
,
(
list
,
tuple
),
'roll'
)
else
:
axis
=
[]
check_type
(
shifts
,
'shifts'
,
(
list
,
tuple
),
'roll'
)
if
in_dygraph_mode
():
if
axis
is
None
:
x
=
core
.
ops
.
reshape
(
x
,
'shape'
,
[
-
1
,
1
])
axis
=
[
0
]
out
=
core
.
ops
.
roll
(
x
,
'axis'
,
axis
,
'shifts'
,
shifts
)
return
core
.
ops
.
reshape
(
out
,
'shape'
,
origin_shape
)
return
core
.
ops
.
roll
(
x
,
'axis'
,
axis
,
'shifts'
,
shifts
)
out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
)
if
axis
is
None
:
x
=
reshape
(
x
,
shape
=
[
-
1
,
1
])
axis
=
[
0
]
helper
.
append_op
(
type
=
'roll'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'axis'
:
axis
,
'shifts'
:
shifts
})
out
=
layers
.
reshape
(
out
,
shape
=
origin_shape
)
return
out
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录