“0e30c9d6fbcd0370c4944c5314c011f8c631d6d0”上不存在“paddle/cinn/optim/ir_simplify.h”
manipulation.py 177.7 KB
Newer Older
L
Ligoml 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
# TODO: define functions to manipulate a tensor

myq406450149's avatar
myq406450149 已提交
17
import numpy as np
18

19
import paddle
20
from paddle import _C_ops
21
from paddle.tensor import fill_constant
22
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only
23 24 25 26 27 28 29

from ..fluid.data_feeder import (
    check_dtype,
    check_type,
    check_variable_and_dtype,
    convert_dtype,
)
30
from ..fluid.framework import Variable
31 32 33 34 35 36 37 38
from ..framework import (
    LayerHelper,
    convert_np_dtype_to_dtype_,
    core,
    dygraph_only,
    in_dygraph_mode,
)
from .creation import _complex_to_real_dtype, _real_to_complex_dtype, zeros
39

40 41
__all__ = []

W
Wilber 已提交
42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
def tensor_array_to_tensor(input, axis=1, use_stack=False, name=None):
    r"""
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]

    Args:
        input(TensorArray): A TensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Tensor: The concatenated or stacked tensor variable.
        Tensor: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.

    Examples:
        .. code-block:: python

            import numpy
            import paddle
            x0 = paddle.assign(numpy.random.rand(2, 2).astype("float32"))
            x1 = paddle.assign(numpy.random.rand(2, 2).astype("float32"))
            i = paddle.full(shape=[1], dtype="int64", fill_value=0)
            array = paddle.tensor.array.create_array(dtype='float32')
            paddle.tensor.array.array_write(x0, i, array)
            paddle.tensor.array.array_write(x1, i + 1, array)
            output, output_index = paddle.tensor.manipulation.tensor_array_to_tensor(input=array)
    """
123
    if in_dygraph_mode():
124 125 126 127 128 129 130
        assert isinstance(
            input, list
        ), "The 'input' in tensor_array_to_tensor must be list"
        from paddle import concat, stack

        op = stack if use_stack else concat
        res = op(input, axis=axis)
131
        sizes = paddle.to_tensor(np.array([int(x.shape[axis]) for x in input]))
132
        return res, sizes
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    else:
        check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
        if isinstance(input, list):
            for i, input_x in enumerate(input):
                check_type(
                    input_x,
                    'input[' + str(i) + ']',
                    Variable,
                    'tensor_array_to_tensor',
                )
        helper = LayerHelper('tensor_array_to_tensor', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input},
            outputs={'Out': [out], 'OutIndex': [out_index]},
            attrs={'axis': axis, 'use_stack': use_stack},
        )
        return out, out_index
155 156


157 158 159
def cast(x, dtype):
    """

160
    Take in the Tensor :attr:`x` with :attr:`x.dtype` and cast it
161 162 163 164
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.

    Args:
165
        x (Tensor): An input N-D Tensor with data type bool, float16,
166
            float32, float64, int32, int64, uint8.
167
        dtype (np.dtype|str): Data type of the output:
168 169 170
            bool, float16, float32, float64, int8, int32, int64, uint8.

    Returns:
L
Ligoml 已提交
171
        Tensor, A Tensor with the same shape as input's.
172 173 174 175 176 177 178 179 180 181 182 183

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
    """
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
184
        return _C_ops.cast(x, dtype)
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    else:
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'uint8',
                'uint16',
            ],
            'cast',
        )
        check_dtype(
            dtype,
            'dtype',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int8',
                'int16',
                'int32',
                'int64',
                'uint8',
                'uint16',
            ],
            'cast',
        )
219

220 221 222 223 224 225 226 227 228 229
        helper = LayerHelper('cast', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=dtype, stop_gradient=x.stop_gradient
        )
        helper.append_op(
            type='cast',
            inputs={'X': [x]},
            outputs={'Out': [out]},
            attrs={'in_dtype': x.dtype, 'out_dtype': out.dtype},
        )
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        return out


def slice(input, axes, starts, ends):
    """
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
    Following examples will explain how slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
            Then:
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
267

268 269 270
    Args:
        input (Tensor): A ``Tensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to .
271 272
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, each element of
                it should be integer or 0-D int Tensor with shape []. If ``starts`` is an Tensor, it should be an 1-D Tensor.
273
                It represents starting indices of corresponding axis in ``axes``.
274 275
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, each element of
                it should be integer or 0-D int Tensor with shape []. If ``ends`` is an Tensor, it should be an 1-D Tensor .
276 277 278
                It represents ending indices of corresponding axis in ``axes``.

    Returns:
L
Ligoml 已提交
279
        Tensor, A ``Tensor``. The data type is same as ``input``.
280 281 282 283 284 285 286 287 288 289 290 291 292

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 5, 6], dtype='float32')
            # example 1:
            # attr starts is a list which doesn't contain tensor.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = paddle.slice(input, axes=axes, starts=starts, ends=ends)
Z
zyfncg 已提交
293
            # sliced_1 is input[1:3, 0:2, 2:4].
294 295 296 297 298

            # example 2:
            # attr starts is a list which contain tensor.
            minus_3 = paddle.full([1], -3, "int32")
            sliced_2 = paddle.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
Z
zyfncg 已提交
299
            # sliced_2 is input[1:3, 0:2, 2:4].
300 301 302 303 304 305 306 307 308 309
    """
    if in_dygraph_mode():
        attrs = ()
        starts_tensor = None
        ends_tensor = None

        if isinstance(axes, (list, tuple)):
            axes = list(axes)
            if len(axes) == 0:
                raise ValueError(
310 311
                    "Input axes should not be an empty list/tuple."
                )
312 313 314 315 316 317 318 319
            for i in range(len(axes)):
                if axes[i] < 0:
                    axes[i] = max(0, axes[i] + len(input.shape))
                else:
                    axes[i] = min(len(input.shape) - 1, axes[i])

        else:
            raise ValueError(
320 321 322 323
                "Input axes must be a python list or tuple, but reveived {}".format(
                    type(axes)
                )
            )
324

325
        infer_flags = [1 for i in range(len(axes))]
326 327 328 329 330

        tmp_tensor_type = core.eager.Tensor

        if isinstance(starts, (list, tuple)):
            starts = [
331
                item.item(0) if isinstance(item, tmp_tensor_type) else item
332 333 334
                for item in starts
            ]
        elif isinstance(starts, tmp_tensor_type):
335
            tensor_t = starts.numpy(False)
336
            starts = list(tensor_t)
337
            infer_flags = [-1 for i in range(len(axes))]
338 339 340

        if isinstance(ends, (list, tuple)):
            ends = [
341
                item.item(0) if isinstance(item, tmp_tensor_type) else item
342
                for item in ends
343 344
            ]
        elif isinstance(ends, tmp_tensor_type):
345
            tensor_t = ends.numpy(False)
346
            ends = list(tensor_t)
347
            infer_flags = [-1 for i in range(len(axes))]
348

349
        return _C_ops.slice(input, axes, starts, ends, infer_flags, [])
350
    else:
351 352 353 354 355 356 357 358
        if not isinstance(starts, (list, tuple, Variable)):
            raise ValueError(
                "Input starts must be an Variable, python list or tuple."
            )
        if not isinstance(ends, (list, tuple, Variable)):
            raise ValueError(
                "Input ends must be an Variable, python list or tuple."
            )
359

360 361 362 363
        helper = LayerHelper('slice', **locals())

        inputs = {'Input': input}
        attrs = {'axes': axes}
364
        infer_flags = [1 for i in range(len(axes))]
365 366 367 368 369

        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
370
            infer_flags = [-1 for i in range(len(axes))]
371 372
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
373 374 375 376
            if paddle.utils._contain_var(starts):
                inputs[
                    'StartsTensorList'
                ] = paddle.utils._convert_to_tensor_list(starts)
377 378 379 380 381 382 383 384
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
            else:
                attrs['starts'] = starts
385

386 387 388 389
        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
390
            infer_flags = [-1 for i in range(len(axes))]
391 392
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
393 394 395 396
            if paddle.utils._contain_var(ends):
                inputs['EndsTensorList'] = paddle.utils._convert_to_tensor_list(
                    ends
                )
397 398 399 400 401 402 403 404
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
            else:
                attrs['ends'] = ends
405

406 407 408 409
        # infer_flags
        attrs['infer_flags'] = infer_flags
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('input')
410
        )
411 412
        helper.append_op(
            type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out}
413
        )
414

415
        return out
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430


def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
L
Ligoml 已提交
431
        Tensor, A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
469
        return _C_ops.transpose(x, perm)
470
    else:
471 472 473 474 475 476 477 478 479 480
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
481
                'uint16',
482 483 484 485
                'complex64',
                'complex128',
            ],
            'transpose',
486
        )
487 488 489 490
        check_type(perm, 'perm', (list, tuple), 'transpose')
        if isinstance(perm, tuple):
            perm = list(perm)
        if len(perm) != len(x.shape):
491
            raise ValueError(
492 493
                "Input(perm) is the permutation of dimensions of Input(x), "
                "its length should be equal to dimensions of Input(x), "
494 495 496 497
                "but received dimension of Input(x) is {}, "
                "the length of Input(perm) is {}.".format(
                    len(x.shape), len(perm)
                )
498
            )
499 500 501 502 503 504 505
        for idx, dim in enumerate(perm):
            if dim >= len(x.shape):
                raise ValueError(
                    "Each element in Input(perm) should be less than Input(x)'s dimension, "
                    "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                    "dimension %d." % (idx, perm[idx], len(x.shape))
                )
506

507 508 509 510 511 512 513 514 515 516
        helper = LayerHelper('transpose', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='transpose2',
            inputs={'X': [x]},
            outputs={'Out': [out], 'XShape': [x_shape]},
            attrs={'axis': perm},
        )
        return out
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533


def unstack(x, axis=0, num=None):
    """
    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.

    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised.

    Args:
        x (Tensor): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.

    Returns:
L
Ligoml 已提交
534
        list(Tensor), The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.
535 536 537 538 539 540 541 542 543

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.ones(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = paddle.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]

    """
544 545 546 547
    if not (-x.ndim <= axis < x.ndim):
        raise ValueError(
            '`axis` must be in the range [-{0}, {0})'.format(x.ndim)
        )
548
    if in_dygraph_mode():
549
        if num is None:
550 551 552
            num = x.shape[axis]
        if num == 0:
            return []
553
        return _C_ops.unstack(x, axis, num)
554 555
    else:
        helper = LayerHelper('unstack', **locals())
556
        if num is None:
557 558 559 560
            if axis is None or x.shape[axis] <= 0:
                raise ValueError('unknown unstack number')
            else:
                num = x.shape[axis]
561

562 563 564
        outs = []
        for _ in range(num):
            outs.append(helper.create_variable_for_type_inference(x.dtype))
565

566 567 568 569 570 571 572
        helper.append_op(
            type='unstack',
            inputs={'X': [x]},
            outputs={'Y': outs},
            attrs={'axis': axis, 'num': num},
        )
        return outs
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    Reset the values of `input` according to the shard it beloning to.
    Every value in `input` must be a non-negative integer, and
    the parameter `index_num` represents the integer above the maximum
    value of `input`. Thus, all values in `input` must be in the range
    [0, index_num) and each value can be regarded as the offset to the beginning
    of the range. The range is further split into multiple shards. Specifically,
    we first compute the `shard_size` according to the following formula,
    which represents the number of integers each shard can hold. So for the
    i'th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size).
    ::

        shard_size = (index_num + nshards - 1) // nshards

    For each value `v` in `input`, we reset it to a new value according to the
    following formula:
    ::
593

594 595 596 597 598 599 600 601 602 603
        v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value

    That is, the value `v` is set to the new offset within the range represented by the shard `shard_id`
    if it in the range. Otherwise, we reset it to be `ignore_value`.

    Args:
        input (Tensor): Input tensor with data type int64 or int32. It's last dimension must be 1.
        index_num (int): An integer represents the integer above the maximum value of `input`.
        nshards (int): The number of shards.
        shard_id (int): The index of the current shard.
L
LoneRanger 已提交
604
        ignore_value (int, optional): An integer value out of sharded index range. The default value is -1.
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

    Returns:
        Tensor.

    Examples:
        .. code-block:: python

            import paddle
            label = paddle.to_tensor([[16], [1]], "int64")
            shard_label = paddle.shard_index(input=label,
                                             index_num=20,
                                             nshards=2,
                                             shard_id=0)
            print(shard_label)
            # [[-1], [1]]
    """
    if in_dygraph_mode():
622 623 624
        return _C_ops.shard_index(
            input, index_num, nshards, shard_id, ignore_value
        )
625 626 627 628 629

    check_variable_and_dtype(input, 'input', ['int64', 'int32'], 'shard_index')
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
630 631 632
        raise ValueError(
            'The shard_id(%d) should be in [0, %d)' % (shard_id, nshards)
        )
633 634

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
635 636 637 638 639 640 641 642 643 644 645 646
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value,
        },
        stop_gradient=True,
    )
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
    return out


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1 (input is a 2-D Tensor):
            Input:
                X.shape = [3, 5]
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
                shape = [2, 2, -1]
                offsets = [0, 0, 1]
            Output:
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]

    Parameters:
        x (Tensor): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
690
        shape (list|tuple|Tensor, optional): The output shape is specified
691 692 693 694 695 696 697 698 699 700 701
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
            the same as the dimension size of `x`. If a Tensor, it should be a 1-D Tensor.
            When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
            must be the same as the dimension size of `x`. If a Tensor, it should be a 1-D
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
702
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
703 704

    Returns:
L
Ligoml 已提交
705
        Tensor, The cropped Tensor has same data type with `x`.
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735

    Examples:

        .. code-block:: python

            import paddle
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
            # x.shape = [3, 3]
            # x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

            # shape can be a 1-D Tensor or list or tuple.
            shape = paddle.to_tensor([2, 2], dtype='int32')
            # shape = [2, 2]
            # shape = (2, 2)
            out = paddle.crop(x, shape)
            # out.shape = [2, 2]
            # out = [[1,2], [4,5]]

            # offsets can be a 1-D Tensor or list or tuple.
            offsets = paddle.to_tensor([0, 1], dtype='int32')
            # offsets = [1, 0]
            # offsets = (1, 1)
            out = paddle.crop(x, shape, offsets)
            # out.shape = [2, 2]
            # if offsets = [0, 0], out = [[1,2], [4,5]]
            # if offsets = [0, 1], out = [[2,3], [5,6]]
            # if offsets = [1, 0], out = [[4,5], [7,8]]
            # if offsets = [1, 1], out = [[5,6], [8,9]]

    """
736

737
    helper = LayerHelper('crop_tensor', **locals())
738 739 740 741 742 743 744 745 746
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'crop_tensor'
    )
    check_type(
        shape, 'shape', (list, tuple, Variable, type(None)), 'crop_tensor'
    )
    check_type(
        offsets, 'offsets', (list, tuple, Variable, type(None)), 'crop_tensor'
    )
747 748 749 750

    if offsets is None:
        offsets = [0] * len(x.shape)

P
PuQing 已提交
751 752 753
    if shape is None:
        shape = x.shape

754
    if in_dygraph_mode():
755
        return _C_ops.crop(x, shape, offsets)
756

757 758 759 760 761 762 763 764
    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
765 766
                % type(shape_val)
            )
767 768 769
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
770 771
                % str(shape_val)
            )
772 773 774
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
775 776
                % str(shape_val)
            )
777 778 779 780 781

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
782 783
                % type(offset_val)
            )
784 785 786
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
787 788
                % str(offset_val)
            )
789 790 791 792 793

    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
        attrs['offsets'] = [-1] * len(x.shape)
794
    elif paddle.utils._contain_var(offsets):
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
        new_offsets_tensor = []
        offsets_attr = []
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
                offsets_attr.append(-1)
            else:
                _attr_offsets_check(dim)
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
                offsets_attr.append(dim)
        ipts['OffsetsTensor'] = new_offsets_tensor
        attrs['offsets'] = offsets_attr
    else:
        for offset in offsets:
            _attr_offsets_check(offset)
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
818
    elif paddle.utils._contain_var(shape):
819 820 821 822 823 824 825 826 827 828
        new_shape_tensor = []
        shape_attr = []
        for dim_size in shape:
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
                shape_attr.append(0)
            else:
                _attr_shape_check(dim_size)
                temp_out = helper.create_variable_for_type_inference('int32')
829 830 831
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
832 833 834 835 836 837 838 839 840
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
        for dim_size in shape:
            _attr_shape_check(dim_size)
        attrs['shape'] = shape

841 842 843 844 845 846
    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs,
    )
847 848 849
    return out


850 851 852 853 854 855 856 857 858
@dygraph_only
def fill_(x, value):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with value inplace.

    Args:
859 860
        x (Tensor): ``x`` is the Tensor we want to filled data inplace
        value (Scale): ``value`` is the value to be filled in x
861 862

    Returns:
L
Ligoml 已提交
863
        x(Tensor), Tensor x filled with value inplace
864 865 866 867 868 869 870 871 872 873 874 875 876 877

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.fill_(0)
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
    if not isinstance(value, (float, int)):
        raise TypeError(
878 879 880
            "The type of 'value'  must be int or float, but received %s."
            % (type(value))
        )
881
    return _C_ops.fill_(x, value)
882 883 884 885 886 887 888 889 890 891 892


@dygraph_only
def zero_(x):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with zero inplace.

    Args:
893
        x (Tensor): ``x`` is the Tensor we want to filled with zero inplace
894 895

    Returns:
L
Ligoml 已提交
896
        x (Tensor), Tensor x filled with zero inplace
897 898 899 900 901 902 903 904 905 906 907 908

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.zero_()
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
909
    return _C_ops.fill_(x, 0.0)
910 911


912 913 914
@dygraph_only
def fill_diagonal_(x, value, offset=0, wrap=False, name=None):
    """
915 916
    Note:
        This API is ONLY available in Dygraph mode.
917

918
    This function fill the value into the x Tensor's diagonal inplace.
919

920 921 922 923 924 925
    Args:
        x(Tensor): ``x`` is the original Tensor
        value(Scale): ``value`` is the value to filled in x
        offset(int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        wrap(bool,optional): the diagonal 'wrapped' after N columns for tall matrices.
        name(str,optional): Name for the operation (optional, default is None)
926

927
    Returns:
L
Ligoml 已提交
928
        Tensor, Tensor with diagonal filled with value.
929

930 931 932 933 934 935 936
    Examples:
        .. code-block:: python
            import paddle
            x = paddle.ones((4, 3)) * 2
            x.fill_diagonal_(1.0)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]
    """
Z
zhiboniu 已提交
937
    if in_dygraph_mode():
938
        if len(x.shape) == 2:
939 940
            return _C_ops.fill_diagonal_(x, value, offset, wrap)
        return _C_ops.fill_diagonal_(x, value, offset, True)
Z
zhiboniu 已提交
941

942

943 944
def _fill_diagonal_tensor_impl(x, y, offset=0, dim1=0, dim2=1, inplace=False):
    inshape = x.shape
945 946 947 948 949 950 951
    assert dim1 < len(inshape) and dim1 >= -len(
        inshape
    ), 'dim1 should between [-rank,rank) in fill_diagonal_tensor_'
    assert dim2 < len(inshape) and dim2 >= -len(
        inshape
    ), 'dim2 should between [-rank,rank) in fill_diagonal_tensor_'
    assert len(inshape) >= 2, 'Tensor dims should >= 2 in fill_diagonal_tensor_'
952 953 954 955 956 957 958
    dim1 %= len(inshape)
    dim2 %= len(inshape)

    predshape = []
    for i in range(len(inshape)):
        if i != dim1 and i != dim2:
            predshape.append(inshape[i])
959 960 961 962
    diaglen = min(
        min(inshape[dim1], inshape[dim1] + offset),
        min(inshape[dim2], inshape[dim2] - offset),
    )
963
    predshape.append(diaglen)
964
    assert tuple(predshape) == tuple(
965
        y.shape
966
    ), f"the y shape should be {predshape}"
967 968 969 970
    if len(y.shape) == 1:
        y = y.reshape([1, -1])

    if inplace:
971 972
        return _C_ops.fill_diagonal_tensor_(x, y, offset, dim1, dim2)
    return _C_ops.fill_diagonal_tensor(x, y, offset, dim1, dim2)
973 974 975 976


def fill_diagonal_tensor_(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
977 978
    Note:
        This API is ONLY available in Dygraph mode.
979 980 981 982

    This function fill the source Tensor y into the x Tensor's diagonal inplace.

    Args:
983 984 985 986 987 988
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
989 990

    Returns:
L
Ligoml 已提交
991
        Tensor, Tensor with diagonal filled with y.
992 993 994 995 996 997 998 999 1000 1001 1002 1003

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            x.fill_diagonal_tensor_(y)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
1004 1005 1006
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=True
    )
1007 1008 1009 1010 1011 1012 1013


def fill_diagonal_tensor(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
    This function fill the source Tensor y into the x Tensor's diagonal.

    Args:
1014 1015 1016 1017 1018 1019
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1020 1021

    Returns:
L
Ligoml 已提交
1022
        Tensor, Tensor with diagonal filled with y.
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            nx = x.fill_diagonal_tensor(y)
            print(nx.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
1035 1036 1037
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=False
    )
1038 1039


Z
zhiboniu 已提交
1040 1041 1042
@dygraph_only
def tolist(x):
    """
1043 1044
    Note:
        This API is ONLY available in Dygraph mode.
Z
zhiboniu 已提交
1045 1046 1047 1048

    This function translate the paddle.Tensor to python list.

    Args:
1049
        x (Tensor): ``x`` is the Tensor we want to translate to list.
Z
zhiboniu 已提交
1050 1051

    Returns:
L
Ligoml 已提交
1052
        list, A list that contain the same value of current Tensor.
Z
zhiboniu 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067


    Examples:
        .. code-block:: python

            import paddle

            t = paddle.to_tensor([0,1,2,3,4])
            expectlist = t.tolist()
            print(expectlist)   #[0, 1, 2, 3, 4]

            expectlist = paddle.tolist(t)
            print(expectlist)   #[0, 1, 2, 3, 4]

    """
1068
    # TODO(zhouwei): will remove 0-D Tensor.numpy() hack
1069
    return x.numpy(False).tolist()
Z
zhiboniu 已提交
1070 1071


1072 1073 1074
def concat(x, axis=0, name=None):
    """

1075 1076
    Concatenates the input along the axis. It doesn't support 0-D Tensor because it requires a certain axis, and 0-D Tensor
    doesn't have any axis.
1077 1078

    Args:
1079
        x (list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16,
1080
            float32, float64, int32, int64, int8, uint8. All the Tensors in ``x`` must have same data type.
1081
        axis (int|Tensor, optional): Specify the axis to operate on the input Tensors.
1082
            Tt should be integer or 0-D int Tensor with shape []. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
1083
            it works the same way as ``axis+R``. Default is 0.
1084
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1085 1086

    Returns:
L
Ligoml 已提交
1087
        Tensor, A Tensor with the same data type as ``x``.
1088 1089 1090

    Examples:
        .. code-block:: python
1091

1092
            import paddle
1093

1094 1095 1096 1097 1098 1099
            x1 = paddle.to_tensor([[1, 2, 3],
                                   [4, 5, 6]])
            x2 = paddle.to_tensor([[11, 12, 13],
                                   [14, 15, 16]])
            x3 = paddle.to_tensor([[21, 22],
                                   [23, 24]])
1100 1101 1102
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
1103 1104 1105
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
1106 1107 1108 1109 1110 1111 1112 1113 1114
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
1115 1116 1117 1118 1119 1120
    input = x
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
1121
        return _C_ops.concat(input, axis)
1122 1123
    else:
        check_type(input, 'input', (list, tuple, Variable), 'concat')
1124
        if not isinstance(input, Variable):
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
            for id, x in enumerate(input):
                check_variable_and_dtype(
                    x,
                    'input[' + str(id) + ']',
                    [
                        'bool',
                        'float16',
                        'float32',
                        'float64',
                        'int32',
                        'int64',
                        'int8',
                        'unit8',
W
wangzhen38 已提交
1138
                        'uint16',
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
                    ],
                    'concat',
                )
                if x.dtype != input[0].dtype:
                    raise TypeError(
                        "All the Tensors in the input must have the same data type."
                    )
        else:
            input = [input]
        check_type(axis, 'axis', (int, Variable), 'concat')
1149

1150 1151 1152 1153 1154
        if isinstance(axis, Variable):
            check_dtype(
                axis.dtype,
                'axis',
                ['int32', 'int64'],
1155
                'concat',
1156
                "The data type of axis must be int32 or int64 when axis is a Tensor",
1157
            )
1158

1159 1160 1161
        helper = LayerHelper('concat', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
1162
        )
1163

1164 1165 1166
        if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            # NOTE(liym27): Don't remove this if branch!
            # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
1167
            # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static graph mode.
1168

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
            assert len(input) == 1, (
                "If the elements of 'input' in concat are Variable(LoDTensorArray), "
                "number of the elements must be 1, but received %s."
                % len(input)
            )
            out_index = helper.create_variable_for_type_inference(dtype="int32")
            helper.append_op(
                type='tensor_array_to_tensor',
                inputs={'X': input[0]},
                outputs={'Out': [out], 'OutIndex': [out_index]},
                attrs={'axis': axis, 'use_stack': False},
            )
1181
        else:
1182 1183 1184 1185 1186 1187 1188
            inputs = {'X': input}
            attrs = {}
            if isinstance(axis, Variable):
                axis.stop_gradient = True
                inputs['AxisTensor'] = axis
            else:
                attrs['axis'] = axis
1189

1190 1191 1192 1193 1194 1195 1196
            helper.append_op(
                type='concat',
                inputs=inputs,
                outputs={'Out': [out]},
                attrs=attrs,
            )
        return out
1197 1198


1199 1200
def broadcast_tensors(input, name=None):
    """
1201
    Broadcast a list of tensors following broadcast semantics
1202

1203
    Note:
1204 1205 1206
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

    .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1207 1208

    Args:
1209
        input (list|tuple): ``input`` is a Tensor list or Tensor tuple which is with data type bool,
1210 1211
            float16, float32, float64, int32, int64. All the Tensors in ``input`` must have same data type.
            Currently we only support tensors with rank no greater than 5.
1212
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1213 1214

    Returns:
L
Ligoml 已提交
1215
        list(Tensor), The list of broadcasted tensors following the same order as ``input``.
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228

    Examples:
        .. code-block:: python

            import paddle
            x1 = paddle.rand([1, 2, 3, 4]).astype('float32')
            x2 = paddle.rand([1, 2, 1, 4]).astype('float32')
            x3 = paddle.rand([1, 1, 3, 1]).astype('float32')
            out1, out2, out3 = paddle.broadcast_tensors(input=[x1, x2, x3])
            # out1, out2, out3: tensors broadcasted from x1, x2, x3 with shape [1,2,3,4]
    """

    num_inputs = len(input)
1229
    if in_dygraph_mode():
1230
        return _C_ops.broadcast_tensors(input)
1231 1232 1233
    else:
        check_type(input, 'input', (list, tuple), 'broadcast_tensors')
        if num_inputs < 1:
1234
            raise TypeError(
1235
                "At least 1 tensor is needed to perform broadcast_tensors"
1236
            )
1237

1238 1239 1240 1241 1242
        # Check input types
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
C
co63oc 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251
                [
                    'bool',
                    'float16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'uint16',
                ],
1252 1253 1254 1255 1256 1257
                'broadcast_tensors',
            )
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type."
                )
1258

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
        # Check bcast semantics
        output_shape_r_last_tensor_index = []
        output_shape_r = []

        # Use while loop due to weird behaviour of "range()"
        j = 0
        while j < len(input):
            tensor = input[j]
            shape = list(reversed(tensor.shape))

            i = 0
            while i < len(shape):
                if len(output_shape_r) <= i:
                    output_shape_r.append(shape[i])
                    output_shape_r_last_tensor_index.append(j)
                else:
                    invalid = (
                        output_shape_r[i] != shape[i]
                        and output_shape_r[i] != 1
                        and shape[i] != 1
                    )
                    if invalid:
                        last_index = output_shape_r_last_tensor_index[i]
                        raise TypeError(
                            "Input tensors to broadcast_tensors does not follow bcast semantics"
1284
                            f"Tensor {last_index} conflicts with Tensor {j} in reversed dimension {i}"
1285 1286 1287 1288 1289 1290 1291 1292
                        )
                    if output_shape_r[i] <= shape[i]:
                        output_shape_r[i] = shape[i]
                        output_shape_r_last_tensor_index[i] = j
                i += 1  # while i < len(shape)
            j += 1  # while j < len(input)

        helper = LayerHelper('broadcast_tensors', **locals())
1293
        i = 0
1294 1295 1296 1297 1298
        out = []
        while i < num_inputs:
            out.append(
                helper.create_variable_for_type_inference(
                    dtype=helper.input_dtype()
1299 1300
                )
            )
1301
            i += 1
1302

1303 1304 1305 1306 1307 1308 1309
        inputs = {'X': input}
        helper.append_op(
            type='broadcast_tensors',
            inputs=inputs,
            outputs={'Out': out},
            attrs={},
        )
1310

1311
        return out
1312 1313


Y
yaoxuefeng 已提交
1314
def flip(x, axis, name=None):
W
Wilber 已提交
1315
    """
Y
yaoxuefeng 已提交
1316
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
1317 1318

    Args:
Y
yaoxuefeng 已提交
1319
        x (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
1320
            should be float32, float64, int32, int64, bool.
R
Roc 已提交
1321
        axis (list|tuple|int): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
1322
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
Wilber 已提交
1323 1324

    Returns:
L
Ligoml 已提交
1325
        Tensor, Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
1326 1327 1328 1329 1330

    Examples:
        .. code-block:: python

          import paddle
Y
yaoxuefeng 已提交
1331 1332

          image_shape=(3, 2, 2)
1333
          img = paddle.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
R
Roc 已提交
1334 1335
          tmp = paddle.flip(img, [0,1])
          print(tmp) # [[[10,11],[8, 9]], [[6, 7],[4, 5]], [[2, 3],[0, 1]]]
Y
yaoxuefeng 已提交
1336

R
Roc 已提交
1337 1338
          out = paddle.flip(tmp,-1)
          print(out) # [[[11,10],[9, 8]], [[7, 6],[5, 4]], [[3, 2],[1, 0]]]
W
Wilber 已提交
1339
    """
R
Roc 已提交
1340 1341
    if isinstance(axis, int):
        axis = [axis]
H
hong 已提交
1342 1343

    if in_dygraph_mode():
1344
        return _C_ops.flip(x, axis)
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
    else:
        helper = LayerHelper("flip", **locals())
        check_type(x, 'X', (Variable), 'flip')
        dtype = helper.input_dtype('x')
        check_dtype(
            dtype,
            'X',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
            'flip',
        )
        check_type(axis, 'axis', (list, tuple), 'flip')
        if name is None:
            out = helper.create_variable_for_type_inference(dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=dtype, persistable=False
            )
H
hong 已提交
1362

1363 1364 1365 1366 1367 1368 1369
        helper.append_op(
            type="flip",
            inputs={"X": x},
            outputs={"Out": out},
            attrs={"axis": axis},
        )
        return out
1370 1371


Z
zmxdream 已提交
1372 1373
def rot90(x, k=1, axes=[0, 1], name=None):
    """
1374
    Rotate a n-D tensor by 90 degrees. The rotation direction and times are specified by axes and the absolute value of k. Rotation direction is from axes[0] towards axes[1] if k > 0, and from axes[1] towards axes[0] for k < 0.
Z
zmxdream 已提交
1375 1376 1377

    Args:
        x (Tensor): The input Tensor(or LoDTensor). The data type of the input Tensor x
Z
zmxdream 已提交
1378
            should be float16, float32, float64, int32, int64, bool. float16 is only supported on gpu.
Z
zmxdream 已提交
1379 1380
        k (int, optional): Direction and number of times to rotate, default value: 1.
        axes (list|tuple, optional): Axes to rotate, dimension must be 2. default value: [0, 1].
Z
zmxdream 已提交
1381 1382 1383 1384
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
1385
        Tensor, Tensor or LoDTensor calculated by rot90 layer. The data type is same with input x.
Z
zmxdream 已提交
1386 1387 1388 1389 1390 1391 1392 1393

    Examples:
        .. code-block:: python

          import paddle

          data = paddle.arange(4)
          data = paddle.reshape(data, (2, 2))
1394
          print(data)
Z
zmxdream 已提交
1395 1396 1397
          #[[0, 1],
          # [2, 3]]

Z
zmxdream 已提交
1398
          y = paddle.rot90(data, 1, [0, 1])
1399
          print(y)
Z
zmxdream 已提交
1400 1401 1402
          #[[1, 3],
          # [0, 2]]

Z
zmxdream 已提交
1403
          y= paddle.rot90(data, -1, [0, 1])
1404
          print(y)
Z
zmxdream 已提交
1405 1406 1407
          #[[2, 0],
          # [3, 1]]

Z
zmxdream 已提交
1408 1409
          data2 = paddle.arange(8)
          data2 = paddle.reshape(data2, (2,2,2))
1410
          print(data2)
Z
zmxdream 已提交
1411 1412 1413 1414 1415
          #[[[0, 1],
          #  [2, 3]],
          # [[4, 5],
          #  [6, 7]]]

Z
zmxdream 已提交
1416
          y = paddle.rot90(data2, 1, [1, 2])
Z
zmxdream 已提交
1417 1418 1419 1420 1421
          print(y)
          #[[[1, 3],
          #  [0, 2]],
          # [[5, 7],
          #  [4, 6]]]
Z
zmxdream 已提交
1422 1423 1424 1425 1426
    """

    helper = LayerHelper("rot90", **locals())
    check_type(x, 'X', (Variable), 'rot90')
    dtype = helper.input_dtype('x')
1427 1428 1429 1430 1431 1432
    check_dtype(
        dtype,
        'X',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'rot90',
    )
Z
zmxdream 已提交
1433 1434 1435 1436 1437
    check_type(axes, 'axes', (list, tuple), 'rot90')

    input_total_dims = len(x.shape)
    total_rot_dims = len(axes)
    if total_rot_dims != 2:
1438 1439
        raise ValueError(
            "expected total rotation axes == 2, but got axes = {}".format(
1440 1441 1442
                total_rot_dims
            )
        )
Z
zmxdream 已提交
1443
    if input_total_dims < 2:
1444 1445
        raise ValueError(
            "expected total dims >= 2, but got total dims = {}".format(
1446 1447 1448
                input_total_dims
            )
        )
Z
zmxdream 已提交
1449 1450 1451

    if not (axes[0] != axes[1] and abs(axes[0] - axes[1]) != input_total_dims):
        raise ValueError(
1452 1453 1454 1455
            "expected rotation axes to be different, but got axis0 = {}, and axis1 = {}".format(
                axes[0], axes[1]
            )
        )
Z
zmxdream 已提交
1456 1457

    if not (axes[0] < input_total_dims and axes[0] >= -input_total_dims):
1458
        raise ValueError(f"Rotation axis0 out of range, axis0 = {axes[0]}")
Z
zmxdream 已提交
1459
    if not (axes[1] < input_total_dims and axes[1] >= -input_total_dims):
1460
        raise ValueError(f"Rotation axis1 out of range, axis1 = {axes[1]}")
Z
zmxdream 已提交
1461

Z
zmxdream 已提交
1462
    k %= 4
Z
zmxdream 已提交
1463 1464 1465 1466 1467 1468
    if k == 0:
        return x
    if k == 2:
        return flip(flip(x, axes[0]), axes[1])

    axes_list = list(range(0, input_total_dims))
1469 1470 1471 1472
    (axes_list[axes[0]], axes_list[axes[1]]) = (
        axes_list[axes[1]],
        axes_list[axes[0]],
    )
Z
zmxdream 已提交
1473 1474 1475 1476 1477 1478 1479
    if k == 1:
        return transpose(flip(x, axes[1]), axes_list)
    else:
        # k == 3
        return flip(transpose(x, axes_list), axes[1])


1480
def flatten(x, start_axis=0, stop_axis=-1, name=None):
1481
    r"""
1482 1483
    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

1484
    Note:
1485
        The output Tensor will share data with origin Tensor and doesn't have a Tensor copy in ``dygraph`` mode.
1486
        If you want to use the Tensor copy version, please use `Tensor.clone` like ``flatten_clone_x = x.flatten().clone()``.
1487

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
张春乔 已提交
1517
        x (Tensor): A tensor of number of dimentions >= axis. A tensor with data type float16, float32,
1518
                      float64, int8, int32, int64, uint8.
1519 1520
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
1521
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1522 1523

    Returns:
L
Ligoml 已提交
1524
        Tensor, A tensor with the contents of the input tensor, with input \
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Examples:

        .. code-block:: python

            import paddle

            image_shape=(2, 3, 4, 4)
1535

Y
yaoxuefeng 已提交
1536 1537
            x = paddle.arange(end=image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3])
            img = paddle.reshape(x, image_shape)
1538

1539 1540
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
1541 1542 1543 1544

            # out shares data with img in dygraph mode
            img[0, 0, 0, 0] = -1
            print(out[0, 0, 0]) # [-1]
1545 1546
    """
    if not (isinstance(x, Variable)):
Y
yaoxuefeng 已提交
1547
        raise ValueError("The input x should be a Tensor")
1548 1549

    x_dim = len(x.shape)
1550 1551 1552
    if x_dim == 0:
        if not (isinstance(start_axis, int)) or start_axis not in [0, -1]:
            raise ValueError(
1553
                "The start_axis should be int, and should be 0 or -1 when the input tensor is a 0-D-Tensor"
1554 1555 1556
            )
        if not (isinstance(stop_axis, int)) or stop_axis not in [0, -1]:
            raise ValueError(
1557
                "The stop_axis should be int, and should be 0 or -1 when the input tensor is a 0-D-Tensor"
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
            )
    else:
        if (
            not (isinstance(start_axis, int))
            or (start_axis > x_dim - 1)
            or start_axis < -x_dim
        ):
            raise ValueError(
                "The start_axis should be a int, and in range [-rank(x), rank(x))"
            )
        if (
            not (isinstance(stop_axis, int))
            or (stop_axis > x_dim - 1)
            or stop_axis < -x_dim
        ):
            raise ValueError(
                "The stop_axis should be a int, and in range [-rank(x), rank(x))"
            )
        if start_axis < 0:
            start_axis = start_axis + x_dim
        if stop_axis < 0:
            stop_axis = stop_axis + x_dim
        if start_axis > stop_axis:
            raise ValueError("The stop_axis should be larger than stat_axis")
1582

1583
    if in_dygraph_mode():
1584
        return _C_ops.flatten(x, start_axis, stop_axis)
1585
    else:
W
Weilong Wu 已提交
1586 1587 1588
        check_variable_and_dtype(
            x,
            'x',
X
xiaoguoguo626807 已提交
1589 1590 1591 1592 1593 1594 1595 1596 1597
            [
                'float16',
                'float32',
                'float64',
                'int8',
                'int16',
                'int32',
                'int64',
                'uint8',
1598
                'uint16',
X
xiaoguoguo626807 已提交
1599
            ],
W
Weilong Wu 已提交
1600 1601
            'flatten',
        )
1602 1603 1604 1605 1606 1607 1608 1609
        helper = LayerHelper('flatten', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='flatten_contiguous_range',
            inputs={"X": x},
            outputs={'Out': out, 'XShape': x_shape},
            attrs={"start_axis": start_axis, "stop_axis": stop_axis},
1610
        )
1611
        return out
1612 1613


1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
@inplace_apis_in_dygraph_only
def flatten_(x, start_axis=0, stop_axis=-1, name=None):
    """
    Inplace version of ``flatten`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_flatten`.
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Tensor")

    x_dim = len(x.shape)
1624 1625 1626 1627 1628
    if (
        not (isinstance(start_axis, int))
        or (start_axis > x_dim - 1)
        or start_axis < -x_dim
    ):
1629
        raise ValueError(
1630 1631 1632 1633 1634 1635 1636
            "The start_axis should be a int, and in range [-rank(x), rank(x))"
        )
    if (
        not (isinstance(stop_axis, int))
        or (stop_axis > x_dim - 1)
        or stop_axis < -x_dim
    ):
1637
        raise ValueError(
1638 1639
            "The stop_axis should be a int, and in range [-rank(x), rank(x))"
        )
1640 1641 1642 1643 1644 1645 1646
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1647
    if in_dygraph_mode():
1648
        return _C_ops.flatten_(x, start_axis, stop_axis)
1649

1650

Y
yaoxuefeng 已提交
1651
def roll(x, shifts, axis=None, name=None):
1652
    """
1653 1654 1655
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that
    roll beyond the last position are re-introduced at the first according to 'shifts'.
    If a axis is not specified,
1656 1657 1658
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
1659
        x (Tensor): The x tensor as input.
1660
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
1661
                           of the `x` tensor are shifted.
Y
Yuang Liu 已提交
1662
        axis (int|list|tuple, optional): axis(axes) along which to roll. Default: None
C
Chen Long 已提交
1663 1664 1665
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                For more information, please refer to :ref:`api_guide_Name` .

1666 1667

    Returns:
L
Ligoml 已提交
1668
        Tensor, A Tensor with same data type as `x`.
1669 1670 1671

    Examples:
        .. code-block:: python
1672

1673 1674
            import paddle

1675 1676 1677
            x = paddle.to_tensor([[1.0, 2.0, 3.0],
                                  [4.0, 5.0, 6.0],
                                  [7.0, 8.0, 9.0]])
Y
yaoxuefeng 已提交
1678
            out_z1 = paddle.roll(x, shifts=1)
Y
yaoxuefeng 已提交
1679
            print(out_z1)
Y
yaoxuefeng 已提交
1680 1681 1682 1683
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
Y
yaoxuefeng 已提交
1684
            print(out_z2)
Y
yaoxuefeng 已提交
1685 1686 1687
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
Y
Yuang Liu 已提交
1688 1689 1690 1691 1692
            out_z3 = paddle.roll(x, shifts=1, axis=1)
            print(out_z3)
            #[[3. 1. 2.]
            # [6. 4. 5.]
            # [9. 7. 8.]]
1693
    """
Y
yaoxuefeng 已提交
1694
    origin_shape = x.shape
1695 1696
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
1697 1698 1699 1700
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
1701
    if axis is not None:
Y
yaoxuefeng 已提交
1702 1703 1704
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
1705 1706 1707 1708
                    "axis is out of range, it should be in range [{}, {}), but received {}".format(
                        -len_origin_shape, len_origin_shape, axis
                    )
                )
S
sunli 已提交
1709 1710 1711
    else:
        axis = []

F
From00 已提交
1712
    if in_dygraph_mode():
1713
        return _C_ops.roll(x, shifts, axis)
1714
    else:
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
        check_variable_and_dtype(
            x,
            'dtype',
            [
                'float16',
                'float32',
                'uint16',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'roll',
        )
1730 1731
        helper = LayerHelper("roll", **locals())
        check_type(axis, 'axis', (list, tuple), 'roll')
F
From00 已提交
1732

1733
        out = helper.create_variable_for_type_inference(x.dtype)
1734

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
        if isinstance(shifts, Variable):
            helper.append_op(
                type='roll',
                inputs={'X': x, "ShiftsTensor": shifts},
                outputs={'Out': out},
                attrs={'axis': axis},
            )
        else:
            check_type(shifts, 'shifts', (list, tuple), 'roll')
            helper.append_op(
                type='roll',
                inputs={'X': x},
                outputs={'Out': out},
                attrs={'axis': axis, 'shifts': shifts},
            )
        return out
1751 1752


L
Leo Chen 已提交
1753
def stack(x, axis=0, name=None):
1754
    """
1755
    Stacks all the input tensors ``x`` along ``axis`` dimemsion.
L
Leo Chen 已提交
1756
    All tensors must be of the same shape and same dtype.
1757 1758 1759

    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked
L
Leo Chen 已提交
1760
    tensor is [A, N, B], etc.
1761

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
1797
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
1798 1799 1800 1801 1802 1803 1804 1805

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
1806
        x (list[Tensor]|tuple[Tensor]): Input ``x`` can be a ``list`` or ``tuple`` of tensors, the Tensors in ``x``
1807
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
1808
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
1809
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``.
L
Leo Chen 已提交
1810
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
1811
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1812

1813
    Returns:
L
Ligoml 已提交
1814
        Tensor, The stacked tensor with same data type as input.
1815

1816
    Example:
1817
        .. code-block:: python
L
Leo Chen 已提交
1818

1819
            import paddle
1820

L
Leo Chen 已提交
1821 1822 1823
            x1 = paddle.to_tensor([[1.0, 2.0]])
            x2 = paddle.to_tensor([[3.0, 4.0]])
            x3 = paddle.to_tensor([[5.0, 6.0]])
1824

L
Leo Chen 已提交
1825 1826
            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
L
Leo Chen 已提交
1827
            print(out)
L
Leo Chen 已提交
1828 1829 1830
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
1831

1832 1833 1834 1835 1836 1837
        out = paddle.stack([x1, x2, x3], axis=-2)
        print(out.shape)  # [1, 3, 2]
        print(out)
        # [[[1., 2.],
        #   [3., 4.],
        #   [5., 6.]]]
L
Leo Chen 已提交
1838
    """
1839 1840 1841
    axis = 0 if axis is None else axis

    if in_dygraph_mode():
1842
        return _C_ops.stack(x, axis)
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
    else:
        if not isinstance(x, list) and not isinstance(x, tuple):
            # NOTE:(zhiqiu) Only support Variable as input if the Variable is a LOD_TENSOR_ARRAY create by create_array, array_write, array_read, etc.
            # In that case, Variable is array of tensors indeed.
            if (
                isinstance(x, Variable)
                and x.desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY
            ):
                x = [x]
            else:
                raise TypeError(
                    "The type of '%s' in %s must be %s, but received %s"
                    % (
                        'x',
                        'stack',
                        'list[Tensor], tuple[Tensor] or TensorArray',
                        type(x),
                    )
                )
1862

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
        helper = LayerHelper('stack', **locals())

        out = helper.create_variable_for_type_inference(x[0].dtype)
        if x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            assert len(x) == 1, (
                "If the elements of 'x' in stack are Variable(LoDTensorArray), "
                "number of the elements must be 1, but received %s." % len(x)
            )
            out_index = helper.create_variable_for_type_inference(dtype="int32")

            for i in x:
                check_variable_and_dtype(
                    i,
1876
                    'x',
C
ccrrong 已提交
1877 1878 1879 1880 1881 1882 1883 1884
                    [
                        'float16',
                        'float32',
                        'float64',
                        'int32',
                        'int64',
                        'uint16',
                    ],
1885 1886
                    'stack',
                )
1887

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
            helper.append_op(
                type='tensor_array_to_tensor',
                inputs={'X': x[0]},
                outputs={'Out': [out], 'OutIndex': [out_index]},
                attrs={'axis': axis, 'use_stack': True},
            )
        else:
            helper.append_op(
                type='stack',
                inputs={'X': x},
                outputs={'Y': out},
                attrs={'axis': axis},
1900 1901
            )

1902
        return out
1903 1904


1905
def split(x, num_or_sections, axis=0, name=None):
1906 1907
    """
    Split the input tensor into multiple sub-Tensors.
1908

1909
    Args:
1910
        x (Tensor): A N-D Tensor. The data type is bool, bfloat16, float16, float32, float64, uint8, int8, int32 or int64.
1911
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
1912 1913 1914 1915
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
1916 1917
        axis (int|Tensor, optional): The axis along which to split, it can be a integer or a ``0-D Tensor``
            with shape [] and data type  ``int32`` or ``int64``.
1918 1919 1920
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
1921
    Returns:
L
Ligoml 已提交
1922
        list(Tensor), The list of segmented Tensors.
1923

1924 1925
    Example:
        .. code-block:: python
1926

1927
            import paddle
1928

L
Leo Chen 已提交
1929 1930
            # x is a Tensor of shape [3, 9, 5]
            x = paddle.rand([3, 9, 5])
1931

L
Leo Chen 已提交
1932 1933 1934 1935
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=1)
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1936 1937

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
L
Leo Chen 已提交
1938 1939 1940
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1941 1942

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
L
Leo Chen 已提交
1943 1944 1945
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1946

L
Leo Chen 已提交
1947
            # axis is negative, the real axis is (rank(x) + axis)=1
1948
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
L
Leo Chen 已提交
1949 1950 1951
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1952
    """
1953 1954
    input = x
    dim = axis
1955
    if in_dygraph_mode():
1956 1957 1958 1959 1960
        if isinstance(dim, Variable):
            dim = dim.item(0)
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input.shape) + dim) if dim < 0 else dim

1961
        if isinstance(num_or_sections, (list, tuple)):
1962
            if paddle.utils._contain_var(num_or_sections):
1963 1964
                for index, item in enumerate(num_or_sections):
                    if isinstance(item, Variable):
1965
                        num_or_sections[index] = num_or_sections[index].item()
1966
        elif not isinstance(num_or_sections, int):
1967 1968
            raise TypeError(
                "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but "
1969 1970
                "received %s." % (type(num_or_sections))
            )
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
        if isinstance(num_or_sections, int):
            return _C_ops.split_with_num(input, num_or_sections, dim)
        else:
            return _C_ops.split(input, num_or_sections, dim)
    else:
        check_variable_and_dtype(
            input,
            'input',
            [
                'bool',
1981
                'bfloat16',
1982
                'float16',
1983
                'uint16',
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
                'int8',
            ],
            'split',
        )
        check_type(
            num_or_sections, 'num_or_sections', (list, int, tuple), 'split'
        )
        check_type(dim, 'dim', (int, Variable), 'split')
        if isinstance(dim, Variable):
            check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split')
1999

2000
        helper = LayerHelper('split', **locals())
2001

2002 2003 2004 2005 2006
        input_shape = input.shape
        inputs = {'X': input}
        attrs = {
            'num': num_or_sections if isinstance(num_or_sections, int) else 0
        }
2007

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
        def _get_SectionsTensorList(one_list):
            tensor_list = []
            unk_dim_idx = -1
            for idx, dim_size in enumerate(one_list):
                if isinstance(dim_size, Variable):
                    dim_size.stop_gradient = True
                    tensor_list.append(dim_size)
                else:
                    assert isinstance(dim_size, int)
                    if dim_size == -1:
                        assert unk_dim_idx == -1, (
                            "Only one value of 'num_or_section' in split can "
                            "be -1. But received num_or_section[%d] is also -1."
                            % idx
                        )
                        unk_dim_idx = idx
                    temp_out = helper.create_variable_for_type_inference(
                        'int32'
2026
                    )
2027 2028 2029 2030 2031
                    fill_constant(
                        [1], 'int32', dim_size, force_cpu=True, out=temp_out
                    )
                    tensor_list.append(temp_out)
            return tensor_list
2032

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
        if isinstance(dim, Variable):
            dim.stop_gradient = True
            inputs['AxisTensor'] = dim
        else:
            assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
            dim = (len(input_shape) + dim) if dim < 0 else dim
            attrs['axis'] = dim

        if isinstance(num_or_sections, int):
            assert num_or_sections > 1, 'num_or_sections must be more than 1.'
            if isinstance(dim, int) and input_shape[dim] > 0:
                assert input_shape[dim] % num_or_sections == 0, (
                    "The input's size along the split dimension "
                    "must be evenly divisible by Attr(num_or_sections). "
                    "But %d is not evenly divisible by %d. "
                    % (num_or_sections, input_shape[dim])
                )
            num = num_or_sections
        else:
            if isinstance(dim, int) and input_shape[dim] > 0:
                assert (
                    len(num_or_sections) <= input_shape[dim]
                ), 'len(num_or_sections) must not be more than input.shape[dim].'
            num = len(num_or_sections)
2057 2058 2059 2060
            attrs['sections'] = [
                -1 if isinstance(ele, Variable) else ele
                for ele in num_or_sections
            ]
2061
            if paddle.utils._contain_var(num_or_sections):
2062 2063 2064 2065 2066 2067 2068
                inputs['SectionsTensorList'] = _get_SectionsTensorList(
                    num_or_sections
                )

        outs = [
            helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
2069
            )
2070 2071 2072 2073
            for i in range(num)
        ]
        helper.append_op(
            type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs
2074
        )
2075
        return outs
2076 2077


2078 2079 2080
def vsplit(x, num_or_sections, name=None):
    """
    Split the input tensor into multiple sub-Tensors along the vertical axis, which is equivalent to ``paddle.split`` with ``axis=0``.
2081

2082 2083
    Args:
        x (Tensor): A Tensor whose dimension must be greater than 1. The data type is bool, float16, float32, float64, uint8, int8, int32 or int64.
2084
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
2085 2086 2087 2088 2089 2090 2091 2092
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of axis 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list[Tensor], The list of segmented Tensors.
2093

2094 2095
    Example:
        .. code-block:: python
2096

2097
            import paddle
2098

2099 2100
            # x is a Tensor of shape [8, 6, 7]
            x = paddle.rand([8, 6, 7])
2101
            out0, out1 = paddle.vsplit(x, num_or_sections=2)
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
            print(out0.shape)  # [4, 6, 7]
            print(out1.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[1, 3, 4])
            print(out0.shape)  # [1, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[2, 3, -1])
            print(out0.shape)  # [2, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [3, 6, 7]
    """
    if x.ndim < 2:
        raise ValueError(
2115 2116 2117 2118
            "The input tensor's dimension must be greater than 1, but got {}".format(
                x.ndim
            )
        )
2119 2120 2121
    return split(x, num_or_sections, axis=0, name=name)


L
Leo Chen 已提交
2122
def squeeze(x, axis=None, name=None):
2123
    """
2124 2125 2126 2127
    Squeeze the dimension(s) of size 1 of input tensor x's shape.

    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2128
    please use `Tensor.clone` like ``squeeze_clone_x = x.squeeze().clone()``.
2129

2130 2131
    If axis is provided, it will remove the dimension(s) by given axis that of size 1.
    If the dimension of given axis is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
2132
    If axis is not provided, all dims equal of size 1 will be removed.
2133 2134 2135 2136 2137 2138

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
2139 2140
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
2141
          Output:
L
Leo Chen 已提交
2142
            out.shape = [3, 5]
2143 2144 2145 2146

        Case2:

          Input:
L
Leo Chen 已提交
2147 2148 2149 2150
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
2151

L
Leo Chen 已提交
2152 2153 2154
        Case4:

          Input:
2155
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
2156
            axis = [0, 2, 3]
2157
          Output:
L
Leo Chen 已提交
2158
            out.shape = [3, 5]
2159

L
Leo Chen 已提交
2160
        Case4:
2161 2162

          Input:
2163
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x).
L
Leo Chen 已提交
2164
            axis = [-2]
2165
          Output:
L
Leo Chen 已提交
2166
            out.shape = [1, 3, 5]
2167 2168

    Args:
2169
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
2170
        axis (int|list|tuple, optional): An integer or list/tuple of integers, indicating the dimensions to be squeezed. Default is None.
2171 2172 2173
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
2174 2175 2176
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
L
Ligoml 已提交
2177
        Tensor, Squeezed Tensor with the same data type as input Tensor.
2178 2179 2180

    Examples:
        .. code-block:: python
2181

2182
            import paddle
2183

L
Leo Chen 已提交
2184 2185
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
2186 2187

            print(x.shape)  # [5, 1, 10]
L
Leo Chen 已提交
2188
            print(output.shape)  # [5, 10]
2189

2190 2191 2192 2193
            # output shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(output[0, 0]) # [10.]

2194
    """
L
Leo Chen 已提交
2195 2196 2197 2198 2199 2200
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
2201

2202 2203 2204
    input = x
    axes = axis
    if in_dygraph_mode():
2205
        return _C_ops.squeeze(input, axes)
2206 2207 2208 2209 2210 2211 2212
    else:
        helper = LayerHelper("squeeze", **locals())
        check_variable_and_dtype(
            input,
            'input',
            [
                'float16',
2213
                'uint16',
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
                'float32',
                'float64',
                'bool',
                'int8',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'squeeze',
        )
2225

2226 2227 2228 2229
        check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'squeeze')
        attrs = {}
        if isinstance(axes, Variable):
            axes.stop_gradient = True
2230
            attrs["axes"] = axes
2231
        elif isinstance(axes, (list, tuple)):
2232 2233
            if paddle.utils._contain_var(axes):
                attrs["axes"] = paddle.utils._convert_to_tensor_list(axes)
2234 2235
            else:
                attrs["axes"] = axes
2236

2237 2238 2239 2240 2241 2242 2243 2244
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type="squeeze2",
            inputs={"X": input},
            attrs=attrs,
            outputs={"Out": out, "XShape": x_shape},
        )
2245

2246
        return out
2247 2248


2249
@inplace_apis_in_dygraph_only
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
def squeeze_(x, axis=None, name=None):
    """
    Inplace version of ``squeeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_squeeze`.
    """
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)

2262 2263 2264
    input = x
    axes = axis
    if in_dygraph_mode():
2265
        return _C_ops.squeeze_(input, axes)
2266 2267


2268 2269 2270 2271 2272 2273 2274 2275
def unique_consecutive(
    x,
    return_inverse=False,
    return_counts=False,
    axis=None,
    dtype="int64",
    name=None,
):
Z
Zman 已提交
2276
    """
D
duanboqiang 已提交
2277 2278
    Eliminates all but the first element from every consecutive group of equivalent elements.

2279
    Note:
Z
Zman 已提交
2280 2281
        This function is different from :ref:`api_paddle_unique` in the sense that this function
        only eliminates consecutive duplicate values. This semantics is similar to :ref:`api_paddle_unique` in C++.
D
duanboqiang 已提交
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296

    Args:
        x(Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique consecutive tensor. Default is False.
        return_counts(bool, optional): If True, also return the counts for each unique consecutive element.
            Default is False.
        axis(int, optional): The axis to apply unique consecutive. If None, the input will be flattened.
            Default is None.
        dtype(np.dtype|str, optional): The data type `inverse` tensor: int32 or int64.
            Default: int64.
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default is None.

    Returns:
Z
Zman 已提交
2297 2298 2299 2300 2301 2302
        - out (Tensor), the unique consecutive tensor for x.
        - inverse (Tensor), the element of the input tensor corresponds to
            the index of the elements in the unique consecutive tensor for x.
            inverse is provided only if return_inverse is True.
        - counts (Tensor), the counts of the every unique consecutive element in the input tensor.
            counts is provided only if return_counts is True.
D
duanboqiang 已提交
2303 2304 2305 2306

    Example:
        .. code-block:: python

2307
            import paddle
D
duanboqiang 已提交
2308 2309

            x = paddle.to_tensor([1, 1, 2, 2, 3, 1, 1, 2])
2310
            output = paddle.unique_consecutive(x) #
2311 2312 2313 2314
            print(output)
            # Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 3, 1, 2])

D
duanboqiang 已提交
2315
            _, inverse, counts = paddle.unique_consecutive(x, return_inverse=True, return_counts=True)
2316 2317 2318 2319 2320 2321
            print(inverse)
            # Tensor(shape=[8], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [0, 0, 1, 1, 2, 3, 3, 4])
            print(counts)
            # Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [2, 2, 1, 2, 1])
D
duanboqiang 已提交
2322 2323

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
2324
            output = paddle.unique_consecutive(x, axis=0) #
2325 2326 2327 2328 2329
            print(output)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1],
            #         [2, 1, 3]])
D
duanboqiang 已提交
2330 2331

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
2332
            output = paddle.unique_consecutive(x, axis=0) #
2333 2334 2335 2336 2337
            print(output)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1],
            #         [2, 1, 3]])
D
duanboqiang 已提交
2338 2339 2340 2341 2342 2343 2344
    """

    if axis is None:
        axis = []
    else:
        axis = [axis]
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2345
    if in_dygraph_mode():
2346
        out, inverse, counts = _C_ops.unique_consecutive(
2347 2348
            x, return_inverse, return_counts, axis, attr_dtype
        )
2349 2350 2351 2352 2353 2354 2355 2356
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
2357 2358
    else:
        check_variable_and_dtype(
2359
            x,
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
            "input",
            ['float32', 'float64', 'int32', 'int64'],
            'unique_consecutive',
        )
        check_type(return_inverse, 'return_inverse', bool, 'unique_consecutive')
        check_type(return_counts, 'return_counts', bool, 'unique_consecutive')
        check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique_consecutive')
        if len(axis) != 0:
            check_type(axis[0], 'axis', int, 'unique_consecutive')
        helper = LayerHelper('unique_consecutive', **locals())
        attrs = {
            'dtype': attr_dtype,
            "return_inverse": return_inverse,
            "return_counts": return_counts,
            "axis": axis,
        }
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True
2378
        )
2379 2380 2381 2382 2383 2384 2385
        inverse = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        counts = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        outputs = {"Out": out, "Index": inverse, "Counts": counts}
D
duanboqiang 已提交
2386 2387 2388 2389 2390
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
2391 2392 2393 2394 2395 2396
        helper.append_op(
            type="unique_consecutive",
            inputs={"X": x},
            attrs=attrs,
            outputs=outputs,
        )
D
duanboqiang 已提交
2397 2398 2399 2400 2401
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)


2402 2403 2404 2405 2406 2407 2408 2409 2410
def unique(
    x,
    return_index=False,
    return_inverse=False,
    return_counts=False,
    axis=None,
    dtype="int64",
    name=None,
):
2411
    r"""
Z
Zhang Ting 已提交
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
    Returns the unique elements of `x` in ascending order.

    Args:
        x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
        return_index(bool, optional): If True, also return the indices of the input tensor that
            result in the unique Tensor.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique tensor.
        return_counts(bool, optional): If True, also return the counts for each unique element.
        axis(int, optional): The axis to apply unique. If None, the input will be flattened.
            Default: None.
Z
Zhang Ting 已提交
2423 2424
        dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
            Default: int64.
Z
Zhang Ting 已提交
2425 2426 2427
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default: None.

2428
    Returns:
2429
        tuple (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is \
Z
Zhang Ting 已提交
2430 2431 2432 2433 2434
            provided only if `return_index` is True. `inverse` is provided only if `return_inverse` \
            is True. `counts` is provided only if `return_counts` is True.

    Examples:
        .. code-block:: python
2435

Z
Zhang Ting 已提交
2436 2437
            import paddle

2438
            x = paddle.to_tensor([2, 3, 3, 1, 5, 3])
Z
Zhang Ting 已提交
2439
            unique = paddle.unique(x)
2440 2441 2442 2443
            print(unique)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 3, 5])

Z
Zhang Ting 已提交
2444
            _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
2445 2446 2447 2448 2449 2450 2451 2452 2453
            print(indices)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [3, 0, 1, 4])
            print(inverse)
            # Tensor(shape=[6], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 2, 0, 3, 2])
            print(counts)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 1, 3, 1])
Z
Zhang Ting 已提交
2454

2455
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
Z
Zhang Ting 已提交
2456
            unique = paddle.unique(x)
2457 2458 2459
            print(unique)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [0, 1, 2, 3])
Z
Zhang Ting 已提交
2460 2461

            unique = paddle.unique(x, axis=0)
2462 2463 2464 2465
            print(unique)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1]])
Z
Zhang Ting 已提交
2466 2467 2468 2469 2470
    """
    if axis is None:
        axis = []
    else:
        axis = [axis]
Z
Zhang Ting 已提交
2471
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2472 2473 2474 2475
    if in_dygraph_mode():
        out, indices, inverse, counts = _C_ops.unique(
            x, return_index, return_inverse, return_counts, axis, attr_dtype
        )
Z
Zhang Ting 已提交
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)
2488 2489
    else:
        check_variable_and_dtype(
2490 2491 2492 2493
            x,
            "input",
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'unique',
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
        )
        check_type(return_index, 'return_index', bool, 'unique')
        check_type(return_inverse, 'return_inverse', bool, 'unique')
        check_type(return_counts, 'return_counts', bool, 'unique')
        check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique')
        if len(axis) != 0:
            check_type(axis[0], 'axis', int, 'unique')

        helper = LayerHelper('unique', **locals())
        attrs = {
            'dtype': attr_dtype,
            "return_index": return_index,
            "return_inverse": return_inverse,
            "return_counts": return_counts,
            "axis": axis,
            "is_sorted": True,
        }
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True
        )
        indices = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        inverse = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        counts = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        outputs = {
            "Out": out,
            "Indices": indices,
            "Index": inverse,
            "Counts": counts,
        }
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
Z
Zhang Ting 已提交
2536

2537 2538 2539
        helper.append_op(
            type="unique", inputs={"X": x}, attrs=attrs, outputs=outputs
        )
Z
Zhang Ting 已提交
2540

2541 2542
        if len(outs) == 1:
            return outs[0]
Z
Zhang Ting 已提交
2543

2544
        return tuple(outs)
Z
Zhang Ting 已提交
2545 2546


2547
def unsqueeze(x, axis, name=None):
2548
    """
2549 2550 2551
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
2552

2553 2554
    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2555 2556
    please use `Tensor.clone` like ``unsqueeze_clone_x = x.unsqueeze(-1).clone()``.

2557
    Args:
2558
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: bfloat16, float16, float32, float64, bool, int8, int32, int64.
2559
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` .
2560
                                    If ``axis`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
2561 2562 2563
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
2564 2565

    Returns:
L
Ligoml 已提交
2566
        Tensor, Unsqueezed Tensor with the same data type as input Tensor.
2567 2568 2569

    Examples:
        .. code-block:: python
2570

2571 2572
            import paddle

2573 2574
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
2575

2576 2577
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
2578 2579

            out2 = paddle.unsqueeze(x, axis=[0, 2])
2580
            print(out2.shape)  # [1, 5, 1, 10]
2581

L
Leo Chen 已提交
2582
            axis = paddle.to_tensor([0, 1, 2])
2583
            out3 = paddle.unsqueeze(x, axis=axis)
2584
            print(out3.shape)  # [1, 1, 1, 5, 10]
2585 2586 2587 2588 2589 2590

            # out1, out2, out3 share data with x in dygraph mode
            x[0, 0] = 10.
            print(out1[0, 0, 0]) # [10.]
            print(out2[0, 0, 0, 0]) # [10.]
            print(out3[0, 0, 0, 0, 0]) # [10.]
2591

2592
    """
2593 2594
    input = x
    axes = axis
2595
    if in_dygraph_mode():
2596 2597 2598
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
2599
            axes = axes.tolist()
2600 2601
        elif isinstance(axes, (list, tuple)):
            axes = [
2602
                item.item(0) if isinstance(item, Variable) else item
2603 2604
                for item in axes
            ]
2605
        return _C_ops.unsqueeze(input, axes)
2606 2607 2608 2609 2610 2611
    else:
        check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
        check_variable_and_dtype(
            input,
            'input',
            [
2612
                'uint16',
2613
                'float16',
2614
                'uint16',
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
                'float32',
                'float64',
                'bool',
                'int8',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'unsqueeze',
        )
        helper = LayerHelper("unsqueeze2", **locals())
        inputs = {"X": input}
        attrs = {}
2630

2631 2632 2633 2634 2635 2636
        if isinstance(axes, int):
            axes = [axes]
        if isinstance(axes, Variable):
            axes.stop_gradient = True
            inputs["AxesTensor"] = axes
        elif isinstance(axes, (list, tuple)):
2637 2638 2639 2640
            if paddle.utils._contain_var(axes):
                inputs["AxesTensorList"] = paddle.utils._convert_to_tensor_list(
                    axes
                )
2641 2642
            else:
                attrs["axes"] = axes
2643

2644 2645 2646 2647 2648 2649 2650 2651
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type="unsqueeze2",
            inputs=inputs,
            attrs=attrs,
            outputs={"Out": out, "XShape": x_shape},
        )
2652

2653
        return out
2654 2655


2656
@inplace_apis_in_dygraph_only
2657 2658 2659 2660 2661
def unsqueeze_(x, axis, name=None):
    """
    Inplace version of ``unsqueeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_unsqueeze`.
    """
2662 2663 2664 2665 2666
    input = x
    axes = axis
    if isinstance(axes, int):
        axes = [axes]
    elif isinstance(axes, Variable):
2667
        axes = axes.tolist()
2668 2669
    elif isinstance(axes, (list, tuple)):
        axes = [
2670
            item.item(0) if isinstance(item, Variable) else item
2671
            for item in axes
2672
        ]
2673
    return _C_ops.unsqueeze_(input, axes)
2674 2675


2676
def gather(x, index, axis=None, name=None):
2677
    """
2678 2679
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
2680 2681 2682 2683 2684 2685

    .. code-block:: text


                Given:

2686
                x = [[1, 2],
2687 2688 2689
                     [3, 4],
                     [5, 6]]

2690 2691
                index = [1, 2]
                axis=[0]
2692 2693 2694

                Then:

2695
                out = [[3, 4],
2696
                       [5, 6]]
2697

2698
    Args:
2699
        x (Tensor): The source input tensor with rank>=1. Supported data type is
2700 2701
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
2702
        index (Tensor): The index input tensor with rank=0 or rank=1. Data type is int32 or int64.
2703
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
2704 2705
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
2706 2707

    Returns:
2708
        output (Tensor), If the index is a 1-D tensor, the output is a tensor with the same shape as ``x``. If the index is a 0-D tensor, the output will reduce the dimension where the axis pointing.
2709

2710 2711 2712 2713 2714 2715
    Examples:

        .. code-block:: python

            import paddle

2716 2717
            input = paddle.to_tensor([[1,2],[3,4],[5,6]])
            index = paddle.to_tensor([0,1])
2718 2719
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
2720
    """
2721 2722
    if axis is None:
        axis = 0
2723

2724
    if in_dygraph_mode():
2725
        return _C_ops.gather(x, index, axis)
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
    else:
        check_variable_and_dtype(
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'uint8',
            ],
            'gather',
2740
        )
2741
        check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
2742

2743 2744
        if isinstance(axis, Variable):
            check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')
2745

2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
        helper = LayerHelper('gather', **locals())
        dtype = helper.input_dtype('x')
        out = helper.create_variable_for_type_inference(dtype)
        if not isinstance(axis, Variable):
            helper.append_op(
                type="gather",
                inputs={"X": x, "Index": index},
                attrs={'axis': axis, 'overwrite': False},
                outputs={"Out": out},
            )
        else:
            helper.append_op(
                type="gather",
                inputs={"X": x, "Index": index, "Axis": axis},
                attrs={"overwrite": False},
                outputs={"Out": out},
            )
2763

2764
        return out
myq406450149's avatar
myq406450149 已提交
2765 2766 2767 2768


def unbind(input, axis=0):
    """
S
swtkiwi 已提交
2769

myq406450149's avatar
myq406450149 已提交
2770
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
2771

myq406450149's avatar
myq406450149 已提交
2772
    Args:
L
Leo Chen 已提交
2773
        input (Tensor): The input variable which is an N-D Tensor, data type being bool, float16, float32, float64, int32 or int64.
2774
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind.
2775
            If :math:`axis < 0`, the dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
myq406450149's avatar
myq406450149 已提交
2776
    Returns:
L
Ligoml 已提交
2777
        list(Tensor), The list of segmented Tensor variables.
myq406450149's avatar
myq406450149 已提交
2778 2779 2780

    Example:
        .. code-block:: python
2781

myq406450149's avatar
myq406450149 已提交
2782
            import paddle
2783

C
Chen Long 已提交
2784 2785
            # input is a Tensor which shape is [3, 4, 5]
            input = paddle.rand([3, 4, 5])
2786

2787
            [x0, x1, x2] = paddle.unbind(input, axis=0)
myq406450149's avatar
myq406450149 已提交
2788 2789 2790
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
C
Chen Long 已提交
2791

2792
            [x0, x1, x2, x3] = paddle.unbind(input, axis=1)
myq406450149's avatar
myq406450149 已提交
2793 2794 2795 2796 2797
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]
    """
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
    if not isinstance(axis, (int)):
        raise TypeError(
            "The type of 'axis'  must be int, but received %s." % (type(axis))
        )

    if axis not in range(-input.ndim, input.ndim):
        raise ValueError(
            f'The axis must in range({-input.ndim}, {input.ndim}).'
        )

2808
    if in_dygraph_mode():
2809
        return _C_ops.unbind(input, axis)
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
    else:
        if isinstance(axis, np.generic):
            axis = np.asscalar(axis)
        input_shape = input.shape
        axis_ = axis if axis >= 0 else len(input_shape) + axis
        num = input_shape[axis_]
        helper = LayerHelper("unbind", **locals())
        check_type(input, 'input', (Variable), 'unbind')
        dtype = helper.input_dtype()
        check_dtype(
张春乔 已提交
2820 2821
            dtype,
            'unbind',
2822 2823 2824 2825 2826 2827 2828 2829 2830
            [
                'bool',
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
张春乔 已提交
2831
            'unbind',
2832
        )
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
        outs = [
            helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
            for i in range(num)
        ]
        helper.append_op(
            type="unbind",
            inputs={"X": input},
            outputs={"Out": outs},
            attrs={"axis": axis},
        )
        return outs
L
lilong12 已提交
2846 2847


S
ShenLiang 已提交
2848 2849 2850 2851
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
2852

S
ShenLiang 已提交
2853
    .. code-block:: python
2854

H
hg-1099255210 已提交
2855
        import paddle
S
ShenLiang 已提交
2856
        #input:
H
hg-1099255210 已提交
2857 2858
        x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
        index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
S
ShenLiang 已提交
2859 2860
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
H
hg-1099255210 已提交
2861
        updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
S
ShenLiang 已提交
2862 2863 2864 2865
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
H
hg-1099255210 已提交
2866
                x[index[i]] = paddle.zeros([2])
S
ShenLiang 已提交
2867 2868 2869 2870 2871 2872
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
H
hg-1099255210 已提交
2873
        out = paddle.to_tensor([[3, 3], [6, 6], [1, 1]])
S
ShenLiang 已提交
2874 2875
        out.shape # [3, 2]

2876
    **NOTICE**: The order in which updates are applied is nondeterministic,
S
ShenLiang 已提交
2877 2878 2879 2880
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
2881 2882
        index (Tensor): The index is a 1-D or 0-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): Update input with updates parameter based on index. When the index is a 1-D tensor, the updates shape should be the same as input, and dim value with dim > 1 should be the same as input. When the index is a 0-D tensor, the updates should be a (N-1)-D tensor, the ith dim of the updates should be queal with the (i+1)th dim of the input.
H
hg-1099255210 已提交
2883
        overwrite (bool, optional): The mode that updating the output when there are same indices.
2884

S
sunzhongkai588 已提交
2885
            If True, use the overwrite mode to update the output of the same index,
H
hg-1099255210 已提交
2886
            if False, use the accumulate mode to update the output of the same index. Default value is True.
2887

S
ShenLiang 已提交
2888
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2889

S
ShenLiang 已提交
2890
    Returns:
L
Ligoml 已提交
2891
        Tensor, The output is a Tensor with the same shape as x.
S
ShenLiang 已提交
2892 2893 2894

    Examples:
        .. code-block:: python
2895

S
ShenLiang 已提交
2896 2897
            import paddle

2898 2899 2900
            x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
            index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
            updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
2901

S
ShenLiang 已提交
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
J
Jiabin Yang 已提交
2922
    if in_dygraph_mode():
2923
        return _C_ops.scatter(x, index, updates, overwrite)
J
Jiabin Yang 已提交
2924
    else:
2925 2926 2927
        check_variable_and_dtype(
            x,
            'dtype',
Z
zxcd 已提交
2928
            ['float32', 'float64', 'float16', 'int32', 'int64', 'uint16'],
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
            'scatter',
        )
        check_type(overwrite, 'overwrite', bool, 'scatter')
        helper = LayerHelper('scatter', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type="scatter",
            inputs={"X": x, "Ids": index, "Updates": updates},
            attrs={'overwrite': overwrite},
            outputs={"Out": out},
        )
        return out
S
ShenLiang 已提交
2941 2942


2943
@inplace_apis_in_dygraph_only
2944 2945 2946 2947 2948
def scatter_(x, index, updates, overwrite=True, name=None):
    """
    Inplace version of ``scatter`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_scatter`.
    """
2949
    return _C_ops.scatter_(x, index, updates, overwrite)
2950 2951


2952
def scatter_nd_add(x, index, updates, name=None):
2953
    r"""
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994

    Output is obtained by applying sparse addition to a single value
    or slice in a Tensor.

    :attr:`x` is a Tensor with ndim :math:`R`
    and :attr:`index` is a Tensor with ndim :math:`K` . Thus, :attr:`index`
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
    is a Tensor with ndim :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + x.shape[index.shape[-1]:]` .

    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`x` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text

        Given:

        * Case 1:
            x = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:

            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            x = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            x.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:

            output = [[67, 19], [-16, -27]]

    Args:
Z
Zeng Jinle 已提交
2995
        x (Tensor): The x input. Its dtype should be int32, int64, float32, float64.
2996 2997 2998 2999 3000 3001 3002
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= x.ndim.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd_add op, and it must have the same dtype
                            as x. It must have the shape index.shape[:-1] + x.shape[index.shape[-1]:].
        name (str|None): The output tensor name. If set None, the layer will be named automatically.

    Returns:
L
Ligoml 已提交
3003
        output (Tensor), The output is a tensor with the same shape and dtype as x.
3004 3005 3006 3007 3008 3009 3010 3011 3012

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32')
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
C
Chen Long 已提交
3013 3014 3015
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype='int64')
3016

3017
            output = paddle.scatter_nd_add(x, index, updates)
C
Chen Long 已提交
3018 3019
            print(output.shape)
            # [3, 5, 9, 10]
3020
    """
3021
    if in_dygraph_mode():
3022
        return _C_ops.scatter_nd_add(x, index, updates)
3023
    else:
3024 3025
        if x.dtype != updates.dtype:
            raise ValueError("x and updates must have same data type.")
3026

3027 3028 3029 3030 3031 3032 3033 3034 3035
        helper = LayerHelper('scatter_nd_add', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        output = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="scatter_nd_add",
            inputs={"X": x, "Index": index, "Updates": updates},
            outputs={"Out": output},
        )
        return output
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)`
    is equal to :code:`scatter_nd_add(paddle.zeros(shape, updates.dtype), index, updates)` .
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated.
    Because of the numerical approximation issues, the different order of repeated elements
    in :attr:`index` may cause different results. The specific calculation method can be
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
3052
        index (Tensor): The index input with ndim >= 1 and index.shape[-1] <= len(shape).
3053 3054 3055 3056 3057 3058 3059
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd op. Its dtype should be float32, float64.
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
        name (str|None): The output Tensor name. If set None, the layer will be named automatically.

    Returns:
L
Ligoml 已提交
3060
        output (Tensor), The output is a tensor with the same type as :attr:`updates` .
3061 3062 3063 3064 3065 3066 3067

    Examples:

        .. code-block:: python

            import paddle

3068 3069 3070
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype="int64")
3071 3072 3073 3074 3075 3076
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
            shape = [3, 5, 9, 10]

            output = paddle.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)
3077 3078


3079 3080 3081
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
3082

3083 3084 3085
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
3086 3087
        axis (int|Tensor, optional): The axis along which to split, it can be a integer or a ``0-D Tensor``
            with shape [] and data type  ``int32`` or ``int64``.
3088 3089 3090 3091
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
L
Ligoml 已提交
3092
        list(Tensor), The list of segmented Tensors.
3093

3094
    Examples:
3095
        .. code-block:: python
3096

3097
            import paddle
3098

3099
            x = paddle.rand([3, 9, 5])
3100

3101
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=1)
3102 3103 3104 3105
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

3106

3107 3108 3109 3110 3111 3112 3113 3114
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
3115
    return split(x, num_or_sections=chunks, axis=axis, name=name)
3116 3117


L
lilong12 已提交
3118 3119
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
3120 3121

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
3122
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
3123 3124 3125

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
3126
    Args:
I
Infinity_lee 已提交
3127
        x (Tensor): The input tensor, its data type should be bool, float16, float32, float64, int32 or int64.
3128
        repeat_times (list|tuple|Tensor): The number of repeating times. If repeat_times is a list or tuple, all its elements
L
lilong12 已提交
3129 3130 3131
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
3132
    Returns:
3133
        N-D Tensor. The data type is the same as ``x``. The size of the i-th dimension is equal to ``x[i] * repeat_times[i]``.
L
lilong12 已提交
3134

L
lilong12 已提交
3135 3136
    Examples:
        .. code-block:: python
L
lilong12 已提交
3137

L
lilong12 已提交
3138
            import paddle
L
lilong12 已提交
3139

3140
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3141
            out = paddle.tile(data, repeat_times=[2, 1])
3142 3143 3144 3145
            print(out)
            # Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3],
            #         [1, 2, 3]])
L
lilong12 已提交
3146

3147
            out = paddle.tile(data, repeat_times=(2, 2))
3148 3149 3150 3151
            print(out)
            # Tensor(shape=[2, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3, 1, 2, 3],
            #         [1, 2, 3, 1, 2, 3]])
L
lilong12 已提交
3152

3153
            repeat_times = paddle.to_tensor([1, 2], dtype='int32')
L
lilong12 已提交
3154
            out = paddle.tile(data, repeat_times=repeat_times)
3155 3156 3157
            print(out)
            # Tensor(shape=[1, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3, 1, 2, 3]])
L
lilong12 已提交
3158
    """
H
hong 已提交
3159
    if in_dygraph_mode():
3160
        if isinstance(repeat_times, core.eager.Tensor):
3161 3162 3163
            assert (
                repeat_times.ndim == 1
            ), "Only support ndim == 1 while repeat_times is a Tensor."
3164
            repeat_times = repeat_times.tolist()
3165

3166
        return _C_ops.tile(x, repeat_times)
3167
    else:
3168 3169 3170 3171 3172
        check_type(
            repeat_times, 'repeat_times', (list, tuple, Variable), 'tile'
        )
        if isinstance(repeat_times, Variable):
            assert (
3173 3174
                repeat_times.numel() == 1
            ), 'repeat_times must be a Tensor with one element.'
3175 3176 3177 3178
        else:
            for elem in repeat_times:
                if isinstance(elem, Variable):
                    assert (
3179 3180
                        elem.numel() == 1
                    ), 'Elements in repeat_times must be Tensor with one element or integers.'
3181 3182 3183 3184
                else:
                    type_tuple = (int, np.int32, np.int64)
                    assert isinstance(
                        elem, type_tuple
3185
                    ), 'Elements in repeat_times must be Tensor with one element or integers.'
3186

3187
        check_variable_and_dtype(
I
Infinity_lee 已提交
3188 3189
            x,
            'x',
Y
yangjianfengo1 已提交
3190 3191 3192
            [
                'bool',
                'float16',
Y
yangjianfengo1 已提交
3193
                'uint16',
Y
yangjianfengo1 已提交
3194 3195 3196 3197 3198
                'float32',
                'float64',
                'int32',
                'int64',
            ],
I
Infinity_lee 已提交
3199
            'tile',
3200
        )
3201 3202 3203 3204 3205 3206
        if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
            raise ValueError(
                "When the date type is bool for the input 'x' of tile op, you "
                "must set its stop_gradient to be True by "
                "some_var.stop_gradient == True supporting some_var is the input."
            )
3207

3208
        helper = LayerHelper('tile', **locals())
L
lilong12 已提交
3209

3210 3211
        inputs = {"X": [x]}
        attrs = {}
L
lilong12 已提交
3212

3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
        def get_attr_repeat_times(list_repeat_times):
            attrs_repeat_times = []
            for idx, times in enumerate(list_repeat_times):
                if isinstance(times, Variable):
                    attrs_repeat_times.append(-1)
                else:
                    attrs_repeat_times.append(times)
                    assert (
                        times > 0
                    ), "All elements in repeat_times must be positive for tile."
            return attrs_repeat_times

        if isinstance(repeat_times, Variable):
            repeat_times.stop_gradient = True
            inputs['RepeatTimes'] = repeat_times
            attrs['repeat_times'] = [-1]
        elif isinstance(repeat_times, (list, tuple)):
            attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
3231 3232 3233 3234
            if paddle.utils._contain_var(repeat_times):
                inputs[
                    'repeat_times_tensor'
                ] = paddle.utils._convert_to_tensor_list(repeat_times)
L
lilong12 已提交
3235

3236 3237 3238 3239 3240 3241
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='tile', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
3242 3243


L
lilong12 已提交
3244 3245 3246 3247 3248
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

3249
    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 0.
L
lilong12 已提交
3250 3251 3252

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
3253
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
3254 3255 3256
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
3257
        N-D Tensor, A Tensor with the same shape as ``y``. The data type is the same as ``x``.
L
lilong12 已提交
3258 3259 3260 3261 3262 3263

    Examples:
        .. code-block:: python

            import paddle

3264 3265
            data_x = paddle.to_tensor([1, 2, 3], 'int32')
            data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
L
lilong12 已提交
3266
            out = paddle.expand_as(data_x, data_y)
3267 3268 3269 3270
            print(out)
            # Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3],
            #         [1, 2, 3]])
L
lilong12 已提交
3271
    """
H
hong 已提交
3272
    if in_dygraph_mode():
3273
        return _C_ops.expand_as(x, None, y.shape)
3274 3275 3276 3277 3278 3279 3280 3281
    else:
        check_variable_and_dtype(
            x,
            'x',
            ['bool', 'float32', 'float64', 'int32', 'int64'],
            'expand_as',
        )
        check_type(y, 'y', Variable, 'expand_as')
H
hong 已提交
3282

3283 3284 3285 3286 3287 3288 3289 3290
        if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
            raise ValueError(
                "When the data type of input 'x' for expand_as is bool, "
                "you must set its stop_gradient to be False by "
                "some_var.stop_gradient = True, supporting "
                "some_var as the input 'x'."
            )
        inputs = {"X": [x], "Y": [y]}
L
lilong12 已提交
3291

3292 3293 3294 3295 3296 3297 3298 3299
        helper = LayerHelper('expand_as', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='expand_as_v2',
            inputs=inputs,
            attrs={'target_shape': y.shape},
            outputs={'Out': out},
3300
        )
3301
        return out
L
lilong12 已提交
3302 3303


3304 3305 3306 3307 3308
def broadcast_to(x, shape, name=None):
    """

    Broadcast the input tensor to a given shape.

3309
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to broadcast to must have a value 0.
3310 3311 3312


    Args:
张春乔 已提交
3313
        x (Tensor): The input tensor, its data type is bool, float16, float32, float64, int32 or int64.
3314
        shape (list|tuple|Tensor): The result shape after broadcasting. The data type is int32. If shape is a list or tuple, all its elements
3315
            should be integers or 0-D or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
3316
            The value -1 in shape means keeping the corresponding dimension unchanged.
3317
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3318
    Returns:
L
Ligoml 已提交
3319
        N-D Tensor, A Tensor with the given shape. The data type is the same as ``x``.
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([1, 2, 3], dtype='int32')
            out = paddle.broadcast_to(data, shape=[2, 3])
            print(out)
            # [[1, 2, 3], [1, 2, 3]]
    """
3331
    if in_dygraph_mode():
3332
        return _C_ops.expand(x, shape)
3333
    else:
3334 3335 3336
        if isinstance(shape, Variable):
            assert len(shape.shape) == 1, 'shape must be an 1-D Tensor.'
        else:
3337
            type_tuple = (int, np.int32, np.int64)
3338 3339 3340 3341 3342 3343 3344 3345 3346
            for elem in shape:
                if isinstance(elem, Variable):
                    assert (
                        len(elem.shape) == 1
                    ), 'Elements in shape must be 1-D Tensors or integers.'
                else:
                    assert isinstance(
                        elem, type_tuple
                    ), 'Elements in shape must be 1-D Tensors or integers.'
3347

3348 3349 3350
        check_variable_and_dtype(
            x,
            'x',
X
xiaoguoguo626807 已提交
3351
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
3352
            'broadcast_to',
3353
        )
3354 3355 3356 3357 3358 3359 3360 3361
        check_type(shape, 'shape', (list, tuple, Variable), 'broadcast_to')
        if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
            raise ValueError(
                "When the data type of input 'x' for broadcast_to is bool, "
                "you must set its stop_gradient to be False by "
                "some_var.stop_gradient = True, supporting "
                "some_var as the input."
            )
3362

3363 3364
        inputs = {"X": [x]}
        attrs = {}
3365

3366
        helper = LayerHelper('expand', **locals())
3367

3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
        def get_attr_expand_shape(list_expand_shape):
            attrs_expand_shape = []
            for idx, shape in enumerate(list_expand_shape):
                if isinstance(shape, Variable):
                    attrs_expand_shape.append(-1)
                else:
                    attrs_expand_shape.append(shape)
                    assert (
                        shape > 0 or shape == -1
                    ), "All elements in shape of broadcast_to must be positive or -1."
            return attrs_expand_shape
3379

3380 3381 3382 3383 3384
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs['Shape'] = shape
        elif isinstance(shape, (list, tuple)):
            attrs['shape'] = get_attr_expand_shape(shape)
3385 3386 3387 3388
            if paddle.utils._contain_var(shape):
                inputs[
                    'expand_shapes_tensor'
                ] = paddle.utils._convert_to_tensor_list(shape)
3389

3390 3391 3392 3393 3394 3395
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
3396 3397


3398 3399 3400 3401 3402
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

3403
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. And the number of dimensions of ``x`` should be less than the number of elements in ``shape``. The dimension to expand must have a value 0.
3404 3405

    Args:
C
Chen Long 已提交
3406
        x (Tensor): The input Tensor, its data type is bool, float32, float64, int32 or int64.
L
lilong12 已提交
3407
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
3408
            should be integers or 0-D or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
L
lilong12 已提交
3409
            The value -1 in shape means keeping the corresponding dimension unchanged.
3410 3411 3412
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
3413
        N-D Tensor, A Tensor with the given shape. The data type is the same as ``x``.
3414 3415 3416 3417 3418 3419

    Examples:
        .. code-block:: python

            import paddle

3420
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3421
            out = paddle.expand(data, shape=[2, 3])
3422
            print(out)
3423 3424
            # [[1, 2, 3], [1, 2, 3]]
    """
H
hong 已提交
3425
    if in_dygraph_mode():
3426
        return _C_ops.expand(x, shape)
3427
    else:
3428
        if isinstance(shape, Variable):
3429
            assert shape.numel() == 1, 'shape must be a Tensor with one element'
3430 3431 3432 3433
        else:
            for elem in shape:
                if isinstance(elem, Variable):
                    assert (
3434 3435
                        elem.numel() == 1
                    ), 'Elements in shape must be Tensor with one element or integers.'
3436 3437 3438 3439
                else:
                    type_tuple = (int, np.int32, np.int64)
                    assert isinstance(
                        elem, type_tuple
3440
                    ), 'Elements in shape must be Tensor with one element or integers.'
3441

3442 3443 3444
        check_variable_and_dtype(
            x,
            'x',
3445 3446 3447 3448 3449 3450 3451 3452 3453
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
3454
            'expand',
3455
        )
3456 3457 3458 3459 3460 3461 3462 3463
        check_type(shape, 'shape', (list, tuple, Variable), 'expand')
        if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
            raise ValueError(
                "When the data type of input 'x' for expand is bool, "
                "you must set its stop_gradient to be False by "
                "some_var.stop_gradient = True, supporting "
                "some_var as the input."
            )
3464

3465 3466
        inputs = {"X": [x]}
        attrs = {}
3467

3468
        helper = LayerHelper('expand', **locals())
3469

3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
        def get_attr_expand_shape(list_expand_shape):
            attrs_expand_shape = []
            for idx, shape in enumerate(list_expand_shape):
                if isinstance(shape, Variable):
                    attrs_expand_shape.append(-2)
                else:
                    attrs_expand_shape.append(shape)
                    assert (
                        shape > 0 or shape == -1
                    ), "All elements in shape of expand must be positive or -1."
            return attrs_expand_shape
3481

3482 3483 3484 3485 3486
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs['Shape'] = shape
        elif isinstance(shape, (list, tuple)):
            attrs['shape'] = get_attr_expand_shape(shape)
3487 3488 3489 3490
            if paddle.utils._contain_var(shape):
                inputs[
                    'expand_shapes_tensor'
                ] = paddle.utils._convert_to_tensor_list(shape)
3491

3492 3493 3494 3495 3496 3497
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
L
lilong12 已提交
3498 3499


3500 3501
def reshape(x, shape, name=None):
    """
3502
    Changes the shape of ``x`` without changing its data.
3503

3504
    Note that the output Tensor will share data with origin Tensor and doesn't
3505 3506
    have a Tensor copy in ``dygraph`` mode.
    If you want to use the Tensor copy version, please use `Tensor.clone` like
3507 3508
    ``reshape_clone_x = x.reshape([-1]).clone()``.

3509 3510
    Some tricks exist when specifying the target shape.

3511
        - 1. -1 means the value of this dimension is inferred from the total element number of x and remaining dimensions. Thus one and only one dimension can be set -1.
3512

3513
        - 2. 0 means the actual dimension value is going to be copied from the corresponding dimension of x. The index of 0s in shape can not exceed the dimension of x.
3514 3515 3516

    Here are some examples to explain it.

3517
        - 1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [6, 8], the reshape operator will transform x into a 2-D tensor with shape [6, 8] and leaving x's data unchanged.
3518

3519
        - 2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape specified is [2, 3, -1, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this case, one dimension of the target shape is set to -1, the value of this dimension is inferred from the total element number of x and remaining dimensions.
3520

3521
        - 3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case, besides -1, 0 means the actual dimension value is going to be copied from the corresponding dimension of x.
3522 3523

    Args:
3524 3525
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        shape (list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
3526
                        The data type is ``int32`` . If ``shape`` is a list or tuple, each element of it should be integer or Tensor with shape [].
3527
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
3528
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3529 3530

    Returns:
L
Ligoml 已提交
3531
        Tensor, A reshaped Tensor with the same data type as ``x``.
3532 3533 3534 3535 3536 3537

    Examples:
        .. code-block:: python

            import paddle

3538 3539
            x = paddle.rand([2, 4, 6], dtype="float32")
            positive_four = paddle.full([1], 4, "int32")
3540

3541 3542 3543
            out = paddle.reshape(x, [-1, 0, 3, 2])
            print(out)
            # the shape is [2,4,3,2].
3544

3545 3546
            out = paddle.reshape(x, shape=[positive_four, 12])
            print(out)
3547
            # the shape of out_2 is [4, 12].
3548

3549
            shape_tensor = paddle.to_tensor([8, 6], dtype=paddle.int32)
3550
            out = paddle.reshape(x, shape=shape_tensor)
3551
            print(out.shape)
3552
            # the shape is [8, 6].
3553 3554 3555 3556 3557
            # out shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(out[0, 0])
            # the value is [10.]

3558
    """
3559 3560
    if in_dygraph_mode():
        if isinstance(shape, (list, tuple)):
3561 3562 3563 3564 3565 3566 3567 3568
            new_shape = []
            for ele in shape:
                if isinstance(ele, core.eager.Tensor):
                    new_shape.append(ele.item())
                else:
                    new_shape.append(ele)

            if new_shape == x.shape:
3569 3570
                out = x
            else:
3571
                out = _C_ops.reshape(x, new_shape)
3572
        elif isinstance(shape, core.eager.Tensor):
3573
            shape.stop_gradient = True
3574
            out = _C_ops.reshape(x, shape)
3575 3576 3577
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
3578 3579
                " got '{}.'".format(type(shape))
            )
3580

3581
        return out
3582
    else:
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
        check_variable_and_dtype(
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'bool',
                'uint16',
            ],
            'reshape',
        )
        check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
3599

3600 3601 3602 3603 3604 3605
        def get_attr_shape(list_shape):
            unk_dim_idx = -1
            attrs_shape = []
            for dim_idx, dim_size in enumerate(list_shape):
                if isinstance(dim_size, Variable):
                    attrs_shape.append(-1)
3606
                else:
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
                    attrs_shape.append(dim_size)
                    if dim_size == -1:
                        assert unk_dim_idx == -1, (
                            "Only one dimension value of 'shape' in reshape can "
                            "be -1. But received shape[%d] is also -1.\n"
                            "\n\t# N = x.shape()[2]\t\t# N is an int. "
                            "(NOT recommend under @to_static)\n\tN = paddle.shape(x)[2]\t\t"
                            "# N is a Tensor. (Recommend)\n\tz = paddle.reshape([N, -1, 4])"
                            "\t# z.shape is [-1, -1, 4]\n\n"
                            "    If your target shape in Reshape represents dynamic shape, "
                            "please turn it into a Tensor under @to_static. See above example for details."
                            % dim_idx
                        )
                        unk_dim_idx = dim_idx
                    elif dim_size == 0:
                        assert dim_idx < len(x.shape), (
                            "The index of 0 in `shape` must be less than "
                            "the input tensor X's dimensions. "
                            "But received shape[%d] = 0, X's dimensions = %d."
                            % (dim_idx, len(x.shape))
                        )
                    else:
                        assert dim_size > 0, (
                            "Each dimension value of 'shape' in reshape must not "
                            "be negative except one unknown dimension. "
                            "But received shape[%d] = %s."
                            % (dim_idx, str(dim_size))
                        )
            return attrs_shape

        inputs = {"X": x}
        attrs = {}
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs["Shape"] = shape
        elif isinstance(shape, (list, tuple)):
            attrs["shape"] = get_attr_shape(shape)
3644 3645 3646 3647
            if paddle.utils._contain_var(shape):
                inputs['ShapeTensor'] = paddle.utils._convert_to_tensor_list(
                    shape
                )
3648

3649
        helper = LayerHelper("reshape2", **locals())
3650 3651 3652 3653 3654 3655 3656
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="reshape2",
            inputs=inputs,
            attrs=attrs,
            outputs={"Out": out, "XShape": x_shape},
3657
        )
3658

3659
        return out
3660 3661


3662
@inplace_apis_in_dygraph_only
3663 3664 3665 3666 3667
def reshape_(x, shape, name=None):
    """
    Inplace version of ``reshape`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_reshape`.
    """
3668 3669 3670 3671
    if in_dygraph_mode():
        tmp_tensor_type = core.eager.Tensor
        if isinstance(shape, (list, tuple)):
            shape = [
3672
                item.item(0) if isinstance(item, tmp_tensor_type) else item
3673
                for item in shape
3674
            ]
3675 3676 3677 3678
            if shape == x.shape:
                out = x
            else:
                out = _C_ops.reshape_(x, shape)
3679 3680
        elif isinstance(shape, tmp_tensor_type):
            shape.stop_gradient = True
3681
            out = _C_ops.reshape_(x, shape)
3682 3683 3684
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
3685 3686
                " got '{}.'".format(type(shape))
            )
3687

3688
        return out
3689 3690


3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
3710 3711 3712 3713 3714 3715 3716
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
3717 3718 3719 3720

            * Case 1:
                index = [[1]]

3721 3722
                gather_nd(x, index)
                         = [x[1, :, :]]
3723 3724 3725 3726 3727 3728 3729
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

3730 3731
                gather_nd(x, index)
                         = [x[0, 2, :]]
3732 3733 3734 3735 3736
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

3737 3738
                gather_nd(x, index)
                         = [x[1, 2, 3]]
3739 3740 3741
                         = [23]

    Args:
张春乔 已提交
3742
        x (Tensor): The input Tensor which it's data type should be bool, float16, float32, float64, int32, int64.
3743 3744
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
3745
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3746 3747

    Returns:
L
Ligoml 已提交
3748
        output (Tensor), A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
3749

3750 3751 3752
    Examples:

        .. code-block:: python
3753

3754
            import paddle
3755

3756 3757 3758
            x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]],
                                  [[7, 8], [9, 10], [11, 12]]])
            index = paddle.to_tensor([[0, 1]])
3759

3760 3761 3762
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """
3763
    if in_dygraph_mode():
3764
        return _C_ops.gather_nd(x, index)
3765
    else:
3766 3767 3768
        check_variable_and_dtype(
            x,
            'x',
张春乔 已提交
3769 3770 3771
            [
                'bool',
                'float16',
3772
                'uint16',
张春乔 已提交
3773 3774 3775 3776 3777 3778
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
            ],
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
            'gather_np',
        )
        check_variable_and_dtype(
            index, 'index', ['int32', 'int64'], 'gather_np'
        )
        helper = LayerHelper('gather_nd', **locals())
        dtype = helper.input_dtype()
        output = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="gather_nd",
            inputs={"X": x, "Index": index},
            outputs={"Out": output},
        )
        return output
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840


def strided_slice(x, axes, starts, ends, strides, name=None):
    """
    This operator produces a slice of ``x`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
                strides = [1, 1]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
                strides = [1, 3]
            Then:
                result = [ [2], ]
3841

3842
    Args:
3843
        x (Tensor): An N-D ``Tensor``. The data type is ``bool``, ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
3844 3845
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
3846 3847 3848 3849 3850 3851 3852 3853 3854
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of it should be
            integers or Tensors with shape []. If ``starts`` is an Tensor, it should be an 1-D Tensor.
            It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of it should be
            integers or Tensors with shape []. If ``ends`` is an Tensor, it should be an 1-D Tensor.
            It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Tensor): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of it should be
            integers or Tensors with shape []. If ``strides`` is an Tensor, it should be an 1-D Tensor.
            It represents slice step of corresponding axis in ``axes``.
3855 3856 3857 3858
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
3859
        Tensor, A ``Tensor`` with the same dimension as ``x``. The data type is same as ``x``.
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.zeros(shape=[3,4,5,6], dtype="float32")
            # example 1:
            # attr starts is a list which doesn't contain Tensor.
            axes = [1, 2, 3]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = paddle.strided_slice(x, axes=axes, starts=starts, ends=ends, strides=strides_1)
3874
            # sliced_1 is x[:, 1:3:1, 0:2:1, 2:4:1].
3875 3876
            # example 2:
            # attr starts is a list which contain tensor Tensor.
3877
            minus_3 = paddle.full(shape=[1], fill_value=-3, dtype='int32')
3878 3879 3880
            sliced_2 = paddle.strided_slice(x, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is x[:, 1:3:1, 0:2:1, 2:4:2].
    """
3881
    if in_dygraph_mode():
3882
        return _C_ops.strided_slice(x, axes, starts, ends, strides)
3883 3884
    else:
        helper = LayerHelper('strided_slice', **locals())
3885

3886 3887 3888
        check_variable_and_dtype(
            x,
            'x',
3889 3890 3891 3892 3893 3894 3895 3896 3897
            [
                'bool',
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
            'strided_slice',
        )
        check_type(axes, 'axes', (list, tuple), 'strided_slice')
        check_type(starts, 'starts', (list, tuple, Variable), 'strided_slice')
        check_type(ends, 'ends', (list, tuple, Variable), 'strided_slice')
        check_type(strides, 'strides', (list, tuple, Variable), 'strided_slice')

        def check_list_elements_dtype(list_input, input_name):
            if isinstance(list_input, Variable):
                check_dtype(
W
wanghuancoder 已提交
3908 3909 3910 3911
                    list_input.dtype,
                    input_name,
                    ['int32', 'int64'],
                    'strided_slice',
3912
                )
3913
            else:
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
                for i, var in enumerate(list_input):
                    var_name = input_name + '[' + str(i) + ']'
                    if isinstance(var, Variable):
                        check_dtype(
                            var.dtype, var_name, ['int32'], 'strided_slice'
                        )

        check_list_elements_dtype(axes, 'axes')
        check_list_elements_dtype(starts, 'starts')
        check_list_elements_dtype(ends, 'ends')
        check_list_elements_dtype(strides, 'strides')

        def get_new_list_tensor(old_list):
            new_list_tensor = []
            for dim in old_list:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_list_tensor.append(dim)
                else:
                    assert isinstance(dim, int)
                    temp_out = helper.create_variable_for_type_inference(
                        'int32'
                    )
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out
                    )
                    new_list_tensor.append(temp_out)
            return new_list_tensor
3942 3943

        inputs = {'Input': x}
3944
        attrs = {'axes': axes}
3945
        infer_flags = [1 for i in range(len(axes))]
3946 3947 3948 3949 3950 3951
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
3952
            if paddle.utils._contain_var(starts):
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
            else:
                attrs['starts'] = starts

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
3969
            if paddle.utils._contain_var(ends):
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
            else:
                attrs['ends'] = ends

        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
3986
            if paddle.utils._contain_var(strides):
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
            else:
                attrs['strides'] = strides
        attrs['infer_flags'] = infer_flags
3997 3998 3999 4000 4001 4002 4003 4004 4005
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('x')
        )
        helper.append_op(
            type='strided_slice',
            inputs=inputs,
            attrs=attrs,
            outputs={'Out': out},
        )
4006

4007
        return out
F
From00 已提交
4008 4009 4010 4011


def tensordot(x, y, axes=2, name=None):
    r"""
4012
    This function computes a contraction, which sum the product of elements from two tensors along the given axes.
F
From00 已提交
4013 4014

    Args:
4015
        x (Tensor): The left tensor for contraction with data type ``float16`` or ``float32`` or ``float64``.
F
From00 已提交
4016 4017 4018
        y (Tensor): The right tensor for contraction with the same data type as ``x``.
        axes (int|tuple|list|Tensor, optional):  The axes to contract for ``x`` and ``y``, defaulted to integer ``2``.

4019
            1. It could be a non-negative integer ``n``,
F
From00 已提交
4020
               in which the function will sum over the last ``n`` axes of ``x`` and the first ``n`` axes of ``y`` in order.
4021 4022

            2. It could be a 1-d tuple or list with data type ``int``, in which ``x`` and ``y`` will be contracted along the same given axes.
F
From00 已提交
4023
               For example, ``axes`` =[0, 1] applies contraction along the first two axes for ``x`` and the first two axes for ``y``.
4024 4025 4026 4027

            3. It could be a tuple or list containing one or two 1-d tuple|list|Tensor with data type ``int``.
               When containing one tuple|list|Tensor, the data in tuple|list|Tensor specified the same axes for ``x`` and ``y`` to contract.
               When containing two tuple|list|Tensor, the first will be applied to ``x`` and the second to ``y``.
F
From00 已提交
4028
               When containing more than two tuple|list|Tensor, only the first two axis sequences will be used while the others will be ignored.
4029 4030 4031

            4. It could be a tensor, in which the ``axes`` tensor will be translated to a python list
               and applied the same rules described above to determine the contraction axes.
F
From00 已提交
4032
               Note that the ``axes`` with Tensor type is ONLY available in Dygraph mode.
4033
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
F
From00 已提交
4034 4035
                             For more information, please refer to :ref:`api_guide_Name` .

4036
    Return:
L
Ligoml 已提交
4037
        Output (Tensor), The contraction result with the same data type as ``x`` and ``y``.
F
From00 已提交
4038
        In general, :math:`output.ndim = x.ndim + y.ndim - 2 \times n_{axes}`, where :math:`n_{axes}` denotes the number of axes to be contracted.
4039

F
From00 已提交
4040
    NOTES:
4041
        1. This function supports tensor broadcast,
F
From00 已提交
4042
           the size in the corresponding dimensions of ``x`` and ``y`` should be equal, or applies to the broadcast rules.
4043 4044 4045 4046 4047
        2. This function also supports axes expansion,
           when the two given axis sequences for ``x`` and ``y`` are of different lengths,
           the shorter sequence will expand the same axes as the longer one at the end.
           For example, if ``axes`` =[[0, 1, 2, 3], [1, 0]],
           the axis sequence for ``x`` is [0, 1, 2, 3],
F
From00 已提交
4048
           while the corresponding axis sequences for ``y`` will be expanded from [1, 0] to [1, 0, 2, 3].
4049

F
From00 已提交
4050 4051 4052 4053 4054 4055 4056 4057
    Examples:
        .. code-block:: python

            import paddle

            data_type = 'float64'

            # For two 2-d tensor x and y, the case axes=0 is equivalent to outer product.
4058
            # Note that tensordot supports empty axis sequence, so all the axes=0, axes=[], axes=[[]], and axes=[[],[]] are equivalent cases.
F
From00 已提交
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
            x = paddle.arange(4, dtype=data_type).reshape([2, 2])
            y = paddle.arange(4, dtype=data_type).reshape([2, 2])
            z = paddle.tensordot(x, y, axes=0)
            # z = [[[[0., 0.],
            #        [0., 0.]],
            #
            #       [[0., 1.],
            #        [2., 3.]]],
            #
            #
            #      [[[0., 2.],
            #        [4., 6.]],
            #
            #       [[0., 3.],
            #        [6., 9.]]]]


            # For two 1-d tensor x and y, the case axes=1 is equivalent to inner product.
            x = paddle.arange(10, dtype=data_type)
            y = paddle.arange(10, dtype=data_type)
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.dot(x, y)
4081
            # z1 = z2 = 285.
F
From00 已提交
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119


            # For two 2-d tensor x and y, the case axes=1 is equivalent to matrix multiplication.
            x = paddle.arange(6, dtype=data_type).reshape([2, 3])
            y = paddle.arange(12, dtype=data_type).reshape([3, 4])
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.matmul(x, y)
            # z1 = z2 =  [[20., 23., 26., 29.],
            #             [56., 68., 80., 92.]]


            # When axes is a 1-d int list, x and y will be contracted along the same given axes.
            # Note that axes=[1, 2] is equivalent to axes=[[1, 2]], axes=[[1, 2], []], axes=[[1, 2], [1]], and axes=[[1, 2], [1, 2]].
            x = paddle.arange(24, dtype=data_type).reshape([2, 3, 4])
            y = paddle.arange(36, dtype=data_type).reshape([3, 3, 4])
            z = paddle.tensordot(x, y, axes=[1, 2])
            # z =  [[506. , 1298., 2090.],
            #       [1298., 3818., 6338.]]


            # When axes is a list containing two 1-d int list, the first will be applied to x and the second to y.
            x = paddle.arange(60, dtype=data_type).reshape([3, 4, 5])
            y = paddle.arange(24, dtype=data_type).reshape([4, 3, 2])
            z = paddle.tensordot(x, y, axes=([1, 0], [0, 1]))
            # z =  [[4400., 4730.],
            #       [4532., 4874.],
            #       [4664., 5018.],
            #       [4796., 5162.],
            #       [4928., 5306.]]


            # Thanks to the support of axes expansion, axes=[[0, 1, 3, 4], [1, 0, 3, 4]] can be abbreviated as axes= [[0, 1, 3, 4], [1, 0]].
            x = paddle.arange(720, dtype=data_type).reshape([2, 3, 4, 5, 6])
            y = paddle.arange(720, dtype=data_type).reshape([3, 2, 4, 5, 6])
            z = paddle.tensordot(x, y, axes=[[0, 1, 3, 4], [1, 0]])
            # z = [[23217330., 24915630., 26613930., 28312230.],
            #      [24915630., 26775930., 28636230., 30496530.],
            #      [26613930., 28636230., 30658530., 32680830.],
4120
            #      [28312230., 30496530., 32680830., 34865130.]]
F
From00 已提交
4121 4122
    """
    op_type = 'tensordot'
4123
    input_dtype = ['float16', 'float32', 'float64']
F
From00 已提交
4124 4125 4126 4127 4128 4129

    check_variable_and_dtype(x, 'x', input_dtype, op_type)
    check_variable_and_dtype(y, 'y', input_dtype, op_type)
    check_type(axes, 'axes', (int, tuple, list, Variable), op_type)

    def _var_to_list(var):
4130
        if in_dygraph_mode():
F
From00 已提交
4131 4132
            return tolist(var)
        raise TypeError(
4133 4134 4135
            "The 'axes' with type 'Tensor' in "
            + op_type
            + " is not available in static graph mode, "
F
From00 已提交
4136 4137 4138 4139 4140 4141 4142
            "please convert its type to int|Tuple|List, or use dynamic graph mode."
        )

    axes_x = []
    axes_y = []
    if np.issubdtype(type(axes), np.integer):
        assert axes >= 0, (
4143 4144 4145 4146
            "The 'axes' in "
            + op_type
            + f" should not be negative, but received axes={axes}."
        )
F
From00 已提交
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
        axes_x = range(x.ndim - axes, x.ndim)
        axes_y = range(axes)
    else:
        if isinstance(axes, Variable):
            axes = _var_to_list(axes)

        if not axes or np.issubdtype(type(axes[0]), np.integer):
            axes_x = axes
        else:
            axes_x = axes[0]
            if len(axes) > 1:
                axes_y = axes[1]

            if isinstance(axes_x, Variable):
                axes_x = _var_to_list(axes_x)
            if isinstance(axes_y, Variable):
                axes_y = _var_to_list(axes_y)

    axes_x, axes_y = list(axes_x), list(axes_y)
    len_axes_x, len_axes_y = len(axes_x), len(axes_y)
    if len_axes_x < len_axes_y:
        axes_x.extend(axes_y[len_axes_x:])
    elif len_axes_y < len_axes_x:
        axes_y.extend(axes_x[len_axes_y:])

    shape_x, shape_y = list(x.shape), list(y.shape)
    need_contracted_dim_x = np.zeros((x.ndim), dtype=bool)
    need_contracted_dim_y = np.zeros((y.ndim), dtype=bool)
    contraction_size = 1
    for i in range(len(axes_x)):
        dim_x, dim_y = axes_x[i], axes_y[i]
        sx, sy = shape_x[dim_x], shape_y[dim_y]
        if sx == 1:
            shape_y[dim_y] = 1
            y = y.sum(dim_y).reshape(shape_y)
        elif sy == 1:
            shape_x[dim_x] = 1
            x = x.sum(dim_x).reshape(shape_x)
        else:
4186 4187 4188 4189 4190
            assert sx == sy, (
                "The dimensional size for 'x' and 'y' in "
                + op_type
                + f" should match each other, but 'x' has size {sx} in dim {dim_x} while 'y' has size {sy} in dim {dim_y}."
            )
F
From00 已提交
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214

        need_contracted_dim_x[dim_x] = True
        need_contracted_dim_y[dim_y] = True
        contraction_size *= shape_x[dim_x]

    perm_x = []
    perm_y = []
    shape_out = []
    not_contraction_size_x = 1
    not_contraction_size_y = 1
    for i in range(x.ndim):
        if not need_contracted_dim_x[i]:
            perm_x.append(i)
            shape_out.append(shape_x[i])
            not_contraction_size_x *= shape_x[i]
    perm_x.extend(axes_x)
    perm_y.extend(axes_y)
    for i in range(y.ndim):
        if not need_contracted_dim_y[i]:
            perm_y.append(i)
            shape_out.append(shape_y[i])
            not_contraction_size_y *= shape_y[i]

    x = x.transpose(perm=perm_x).reshape(
4215 4216
        [not_contraction_size_x, contraction_size]
    )
F
From00 已提交
4217
    y = y.transpose(perm=perm_y).reshape(
4218 4219
        [contraction_size, not_contraction_size_y]
    )
F
From00 已提交
4220 4221
    out = x.matmul(y).reshape(shape_out)
    return out
4222 4223 4224


def as_complex(x, name=None):
4225 4226
    """Transform a real tensor to a complex tensor.

4227 4228 4229
    The data type of the input tensor is 'float32' or 'float64', and the data
    type of the returned tensor is 'complex64' or 'complex128', respectively.

4230
    The shape of the input tensor is ``(* ,2)``, (``*`` means arbitary shape), i.e.
4231 4232 4233 4234 4235 4236 4237 4238
    the size of the last axis shoule be 2, which represent the real and imag part
    of a complex number. The shape of the returned tensor is ``(*,)``.

    Args:
        x (Tensor): The input tensor. Data type is 'float32' or 'float64'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4239
        Tensor, The output. Data type is 'complex64' or 'complex128', with the same precision as the input.
4240

4241 4242 4243 4244 4245 4246
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
4247
            print(y)
4248

4249 4250 4251
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(gpu:0), stop_gradient=True,
            #        [[1j      , (2+3j)  , (4+5j)  ],
            #         [(6+7j)  , (8+9j)  , (10+11j)]])
4252
    """
4253 4254
    if in_dygraph_mode():
        return _C_ops.as_complex(x)
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'as_complex')
        op_type = "as_complex"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": x}
        out = helper.create_variable_for_type_inference(
            dtype=_real_to_complex_dtype(x.dtype)
        )
        outputs = {"Out": out}
        attrs = {}
        helper.append_op(
            type=op_type, inputs=inputs, attrs=attrs, outputs=outputs
        )
        return out
4269 4270 4271


def as_real(x, name=None):
4272 4273 4274
    """Transform a complex tensor to a real tensor.

    The data type of the input tensor is 'complex64' or 'complex128', and the data
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
    type of the returned tensor is 'float32' or 'float64', respectively.

    When the shape of the input tensor is ``(*, )``, (``*`` means arbitary shape),
    the shape of the output tensor is ``(*, 2)``, i.e. the shape of the output is
    the shape of the input appended by an extra ``2``.

    Args:
        x (Tensor): The input tensor. Data type is 'complex64' or 'complex128'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4286
        Tensor, The output. Data type is 'float32' or 'float64', with the same precision as the input.
4287

4288 4289 4290 4291 4292 4293 4294
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            z = paddle.as_real(y)
4295
            print(z)
4296

4297 4298 4299 4300
            # Tensor(shape=[2, 3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[0. , 1. ],
            #          [2. , 3. ],
            #          [4. , 5. ]],
4301

4302 4303 4304
            #         [[6. , 7. ],
            #          [8. , 9. ],
            #          [10., 11.]]])
4305
    """
4306 4307
    if in_dygraph_mode():
        return _C_ops.as_real(x)
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
    else:
        check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'as_real')
        op_type = "as_real"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": x}
        out = helper.create_variable_for_type_inference(
            dtype=_complex_to_real_dtype(x.dtype)
        )
        outputs = {"Out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
        return out
4319 4320


K
kuizhiqing 已提交
4321 4322 4323 4324 4325 4326 4327 4328 4329
def repeat_interleave(x, repeats, axis=None, name=None):
    """

    Returns a new tensor which repeats the ``x`` tensor along dimension ``axis`` using
    the entries in ``repeats`` which is a int or a Tensor.

    Args:
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        repeats (Tensor or int): The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis.
4330
        axis (int, optional): The dimension in which we manipulate. Default: None, the output tensor is flatten.
K
kuizhiqing 已提交
4331 4332 4333 4334 4335
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4336
        Tensor, A Tensor with same data type as ``x``.
K
kuizhiqing 已提交
4337

4338 4339 4340 4341 4342
    Examples:
        .. code-block:: python

            import paddle

K
kuizhiqing 已提交
4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            repeats  = paddle.to_tensor([3, 2, 1], dtype='int32')

            paddle.repeat_interleave(x, repeats, 1)
            # [[1, 1, 1, 2, 2, 3],
            #  [4, 4, 4, 5, 5, 6]]

            paddle.repeat_interleave(x, 2, 0)
            # [[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]]

            paddle.repeat_interleave(x, 2, None)
            # [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]
    """

    if axis is None:
        x = paddle.flatten(x)
        axis = 0

S
seemingwang 已提交
4361 4362
    if in_dygraph_mode():
        if isinstance(repeats, Variable):
4363 4364
            return _C_ops.repeat_interleave_with_tensor_index(x, repeats, axis)
        return _C_ops.repeat_interleave(x, repeats, axis)
K
kuizhiqing 已提交
4365 4366

    helper = LayerHelper("repeat_interleave", **locals())
4367 4368 4369 4370 4371 4372
    check_variable_and_dtype(
        x,
        'x',
        ['float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.repeat_interleave',
    )
K
kuizhiqing 已提交
4373 4374 4375

    out = helper.create_variable_for_type_inference(x.dtype)

4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
    helper.append_op(
        type='repeat_interleave',
        inputs={
            'X': x,
            'RepeatsTensor': repeats if isinstance(repeats, Variable) else None,
        },
        outputs={'Out': out},
        attrs={
            'dim': axis,
            'Repeats': repeats if isinstance(repeats, int) else 0,
        },
    )
K
kuizhiqing 已提交
4388 4389 4390
    return out


4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
def moveaxis(x, source, destination, name=None):
    """
    Move the axis of tensor from ``source`` position to ``destination`` position.

    Other axis that have not been moved remain their original order.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, int32, int64, float32, float64, complex64, complex128.
        source(int|tuple|list): ``source`` position of axis that will be moved. Each element must be unique and integer.
        destination(int|tuple|list(int)): ``destination`` position of axis that has been moved. Each element must be unique and integer.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4405
        Tensor, A new tensor whose axis have been moved.
4406 4407 4408

    Examples:
        .. code-block:: python
4409

4410 4411 4412 4413 4414 4415 4416
            import paddle

            x = paddle.ones([3, 2, 4])
            paddle.moveaxis(x, [0, 1], [1, 2]).shape
            # [4, 3, 2]

            x = paddle.ones([2, 3])
4417
            paddle.moveaxis(x, 0, 1).shape # equivalent to paddle.t(x)
4418
            # [3, 2]
4419 4420 4421 4422 4423
    """
    src = [source] if isinstance(source, int) else source
    dst = [destination] if isinstance(destination, int) else destination

    assert len(src) == len(
4424 4425
        dst
    ), "'source' must have the same number with 'destination'"
4426

4427
    if len(src) != len(set(src)):
4428
        raise ValueError("Each elemment of 'source' must be unique!")
4429
    if len(dst) != len(set(dst)):
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
        raise ValueError("Each elemment of 'destination' must be unique!")

    ndim = len(x.shape)

    # perm is the new order after move axis
    perm = list(range(ndim))
    src_dims = list(range(ndim))
    dst_dims = list(range(ndim))

    for i, axis in enumerate(zip(src, dst)):
4440 4441 4442
        assert isinstance(
            axis[0], int
        ), "Each elemment of 'source' must be integer."
4443
        if axis[0] < 0:
4444 4445 4446
            assert (
                axis[0] >= -ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4447 4448
            src[i] += ndim
        else:
4449 4450 4451
            assert (
                axis[0] < ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4452

4453 4454 4455
        assert isinstance(
            axis[1], int
        ), "Each elemment of 'source' must be integer."
4456
        if axis[1] < 0:
4457 4458 4459
            assert (
                axis[1] >= -ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4460 4461
            dst[i] += ndim
        else:
4462 4463 4464
            assert (
                axis[1] < ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4465 4466 4467 4468 4469 4470 4471
        perm[dst[i]] = src[i]
        src_dims.remove(src[i])
        dst_dims.remove(dst[i])

    for i in range(len(src_dims)):
        perm[dst_dims[i]] = src_dims[i]

4472
    if in_dygraph_mode():
4473
        out = _C_ops.transpose(x, perm)
4474
        return out
4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
    else:
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'moveaxis',
        )
4491

4492 4493 4494 4495 4496 4497 4498 4499 4500
        helper = LayerHelper('moveaxis', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='transpose2',
            inputs={'X': [x]},
            outputs={'Out': [out], 'XShape': [x_shape]},
            attrs={'axis': perm},
        )
4501 4502
        return out

4503

4504 4505 4506
def non_negative_axis(arr, axis):
    ndim = len(arr.shape)
    if axis >= 0:
4507 4508 4509
        assert (
            axis < ndim
        ), "'axis'  must be in the range of [-{0}, {0})".format(ndim)
4510
    else:
4511 4512 4513
        assert (
            axis >= -ndim
        ), "'axis'  must be in the range of [-{0}, {0})".format(ndim)
4514 4515 4516 4517 4518 4519
        axis += ndim

    return axis


def infer_broadcast_shape(arr, indices, axis):
4520
    # This function is used in take/put_along_axis
4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
    broadcast_shape_list = list(arr.shape)
    broadcast_shape_list[axis] = list(indices.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    for i in range(len(arr.shape)):
        if arr.shape[i] < indices.shape[i]:
            # if indices matrix has larger size than arr matrix, do not broadcast.
            return None
    return broadcast_shape


4531 4532 4533 4534 4535
def take_along_axis(arr, indices, axis):
    """
    Take values from the input array by given indices matrix along the designated axis.

    Args:
4536
        arr (Tensor) : The input Tensor. Supported data types are float32 and float64.
4537
        indices (Tensor) : Indices to take along each 1d slice of arr. This must match the dimension of arr,
4538
            and need to broadcast against arr. Supported data type are int and int64.
4539
        axis (int) : The axis to take 1d slices along.
4540

4541
    Returns:
L
Ligoml 已提交
4542
        Tensor, The indexed element, same dtype with arr
4543

4544 4545 4546 4547 4548
    Examples:
        .. code-block:: python

            import paddle

4549 4550
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7,8,9]])
            index = paddle.to_tensor([[0]])
4551 4552 4553 4554 4555
            axis = 0
            result = paddle.take_along_axis(x, index, axis)
            print(result)
            # [[1, 2, 3]]
    """
4556
    if len(arr.shape) != len(indices.shape):
4557
        raise ValueError(
4558 4559
            "`indices` and `arr` must have the same number of dimensions!"
        )
4560 4561 4562 4563 4564
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
    if not broadcast_shape:
        # if indices matrix have larger size than arr, arr should broadcast into indices shape.
        broadcast_shape = indices.shape
4565
    if in_dygraph_mode():
4566
        indices = paddle.broadcast_to(indices, broadcast_shape)
4567 4568 4569 4570
        broadcast_shape_list = list(broadcast_shape)
        broadcast_shape_list[axis] = list(arr.shape)[axis]
        broadcast_shape = tuple(broadcast_shape_list)
        arr = paddle.broadcast_to(arr, broadcast_shape)
4571 4572 4573 4574 4575
        return _C_ops.take_along_axis(arr, indices, axis)
    else:
        check_variable_and_dtype(
            arr,
            'x',
4576 4577 4578 4579 4580 4581 4582 4583 4584
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
                'uint16',
            ],
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
            'take_along_axis',
        )
        check_variable_and_dtype(
            indices, 'index', ['int32', 'int64'], 'take_along_axis'
        )
        indices = paddle.broadcast_to(indices, broadcast_shape)
        broadcast_shape_list = list(broadcast_shape)
        broadcast_shape_list[axis] = list(arr.shape)[axis]
        broadcast_shape = tuple(broadcast_shape_list)
        arr = paddle.broadcast_to(arr, broadcast_shape)
        helper = LayerHelper('take_along_axis', **locals())
        dtype = helper.input_dtype()
        result = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="take_along_axis",
            inputs={"Input": arr, "Index": indices},
            attrs={"Axis": axis},
            outputs={"Result": result},
        )
        return result
4605 4606 4607 4608 4609 4610 4611 4612 4613 4614


def put_along_axis(arr, indices, values, axis, reduce='assign'):
    """
    Put values into the destination array by given indices matrix along the designated axis.

    Args:
        arr (Tensor) : The Destination Tensor. Supported data types are float32 and float64.
        indices (Tensor) : Indices to put along each 1d slice of arr. This must match the dimension of arr,
            and need to broadcast against arr. Supported data type are int and int64.
4615
        axis (int) : The axis to put 1d slices along.
G
gouzil 已提交
4616 4617 4618
        reduce (str, optional): The reduce operation, default is 'assign', support 'add', 'assign', 'mul' and 'multiply'.

    Returns:
L
Ligoml 已提交
4619
        Tensor, The indexed element, same dtype with arr
4620

4621 4622 4623 4624 4625
    Examples:
        .. code-block:: python

            import paddle

4626 4627
            x = paddle.to_tensor([[10, 30, 20], [60, 40, 50]])
            index = paddle.to_tensor([[0]])
4628 4629 4630 4631 4632 4633 4634 4635
            value = 99
            axis = 0
            result = paddle.put_along_axis(x, index, value, axis)
            print(result)
            # [[99, 99, 99],
            # [60, 40, 50]]

    """
4636
    if len(arr.shape) != len(indices.shape):
4637
        raise ValueError(
4638 4639
            "`indices` and `arr` must have the same number of dimensions!"
        )
4640 4641
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
4642
    if in_dygraph_mode():
4643 4644 4645 4646 4647
        values = (
            paddle.to_tensor(values)
            if not isinstance(values, paddle.Tensor)
            else values
        )
4648 4649 4650
        if broadcast_shape:
            indices = paddle.broadcast_to(indices, broadcast_shape)
        values = paddle.broadcast_to(values, indices.shape)
4651 4652 4653 4654 4655
        return _C_ops.put_along_axis(arr, indices, values, axis, reduce)
    else:
        check_variable_and_dtype(
            arr,
            'x',
4656 4657 4658 4659 4660 4661 4662 4663 4664
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
                'uint16',
            ],
4665
            'put_along_axis',
4666
        )
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682
        check_variable_and_dtype(
            indices, 'index', ['int32', 'int64'], 'put_along_axis'
        )
        if broadcast_shape:
            indices = paddle.broadcast_to(indices, broadcast_shape)
        values = paddle.broadcast_to(values, indices.shape)
        helper = LayerHelper('put_along_axis', **locals())
        dtype = helper.input_dtype()
        result = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="put_along_axis",
            inputs={"Input": arr, "Index": indices, "Value": values},
            attrs={"Axis": axis, "Reduce": reduce},
            outputs={"Result": result},
        )
        return result
4683 4684 4685 4686 4687


@inplace_apis_in_dygraph_only
def put_along_axis_(arr, indices, values, axis, reduce='assign'):
    r"""
4688
    Inplace version of ``put_along_axis`` API, the output Tensor will be inplaced with input ``arr``.
4689 4690
    Please refer to :ref:`api_tensor_put_along_axis`.
    """
4691
    if len(arr.shape) != len(indices.shape):
4692
        raise ValueError(
4693 4694
            "`indices` and `arr` must have the same number of dimensions!"
        )
4695 4696
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
4697 4698 4699 4700 4701
    values = (
        paddle.to_tensor(values)
        if not isinstance(values, paddle.Tensor)
        else values
    )
4702 4703 4704
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4705
    return _C_ops.put_along_axis_(arr, indices, values, axis, reduce)
4706 4707


L
Li Min 已提交
4708 4709 4710 4711 4712 4713 4714 4715
def index_add(x, index, axis, value, name=None):
    """
    Adds the elements of the input tensor with value tensor by selecting the indices in the order given in index.

    Args:
        x (Tensor) : The Destination Tensor. Supported data types are int32, int64, float16, float32, float64.
        index (Tensor): The 1-D Tensor containing the indices to index.
            The data type of ``index`` must be int32 or int64.
4716
        axis (int): The dimension in which we index.
L
Li Min 已提交
4717 4718 4719 4720
        value (Tensor): The tensor used to add the elements along the target axis.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
L
Ligoml 已提交
4721
        Tensor, same dimention and dtype with x.
L
Li Min 已提交
4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1, 1], [1, 1, 1]], dtype="float32")
            outplace_res = paddle.index_add(input_tensor, index, 0, value)
4733 4734 4735 4736 4737
            print(outplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 2., 2.],
            #         [1., 1., 1.],
            #         [2., 2., 2.]])
L
Li Min 已提交
4738 4739 4740 4741 4742 4743
    """
    if in_dygraph_mode():
        return _C_ops.index_add(x, index, value, axis)

    helper = LayerHelper("index_add", **locals())
    check_variable_and_dtype(
4744 4745
        x,
        'x',
4746
        ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
4747 4748 4749 4750 4751 4752 4753 4754
        'paddle.tensor.manipulation.index_add',
    )
    check_variable_and_dtype(
        index,
        'index',
        ['int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
L
Li Min 已提交
4755
    check_variable_and_dtype(
4756 4757
        value,
        'add_value',
4758
        ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
4759 4760
        'paddle.tensor.manipulation.index_add',
    )
L
Li Min 已提交
4761 4762 4763

    out = helper.create_variable_for_type_inference(x.dtype)

4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
    helper.append_op(
        type='index_add',
        inputs={
            'X': x,
            'Index': index,
            'AddValue': value,
        },
        outputs={'Out': out},
        attrs={'axis': axis},
    )
L
Li Min 已提交
4774 4775 4776 4777 4778 4779 4780
    return out


@inplace_apis_in_dygraph_only
def index_add_(x, index, axis, value, name=None):
    """
    Inplace version of ``index_add`` API, the output Tensor will be inplaced with input ``x``.
4781
    Please refer to :ref:`api_paddle_index_add`.
4782

L
Li Min 已提交
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1], [1, 1], [1, 1]], dtype="float32")
            inplace_res = paddle.index_add_(input_tensor, index, 1, value)
4793 4794 4795 4796 4797
            print(inplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 1., 2.],
            #         [2., 1., 2.],
            #         [2., 1., 2.]])
L
Li Min 已提交
4798 4799 4800 4801
    """
    return _C_ops.index_add_(x, index, value, axis)


傅剑寒 已提交
4802 4803 4804 4805 4806 4807 4808 4809 4810 4811
@inplace_apis_in_dygraph_only
def index_put_(x, indices, value, accumulate=False, name=None):
    """
    Puts values from the tensor values into the tensor x using the indices specified in indices (which is a tuple of Tensors).
    The expression paddle.index_put_(x, indices, values) is equivalent to tensor[indices] = values. Returns x.
    If accumulate is True, the elements in values are added to x. If accumulate is False, the behavior is undefined if indices contain duplicate elements.

    Args:
        x (Tensor) : The Source Tensor. Supported data types are int32, int64, float16, float32, float64, bool.
        indices (Tuple of Tensor): The tuple of Tensor containing the indices to index.
4812
            The data type of ``tensor in indices`` must be int32, int64 or bool.
傅剑寒 已提交
4813 4814 4815 4816 4817 4818 4819 4820 4821
        value (Tensor): The tensor used to be assigned to x.
        accummulate (Bool, optional): Whether the elements in values are added to x. Default: False.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        Tensor, same dimention and dtype with x.

    Examples:
        .. code-block:: python
4822

傅剑寒 已提交
4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
            import paddle

            x = paddle.zeros([3, 3])
            value = paddle.ones([3])
            ix1 = paddle.to_tensor([0,1,2])
            ix2 = paddle.to_tensor([1,2,1])
            indices=(ix1,ix2)

            out = paddle.index_put_(x,indices,value)
            print(x)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0., 1., 0.],
            #         [0., 0., 1.],
            #         [0., 1., 0.]])
            print(out)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0., 1., 0.],
            #         [0., 0., 1.],
            #         [0., 1., 0.]])
    """
    return _C_ops.index_put_(x, indices, value, accumulate)


def index_put(x, indices, value, accumulate=False, name=None):
    """
    Outplace version of ``index_put_`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_index_put`.

    Examples:
        .. code-block:: python
4853

傅剑寒 已提交
4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
            import paddle

            x = paddle.zeros([3, 3])
            value = paddle.ones([3])
            ix1 = paddle.to_tensor([0,1,2])
            ix2 = paddle.to_tensor([1,2,1])
            indices=(ix1,ix2)

            out = paddle.index_put(x,indices,value)
            print(x)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0., 0., 0.],
            #         [0., 0., 0.],
            #         [0., 0., 0.]])
            print(out)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0., 1., 0.],
            #         [0., 0., 1.],
            #         [0., 1., 0.]])
    """
    if in_dygraph_mode():
        return _C_ops.index_put(x, indices, value, accumulate)

    helper = LayerHelper("index_put", **locals())
    check_variable_and_dtype(
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'paddle.tensor.manipulation.index_put',
    )
    check_variable_and_dtype(
        value,
        'value',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'paddle.tensor.manipulation.index_put',
    )

    out = helper.create_variable_for_type_inference(x.dtype)

    helper.append_op(
        type='index_put',
        inputs={
            'x': x,
            'indices': indices,
            'value': value,
        },
        outputs={'out': out},
        attrs={'accumulate': accumulate},
    )
    return out


4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973
def unflatten(x, axis, shape, name=None):
    """
    Expand a certain dimension of the input x Tensor into a desired shape.

    Args:
        x (Tensor) : An N-D Tensor. The data type is float16, float32, float64, int16, int32, int64, bool, uint16.
        axis (int): :attr:`axis` to be unflattened, specified as an index into `x.shape`.
        shape (list|tuple|Tensor): Unflatten :attr:`shape` on the specified :attr:`axis`. At most one dimension of the target :attr:`shape` can be -1.
            If the input :attr:`shape` does not contain -1 , the product of all elements in ``shape`` should be equal to ``x.shape[axis]``.
            The data type is `int` . If :attr:`shape` is a list or tuple, the elements of it should be integers or Tensors with shape [].
            If :attr:`shape` is an Tensor, it should be an 1-D Tensor.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        Tensor, return the unflatten tensor of :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.randn(shape=[4, 6, 8])
            shape = [2, 3]
            axis = 1
            res = paddle.unflatten(x, axis, shape)
            print(res.shape)
            # [4, 2, 3, 8]

            x = paddle.randn(shape=[4, 6, 8])
            shape = (-1, 2)
            axis = -1
            res = paddle.unflatten(x, axis, shape)
            print(res.shape)
            # [4, 6, 4, 2]

            x = paddle.randn(shape=[4, 6, 8])
            shape = paddle.to_tensor([2, 2])
            axis = 0
            res = paddle.unflatten(x, axis, shape)
            print(res.shape)
            # [2, 2, 6, 8]
    """

    # determine whether the input axis is valid.
    axis = non_negative_axis(x, axis)
    if isinstance(shape, (list, tuple)):
        new_shape = (
            list(x.shape[:axis]) + list(shape) + list(x.shape[axis + 1 :])
        )
    elif isinstance(shape, Variable):
        # The data type returned by `paddle.shape` is only 'int32'.
        new_shape = paddle.concat(
            [
                paddle.shape(x)[:axis],
                paddle.cast(shape, 'int32'),
                paddle.shape(x)[axis + 1 :],
            ]
        )
    else:
        raise TypeError(
            "The data type of x should be one of ['List', 'Tuple', 'Tensor'], but got {}".format(
                type(shape)
            )
        )
    x = x.reshape(new_shape)
    return x


4974 4975 4976 4977 4978 4979 4980
# TODO(dev): We need avoid implementing it by this way.
__METHODS = {
    'fill_': fill_,
    'zero_': zero_,
    'fill_diagonal_': fill_diagonal_,
    'fill_diagonal_tensor_': fill_diagonal_tensor_,
    "fill_diagonal_tensor": fill_diagonal_tensor,
4981
    'tolist': tolist,
4982 4983 4984
}
for name, func in __METHODS.items():
    setattr(core.eager.Tensor, name, func)