manipulation.py 183.2 KB
Newer Older
L
Ligoml 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
# TODO: define functions to manipulate a tensor

myq406450149's avatar
myq406450149 已提交
17
import numpy as np
18

19
import paddle
20
from paddle import _C_ops
21
from paddle.tensor import fill_constant
22
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only
23 24 25 26 27 28 29

from ..fluid.data_feeder import (
    check_dtype,
    check_type,
    check_variable_and_dtype,
    convert_dtype,
)
30
from ..fluid.framework import Variable
31 32 33 34 35
from ..framework import (
    LayerHelper,
    convert_np_dtype_to_dtype_,
    core,
    dygraph_only,
36
    in_dynamic_mode,
37 38
)
from .creation import _complex_to_real_dtype, _real_to_complex_dtype, zeros
39

40 41
__all__ = []

W
Wilber 已提交
42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
def tensor_array_to_tensor(input, axis=1, use_stack=False, name=None):
    r"""
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]

    Args:
        input(TensorArray): A TensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Tensor: The concatenated or stacked tensor variable.
        Tensor: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.

    Examples:
        .. code-block:: python

            import numpy
            import paddle
            x0 = paddle.assign(numpy.random.rand(2, 2).astype("float32"))
            x1 = paddle.assign(numpy.random.rand(2, 2).astype("float32"))
            i = paddle.full(shape=[1], dtype="int64", fill_value=0)
            array = paddle.tensor.array.create_array(dtype='float32')
            paddle.tensor.array.array_write(x0, i, array)
            paddle.tensor.array.array_write(x1, i + 1, array)
            output, output_index = paddle.tensor.manipulation.tensor_array_to_tensor(input=array)
    """
123
    if in_dynamic_mode():
124 125 126 127 128 129 130
        assert isinstance(
            input, list
        ), "The 'input' in tensor_array_to_tensor must be list"
        from paddle import concat, stack

        op = stack if use_stack else concat
        res = op(input, axis=axis)
131
        sizes = paddle.to_tensor(np.array([int(x.shape[axis]) for x in input]))
132
        return res, sizes
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    else:
        check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
        if isinstance(input, list):
            for i, input_x in enumerate(input):
                check_type(
                    input_x,
                    'input[' + str(i) + ']',
                    Variable,
                    'tensor_array_to_tensor',
                )
        helper = LayerHelper('tensor_array_to_tensor', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input},
            outputs={'Out': [out], 'OutIndex': [out_index]},
            attrs={'axis': axis, 'use_stack': use_stack},
        )
        return out, out_index
155 156


157 158 159
def cast(x, dtype):
    """

160
    Take in the Tensor :attr:`x` with :attr:`x.dtype` and cast it
161 162 163 164
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.

    Args:
165
        x (Tensor): An input N-D Tensor with data type bool, float16,
166
            float32, float64, int32, int64, uint8.
167
        dtype (np.dtype|str): Data type of the output:
168 169 170
            bool, float16, float32, float64, int8, int32, int64, uint8.

    Returns:
L
Ligoml 已提交
171
        Tensor, A Tensor with the same shape as input's.
172 173 174 175 176 177 178 179 180

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
    """
181
    if in_dynamic_mode():
182 183
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
184
        return _C_ops.cast(x, dtype)
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    else:
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'uint8',
                'uint16',
            ],
            'cast',
        )
        check_dtype(
            dtype,
            'dtype',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int8',
                'int16',
                'int32',
                'int64',
                'uint8',
                'uint16',
            ],
            'cast',
        )
219

220 221 222 223 224 225 226 227 228 229
        helper = LayerHelper('cast', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=dtype, stop_gradient=x.stop_gradient
        )
        helper.append_op(
            type='cast',
            inputs={'X': [x]},
            outputs={'Out': [out]},
            attrs={'in_dtype': x.dtype, 'out_dtype': out.dtype},
        )
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        return out


def slice(input, axes, starts, ends):
    """
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
    Following examples will explain how slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
            Then:
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
267

268 269 270
    Args:
        input (Tensor): A ``Tensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to .
271 272
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, each element of
                it should be integer or 0-D int Tensor with shape []. If ``starts`` is an Tensor, it should be an 1-D Tensor.
273
                It represents starting indices of corresponding axis in ``axes``.
274 275
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, each element of
                it should be integer or 0-D int Tensor with shape []. If ``ends`` is an Tensor, it should be an 1-D Tensor .
276 277 278
                It represents ending indices of corresponding axis in ``axes``.

    Returns:
L
Ligoml 已提交
279
        Tensor, A ``Tensor``. The data type is same as ``input``.
280 281 282 283 284 285 286 287 288 289 290 291 292

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 5, 6], dtype='float32')
            # example 1:
            # attr starts is a list which doesn't contain tensor.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = paddle.slice(input, axes=axes, starts=starts, ends=ends)
Z
zyfncg 已提交
293
            # sliced_1 is input[1:3, 0:2, 2:4].
294 295 296 297 298

            # example 2:
            # attr starts is a list which contain tensor.
            minus_3 = paddle.full([1], -3, "int32")
            sliced_2 = paddle.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
Z
zyfncg 已提交
299
            # sliced_2 is input[1:3, 0:2, 2:4].
300
    """
301
    if in_dynamic_mode():
302 303 304 305 306 307 308 309
        attrs = ()
        starts_tensor = None
        ends_tensor = None

        if isinstance(axes, (list, tuple)):
            axes = list(axes)
            if len(axes) == 0:
                raise ValueError(
310 311
                    "Input axes should not be an empty list/tuple."
                )
312 313 314 315 316 317 318 319
            for i in range(len(axes)):
                if axes[i] < 0:
                    axes[i] = max(0, axes[i] + len(input.shape))
                else:
                    axes[i] = min(len(input.shape) - 1, axes[i])

        else:
            raise ValueError(
320 321 322 323
                "Input axes must be a python list or tuple, but reveived {}".format(
                    type(axes)
                )
            )
324

325
        infer_flags = [1 for i in range(len(axes))]
326 327 328

        if isinstance(starts, (list, tuple)):
            starts = [
W
wanghuancoder 已提交
329
                item.item(0) if isinstance(item, core.eager.Tensor) else item
330 331
                for item in starts
            ]
W
wanghuancoder 已提交
332
        elif isinstance(starts, core.eager.Tensor):
333
            tensor_t = starts.numpy(False)
334
            starts = list(tensor_t)
335
            infer_flags = [-1 for i in range(len(axes))]
336 337 338

        if isinstance(ends, (list, tuple)):
            ends = [
W
wanghuancoder 已提交
339
                item.item(0) if isinstance(item, core.eager.Tensor) else item
340
                for item in ends
341
            ]
W
wanghuancoder 已提交
342
        elif isinstance(ends, core.eager.Tensor):
343
            tensor_t = ends.numpy(False)
344
            ends = list(tensor_t)
345
            infer_flags = [-1 for i in range(len(axes))]
346

347
        return _C_ops.slice(input, axes, starts, ends, infer_flags, [])
348
    else:
349 350 351 352 353 354 355 356
        if not isinstance(starts, (list, tuple, Variable)):
            raise ValueError(
                "Input starts must be an Variable, python list or tuple."
            )
        if not isinstance(ends, (list, tuple, Variable)):
            raise ValueError(
                "Input ends must be an Variable, python list or tuple."
            )
357

358 359 360 361
        helper = LayerHelper('slice', **locals())

        inputs = {'Input': input}
        attrs = {'axes': axes}
362
        infer_flags = [1 for i in range(len(axes))]
363 364 365 366 367

        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
368
            infer_flags = [-1 for i in range(len(axes))]
369 370
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
371 372 373 374
            if paddle.utils._contain_var(starts):
                inputs[
                    'StartsTensorList'
                ] = paddle.utils._convert_to_tensor_list(starts)
375 376 377 378 379 380 381 382
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
            else:
                attrs['starts'] = starts
383

384 385 386 387
        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
388
            infer_flags = [-1 for i in range(len(axes))]
389 390
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
391 392 393 394
            if paddle.utils._contain_var(ends):
                inputs['EndsTensorList'] = paddle.utils._convert_to_tensor_list(
                    ends
                )
395 396 397 398 399 400 401 402
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
            else:
                attrs['ends'] = ends
403

404 405 406 407
        # infer_flags
        attrs['infer_flags'] = infer_flags
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('input')
408
        )
409 410
        helper.append_op(
            type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out}
411
        )
412

413
        return out
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428


def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
L
Ligoml 已提交
429
        Tensor, A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
466
    if in_dynamic_mode():
467
        return _C_ops.transpose(x, perm)
468
    else:
469 470 471 472 473 474 475 476 477 478
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
479
                'uint16',
480 481 482 483
                'complex64',
                'complex128',
            ],
            'transpose',
484
        )
485 486 487 488
        check_type(perm, 'perm', (list, tuple), 'transpose')
        if isinstance(perm, tuple):
            perm = list(perm)
        if len(perm) != len(x.shape):
489
            raise ValueError(
490 491
                "Input(perm) is the permutation of dimensions of Input(x), "
                "its length should be equal to dimensions of Input(x), "
492 493 494 495
                "but received dimension of Input(x) is {}, "
                "the length of Input(perm) is {}.".format(
                    len(x.shape), len(perm)
                )
496
            )
497 498 499 500 501 502 503
        for idx, dim in enumerate(perm):
            if dim >= len(x.shape):
                raise ValueError(
                    "Each element in Input(perm) should be less than Input(x)'s dimension, "
                    "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                    "dimension %d." % (idx, perm[idx], len(x.shape))
                )
504

505 506 507 508 509 510 511 512 513 514
        helper = LayerHelper('transpose', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='transpose2',
            inputs={'X': [x]},
            outputs={'Out': [out], 'XShape': [x_shape]},
            attrs={'axis': perm},
        )
        return out
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531


def unstack(x, axis=0, num=None):
    """
    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.

    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised.

    Args:
        x (Tensor): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.

    Returns:
L
Ligoml 已提交
532
        list(Tensor), The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.
533 534 535 536 537 538 539 540 541

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.ones(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = paddle.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]

    """
542 543 544 545
    if not (-x.ndim <= axis < x.ndim):
        raise ValueError(
            '`axis` must be in the range [-{0}, {0})'.format(x.ndim)
        )
W
wanghuancoder 已提交
546 547
    if num is not None and (num < 0 or num > x.shape[axis]):
        raise ValueError(f'`num` must be in the range [0, {x.shape[axis]})')
548
    if in_dynamic_mode():
549
        if num is None:
550 551 552
            num = x.shape[axis]
        if num == 0:
            return []
553
        return _C_ops.unstack(x, axis, num)
554 555
    else:
        helper = LayerHelper('unstack', **locals())
556
        if num is None:
557 558 559 560
            if axis is None or x.shape[axis] <= 0:
                raise ValueError('unknown unstack number')
            else:
                num = x.shape[axis]
561

562 563 564
        outs = []
        for _ in range(num):
            outs.append(helper.create_variable_for_type_inference(x.dtype))
565

566 567 568 569 570 571 572
        helper.append_op(
            type='unstack',
            inputs={'X': [x]},
            outputs={'Y': outs},
            attrs={'axis': axis, 'num': num},
        )
        return outs
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    Reset the values of `input` according to the shard it beloning to.
    Every value in `input` must be a non-negative integer, and
    the parameter `index_num` represents the integer above the maximum
    value of `input`. Thus, all values in `input` must be in the range
    [0, index_num) and each value can be regarded as the offset to the beginning
    of the range. The range is further split into multiple shards. Specifically,
    we first compute the `shard_size` according to the following formula,
    which represents the number of integers each shard can hold. So for the
    i'th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size).
    ::

        shard_size = (index_num + nshards - 1) // nshards

    For each value `v` in `input`, we reset it to a new value according to the
    following formula:
    ::
593

594 595 596 597 598 599 600 601 602 603
        v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value

    That is, the value `v` is set to the new offset within the range represented by the shard `shard_id`
    if it in the range. Otherwise, we reset it to be `ignore_value`.

    Args:
        input (Tensor): Input tensor with data type int64 or int32. It's last dimension must be 1.
        index_num (int): An integer represents the integer above the maximum value of `input`.
        nshards (int): The number of shards.
        shard_id (int): The index of the current shard.
L
LoneRanger 已提交
604
        ignore_value (int, optional): An integer value out of sharded index range. The default value is -1.
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620

    Returns:
        Tensor.

    Examples:
        .. code-block:: python

            import paddle
            label = paddle.to_tensor([[16], [1]], "int64")
            shard_label = paddle.shard_index(input=label,
                                             index_num=20,
                                             nshards=2,
                                             shard_id=0)
            print(shard_label)
            # [[-1], [1]]
    """
621
    if in_dynamic_mode():
622 623 624
        return _C_ops.shard_index(
            input, index_num, nshards, shard_id, ignore_value
        )
625 626 627 628 629

    check_variable_and_dtype(input, 'input', ['int64', 'int32'], 'shard_index')
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
630 631 632
        raise ValueError(
            'The shard_id(%d) should be in [0, %d)' % (shard_id, nshards)
        )
633 634

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
635 636 637 638 639 640 641 642 643 644 645 646
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value,
        },
        stop_gradient=True,
    )
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
    return out


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1 (input is a 2-D Tensor):
            Input:
                X.shape = [3, 5]
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
                shape = [2, 2, -1]
                offsets = [0, 0, 1]
            Output:
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]

    Parameters:
        x (Tensor): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
690
        shape (list|tuple|Tensor, optional): The output shape is specified
691 692 693 694 695 696 697 698 699 700 701
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
            the same as the dimension size of `x`. If a Tensor, it should be a 1-D Tensor.
            When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
            must be the same as the dimension size of `x`. If a Tensor, it should be a 1-D
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
702
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
703 704

    Returns:
L
Ligoml 已提交
705
        Tensor, The cropped Tensor has same data type with `x`.
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735

    Examples:

        .. code-block:: python

            import paddle
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
            # x.shape = [3, 3]
            # x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

            # shape can be a 1-D Tensor or list or tuple.
            shape = paddle.to_tensor([2, 2], dtype='int32')
            # shape = [2, 2]
            # shape = (2, 2)
            out = paddle.crop(x, shape)
            # out.shape = [2, 2]
            # out = [[1,2], [4,5]]

            # offsets can be a 1-D Tensor or list or tuple.
            offsets = paddle.to_tensor([0, 1], dtype='int32')
            # offsets = [1, 0]
            # offsets = (1, 1)
            out = paddle.crop(x, shape, offsets)
            # out.shape = [2, 2]
            # if offsets = [0, 0], out = [[1,2], [4,5]]
            # if offsets = [0, 1], out = [[2,3], [5,6]]
            # if offsets = [1, 0], out = [[4,5], [7,8]]
            # if offsets = [1, 1], out = [[5,6], [8,9]]

    """
736

737
    helper = LayerHelper('crop_tensor', **locals())
738 739 740 741 742 743 744 745 746
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'crop_tensor'
    )
    check_type(
        shape, 'shape', (list, tuple, Variable, type(None)), 'crop_tensor'
    )
    check_type(
        offsets, 'offsets', (list, tuple, Variable, type(None)), 'crop_tensor'
    )
747 748 749 750

    if offsets is None:
        offsets = [0] * len(x.shape)

P
PuQing 已提交
751 752 753
    if shape is None:
        shape = x.shape

754
    if in_dynamic_mode():
755
        return _C_ops.crop(x, shape, offsets)
756

757 758 759 760 761 762 763 764
    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
765 766
                % type(shape_val)
            )
767 768 769
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
770 771
                % str(shape_val)
            )
772 773 774
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
775 776
                % str(shape_val)
            )
777 778 779 780 781

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
782 783
                % type(offset_val)
            )
784 785 786
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
787 788
                % str(offset_val)
            )
789 790 791 792 793

    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
        attrs['offsets'] = [-1] * len(x.shape)
794
    elif paddle.utils._contain_var(offsets):
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
        new_offsets_tensor = []
        offsets_attr = []
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
                offsets_attr.append(-1)
            else:
                _attr_offsets_check(dim)
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
                offsets_attr.append(dim)
        ipts['OffsetsTensor'] = new_offsets_tensor
        attrs['offsets'] = offsets_attr
    else:
        for offset in offsets:
            _attr_offsets_check(offset)
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
818
    elif paddle.utils._contain_var(shape):
819 820 821 822 823 824 825 826 827 828
        new_shape_tensor = []
        shape_attr = []
        for dim_size in shape:
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
                shape_attr.append(0)
            else:
                _attr_shape_check(dim_size)
                temp_out = helper.create_variable_for_type_inference('int32')
829 830 831
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
832 833 834 835 836 837 838 839 840
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
        for dim_size in shape:
            _attr_shape_check(dim_size)
        attrs['shape'] = shape

841 842 843 844 845 846
    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs,
    )
847 848 849
    return out


850 851 852 853 854 855 856 857 858
@dygraph_only
def fill_(x, value):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with value inplace.

    Args:
859 860
        x (Tensor): ``x`` is the Tensor we want to filled data inplace
        value (Scale): ``value`` is the value to be filled in x
861 862

    Returns:
L
Ligoml 已提交
863
        x(Tensor), Tensor x filled with value inplace
864 865 866 867 868 869 870 871 872 873 874 875 876 877

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.fill_(0)
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
    if not isinstance(value, (float, int)):
        raise TypeError(
878 879 880
            "The type of 'value'  must be int or float, but received %s."
            % (type(value))
        )
881
    return _C_ops.fill_(x, value)
882 883 884 885 886 887 888 889 890 891 892


@dygraph_only
def zero_(x):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with zero inplace.

    Args:
893
        x (Tensor): ``x`` is the Tensor we want to filled with zero inplace
894 895

    Returns:
L
Ligoml 已提交
896
        x (Tensor), Tensor x filled with zero inplace
897 898 899 900 901 902 903 904 905 906 907 908

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.zero_()
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
909
    return _C_ops.fill_(x, 0.0)
910 911


912 913 914
@dygraph_only
def fill_diagonal_(x, value, offset=0, wrap=False, name=None):
    """
915 916
    Note:
        This API is ONLY available in Dygraph mode.
917

918
    This function fill the value into the x Tensor's diagonal inplace.
919

920 921 922 923 924 925
    Args:
        x(Tensor): ``x`` is the original Tensor
        value(Scale): ``value`` is the value to filled in x
        offset(int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        wrap(bool,optional): the diagonal 'wrapped' after N columns for tall matrices.
        name(str,optional): Name for the operation (optional, default is None)
926

927
    Returns:
L
Ligoml 已提交
928
        Tensor, Tensor with diagonal filled with value.
929

930 931 932 933 934 935 936
    Examples:
        .. code-block:: python
            import paddle
            x = paddle.ones((4, 3)) * 2
            x.fill_diagonal_(1.0)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]
    """
937
    if in_dynamic_mode():
938
        if len(x.shape) == 2:
939 940
            return _C_ops.fill_diagonal_(x, value, offset, wrap)
        return _C_ops.fill_diagonal_(x, value, offset, True)
Z
zhiboniu 已提交
941

942

943 944
def _fill_diagonal_tensor_impl(x, y, offset=0, dim1=0, dim2=1, inplace=False):
    inshape = x.shape
945 946 947 948 949 950 951
    assert dim1 < len(inshape) and dim1 >= -len(
        inshape
    ), 'dim1 should between [-rank,rank) in fill_diagonal_tensor_'
    assert dim2 < len(inshape) and dim2 >= -len(
        inshape
    ), 'dim2 should between [-rank,rank) in fill_diagonal_tensor_'
    assert len(inshape) >= 2, 'Tensor dims should >= 2 in fill_diagonal_tensor_'
952 953 954 955 956 957 958
    dim1 %= len(inshape)
    dim2 %= len(inshape)

    predshape = []
    for i in range(len(inshape)):
        if i != dim1 and i != dim2:
            predshape.append(inshape[i])
959 960 961 962
    diaglen = min(
        min(inshape[dim1], inshape[dim1] + offset),
        min(inshape[dim2], inshape[dim2] - offset),
    )
963
    predshape.append(diaglen)
964
    assert tuple(predshape) == tuple(
965
        y.shape
966
    ), f"the y shape should be {predshape}"
967 968 969 970
    if len(y.shape) == 1:
        y = y.reshape([1, -1])

    if inplace:
971 972
        return _C_ops.fill_diagonal_tensor_(x, y, offset, dim1, dim2)
    return _C_ops.fill_diagonal_tensor(x, y, offset, dim1, dim2)
973 974 975 976


def fill_diagonal_tensor_(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
977 978
    Note:
        This API is ONLY available in Dygraph mode.
979 980 981 982

    This function fill the source Tensor y into the x Tensor's diagonal inplace.

    Args:
983 984 985 986 987 988
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
989 990

    Returns:
L
Ligoml 已提交
991
        Tensor, Tensor with diagonal filled with y.
992 993 994 995 996 997 998 999 1000 1001 1002 1003

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            x.fill_diagonal_tensor_(y)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
1004 1005 1006
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=True
    )
1007 1008 1009 1010 1011 1012 1013


def fill_diagonal_tensor(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
    This function fill the source Tensor y into the x Tensor's diagonal.

    Args:
1014 1015 1016 1017 1018 1019
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1020 1021

    Returns:
L
Ligoml 已提交
1022
        Tensor, Tensor with diagonal filled with y.
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            nx = x.fill_diagonal_tensor(y)
            print(nx.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
1035 1036 1037
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=False
    )
1038 1039


Z
zhiboniu 已提交
1040 1041 1042
@dygraph_only
def tolist(x):
    """
1043 1044
    Note:
        This API is ONLY available in Dygraph mode.
Z
zhiboniu 已提交
1045 1046 1047 1048

    This function translate the paddle.Tensor to python list.

    Args:
1049
        x (Tensor): ``x`` is the Tensor we want to translate to list.
Z
zhiboniu 已提交
1050 1051

    Returns:
L
Ligoml 已提交
1052
        list, A list that contain the same value of current Tensor.
Z
zhiboniu 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067


    Examples:
        .. code-block:: python

            import paddle

            t = paddle.to_tensor([0,1,2,3,4])
            expectlist = t.tolist()
            print(expectlist)   #[0, 1, 2, 3, 4]

            expectlist = paddle.tolist(t)
            print(expectlist)   #[0, 1, 2, 3, 4]

    """
1068
    # TODO(zhouwei): will remove 0-D Tensor.numpy() hack
1069
    return x.numpy(False).tolist()
Z
zhiboniu 已提交
1070 1071


1072 1073 1074
def concat(x, axis=0, name=None):
    """

1075 1076
    Concatenates the input along the axis. It doesn't support 0-D Tensor because it requires a certain axis, and 0-D Tensor
    doesn't have any axis.
1077 1078

    Args:
1079
        x (list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16,
1080
            float32, float64, int32, int64, int8, uint8. All the Tensors in ``x`` must have same data type.
1081
        axis (int|Tensor, optional): Specify the axis to operate on the input Tensors.
1082
            Tt should be integer or 0-D int Tensor with shape []. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
1083
            it works the same way as ``axis+R``. Default is 0.
1084
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1085 1086

    Returns:
L
Ligoml 已提交
1087
        Tensor, A Tensor with the same data type as ``x``.
1088 1089 1090

    Examples:
        .. code-block:: python
1091

1092
            import paddle
1093

1094 1095 1096 1097 1098 1099
            x1 = paddle.to_tensor([[1, 2, 3],
                                   [4, 5, 6]])
            x2 = paddle.to_tensor([[11, 12, 13],
                                   [14, 15, 16]])
            x3 = paddle.to_tensor([[21, 22],
                                   [23, 24]])
1100 1101 1102
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
1103 1104 1105
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
1106 1107 1108 1109 1110 1111 1112 1113 1114
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
1115
    input = x
1116
    if in_dynamic_mode():
1117 1118 1119 1120
        if isinstance(axis, Variable):
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
1121
        return _C_ops.concat(input, axis)
1122 1123
    else:
        check_type(input, 'input', (list, tuple, Variable), 'concat')
1124
        if not isinstance(input, Variable):
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
            for id, x in enumerate(input):
                check_variable_and_dtype(
                    x,
                    'input[' + str(id) + ']',
                    [
                        'bool',
                        'float16',
                        'float32',
                        'float64',
                        'int32',
                        'int64',
                        'int8',
                        'unit8',
W
wangzhen38 已提交
1138
                        'uint16',
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
                    ],
                    'concat',
                )
                if x.dtype != input[0].dtype:
                    raise TypeError(
                        "All the Tensors in the input must have the same data type."
                    )
        else:
            input = [input]
        check_type(axis, 'axis', (int, Variable), 'concat')
1149

1150 1151 1152 1153 1154
        if isinstance(axis, Variable):
            check_dtype(
                axis.dtype,
                'axis',
                ['int32', 'int64'],
1155
                'concat',
1156
                "The data type of axis must be int32 or int64 when axis is a Tensor",
1157
            )
1158

1159 1160 1161
        helper = LayerHelper('concat', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
1162
        )
1163

1164 1165 1166
        if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            # NOTE(liym27): Don't remove this if branch!
            # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
1167
            # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static graph mode.
1168

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
            assert len(input) == 1, (
                "If the elements of 'input' in concat are Variable(LoDTensorArray), "
                "number of the elements must be 1, but received %s."
                % len(input)
            )
            out_index = helper.create_variable_for_type_inference(dtype="int32")
            helper.append_op(
                type='tensor_array_to_tensor',
                inputs={'X': input[0]},
                outputs={'Out': [out], 'OutIndex': [out_index]},
                attrs={'axis': axis, 'use_stack': False},
            )
1181
        else:
1182 1183 1184 1185 1186 1187 1188
            inputs = {'X': input}
            attrs = {}
            if isinstance(axis, Variable):
                axis.stop_gradient = True
                inputs['AxisTensor'] = axis
            else:
                attrs['axis'] = axis
1189

1190 1191 1192 1193 1194 1195 1196
            helper.append_op(
                type='concat',
                inputs=inputs,
                outputs={'Out': [out]},
                attrs=attrs,
            )
        return out
1197 1198


1199 1200
def broadcast_tensors(input, name=None):
    """
1201
    Broadcast a list of tensors following broadcast semantics
1202

1203
    Note:
1204 1205 1206
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

    .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1207 1208

    Args:
1209
        input (list|tuple): ``input`` is a Tensor list or Tensor tuple which is with data type bool,
1210 1211
            float16, float32, float64, int32, int64. All the Tensors in ``input`` must have same data type.
            Currently we only support tensors with rank no greater than 5.
1212
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1213 1214

    Returns:
L
Ligoml 已提交
1215
        list(Tensor), The list of broadcasted tensors following the same order as ``input``.
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228

    Examples:
        .. code-block:: python

            import paddle
            x1 = paddle.rand([1, 2, 3, 4]).astype('float32')
            x2 = paddle.rand([1, 2, 1, 4]).astype('float32')
            x3 = paddle.rand([1, 1, 3, 1]).astype('float32')
            out1, out2, out3 = paddle.broadcast_tensors(input=[x1, x2, x3])
            # out1, out2, out3: tensors broadcasted from x1, x2, x3 with shape [1,2,3,4]
    """

    num_inputs = len(input)
1229
    if in_dynamic_mode():
1230
        return _C_ops.broadcast_tensors(input)
1231 1232 1233
    else:
        check_type(input, 'input', (list, tuple), 'broadcast_tensors')
        if num_inputs < 1:
1234
            raise TypeError(
1235
                "At least 1 tensor is needed to perform broadcast_tensors"
1236
            )
1237

1238 1239 1240 1241 1242
        # Check input types
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
C
co63oc 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251
                [
                    'bool',
                    'float16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'uint16',
                ],
1252 1253 1254 1255 1256 1257
                'broadcast_tensors',
            )
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type."
                )
1258

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
        # Check bcast semantics
        output_shape_r_last_tensor_index = []
        output_shape_r = []

        # Use while loop due to weird behaviour of "range()"
        j = 0
        while j < len(input):
            tensor = input[j]
            shape = list(reversed(tensor.shape))

            i = 0
            while i < len(shape):
                if len(output_shape_r) <= i:
                    output_shape_r.append(shape[i])
                    output_shape_r_last_tensor_index.append(j)
                else:
                    invalid = (
                        output_shape_r[i] != shape[i]
                        and output_shape_r[i] != 1
                        and shape[i] != 1
                    )
                    if invalid:
                        last_index = output_shape_r_last_tensor_index[i]
                        raise TypeError(
                            "Input tensors to broadcast_tensors does not follow bcast semantics"
1284
                            f"Tensor {last_index} conflicts with Tensor {j} in reversed dimension {i}"
1285 1286 1287 1288 1289 1290 1291 1292
                        )
                    if output_shape_r[i] <= shape[i]:
                        output_shape_r[i] = shape[i]
                        output_shape_r_last_tensor_index[i] = j
                i += 1  # while i < len(shape)
            j += 1  # while j < len(input)

        helper = LayerHelper('broadcast_tensors', **locals())
1293
        i = 0
1294 1295 1296 1297 1298
        out = []
        while i < num_inputs:
            out.append(
                helper.create_variable_for_type_inference(
                    dtype=helper.input_dtype()
1299 1300
                )
            )
1301
            i += 1
1302

1303 1304 1305 1306 1307 1308 1309
        inputs = {'X': input}
        helper.append_op(
            type='broadcast_tensors',
            inputs=inputs,
            outputs={'Out': out},
            attrs={},
        )
1310

1311
        return out
1312 1313


Y
yaoxuefeng 已提交
1314
def flip(x, axis, name=None):
W
Wilber 已提交
1315
    """
Y
yaoxuefeng 已提交
1316
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
1317 1318

    Args:
Y
yaoxuefeng 已提交
1319
        x (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
1320
            should be float32, float64, int32, int64, bool.
R
Roc 已提交
1321
        axis (list|tuple|int): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
1322
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
Wilber 已提交
1323 1324

    Returns:
L
Ligoml 已提交
1325
        Tensor, Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
1326 1327 1328 1329 1330

    Examples:
        .. code-block:: python

          import paddle
Y
yaoxuefeng 已提交
1331 1332

          image_shape=(3, 2, 2)
1333
          img = paddle.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
R
Roc 已提交
1334 1335
          tmp = paddle.flip(img, [0,1])
          print(tmp) # [[[10,11],[8, 9]], [[6, 7],[4, 5]], [[2, 3],[0, 1]]]
Y
yaoxuefeng 已提交
1336

R
Roc 已提交
1337 1338
          out = paddle.flip(tmp,-1)
          print(out) # [[[11,10],[9, 8]], [[7, 6],[5, 4]], [[3, 2],[1, 0]]]
W
Wilber 已提交
1339
    """
R
Roc 已提交
1340 1341
    if isinstance(axis, int):
        axis = [axis]
H
hong 已提交
1342

1343
    if in_dynamic_mode():
1344
        return _C_ops.flip(x, axis)
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
    else:
        helper = LayerHelper("flip", **locals())
        check_type(x, 'X', (Variable), 'flip')
        dtype = helper.input_dtype('x')
        check_dtype(
            dtype,
            'X',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
            'flip',
        )
        check_type(axis, 'axis', (list, tuple), 'flip')
        if name is None:
            out = helper.create_variable_for_type_inference(dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=dtype, persistable=False
            )
H
hong 已提交
1362

1363 1364 1365 1366 1367 1368 1369
        helper.append_op(
            type="flip",
            inputs={"X": x},
            outputs={"Out": out},
            attrs={"axis": axis},
        )
        return out
1370 1371


Z
zmxdream 已提交
1372 1373
def rot90(x, k=1, axes=[0, 1], name=None):
    """
1374
    Rotate a n-D tensor by 90 degrees. The rotation direction and times are specified by axes and the absolute value of k. Rotation direction is from axes[0] towards axes[1] if k > 0, and from axes[1] towards axes[0] for k < 0.
Z
zmxdream 已提交
1375 1376 1377

    Args:
        x (Tensor): The input Tensor(or LoDTensor). The data type of the input Tensor x
Z
zmxdream 已提交
1378
            should be float16, float32, float64, int32, int64, bool. float16 is only supported on gpu.
Z
zmxdream 已提交
1379 1380
        k (int, optional): Direction and number of times to rotate, default value: 1.
        axes (list|tuple, optional): Axes to rotate, dimension must be 2. default value: [0, 1].
Z
zmxdream 已提交
1381 1382 1383 1384
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
1385
        Tensor, Tensor or LoDTensor calculated by rot90 layer. The data type is same with input x.
Z
zmxdream 已提交
1386 1387 1388 1389 1390 1391 1392 1393

    Examples:
        .. code-block:: python

          import paddle

          data = paddle.arange(4)
          data = paddle.reshape(data, (2, 2))
1394
          print(data)
Z
zmxdream 已提交
1395 1396 1397
          #[[0, 1],
          # [2, 3]]

Z
zmxdream 已提交
1398
          y = paddle.rot90(data, 1, [0, 1])
1399
          print(y)
Z
zmxdream 已提交
1400 1401 1402
          #[[1, 3],
          # [0, 2]]

Z
zmxdream 已提交
1403
          y= paddle.rot90(data, -1, [0, 1])
1404
          print(y)
Z
zmxdream 已提交
1405 1406 1407
          #[[2, 0],
          # [3, 1]]

Z
zmxdream 已提交
1408 1409
          data2 = paddle.arange(8)
          data2 = paddle.reshape(data2, (2,2,2))
1410
          print(data2)
Z
zmxdream 已提交
1411 1412 1413 1414 1415
          #[[[0, 1],
          #  [2, 3]],
          # [[4, 5],
          #  [6, 7]]]

Z
zmxdream 已提交
1416
          y = paddle.rot90(data2, 1, [1, 2])
Z
zmxdream 已提交
1417 1418 1419 1420 1421
          print(y)
          #[[[1, 3],
          #  [0, 2]],
          # [[5, 7],
          #  [4, 6]]]
Z
zmxdream 已提交
1422 1423 1424 1425 1426
    """

    helper = LayerHelper("rot90", **locals())
    check_type(x, 'X', (Variable), 'rot90')
    dtype = helper.input_dtype('x')
1427 1428 1429 1430 1431 1432
    check_dtype(
        dtype,
        'X',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'rot90',
    )
Z
zmxdream 已提交
1433 1434 1435 1436 1437
    check_type(axes, 'axes', (list, tuple), 'rot90')

    input_total_dims = len(x.shape)
    total_rot_dims = len(axes)
    if total_rot_dims != 2:
1438 1439
        raise ValueError(
            "expected total rotation axes == 2, but got axes = {}".format(
1440 1441 1442
                total_rot_dims
            )
        )
Z
zmxdream 已提交
1443
    if input_total_dims < 2:
1444 1445
        raise ValueError(
            "expected total dims >= 2, but got total dims = {}".format(
1446 1447 1448
                input_total_dims
            )
        )
Z
zmxdream 已提交
1449 1450 1451

    if not (axes[0] != axes[1] and abs(axes[0] - axes[1]) != input_total_dims):
        raise ValueError(
1452 1453 1454 1455
            "expected rotation axes to be different, but got axis0 = {}, and axis1 = {}".format(
                axes[0], axes[1]
            )
        )
Z
zmxdream 已提交
1456 1457

    if not (axes[0] < input_total_dims and axes[0] >= -input_total_dims):
1458
        raise ValueError(f"Rotation axis0 out of range, axis0 = {axes[0]}")
Z
zmxdream 已提交
1459
    if not (axes[1] < input_total_dims and axes[1] >= -input_total_dims):
1460
        raise ValueError(f"Rotation axis1 out of range, axis1 = {axes[1]}")
Z
zmxdream 已提交
1461

Z
zmxdream 已提交
1462
    k %= 4
Z
zmxdream 已提交
1463 1464 1465 1466 1467 1468
    if k == 0:
        return x
    if k == 2:
        return flip(flip(x, axes[0]), axes[1])

    axes_list = list(range(0, input_total_dims))
1469 1470 1471 1472
    (axes_list[axes[0]], axes_list[axes[1]]) = (
        axes_list[axes[1]],
        axes_list[axes[0]],
    )
Z
zmxdream 已提交
1473 1474 1475 1476 1477 1478 1479
    if k == 1:
        return transpose(flip(x, axes[1]), axes_list)
    else:
        # k == 3
        return flip(transpose(x, axes_list), axes[1])


1480
def flatten(x, start_axis=0, stop_axis=-1, name=None):
1481
    r"""
1482 1483
    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

1484
    Note:
1485
        The output Tensor will share data with origin Tensor and doesn't have a Tensor copy in ``dygraph`` mode.
1486
        If you want to use the Tensor copy version, please use `Tensor.clone` like ``flatten_clone_x = x.flatten().clone()``.
1487

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
张春乔 已提交
1517
        x (Tensor): A tensor of number of dimentions >= axis. A tensor with data type float16, float32,
1518
                      float64, int8, int32, int64, uint8.
1519 1520
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
1521
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1522 1523

    Returns:
L
Ligoml 已提交
1524
        Tensor, A tensor with the contents of the input tensor, with input \
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Examples:

        .. code-block:: python

            import paddle

            image_shape=(2, 3, 4, 4)
1535

Y
yaoxuefeng 已提交
1536 1537
            x = paddle.arange(end=image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3])
            img = paddle.reshape(x, image_shape)
1538

1539 1540
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
1541 1542 1543 1544

            # out shares data with img in dygraph mode
            img[0, 0, 0, 0] = -1
            print(out[0, 0, 0]) # [-1]
1545 1546
    """
    if not (isinstance(x, Variable)):
Y
yaoxuefeng 已提交
1547
        raise ValueError("The input x should be a Tensor")
1548 1549

    x_dim = len(x.shape)
1550 1551 1552
    if x_dim == 0:
        if not (isinstance(start_axis, int)) or start_axis not in [0, -1]:
            raise ValueError(
1553
                "The start_axis should be int, and should be 0 or -1 when the input tensor is a 0-D-Tensor"
1554 1555 1556
            )
        if not (isinstance(stop_axis, int)) or stop_axis not in [0, -1]:
            raise ValueError(
1557
                "The stop_axis should be int, and should be 0 or -1 when the input tensor is a 0-D-Tensor"
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
            )
    else:
        if (
            not (isinstance(start_axis, int))
            or (start_axis > x_dim - 1)
            or start_axis < -x_dim
        ):
            raise ValueError(
                "The start_axis should be a int, and in range [-rank(x), rank(x))"
            )
        if (
            not (isinstance(stop_axis, int))
            or (stop_axis > x_dim - 1)
            or stop_axis < -x_dim
        ):
            raise ValueError(
                "The stop_axis should be a int, and in range [-rank(x), rank(x))"
            )
        if start_axis < 0:
            start_axis = start_axis + x_dim
        if stop_axis < 0:
            stop_axis = stop_axis + x_dim
        if start_axis > stop_axis:
            raise ValueError("The stop_axis should be larger than stat_axis")
1582

1583
    if in_dynamic_mode():
1584
        return _C_ops.flatten(x, start_axis, stop_axis)
1585
    else:
W
Weilong Wu 已提交
1586 1587 1588
        check_variable_and_dtype(
            x,
            'x',
X
xiaoguoguo626807 已提交
1589 1590 1591 1592 1593 1594 1595 1596 1597
            [
                'float16',
                'float32',
                'float64',
                'int8',
                'int16',
                'int32',
                'int64',
                'uint8',
1598
                'uint16',
X
xiaoguoguo626807 已提交
1599
            ],
W
Weilong Wu 已提交
1600 1601
            'flatten',
        )
1602 1603 1604 1605 1606 1607 1608 1609
        helper = LayerHelper('flatten', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='flatten_contiguous_range',
            inputs={"X": x},
            outputs={'Out': out, 'XShape': x_shape},
            attrs={"start_axis": start_axis, "stop_axis": stop_axis},
1610
        )
1611
        return out
1612 1613


1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
@inplace_apis_in_dygraph_only
def flatten_(x, start_axis=0, stop_axis=-1, name=None):
    """
    Inplace version of ``flatten`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_flatten`.
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Tensor")

    x_dim = len(x.shape)
1624 1625 1626 1627 1628
    if (
        not (isinstance(start_axis, int))
        or (start_axis > x_dim - 1)
        or start_axis < -x_dim
    ):
1629
        raise ValueError(
1630 1631 1632 1633 1634 1635 1636
            "The start_axis should be a int, and in range [-rank(x), rank(x))"
        )
    if (
        not (isinstance(stop_axis, int))
        or (stop_axis > x_dim - 1)
        or stop_axis < -x_dim
    ):
1637
        raise ValueError(
1638 1639
            "The stop_axis should be a int, and in range [-rank(x), rank(x))"
        )
1640 1641 1642 1643 1644 1645 1646
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1647
    if in_dynamic_mode():
1648
        return _C_ops.flatten_(x, start_axis, stop_axis)
1649

1650

Y
yaoxuefeng 已提交
1651
def roll(x, shifts, axis=None, name=None):
1652
    """
1653 1654 1655
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that
    roll beyond the last position are re-introduced at the first according to 'shifts'.
    If a axis is not specified,
1656 1657 1658
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
1659
        x (Tensor): The x tensor as input.
1660
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
1661
                           of the `x` tensor are shifted.
Y
Yuang Liu 已提交
1662
        axis (int|list|tuple, optional): axis(axes) along which to roll. Default: None
C
Chen Long 已提交
1663 1664 1665
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                For more information, please refer to :ref:`api_guide_Name` .

1666 1667

    Returns:
L
Ligoml 已提交
1668
        Tensor, A Tensor with same data type as `x`.
1669 1670 1671

    Examples:
        .. code-block:: python
1672

1673 1674
            import paddle

1675 1676 1677
            x = paddle.to_tensor([[1.0, 2.0, 3.0],
                                  [4.0, 5.0, 6.0],
                                  [7.0, 8.0, 9.0]])
Y
yaoxuefeng 已提交
1678
            out_z1 = paddle.roll(x, shifts=1)
Y
yaoxuefeng 已提交
1679
            print(out_z1)
Y
yaoxuefeng 已提交
1680 1681 1682 1683
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
Y
yaoxuefeng 已提交
1684
            print(out_z2)
Y
yaoxuefeng 已提交
1685 1686 1687
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
Y
Yuang Liu 已提交
1688 1689 1690 1691 1692
            out_z3 = paddle.roll(x, shifts=1, axis=1)
            print(out_z3)
            #[[3. 1. 2.]
            # [6. 4. 5.]
            # [9. 7. 8.]]
1693
    """
Y
yaoxuefeng 已提交
1694
    origin_shape = x.shape
1695 1696
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
1697 1698 1699 1700
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
1701
    if axis is not None:
Y
yaoxuefeng 已提交
1702 1703 1704
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
1705 1706 1707 1708
                    "axis is out of range, it should be in range [{}, {}), but received {}".format(
                        -len_origin_shape, len_origin_shape, axis
                    )
                )
S
sunli 已提交
1709 1710 1711
    else:
        axis = []

1712
    if in_dynamic_mode():
1713
        return _C_ops.roll(x, shifts, axis)
1714
    else:
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
        check_variable_and_dtype(
            x,
            'dtype',
            [
                'float16',
                'float32',
                'uint16',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'roll',
        )
1730 1731
        helper = LayerHelper("roll", **locals())
        check_type(axis, 'axis', (list, tuple), 'roll')
F
From00 已提交
1732

1733
        out = helper.create_variable_for_type_inference(x.dtype)
1734

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
        if isinstance(shifts, Variable):
            helper.append_op(
                type='roll',
                inputs={'X': x, "ShiftsTensor": shifts},
                outputs={'Out': out},
                attrs={'axis': axis},
            )
        else:
            check_type(shifts, 'shifts', (list, tuple), 'roll')
            helper.append_op(
                type='roll',
                inputs={'X': x},
                outputs={'Out': out},
                attrs={'axis': axis, 'shifts': shifts},
            )
        return out
1751 1752


L
Leo Chen 已提交
1753
def stack(x, axis=0, name=None):
1754
    """
1755
    Stacks all the input tensors ``x`` along ``axis`` dimemsion.
L
Leo Chen 已提交
1756
    All tensors must be of the same shape and same dtype.
1757 1758 1759

    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked
L
Leo Chen 已提交
1760
    tensor is [A, N, B], etc.
1761

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
1797
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
1798 1799 1800 1801 1802 1803 1804 1805

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
1806
        x (list[Tensor]|tuple[Tensor]): Input ``x`` can be a ``list`` or ``tuple`` of tensors, the Tensors in ``x``
1807
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
1808
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
1809
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``.
L
Leo Chen 已提交
1810
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
1811
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1812

1813
    Returns:
L
Ligoml 已提交
1814
        Tensor, The stacked tensor with same data type as input.
1815

1816
    Example:
1817
        .. code-block:: python
L
Leo Chen 已提交
1818

1819
            import paddle
1820

L
Leo Chen 已提交
1821 1822 1823
            x1 = paddle.to_tensor([[1.0, 2.0]])
            x2 = paddle.to_tensor([[3.0, 4.0]])
            x3 = paddle.to_tensor([[5.0, 6.0]])
1824

L
Leo Chen 已提交
1825 1826
            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
L
Leo Chen 已提交
1827
            print(out)
L
Leo Chen 已提交
1828 1829 1830
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
1831

1832 1833 1834 1835 1836 1837
        out = paddle.stack([x1, x2, x3], axis=-2)
        print(out.shape)  # [1, 3, 2]
        print(out)
        # [[[1., 2.],
        #   [3., 4.],
        #   [5., 6.]]]
L
Leo Chen 已提交
1838
    """
1839 1840
    axis = 0 if axis is None else axis

1841
    if in_dynamic_mode():
1842
        return _C_ops.stack(x, axis)
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
    else:
        if not isinstance(x, list) and not isinstance(x, tuple):
            # NOTE:(zhiqiu) Only support Variable as input if the Variable is a LOD_TENSOR_ARRAY create by create_array, array_write, array_read, etc.
            # In that case, Variable is array of tensors indeed.
            if (
                isinstance(x, Variable)
                and x.desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY
            ):
                x = [x]
            else:
                raise TypeError(
1854
                    "The type of '{}' in {} must be {}, but received {}".format(
1855 1856 1857 1858 1859 1860
                        'x',
                        'stack',
                        'list[Tensor], tuple[Tensor] or TensorArray',
                        type(x),
                    )
                )
1861

1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
        helper = LayerHelper('stack', **locals())

        out = helper.create_variable_for_type_inference(x[0].dtype)
        if x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            assert len(x) == 1, (
                "If the elements of 'x' in stack are Variable(LoDTensorArray), "
                "number of the elements must be 1, but received %s." % len(x)
            )
            out_index = helper.create_variable_for_type_inference(dtype="int32")

            for i in x:
                check_variable_and_dtype(
                    i,
1875
                    'x',
C
ccrrong 已提交
1876 1877 1878 1879 1880 1881 1882 1883
                    [
                        'float16',
                        'float32',
                        'float64',
                        'int32',
                        'int64',
                        'uint16',
                    ],
1884 1885
                    'stack',
                )
1886

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
            helper.append_op(
                type='tensor_array_to_tensor',
                inputs={'X': x[0]},
                outputs={'Out': [out], 'OutIndex': [out_index]},
                attrs={'axis': axis, 'use_stack': True},
            )
        else:
            helper.append_op(
                type='stack',
                inputs={'X': x},
                outputs={'Y': out},
                attrs={'axis': axis},
1899 1900
            )

1901
        return out
1902 1903


1904
def split(x, num_or_sections, axis=0, name=None):
1905 1906
    """
    Split the input tensor into multiple sub-Tensors.
1907

1908
    Args:
1909
        x (Tensor): A N-D Tensor. The data type is bool, bfloat16, float16, float32, float64, uint8, int8, int32 or int64.
1910
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
1911 1912 1913 1914
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
1915 1916
        axis (int|Tensor, optional): The axis along which to split, it can be a integer or a ``0-D Tensor``
            with shape [] and data type  ``int32`` or ``int64``.
1917 1918 1919
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
1920
    Returns:
L
Ligoml 已提交
1921
        list(Tensor), The list of segmented Tensors.
1922

1923 1924
    Example:
        .. code-block:: python
1925

1926
            import paddle
1927

L
Leo Chen 已提交
1928 1929
            # x is a Tensor of shape [3, 9, 5]
            x = paddle.rand([3, 9, 5])
1930

L
Leo Chen 已提交
1931 1932 1933 1934
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=1)
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1935 1936

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
L
Leo Chen 已提交
1937 1938 1939
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1940 1941

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
L
Leo Chen 已提交
1942 1943 1944
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1945

L
Leo Chen 已提交
1946
            # axis is negative, the real axis is (rank(x) + axis)=1
1947
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
L
Leo Chen 已提交
1948 1949 1950
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1951
    """
1952 1953
    input = x
    dim = axis
1954
    if in_dynamic_mode():
1955 1956 1957 1958 1959
        if isinstance(dim, Variable):
            dim = dim.item(0)
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input.shape) + dim) if dim < 0 else dim

1960
        if isinstance(num_or_sections, (list, tuple)):
1961
            if paddle.utils._contain_var(num_or_sections):
1962 1963
                for index, item in enumerate(num_or_sections):
                    if isinstance(item, Variable):
1964
                        num_or_sections[index] = num_or_sections[index].item()
1965
        elif not isinstance(num_or_sections, int):
1966 1967
            raise TypeError(
                "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but "
1968 1969
                "received %s." % (type(num_or_sections))
            )
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
        if isinstance(num_or_sections, int):
            return _C_ops.split_with_num(input, num_or_sections, dim)
        else:
            return _C_ops.split(input, num_or_sections, dim)
    else:
        check_variable_and_dtype(
            input,
            'input',
            [
                'bool',
1980
                'bfloat16',
1981
                'float16',
1982
                'uint16',
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
                'int8',
            ],
            'split',
        )
        check_type(
            num_or_sections, 'num_or_sections', (list, int, tuple), 'split'
        )
        check_type(dim, 'dim', (int, Variable), 'split')
        if isinstance(dim, Variable):
            check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split')
1998

1999
        helper = LayerHelper('split', **locals())
2000

2001 2002 2003 2004 2005
        input_shape = input.shape
        inputs = {'X': input}
        attrs = {
            'num': num_or_sections if isinstance(num_or_sections, int) else 0
        }
2006

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
        def _get_SectionsTensorList(one_list):
            tensor_list = []
            unk_dim_idx = -1
            for idx, dim_size in enumerate(one_list):
                if isinstance(dim_size, Variable):
                    dim_size.stop_gradient = True
                    tensor_list.append(dim_size)
                else:
                    assert isinstance(dim_size, int)
                    if dim_size == -1:
                        assert unk_dim_idx == -1, (
                            "Only one value of 'num_or_section' in split can "
                            "be -1. But received num_or_section[%d] is also -1."
                            % idx
                        )
                        unk_dim_idx = idx
                    temp_out = helper.create_variable_for_type_inference(
                        'int32'
2025
                    )
2026 2027 2028 2029 2030
                    fill_constant(
                        [1], 'int32', dim_size, force_cpu=True, out=temp_out
                    )
                    tensor_list.append(temp_out)
            return tensor_list
2031

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
        if isinstance(dim, Variable):
            dim.stop_gradient = True
            inputs['AxisTensor'] = dim
        else:
            assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
            dim = (len(input_shape) + dim) if dim < 0 else dim
            attrs['axis'] = dim

        if isinstance(num_or_sections, int):
            assert num_or_sections > 1, 'num_or_sections must be more than 1.'
            if isinstance(dim, int) and input_shape[dim] > 0:
                assert input_shape[dim] % num_or_sections == 0, (
                    "The input's size along the split dimension "
                    "must be evenly divisible by Attr(num_or_sections). "
                    "But %d is not evenly divisible by %d. "
                    % (num_or_sections, input_shape[dim])
                )
            num = num_or_sections
        else:
            if isinstance(dim, int) and input_shape[dim] > 0:
                assert (
                    len(num_or_sections) <= input_shape[dim]
                ), 'len(num_or_sections) must not be more than input.shape[dim].'
            num = len(num_or_sections)
2056 2057 2058 2059
            attrs['sections'] = [
                -1 if isinstance(ele, Variable) else ele
                for ele in num_or_sections
            ]
2060
            if paddle.utils._contain_var(num_or_sections):
2061 2062 2063 2064 2065 2066 2067
                inputs['SectionsTensorList'] = _get_SectionsTensorList(
                    num_or_sections
                )

        outs = [
            helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
2068
            )
2069 2070 2071 2072
            for i in range(num)
        ]
        helper.append_op(
            type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs
2073
        )
2074
        return outs
2075 2076


2077 2078 2079
def vsplit(x, num_or_sections, name=None):
    """
    Split the input tensor into multiple sub-Tensors along the vertical axis, which is equivalent to ``paddle.split`` with ``axis=0``.
2080

2081 2082
    Args:
        x (Tensor): A Tensor whose dimension must be greater than 1. The data type is bool, float16, float32, float64, uint8, int8, int32 or int64.
2083
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
2084 2085 2086 2087 2088 2089 2090 2091
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of axis 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list[Tensor], The list of segmented Tensors.
2092

2093 2094
    Example:
        .. code-block:: python
2095

2096
            import paddle
2097

2098 2099
            # x is a Tensor of shape [8, 6, 7]
            x = paddle.rand([8, 6, 7])
2100
            out0, out1 = paddle.vsplit(x, num_or_sections=2)
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
            print(out0.shape)  # [4, 6, 7]
            print(out1.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[1, 3, 4])
            print(out0.shape)  # [1, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[2, 3, -1])
            print(out0.shape)  # [2, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [3, 6, 7]
    """
    if x.ndim < 2:
        raise ValueError(
2114 2115 2116 2117
            "The input tensor's dimension must be greater than 1, but got {}".format(
                x.ndim
            )
        )
2118 2119 2120
    return split(x, num_or_sections, axis=0, name=name)


L
Leo Chen 已提交
2121
def squeeze(x, axis=None, name=None):
2122
    """
2123 2124 2125 2126
    Squeeze the dimension(s) of size 1 of input tensor x's shape.

    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2127
    please use `Tensor.clone` like ``squeeze_clone_x = x.squeeze().clone()``.
2128

2129 2130
    If axis is provided, it will remove the dimension(s) by given axis that of size 1.
    If the dimension of given axis is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
2131
    If axis is not provided, all dims equal of size 1 will be removed.
2132 2133 2134 2135 2136 2137

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
2138 2139
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
2140
          Output:
L
Leo Chen 已提交
2141
            out.shape = [3, 5]
2142 2143 2144 2145

        Case2:

          Input:
L
Leo Chen 已提交
2146 2147 2148 2149
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
2150

L
Leo Chen 已提交
2151 2152 2153
        Case4:

          Input:
2154
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
2155
            axis = [0, 2, 3]
2156
          Output:
L
Leo Chen 已提交
2157
            out.shape = [3, 5]
2158

L
Leo Chen 已提交
2159
        Case4:
2160 2161

          Input:
2162
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x).
L
Leo Chen 已提交
2163
            axis = [-2]
2164
          Output:
L
Leo Chen 已提交
2165
            out.shape = [1, 3, 5]
2166 2167

    Args:
2168
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
2169
        axis (int|list|tuple, optional): An integer or list/tuple of integers, indicating the dimensions to be squeezed. Default is None.
2170 2171 2172
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
2173 2174 2175
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
L
Ligoml 已提交
2176
        Tensor, Squeezed Tensor with the same data type as input Tensor.
2177 2178 2179

    Examples:
        .. code-block:: python
2180

2181
            import paddle
2182

L
Leo Chen 已提交
2183 2184
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
2185 2186

            print(x.shape)  # [5, 1, 10]
L
Leo Chen 已提交
2187
            print(output.shape)  # [5, 10]
2188

2189 2190 2191 2192
            # output shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(output[0, 0]) # [10.]

2193
    """
L
Leo Chen 已提交
2194 2195 2196 2197 2198 2199
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
2200

2201 2202
    input = x
    axes = axis
2203
    if in_dynamic_mode():
2204
        return _C_ops.squeeze(input, axes)
2205 2206 2207 2208 2209 2210 2211
    else:
        helper = LayerHelper("squeeze", **locals())
        check_variable_and_dtype(
            input,
            'input',
            [
                'float16',
2212
                'uint16',
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
                'float32',
                'float64',
                'bool',
                'int8',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'squeeze',
        )
2224

2225 2226 2227 2228
        check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'squeeze')
        attrs = {}
        if isinstance(axes, Variable):
            axes.stop_gradient = True
2229
            attrs["axes"] = axes
2230
        elif isinstance(axes, (list, tuple)):
2231 2232
            if paddle.utils._contain_var(axes):
                attrs["axes"] = paddle.utils._convert_to_tensor_list(axes)
2233 2234
            else:
                attrs["axes"] = axes
2235

2236 2237 2238 2239 2240 2241 2242 2243
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type="squeeze2",
            inputs={"X": input},
            attrs=attrs,
            outputs={"Out": out, "XShape": x_shape},
        )
2244

2245
        return out
2246 2247


2248
@inplace_apis_in_dygraph_only
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
def squeeze_(x, axis=None, name=None):
    """
    Inplace version of ``squeeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_squeeze`.
    """
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)

2261 2262
    input = x
    axes = axis
2263
    if in_dynamic_mode():
2264
        return _C_ops.squeeze_(input, axes)
2265 2266


2267 2268 2269 2270 2271 2272 2273 2274
def unique_consecutive(
    x,
    return_inverse=False,
    return_counts=False,
    axis=None,
    dtype="int64",
    name=None,
):
Z
Zman 已提交
2275
    """
D
duanboqiang 已提交
2276 2277
    Eliminates all but the first element from every consecutive group of equivalent elements.

2278
    Note:
Z
Zman 已提交
2279 2280
        This function is different from :ref:`api_paddle_unique` in the sense that this function
        only eliminates consecutive duplicate values. This semantics is similar to :ref:`api_paddle_unique` in C++.
D
duanboqiang 已提交
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295

    Args:
        x(Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique consecutive tensor. Default is False.
        return_counts(bool, optional): If True, also return the counts for each unique consecutive element.
            Default is False.
        axis(int, optional): The axis to apply unique consecutive. If None, the input will be flattened.
            Default is None.
        dtype(np.dtype|str, optional): The data type `inverse` tensor: int32 or int64.
            Default: int64.
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default is None.

    Returns:
Z
Zman 已提交
2296 2297 2298 2299 2300 2301
        - out (Tensor), the unique consecutive tensor for x.
        - inverse (Tensor), the element of the input tensor corresponds to
            the index of the elements in the unique consecutive tensor for x.
            inverse is provided only if return_inverse is True.
        - counts (Tensor), the counts of the every unique consecutive element in the input tensor.
            counts is provided only if return_counts is True.
D
duanboqiang 已提交
2302 2303 2304 2305

    Example:
        .. code-block:: python

2306
            import paddle
D
duanboqiang 已提交
2307 2308

            x = paddle.to_tensor([1, 1, 2, 2, 3, 1, 1, 2])
2309
            output = paddle.unique_consecutive(x) #
2310 2311 2312 2313
            print(output)
            # Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 3, 1, 2])

D
duanboqiang 已提交
2314
            _, inverse, counts = paddle.unique_consecutive(x, return_inverse=True, return_counts=True)
2315 2316 2317 2318 2319 2320
            print(inverse)
            # Tensor(shape=[8], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [0, 0, 1, 1, 2, 3, 3, 4])
            print(counts)
            # Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [2, 2, 1, 2, 1])
D
duanboqiang 已提交
2321 2322

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
2323
            output = paddle.unique_consecutive(x, axis=0) #
2324 2325 2326 2327 2328
            print(output)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1],
            #         [2, 1, 3]])
D
duanboqiang 已提交
2329 2330

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
2331
            output = paddle.unique_consecutive(x, axis=0) #
2332 2333 2334 2335 2336
            print(output)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1],
            #         [2, 1, 3]])
D
duanboqiang 已提交
2337 2338 2339 2340 2341 2342 2343
    """

    if axis is None:
        axis = []
    else:
        axis = [axis]
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2344
    if in_dynamic_mode():
2345
        out, inverse, counts = _C_ops.unique_consecutive(
2346 2347
            x, return_inverse, return_counts, axis, attr_dtype
        )
2348 2349 2350 2351 2352 2353 2354 2355
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
2356 2357
    else:
        check_variable_and_dtype(
2358
            x,
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
            "input",
            ['float32', 'float64', 'int32', 'int64'],
            'unique_consecutive',
        )
        check_type(return_inverse, 'return_inverse', bool, 'unique_consecutive')
        check_type(return_counts, 'return_counts', bool, 'unique_consecutive')
        check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique_consecutive')
        if len(axis) != 0:
            check_type(axis[0], 'axis', int, 'unique_consecutive')
        helper = LayerHelper('unique_consecutive', **locals())
        attrs = {
            'dtype': attr_dtype,
            "return_inverse": return_inverse,
            "return_counts": return_counts,
            "axis": axis,
        }
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True
2377
        )
2378 2379 2380 2381 2382 2383 2384
        inverse = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        counts = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        outputs = {"Out": out, "Index": inverse, "Counts": counts}
D
duanboqiang 已提交
2385 2386 2387 2388 2389
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
2390 2391 2392 2393 2394 2395
        helper.append_op(
            type="unique_consecutive",
            inputs={"X": x},
            attrs=attrs,
            outputs=outputs,
        )
D
duanboqiang 已提交
2396 2397 2398 2399 2400
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)


2401 2402 2403 2404 2405 2406 2407 2408 2409
def unique(
    x,
    return_index=False,
    return_inverse=False,
    return_counts=False,
    axis=None,
    dtype="int64",
    name=None,
):
2410
    r"""
Z
Zhang Ting 已提交
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
    Returns the unique elements of `x` in ascending order.

    Args:
        x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
        return_index(bool, optional): If True, also return the indices of the input tensor that
            result in the unique Tensor.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique tensor.
        return_counts(bool, optional): If True, also return the counts for each unique element.
        axis(int, optional): The axis to apply unique. If None, the input will be flattened.
            Default: None.
Z
Zhang Ting 已提交
2422 2423
        dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
            Default: int64.
Z
Zhang Ting 已提交
2424 2425 2426
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default: None.

2427
    Returns:
2428
        tuple (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is \
Z
Zhang Ting 已提交
2429 2430 2431 2432 2433
            provided only if `return_index` is True. `inverse` is provided only if `return_inverse` \
            is True. `counts` is provided only if `return_counts` is True.

    Examples:
        .. code-block:: python
2434

Z
Zhang Ting 已提交
2435 2436
            import paddle

2437
            x = paddle.to_tensor([2, 3, 3, 1, 5, 3])
Z
Zhang Ting 已提交
2438
            unique = paddle.unique(x)
2439 2440 2441 2442
            print(unique)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 3, 5])

Z
Zhang Ting 已提交
2443
            _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
2444 2445 2446 2447 2448 2449 2450 2451 2452
            print(indices)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [3, 0, 1, 4])
            print(inverse)
            # Tensor(shape=[6], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 2, 0, 3, 2])
            print(counts)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 1, 3, 1])
Z
Zhang Ting 已提交
2453

2454
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
Z
Zhang Ting 已提交
2455
            unique = paddle.unique(x)
2456 2457 2458
            print(unique)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [0, 1, 2, 3])
Z
Zhang Ting 已提交
2459 2460

            unique = paddle.unique(x, axis=0)
2461 2462 2463 2464
            print(unique)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1]])
Z
Zhang Ting 已提交
2465 2466 2467 2468 2469
    """
    if axis is None:
        axis = []
    else:
        axis = [axis]
Z
Zhang Ting 已提交
2470
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2471
    if in_dynamic_mode():
2472 2473 2474
        out, indices, inverse, counts = _C_ops.unique(
            x, return_index, return_inverse, return_counts, axis, attr_dtype
        )
Z
Zhang Ting 已提交
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)
2487 2488
    else:
        check_variable_and_dtype(
2489 2490 2491 2492
            x,
            "input",
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'unique',
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
        )
        check_type(return_index, 'return_index', bool, 'unique')
        check_type(return_inverse, 'return_inverse', bool, 'unique')
        check_type(return_counts, 'return_counts', bool, 'unique')
        check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique')
        if len(axis) != 0:
            check_type(axis[0], 'axis', int, 'unique')

        helper = LayerHelper('unique', **locals())
        attrs = {
            'dtype': attr_dtype,
            "return_index": return_index,
            "return_inverse": return_inverse,
            "return_counts": return_counts,
            "axis": axis,
            "is_sorted": True,
        }
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True
        )
        indices = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        inverse = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        counts = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        outputs = {
            "Out": out,
            "Indices": indices,
            "Index": inverse,
            "Counts": counts,
        }
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
Z
Zhang Ting 已提交
2535

2536 2537 2538
        helper.append_op(
            type="unique", inputs={"X": x}, attrs=attrs, outputs=outputs
        )
Z
Zhang Ting 已提交
2539

2540 2541
        if len(outs) == 1:
            return outs[0]
Z
Zhang Ting 已提交
2542

2543
        return tuple(outs)
Z
Zhang Ting 已提交
2544 2545


2546
def unsqueeze(x, axis, name=None):
2547
    """
2548 2549 2550
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
2551

2552 2553
    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2554 2555
    please use `Tensor.clone` like ``unsqueeze_clone_x = x.unsqueeze(-1).clone()``.

2556
    Args:
2557
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: bfloat16, float16, float32, float64, bool, int8, int32, int64.
2558
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` .
2559
                                    If ``axis`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
2560 2561 2562
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
2563 2564

    Returns:
L
Ligoml 已提交
2565
        Tensor, Unsqueezed Tensor with the same data type as input Tensor.
2566 2567 2568

    Examples:
        .. code-block:: python
2569

2570 2571
            import paddle

2572 2573
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
2574

2575 2576
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
2577 2578

            out2 = paddle.unsqueeze(x, axis=[0, 2])
2579
            print(out2.shape)  # [1, 5, 1, 10]
2580

L
Leo Chen 已提交
2581
            axis = paddle.to_tensor([0, 1, 2])
2582
            out3 = paddle.unsqueeze(x, axis=axis)
2583
            print(out3.shape)  # [1, 1, 1, 5, 10]
2584 2585 2586 2587 2588 2589

            # out1, out2, out3 share data with x in dygraph mode
            x[0, 0] = 10.
            print(out1[0, 0, 0]) # [10.]
            print(out2[0, 0, 0, 0]) # [10.]
            print(out3[0, 0, 0, 0, 0]) # [10.]
2590

2591
    """
2592 2593
    input = x
    axes = axis
2594
    if in_dynamic_mode():
2595 2596 2597
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
2598
            axes = axes.tolist()
2599 2600
        elif isinstance(axes, (list, tuple)):
            axes = [
2601
                item.item(0) if isinstance(item, Variable) else item
2602 2603
                for item in axes
            ]
2604
        return _C_ops.unsqueeze(input, axes)
2605 2606 2607 2608 2609 2610
    else:
        check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
        check_variable_and_dtype(
            input,
            'input',
            [
2611
                'uint16',
2612
                'float16',
2613
                'uint16',
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
                'float32',
                'float64',
                'bool',
                'int8',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'unsqueeze',
        )
        helper = LayerHelper("unsqueeze2", **locals())
        inputs = {"X": input}
        attrs = {}
2629

2630 2631 2632 2633 2634 2635
        if isinstance(axes, int):
            axes = [axes]
        if isinstance(axes, Variable):
            axes.stop_gradient = True
            inputs["AxesTensor"] = axes
        elif isinstance(axes, (list, tuple)):
2636 2637 2638 2639
            if paddle.utils._contain_var(axes):
                inputs["AxesTensorList"] = paddle.utils._convert_to_tensor_list(
                    axes
                )
2640 2641
            else:
                attrs["axes"] = axes
2642

2643 2644 2645 2646 2647 2648 2649 2650
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type="unsqueeze2",
            inputs=inputs,
            attrs=attrs,
            outputs={"Out": out, "XShape": x_shape},
        )
2651

2652
        return out
2653 2654


2655
@inplace_apis_in_dygraph_only
2656 2657 2658 2659 2660
def unsqueeze_(x, axis, name=None):
    """
    Inplace version of ``unsqueeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_unsqueeze`.
    """
2661 2662 2663 2664 2665
    input = x
    axes = axis
    if isinstance(axes, int):
        axes = [axes]
    elif isinstance(axes, Variable):
2666
        axes = axes.tolist()
2667 2668
    elif isinstance(axes, (list, tuple)):
        axes = [
2669
            item.item(0) if isinstance(item, Variable) else item
2670
            for item in axes
2671
        ]
2672
    return _C_ops.unsqueeze_(input, axes)
2673 2674


2675
def gather(x, index, axis=None, name=None):
2676
    """
2677 2678
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
2679 2680 2681 2682 2683 2684

    .. code-block:: text


                Given:

2685
                x = [[1, 2],
2686 2687 2688
                     [3, 4],
                     [5, 6]]

2689 2690
                index = [1, 2]
                axis=[0]
2691 2692 2693

                Then:

2694
                out = [[3, 4],
2695
                       [5, 6]]
2696

2697
    Args:
2698
        x (Tensor): The source input tensor with rank>=1. Supported data type is
2699 2700
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
2701
        index (Tensor): The index input tensor with rank=0 or rank=1. Data type is int32 or int64.
2702
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
2703 2704
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
2705 2706

    Returns:
2707
        output (Tensor), If the index is a 1-D tensor, the output is a tensor with the same shape as ``x``. If the index is a 0-D tensor, the output will reduce the dimension where the axis pointing.
2708

2709 2710 2711 2712 2713 2714
    Examples:

        .. code-block:: python

            import paddle

2715 2716
            input = paddle.to_tensor([[1,2],[3,4],[5,6]])
            index = paddle.to_tensor([0,1])
2717 2718
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
2719
    """
2720 2721
    if axis is None:
        axis = 0
2722

2723
    if in_dynamic_mode():
2724
        return _C_ops.gather(x, index, axis)
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
    else:
        check_variable_and_dtype(
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'uint8',
2737
                'uint16',
2738 2739
            ],
            'gather',
2740
        )
2741
        check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
2742

2743 2744
        if isinstance(axis, Variable):
            check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')
2745

2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
        helper = LayerHelper('gather', **locals())
        dtype = helper.input_dtype('x')
        out = helper.create_variable_for_type_inference(dtype)
        if not isinstance(axis, Variable):
            helper.append_op(
                type="gather",
                inputs={"X": x, "Index": index},
                attrs={'axis': axis, 'overwrite': False},
                outputs={"Out": out},
            )
        else:
            helper.append_op(
                type="gather",
                inputs={"X": x, "Index": index, "Axis": axis},
                attrs={"overwrite": False},
                outputs={"Out": out},
            )
2763

2764
        return out
myq406450149's avatar
myq406450149 已提交
2765 2766 2767 2768


def unbind(input, axis=0):
    """
S
swtkiwi 已提交
2769

myq406450149's avatar
myq406450149 已提交
2770
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
2771

myq406450149's avatar
myq406450149 已提交
2772
    Args:
L
Leo Chen 已提交
2773
        input (Tensor): The input variable which is an N-D Tensor, data type being bool, float16, float32, float64, int32 or int64.
2774
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind.
2775
            If :math:`axis < 0`, the dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
myq406450149's avatar
myq406450149 已提交
2776
    Returns:
L
Ligoml 已提交
2777
        list(Tensor), The list of segmented Tensor variables.
myq406450149's avatar
myq406450149 已提交
2778 2779 2780

    Example:
        .. code-block:: python
2781

myq406450149's avatar
myq406450149 已提交
2782
            import paddle
2783

C
Chen Long 已提交
2784 2785
            # input is a Tensor which shape is [3, 4, 5]
            input = paddle.rand([3, 4, 5])
2786

2787
            [x0, x1, x2] = paddle.unbind(input, axis=0)
myq406450149's avatar
myq406450149 已提交
2788 2789 2790
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
C
Chen Long 已提交
2791

2792
            [x0, x1, x2, x3] = paddle.unbind(input, axis=1)
myq406450149's avatar
myq406450149 已提交
2793 2794 2795 2796 2797
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]
    """
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
    if not isinstance(axis, (int)):
        raise TypeError(
            "The type of 'axis'  must be int, but received %s." % (type(axis))
        )

    if axis not in range(-input.ndim, input.ndim):
        raise ValueError(
            f'The axis must in range({-input.ndim}, {input.ndim}).'
        )

2808
    if in_dynamic_mode():
2809
        return _C_ops.unbind(input, axis)
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
    else:
        if isinstance(axis, np.generic):
            axis = np.asscalar(axis)
        input_shape = input.shape
        axis_ = axis if axis >= 0 else len(input_shape) + axis
        num = input_shape[axis_]
        helper = LayerHelper("unbind", **locals())
        check_type(input, 'input', (Variable), 'unbind')
        dtype = helper.input_dtype()
        check_dtype(
张春乔 已提交
2820 2821
            dtype,
            'unbind',
2822 2823 2824 2825 2826 2827 2828 2829 2830
            [
                'bool',
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
张春乔 已提交
2831
            'unbind',
2832
        )
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
        outs = [
            helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
            for i in range(num)
        ]
        helper.append_op(
            type="unbind",
            inputs={"X": input},
            outputs={"Out": outs},
            attrs={"axis": axis},
        )
        return outs
L
lilong12 已提交
2846 2847


S
ShenLiang 已提交
2848 2849 2850 2851
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
2852

S
ShenLiang 已提交
2853
    .. code-block:: python
2854
        :name: code-example1
2855

H
hg-1099255210 已提交
2856
        import paddle
S
ShenLiang 已提交
2857
        #input:
H
hg-1099255210 已提交
2858 2859
        x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
        index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
S
ShenLiang 已提交
2860 2861
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
H
hg-1099255210 已提交
2862
        updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
S
ShenLiang 已提交
2863 2864 2865 2866
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
H
hg-1099255210 已提交
2867
                x[index[i]] = paddle.zeros([2])
S
ShenLiang 已提交
2868 2869 2870 2871 2872 2873
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
H
hg-1099255210 已提交
2874
        out = paddle.to_tensor([[3, 3], [6, 6], [1, 1]])
S
ShenLiang 已提交
2875 2876
        out.shape # [3, 2]

2877
    **NOTICE**: The order in which updates are applied is nondeterministic,
S
ShenLiang 已提交
2878 2879 2880 2881
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
2882 2883
        index (Tensor): The index is a 1-D or 0-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): Update input with updates parameter based on index. When the index is a 1-D tensor, the updates shape should be the same as input, and dim value with dim > 1 should be the same as input. When the index is a 0-D tensor, the updates should be a (N-1)-D tensor, the ith dim of the updates should be queal with the (i+1)th dim of the input.
H
hg-1099255210 已提交
2884
        overwrite (bool, optional): The mode that updating the output when there are same indices.
2885

S
sunzhongkai588 已提交
2886
            If True, use the overwrite mode to update the output of the same index,
H
hg-1099255210 已提交
2887
            if False, use the accumulate mode to update the output of the same index. Default value is True.
2888

S
ShenLiang 已提交
2889
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2890

S
ShenLiang 已提交
2891
    Returns:
L
Ligoml 已提交
2892
        Tensor, The output is a Tensor with the same shape as x.
S
ShenLiang 已提交
2893 2894 2895

    Examples:
        .. code-block:: python
2896

S
ShenLiang 已提交
2897 2898
            import paddle

2899 2900 2901
            x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
            index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
            updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
2902

S
ShenLiang 已提交
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
2923
    if in_dynamic_mode():
2924
        return _C_ops.scatter(x, index, updates, overwrite)
J
Jiabin Yang 已提交
2925
    else:
2926 2927 2928
        check_variable_and_dtype(
            x,
            'dtype',
Z
zxcd 已提交
2929
            ['float32', 'float64', 'float16', 'int32', 'int64', 'uint16'],
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
            'scatter',
        )
        check_type(overwrite, 'overwrite', bool, 'scatter')
        helper = LayerHelper('scatter', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type="scatter",
            inputs={"X": x, "Ids": index, "Updates": updates},
            attrs={'overwrite': overwrite},
            outputs={"Out": out},
        )
        return out
S
ShenLiang 已提交
2942 2943


2944
@inplace_apis_in_dygraph_only
2945 2946 2947 2948 2949
def scatter_(x, index, updates, overwrite=True, name=None):
    """
    Inplace version of ``scatter`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_scatter`.
    """
2950
    return _C_ops.scatter_(x, index, updates, overwrite)
2951 2952


2953
def scatter_nd_add(x, index, updates, name=None):
2954
    r"""
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995

    Output is obtained by applying sparse addition to a single value
    or slice in a Tensor.

    :attr:`x` is a Tensor with ndim :math:`R`
    and :attr:`index` is a Tensor with ndim :math:`K` . Thus, :attr:`index`
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
    is a Tensor with ndim :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + x.shape[index.shape[-1]:]` .

    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`x` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text

        Given:

        * Case 1:
            x = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:

            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            x = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            x.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:

            output = [[67, 19], [-16, -27]]

    Args:
Z
Zeng Jinle 已提交
2996
        x (Tensor): The x input. Its dtype should be int32, int64, float32, float64.
2997 2998 2999 3000 3001 3002 3003
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= x.ndim.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd_add op, and it must have the same dtype
                            as x. It must have the shape index.shape[:-1] + x.shape[index.shape[-1]:].
        name (str|None): The output tensor name. If set None, the layer will be named automatically.

    Returns:
L
Ligoml 已提交
3004
        output (Tensor), The output is a tensor with the same shape and dtype as x.
3005 3006 3007 3008 3009 3010 3011 3012 3013

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32')
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
C
Chen Long 已提交
3014 3015 3016
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype='int64')
3017

3018
            output = paddle.scatter_nd_add(x, index, updates)
C
Chen Long 已提交
3019 3020
            print(output.shape)
            # [3, 5, 9, 10]
3021
    """
3022
    if in_dynamic_mode():
3023
        return _C_ops.scatter_nd_add(x, index, updates)
3024
    else:
3025 3026
        if x.dtype != updates.dtype:
            raise ValueError("x and updates must have same data type.")
3027

3028 3029 3030 3031 3032 3033 3034 3035 3036
        helper = LayerHelper('scatter_nd_add', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        output = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="scatter_nd_add",
            inputs={"X": x, "Index": index, "Updates": updates},
            outputs={"Out": output},
        )
        return output
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)`
    is equal to :code:`scatter_nd_add(paddle.zeros(shape, updates.dtype), index, updates)` .
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated.
    Because of the numerical approximation issues, the different order of repeated elements
    in :attr:`index` may cause different results. The specific calculation method can be
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
3053
        index (Tensor): The index input with ndim >= 1 and index.shape[-1] <= len(shape).
3054 3055 3056 3057 3058 3059 3060
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd op. Its dtype should be float32, float64.
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
        name (str|None): The output Tensor name. If set None, the layer will be named automatically.

    Returns:
L
Ligoml 已提交
3061
        output (Tensor), The output is a tensor with the same type as :attr:`updates` .
3062 3063 3064 3065 3066 3067 3068

    Examples:

        .. code-block:: python

            import paddle

3069 3070 3071
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype="int64")
3072 3073 3074 3075 3076 3077
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
            shape = [3, 5, 9, 10]

            output = paddle.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)
3078 3079


3080 3081 3082
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
3083

3084 3085 3086
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
3087 3088
        axis (int|Tensor, optional): The axis along which to split, it can be a integer or a ``0-D Tensor``
            with shape [] and data type  ``int32`` or ``int64``.
3089 3090 3091 3092
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
L
Ligoml 已提交
3093
        list(Tensor), The list of segmented Tensors.
3094

3095
    Examples:
3096
        .. code-block:: python
3097

3098
            import paddle
3099

3100
            x = paddle.rand([3, 9, 5])
3101

3102
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=1)
3103 3104 3105 3106
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

3107

3108 3109 3110 3111 3112 3113 3114 3115
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
3116
    return split(x, num_or_sections=chunks, axis=axis, name=name)
3117 3118


L
lilong12 已提交
3119 3120
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
3121 3122

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
3123
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
3124 3125 3126

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
3127
    Args:
I
Infinity_lee 已提交
3128
        x (Tensor): The input tensor, its data type should be bool, float16, float32, float64, int32 or int64.
3129
        repeat_times (list|tuple|Tensor): The number of repeating times. If repeat_times is a list or tuple, all its elements
L
lilong12 已提交
3130 3131 3132
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
3133
    Returns:
3134
        N-D Tensor. The data type is the same as ``x``. The size of the i-th dimension is equal to ``x[i] * repeat_times[i]``.
L
lilong12 已提交
3135

L
lilong12 已提交
3136 3137
    Examples:
        .. code-block:: python
L
lilong12 已提交
3138

L
lilong12 已提交
3139
            import paddle
L
lilong12 已提交
3140

3141
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3142
            out = paddle.tile(data, repeat_times=[2, 1])
3143 3144 3145 3146
            print(out)
            # Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3],
            #         [1, 2, 3]])
L
lilong12 已提交
3147

3148
            out = paddle.tile(data, repeat_times=(2, 2))
3149 3150 3151 3152
            print(out)
            # Tensor(shape=[2, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3, 1, 2, 3],
            #         [1, 2, 3, 1, 2, 3]])
L
lilong12 已提交
3153

3154
            repeat_times = paddle.to_tensor([1, 2], dtype='int32')
L
lilong12 已提交
3155
            out = paddle.tile(data, repeat_times=repeat_times)
3156 3157 3158
            print(out)
            # Tensor(shape=[1, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3, 1, 2, 3]])
L
lilong12 已提交
3159
    """
3160
    if in_dynamic_mode():
3161
        if isinstance(repeat_times, core.eager.Tensor):
3162 3163 3164
            assert (
                repeat_times.ndim == 1
            ), "Only support ndim == 1 while repeat_times is a Tensor."
3165
            repeat_times = repeat_times.tolist()
3166

3167
        return _C_ops.tile(x, repeat_times)
3168
    else:
3169 3170 3171 3172 3173
        check_type(
            repeat_times, 'repeat_times', (list, tuple, Variable), 'tile'
        )
        if isinstance(repeat_times, Variable):
            assert (
3174 3175
                repeat_times.numel() == 1
            ), 'repeat_times must be a Tensor with one element.'
3176 3177 3178 3179
        else:
            for elem in repeat_times:
                if isinstance(elem, Variable):
                    assert (
3180 3181
                        elem.numel() == 1
                    ), 'Elements in repeat_times must be Tensor with one element or integers.'
3182 3183 3184 3185
                else:
                    type_tuple = (int, np.int32, np.int64)
                    assert isinstance(
                        elem, type_tuple
3186
                    ), 'Elements in repeat_times must be Tensor with one element or integers.'
3187

3188
        check_variable_and_dtype(
I
Infinity_lee 已提交
3189 3190
            x,
            'x',
Y
yangjianfengo1 已提交
3191 3192 3193
            [
                'bool',
                'float16',
Y
yangjianfengo1 已提交
3194
                'uint16',
Y
yangjianfengo1 已提交
3195 3196 3197 3198 3199
                'float32',
                'float64',
                'int32',
                'int64',
            ],
I
Infinity_lee 已提交
3200
            'tile',
3201
        )
3202 3203 3204 3205 3206 3207
        if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
            raise ValueError(
                "When the date type is bool for the input 'x' of tile op, you "
                "must set its stop_gradient to be True by "
                "some_var.stop_gradient == True supporting some_var is the input."
            )
3208

3209
        helper = LayerHelper('tile', **locals())
L
lilong12 已提交
3210

3211 3212
        inputs = {"X": [x]}
        attrs = {}
L
lilong12 已提交
3213

3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
        def get_attr_repeat_times(list_repeat_times):
            attrs_repeat_times = []
            for idx, times in enumerate(list_repeat_times):
                if isinstance(times, Variable):
                    attrs_repeat_times.append(-1)
                else:
                    attrs_repeat_times.append(times)
                    assert (
                        times > 0
                    ), "All elements in repeat_times must be positive for tile."
            return attrs_repeat_times

        if isinstance(repeat_times, Variable):
            repeat_times.stop_gradient = True
            inputs['RepeatTimes'] = repeat_times
            attrs['repeat_times'] = [-1]
        elif isinstance(repeat_times, (list, tuple)):
            attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
3232 3233 3234 3235
            if paddle.utils._contain_var(repeat_times):
                inputs[
                    'repeat_times_tensor'
                ] = paddle.utils._convert_to_tensor_list(repeat_times)
L
lilong12 已提交
3236

3237 3238 3239 3240 3241 3242
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='tile', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
3243 3244


L
lilong12 已提交
3245 3246 3247 3248 3249
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

3250
    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 0.
L
lilong12 已提交
3251 3252 3253

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
3254
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
3255 3256 3257
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
3258
        N-D Tensor, A Tensor with the same shape as ``y``. The data type is the same as ``x``.
L
lilong12 已提交
3259 3260 3261 3262 3263 3264

    Examples:
        .. code-block:: python

            import paddle

3265 3266
            data_x = paddle.to_tensor([1, 2, 3], 'int32')
            data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
L
lilong12 已提交
3267
            out = paddle.expand_as(data_x, data_y)
3268 3269 3270 3271
            print(out)
            # Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3],
            #         [1, 2, 3]])
L
lilong12 已提交
3272
    """
3273
    if in_dynamic_mode():
3274
        return _C_ops.expand_as(x, None, y.shape)
3275 3276 3277 3278
    else:
        check_variable_and_dtype(
            x,
            'x',
3279 3280 3281 3282 3283 3284 3285 3286 3287
            [
                'bool',
                'float32',
                'float64',
                'int32',
                'int64',
                'float16',
                'uint16',
            ],
3288 3289 3290
            'expand_as',
        )
        check_type(y, 'y', Variable, 'expand_as')
H
hong 已提交
3291

3292 3293 3294 3295 3296 3297 3298 3299
        if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
            raise ValueError(
                "When the data type of input 'x' for expand_as is bool, "
                "you must set its stop_gradient to be False by "
                "some_var.stop_gradient = True, supporting "
                "some_var as the input 'x'."
            )
        inputs = {"X": [x], "Y": [y]}
L
lilong12 已提交
3300

3301 3302 3303 3304 3305 3306 3307 3308
        helper = LayerHelper('expand_as', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='expand_as_v2',
            inputs=inputs,
            attrs={'target_shape': y.shape},
            outputs={'Out': out},
3309
        )
3310
        return out
L
lilong12 已提交
3311 3312


3313 3314 3315 3316 3317
def broadcast_to(x, shape, name=None):
    """

    Broadcast the input tensor to a given shape.

3318
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to broadcast to must have a value 0.
3319 3320 3321


    Args:
张春乔 已提交
3322
        x (Tensor): The input tensor, its data type is bool, float16, float32, float64, int32 or int64.
3323
        shape (list|tuple|Tensor): The result shape after broadcasting. The data type is int32. If shape is a list or tuple, all its elements
3324
            should be integers or 0-D or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
3325
            The value -1 in shape means keeping the corresponding dimension unchanged.
3326
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3327
    Returns:
L
Ligoml 已提交
3328
        N-D Tensor, A Tensor with the given shape. The data type is the same as ``x``.
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([1, 2, 3], dtype='int32')
            out = paddle.broadcast_to(data, shape=[2, 3])
            print(out)
            # [[1, 2, 3], [1, 2, 3]]
    """
3340
    if in_dynamic_mode():
3341
        return _C_ops.expand(x, shape)
3342
    else:
3343 3344 3345
        if isinstance(shape, Variable):
            assert len(shape.shape) == 1, 'shape must be an 1-D Tensor.'
        else:
3346
            type_tuple = (int, np.int32, np.int64)
3347 3348 3349 3350 3351 3352 3353 3354 3355
            for elem in shape:
                if isinstance(elem, Variable):
                    assert (
                        len(elem.shape) == 1
                    ), 'Elements in shape must be 1-D Tensors or integers.'
                else:
                    assert isinstance(
                        elem, type_tuple
                    ), 'Elements in shape must be 1-D Tensors or integers.'
3356

3357 3358 3359
        check_variable_and_dtype(
            x,
            'x',
3360 3361 3362 3363 3364 3365 3366 3367 3368
            [
                'bool',
                'uint16',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
3369
            'broadcast_to',
3370
        )
3371 3372 3373 3374 3375 3376 3377 3378
        check_type(shape, 'shape', (list, tuple, Variable), 'broadcast_to')
        if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
            raise ValueError(
                "When the data type of input 'x' for broadcast_to is bool, "
                "you must set its stop_gradient to be False by "
                "some_var.stop_gradient = True, supporting "
                "some_var as the input."
            )
3379

3380 3381
        inputs = {"X": [x]}
        attrs = {}
3382

3383
        helper = LayerHelper('expand', **locals())
3384

3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
        def get_attr_expand_shape(list_expand_shape):
            attrs_expand_shape = []
            for idx, shape in enumerate(list_expand_shape):
                if isinstance(shape, Variable):
                    attrs_expand_shape.append(-1)
                else:
                    attrs_expand_shape.append(shape)
                    assert (
                        shape > 0 or shape == -1
                    ), "All elements in shape of broadcast_to must be positive or -1."
            return attrs_expand_shape
3396

3397 3398 3399 3400 3401
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs['Shape'] = shape
        elif isinstance(shape, (list, tuple)):
            attrs['shape'] = get_attr_expand_shape(shape)
3402 3403 3404 3405
            if paddle.utils._contain_var(shape):
                inputs[
                    'expand_shapes_tensor'
                ] = paddle.utils._convert_to_tensor_list(shape)
3406

3407 3408 3409 3410 3411 3412
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
3413 3414


3415 3416 3417 3418 3419
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

3420
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. And the number of dimensions of ``x`` should be less than the number of elements in ``shape``. The dimension to expand must have a value 0.
3421 3422

    Args:
C
Chen Long 已提交
3423
        x (Tensor): The input Tensor, its data type is bool, float32, float64, int32 or int64.
L
lilong12 已提交
3424
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
3425
            should be integers or 0-D or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
L
lilong12 已提交
3426
            The value -1 in shape means keeping the corresponding dimension unchanged.
3427 3428 3429
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
3430
        N-D Tensor, A Tensor with the given shape. The data type is the same as ``x``.
3431 3432 3433 3434 3435 3436

    Examples:
        .. code-block:: python

            import paddle

3437
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3438
            out = paddle.expand(data, shape=[2, 3])
3439
            print(out)
3440 3441
            # [[1, 2, 3], [1, 2, 3]]
    """
3442
    if in_dynamic_mode():
3443
        return _C_ops.expand(x, shape)
3444
    else:
3445
        if isinstance(shape, Variable):
3446
            assert shape.numel() == 1, 'shape must be a Tensor with one element'
3447 3448 3449 3450
        else:
            for elem in shape:
                if isinstance(elem, Variable):
                    assert (
3451 3452
                        elem.numel() == 1
                    ), 'Elements in shape must be Tensor with one element or integers.'
3453 3454 3455 3456
                else:
                    type_tuple = (int, np.int32, np.int64)
                    assert isinstance(
                        elem, type_tuple
3457
                    ), 'Elements in shape must be Tensor with one element or integers.'
3458

3459 3460 3461
        check_variable_and_dtype(
            x,
            'x',
3462 3463 3464 3465 3466 3467 3468 3469 3470
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
3471
            'expand',
3472
        )
3473 3474 3475 3476 3477 3478 3479 3480
        check_type(shape, 'shape', (list, tuple, Variable), 'expand')
        if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
            raise ValueError(
                "When the data type of input 'x' for expand is bool, "
                "you must set its stop_gradient to be False by "
                "some_var.stop_gradient = True, supporting "
                "some_var as the input."
            )
3481

3482 3483
        inputs = {"X": [x]}
        attrs = {}
3484

3485
        helper = LayerHelper('expand', **locals())
3486

3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
        def get_attr_expand_shape(list_expand_shape):
            attrs_expand_shape = []
            for idx, shape in enumerate(list_expand_shape):
                if isinstance(shape, Variable):
                    attrs_expand_shape.append(-2)
                else:
                    attrs_expand_shape.append(shape)
                    assert (
                        shape > 0 or shape == -1
                    ), "All elements in shape of expand must be positive or -1."
            return attrs_expand_shape
3498

3499 3500 3501 3502 3503
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs['Shape'] = shape
        elif isinstance(shape, (list, tuple)):
            attrs['shape'] = get_attr_expand_shape(shape)
3504 3505 3506 3507
            if paddle.utils._contain_var(shape):
                inputs[
                    'expand_shapes_tensor'
                ] = paddle.utils._convert_to_tensor_list(shape)
3508

3509 3510 3511 3512 3513 3514
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
L
lilong12 已提交
3515 3516


3517 3518
def reshape(x, shape, name=None):
    """
3519
    Changes the shape of ``x`` without changing its data.
3520

3521
    Note that the output Tensor will share data with origin Tensor and doesn't
3522 3523
    have a Tensor copy in ``dygraph`` mode.
    If you want to use the Tensor copy version, please use `Tensor.clone` like
3524 3525
    ``reshape_clone_x = x.reshape([-1]).clone()``.

3526 3527
    Some tricks exist when specifying the target shape.

3528
        - 1. -1 means the value of this dimension is inferred from the total element number of x and remaining dimensions. Thus one and only one dimension can be set -1.
3529

3530
        - 2. 0 means the actual dimension value is going to be copied from the corresponding dimension of x. The index of 0s in shape can not exceed the dimension of x.
3531 3532 3533

    Here are some examples to explain it.

3534
        - 1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [6, 8], the reshape operator will transform x into a 2-D tensor with shape [6, 8] and leaving x's data unchanged.
3535

3536
        - 2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape specified is [2, 3, -1, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this case, one dimension of the target shape is set to -1, the value of this dimension is inferred from the total element number of x and remaining dimensions.
3537

3538
        - 3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case, besides -1, 0 means the actual dimension value is going to be copied from the corresponding dimension of x.
3539 3540

    Args:
3541 3542
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        shape (list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
3543
                        The data type is ``int32`` . If ``shape`` is a list or tuple, each element of it should be integer or Tensor with shape [].
3544
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
3545
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3546 3547

    Returns:
L
Ligoml 已提交
3548
        Tensor, A reshaped Tensor with the same data type as ``x``.
3549 3550 3551 3552 3553 3554

    Examples:
        .. code-block:: python

            import paddle

3555 3556
            x = paddle.rand([2, 4, 6], dtype="float32")
            positive_four = paddle.full([1], 4, "int32")
3557

3558 3559 3560
            out = paddle.reshape(x, [-1, 0, 3, 2])
            print(out)
            # the shape is [2,4,3,2].
3561

3562 3563
            out = paddle.reshape(x, shape=[positive_four, 12])
            print(out)
3564
            # the shape of out_2 is [4, 12].
3565

3566
            shape_tensor = paddle.to_tensor([8, 6], dtype=paddle.int32)
3567
            out = paddle.reshape(x, shape=shape_tensor)
3568
            print(out.shape)
3569
            # the shape is [8, 6].
3570 3571 3572 3573 3574
            # out shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(out[0, 0])
            # the value is [10.]

3575
    """
3576
    if in_dynamic_mode():
3577
        if isinstance(shape, (list, tuple)):
3578 3579 3580 3581 3582 3583 3584 3585
            new_shape = []
            for ele in shape:
                if isinstance(ele, core.eager.Tensor):
                    new_shape.append(ele.item())
                else:
                    new_shape.append(ele)

            if new_shape == x.shape:
3586 3587
                out = x
            else:
3588
                out = _C_ops.reshape(x, new_shape)
3589
        elif isinstance(shape, core.eager.Tensor):
3590
            shape.stop_gradient = True
3591
            out = _C_ops.reshape(x, shape)
3592 3593 3594
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
3595 3596
                " got '{}.'".format(type(shape))
            )
3597

3598
        return out
3599
    else:
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
        check_variable_and_dtype(
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'bool',
                'uint16',
            ],
            'reshape',
        )
        check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
3616

3617 3618 3619 3620 3621 3622
        def get_attr_shape(list_shape):
            unk_dim_idx = -1
            attrs_shape = []
            for dim_idx, dim_size in enumerate(list_shape):
                if isinstance(dim_size, Variable):
                    attrs_shape.append(-1)
3623
                else:
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
                    attrs_shape.append(dim_size)
                    if dim_size == -1:
                        assert unk_dim_idx == -1, (
                            "Only one dimension value of 'shape' in reshape can "
                            "be -1. But received shape[%d] is also -1.\n"
                            "\n\t# N = x.shape()[2]\t\t# N is an int. "
                            "(NOT recommend under @to_static)\n\tN = paddle.shape(x)[2]\t\t"
                            "# N is a Tensor. (Recommend)\n\tz = paddle.reshape([N, -1, 4])"
                            "\t# z.shape is [-1, -1, 4]\n\n"
                            "    If your target shape in Reshape represents dynamic shape, "
                            "please turn it into a Tensor under @to_static. See above example for details."
                            % dim_idx
                        )
                        unk_dim_idx = dim_idx
                    elif dim_size == 0:
                        assert dim_idx < len(x.shape), (
                            "The index of 0 in `shape` must be less than "
                            "the input tensor X's dimensions. "
                            "But received shape[%d] = 0, X's dimensions = %d."
                            % (dim_idx, len(x.shape))
                        )
                    else:
                        assert dim_size > 0, (
                            "Each dimension value of 'shape' in reshape must not "
                            "be negative except one unknown dimension. "
                            "But received shape[%d] = %s."
                            % (dim_idx, str(dim_size))
                        )
            return attrs_shape

        inputs = {"X": x}
        attrs = {}
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs["Shape"] = shape
        elif isinstance(shape, (list, tuple)):
            attrs["shape"] = get_attr_shape(shape)
3661 3662 3663 3664
            if paddle.utils._contain_var(shape):
                inputs['ShapeTensor'] = paddle.utils._convert_to_tensor_list(
                    shape
                )
3665

3666
        helper = LayerHelper("reshape2", **locals())
3667 3668 3669 3670 3671 3672 3673
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="reshape2",
            inputs=inputs,
            attrs=attrs,
            outputs={"Out": out, "XShape": x_shape},
3674
        )
3675

3676
        return out
3677 3678


3679
@inplace_apis_in_dygraph_only
3680 3681 3682 3683 3684
def reshape_(x, shape, name=None):
    """
    Inplace version of ``reshape`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_reshape`.
    """
3685
    if in_dynamic_mode():
3686 3687 3688
        tmp_tensor_type = core.eager.Tensor
        if isinstance(shape, (list, tuple)):
            shape = [
3689
                item.item(0) if isinstance(item, tmp_tensor_type) else item
3690
                for item in shape
3691
            ]
3692 3693 3694 3695
            if shape == x.shape:
                out = x
            else:
                out = _C_ops.reshape_(x, shape)
3696 3697
        elif isinstance(shape, tmp_tensor_type):
            shape.stop_gradient = True
3698
            out = _C_ops.reshape_(x, shape)
3699 3700 3701
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
3702 3703
                " got '{}.'".format(type(shape))
            )
3704

3705
        return out
3706 3707


3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
3727 3728 3729 3730 3731 3732 3733
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
3734 3735 3736 3737

            * Case 1:
                index = [[1]]

3738 3739
                gather_nd(x, index)
                         = [x[1, :, :]]
3740 3741 3742 3743 3744 3745 3746
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

3747 3748
                gather_nd(x, index)
                         = [x[0, 2, :]]
3749 3750 3751 3752 3753
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

3754 3755
                gather_nd(x, index)
                         = [x[1, 2, 3]]
3756 3757 3758
                         = [23]

    Args:
张春乔 已提交
3759
        x (Tensor): The input Tensor which it's data type should be bool, float16, float32, float64, int32, int64.
3760 3761
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
3762
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3763 3764

    Returns:
L
Ligoml 已提交
3765
        output (Tensor), A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
3766

3767 3768 3769
    Examples:

        .. code-block:: python
3770

3771
            import paddle
3772

3773 3774 3775
            x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]],
                                  [[7, 8], [9, 10], [11, 12]]])
            index = paddle.to_tensor([[0, 1]])
3776

3777 3778 3779
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """
3780
    if in_dynamic_mode():
3781
        return _C_ops.gather_nd(x, index)
3782
    else:
3783 3784 3785
        check_variable_and_dtype(
            x,
            'x',
张春乔 已提交
3786 3787 3788
            [
                'bool',
                'float16',
3789
                'uint16',
张春乔 已提交
3790 3791 3792 3793 3794 3795
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
            ],
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
            'gather_np',
        )
        check_variable_and_dtype(
            index, 'index', ['int32', 'int64'], 'gather_np'
        )
        helper = LayerHelper('gather_nd', **locals())
        dtype = helper.input_dtype()
        output = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="gather_nd",
            inputs={"X": x, "Index": index},
            outputs={"Out": output},
        )
        return output
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857


def strided_slice(x, axes, starts, ends, strides, name=None):
    """
    This operator produces a slice of ``x`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
                strides = [1, 1]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
                strides = [1, 3]
            Then:
                result = [ [2], ]
3858

3859
    Args:
3860
        x (Tensor): An N-D ``Tensor``. The data type is ``bool``, ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
3861 3862
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
3863 3864 3865 3866 3867 3868 3869 3870 3871
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of it should be
            integers or Tensors with shape []. If ``starts`` is an Tensor, it should be an 1-D Tensor.
            It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of it should be
            integers or Tensors with shape []. If ``ends`` is an Tensor, it should be an 1-D Tensor.
            It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Tensor): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of it should be
            integers or Tensors with shape []. If ``strides`` is an Tensor, it should be an 1-D Tensor.
            It represents slice step of corresponding axis in ``axes``.
3872 3873 3874 3875
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
3876
        Tensor, A ``Tensor`` with the same dimension as ``x``. The data type is same as ``x``.
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.zeros(shape=[3,4,5,6], dtype="float32")
            # example 1:
            # attr starts is a list which doesn't contain Tensor.
            axes = [1, 2, 3]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = paddle.strided_slice(x, axes=axes, starts=starts, ends=ends, strides=strides_1)
3891
            # sliced_1 is x[:, 1:3:1, 0:2:1, 2:4:1].
3892 3893
            # example 2:
            # attr starts is a list which contain tensor Tensor.
3894
            minus_3 = paddle.full(shape=[1], fill_value=-3, dtype='int32')
3895 3896 3897
            sliced_2 = paddle.strided_slice(x, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is x[:, 1:3:1, 0:2:1, 2:4:2].
    """
3898
    if in_dynamic_mode():
3899
        return _C_ops.strided_slice(x, axes, starts, ends, strides)
3900 3901
    else:
        helper = LayerHelper('strided_slice', **locals())
3902

3903 3904 3905
        check_variable_and_dtype(
            x,
            'x',
3906 3907 3908 3909 3910 3911 3912 3913 3914
            [
                'bool',
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
            'strided_slice',
        )
        check_type(axes, 'axes', (list, tuple), 'strided_slice')
        check_type(starts, 'starts', (list, tuple, Variable), 'strided_slice')
        check_type(ends, 'ends', (list, tuple, Variable), 'strided_slice')
        check_type(strides, 'strides', (list, tuple, Variable), 'strided_slice')

        def check_list_elements_dtype(list_input, input_name):
            if isinstance(list_input, Variable):
                check_dtype(
W
wanghuancoder 已提交
3925 3926 3927 3928
                    list_input.dtype,
                    input_name,
                    ['int32', 'int64'],
                    'strided_slice',
3929
                )
3930
            else:
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
                for i, var in enumerate(list_input):
                    var_name = input_name + '[' + str(i) + ']'
                    if isinstance(var, Variable):
                        check_dtype(
                            var.dtype, var_name, ['int32'], 'strided_slice'
                        )

        check_list_elements_dtype(axes, 'axes')
        check_list_elements_dtype(starts, 'starts')
        check_list_elements_dtype(ends, 'ends')
        check_list_elements_dtype(strides, 'strides')

        def get_new_list_tensor(old_list):
            new_list_tensor = []
            for dim in old_list:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_list_tensor.append(dim)
                else:
                    assert isinstance(dim, int)
                    temp_out = helper.create_variable_for_type_inference(
                        'int32'
                    )
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out
                    )
                    new_list_tensor.append(temp_out)
            return new_list_tensor
3959 3960

        inputs = {'Input': x}
3961
        attrs = {'axes': axes}
3962
        infer_flags = [1 for i in range(len(axes))]
3963 3964 3965 3966 3967 3968
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
3969
            if paddle.utils._contain_var(starts):
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
            else:
                attrs['starts'] = starts

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
3986
            if paddle.utils._contain_var(ends):
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
            else:
                attrs['ends'] = ends

        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
4003
            if paddle.utils._contain_var(strides):
4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
            else:
                attrs['strides'] = strides
        attrs['infer_flags'] = infer_flags
4014 4015 4016 4017 4018 4019 4020 4021 4022
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('x')
        )
        helper.append_op(
            type='strided_slice',
            inputs=inputs,
            attrs=attrs,
            outputs={'Out': out},
        )
4023

4024
        return out
F
From00 已提交
4025 4026 4027 4028


def tensordot(x, y, axes=2, name=None):
    r"""
4029
    This function computes a contraction, which sum the product of elements from two tensors along the given axes.
F
From00 已提交
4030 4031

    Args:
4032
        x (Tensor): The left tensor for contraction with data type ``float16`` or ``float32`` or ``float64``.
F
From00 已提交
4033 4034 4035
        y (Tensor): The right tensor for contraction with the same data type as ``x``.
        axes (int|tuple|list|Tensor, optional):  The axes to contract for ``x`` and ``y``, defaulted to integer ``2``.

4036
            1. It could be a non-negative integer ``n``,
F
From00 已提交
4037
               in which the function will sum over the last ``n`` axes of ``x`` and the first ``n`` axes of ``y`` in order.
4038 4039

            2. It could be a 1-d tuple or list with data type ``int``, in which ``x`` and ``y`` will be contracted along the same given axes.
F
From00 已提交
4040
               For example, ``axes`` =[0, 1] applies contraction along the first two axes for ``x`` and the first two axes for ``y``.
4041 4042 4043 4044

            3. It could be a tuple or list containing one or two 1-d tuple|list|Tensor with data type ``int``.
               When containing one tuple|list|Tensor, the data in tuple|list|Tensor specified the same axes for ``x`` and ``y`` to contract.
               When containing two tuple|list|Tensor, the first will be applied to ``x`` and the second to ``y``.
F
From00 已提交
4045
               When containing more than two tuple|list|Tensor, only the first two axis sequences will be used while the others will be ignored.
4046 4047 4048

            4. It could be a tensor, in which the ``axes`` tensor will be translated to a python list
               and applied the same rules described above to determine the contraction axes.
F
From00 已提交
4049
               Note that the ``axes`` with Tensor type is ONLY available in Dygraph mode.
4050
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
F
From00 已提交
4051 4052
                             For more information, please refer to :ref:`api_guide_Name` .

4053
    Return:
L
Ligoml 已提交
4054
        Output (Tensor), The contraction result with the same data type as ``x`` and ``y``.
F
From00 已提交
4055
        In general, :math:`output.ndim = x.ndim + y.ndim - 2 \times n_{axes}`, where :math:`n_{axes}` denotes the number of axes to be contracted.
4056

F
From00 已提交
4057
    NOTES:
4058
        1. This function supports tensor broadcast,
F
From00 已提交
4059
           the size in the corresponding dimensions of ``x`` and ``y`` should be equal, or applies to the broadcast rules.
4060 4061 4062 4063 4064
        2. This function also supports axes expansion,
           when the two given axis sequences for ``x`` and ``y`` are of different lengths,
           the shorter sequence will expand the same axes as the longer one at the end.
           For example, if ``axes`` =[[0, 1, 2, 3], [1, 0]],
           the axis sequence for ``x`` is [0, 1, 2, 3],
F
From00 已提交
4065
           while the corresponding axis sequences for ``y`` will be expanded from [1, 0] to [1, 0, 2, 3].
4066

F
From00 已提交
4067 4068 4069 4070 4071 4072 4073 4074
    Examples:
        .. code-block:: python

            import paddle

            data_type = 'float64'

            # For two 2-d tensor x and y, the case axes=0 is equivalent to outer product.
4075
            # Note that tensordot supports empty axis sequence, so all the axes=0, axes=[], axes=[[]], and axes=[[],[]] are equivalent cases.
F
From00 已提交
4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
            x = paddle.arange(4, dtype=data_type).reshape([2, 2])
            y = paddle.arange(4, dtype=data_type).reshape([2, 2])
            z = paddle.tensordot(x, y, axes=0)
            # z = [[[[0., 0.],
            #        [0., 0.]],
            #
            #       [[0., 1.],
            #        [2., 3.]]],
            #
            #
            #      [[[0., 2.],
            #        [4., 6.]],
            #
            #       [[0., 3.],
            #        [6., 9.]]]]


            # For two 1-d tensor x and y, the case axes=1 is equivalent to inner product.
            x = paddle.arange(10, dtype=data_type)
            y = paddle.arange(10, dtype=data_type)
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.dot(x, y)
4098
            # z1 = z2 = 285.
F
From00 已提交
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136


            # For two 2-d tensor x and y, the case axes=1 is equivalent to matrix multiplication.
            x = paddle.arange(6, dtype=data_type).reshape([2, 3])
            y = paddle.arange(12, dtype=data_type).reshape([3, 4])
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.matmul(x, y)
            # z1 = z2 =  [[20., 23., 26., 29.],
            #             [56., 68., 80., 92.]]


            # When axes is a 1-d int list, x and y will be contracted along the same given axes.
            # Note that axes=[1, 2] is equivalent to axes=[[1, 2]], axes=[[1, 2], []], axes=[[1, 2], [1]], and axes=[[1, 2], [1, 2]].
            x = paddle.arange(24, dtype=data_type).reshape([2, 3, 4])
            y = paddle.arange(36, dtype=data_type).reshape([3, 3, 4])
            z = paddle.tensordot(x, y, axes=[1, 2])
            # z =  [[506. , 1298., 2090.],
            #       [1298., 3818., 6338.]]


            # When axes is a list containing two 1-d int list, the first will be applied to x and the second to y.
            x = paddle.arange(60, dtype=data_type).reshape([3, 4, 5])
            y = paddle.arange(24, dtype=data_type).reshape([4, 3, 2])
            z = paddle.tensordot(x, y, axes=([1, 0], [0, 1]))
            # z =  [[4400., 4730.],
            #       [4532., 4874.],
            #       [4664., 5018.],
            #       [4796., 5162.],
            #       [4928., 5306.]]


            # Thanks to the support of axes expansion, axes=[[0, 1, 3, 4], [1, 0, 3, 4]] can be abbreviated as axes= [[0, 1, 3, 4], [1, 0]].
            x = paddle.arange(720, dtype=data_type).reshape([2, 3, 4, 5, 6])
            y = paddle.arange(720, dtype=data_type).reshape([3, 2, 4, 5, 6])
            z = paddle.tensordot(x, y, axes=[[0, 1, 3, 4], [1, 0]])
            # z = [[23217330., 24915630., 26613930., 28312230.],
            #      [24915630., 26775930., 28636230., 30496530.],
            #      [26613930., 28636230., 30658530., 32680830.],
4137
            #      [28312230., 30496530., 32680830., 34865130.]]
F
From00 已提交
4138 4139
    """
    op_type = 'tensordot'
4140
    input_dtype = ['float16', 'float32', 'float64']
F
From00 已提交
4141 4142 4143 4144 4145 4146

    check_variable_and_dtype(x, 'x', input_dtype, op_type)
    check_variable_and_dtype(y, 'y', input_dtype, op_type)
    check_type(axes, 'axes', (int, tuple, list, Variable), op_type)

    def _var_to_list(var):
4147
        if in_dynamic_mode():
F
From00 已提交
4148 4149
            return tolist(var)
        raise TypeError(
4150 4151 4152
            "The 'axes' with type 'Tensor' in "
            + op_type
            + " is not available in static graph mode, "
F
From00 已提交
4153 4154 4155 4156 4157 4158 4159
            "please convert its type to int|Tuple|List, or use dynamic graph mode."
        )

    axes_x = []
    axes_y = []
    if np.issubdtype(type(axes), np.integer):
        assert axes >= 0, (
4160 4161 4162 4163
            "The 'axes' in "
            + op_type
            + f" should not be negative, but received axes={axes}."
        )
F
From00 已提交
4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
        axes_x = range(x.ndim - axes, x.ndim)
        axes_y = range(axes)
    else:
        if isinstance(axes, Variable):
            axes = _var_to_list(axes)

        if not axes or np.issubdtype(type(axes[0]), np.integer):
            axes_x = axes
        else:
            axes_x = axes[0]
            if len(axes) > 1:
                axes_y = axes[1]

            if isinstance(axes_x, Variable):
                axes_x = _var_to_list(axes_x)
            if isinstance(axes_y, Variable):
                axes_y = _var_to_list(axes_y)

    axes_x, axes_y = list(axes_x), list(axes_y)
    len_axes_x, len_axes_y = len(axes_x), len(axes_y)
    if len_axes_x < len_axes_y:
        axes_x.extend(axes_y[len_axes_x:])
    elif len_axes_y < len_axes_x:
        axes_y.extend(axes_x[len_axes_y:])

    shape_x, shape_y = list(x.shape), list(y.shape)
    need_contracted_dim_x = np.zeros((x.ndim), dtype=bool)
    need_contracted_dim_y = np.zeros((y.ndim), dtype=bool)
    contraction_size = 1
    for i in range(len(axes_x)):
        dim_x, dim_y = axes_x[i], axes_y[i]
        sx, sy = shape_x[dim_x], shape_y[dim_y]
        if sx == 1:
            shape_y[dim_y] = 1
            y = y.sum(dim_y).reshape(shape_y)
        elif sy == 1:
            shape_x[dim_x] = 1
            x = x.sum(dim_x).reshape(shape_x)
        else:
4203 4204 4205 4206 4207
            assert sx == sy, (
                "The dimensional size for 'x' and 'y' in "
                + op_type
                + f" should match each other, but 'x' has size {sx} in dim {dim_x} while 'y' has size {sy} in dim {dim_y}."
            )
F
From00 已提交
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231

        need_contracted_dim_x[dim_x] = True
        need_contracted_dim_y[dim_y] = True
        contraction_size *= shape_x[dim_x]

    perm_x = []
    perm_y = []
    shape_out = []
    not_contraction_size_x = 1
    not_contraction_size_y = 1
    for i in range(x.ndim):
        if not need_contracted_dim_x[i]:
            perm_x.append(i)
            shape_out.append(shape_x[i])
            not_contraction_size_x *= shape_x[i]
    perm_x.extend(axes_x)
    perm_y.extend(axes_y)
    for i in range(y.ndim):
        if not need_contracted_dim_y[i]:
            perm_y.append(i)
            shape_out.append(shape_y[i])
            not_contraction_size_y *= shape_y[i]

    x = x.transpose(perm=perm_x).reshape(
4232 4233
        [not_contraction_size_x, contraction_size]
    )
F
From00 已提交
4234
    y = y.transpose(perm=perm_y).reshape(
4235 4236
        [contraction_size, not_contraction_size_y]
    )
F
From00 已提交
4237 4238
    out = x.matmul(y).reshape(shape_out)
    return out
4239 4240 4241


def as_complex(x, name=None):
4242 4243
    """Transform a real tensor to a complex tensor.

4244 4245 4246
    The data type of the input tensor is 'float32' or 'float64', and the data
    type of the returned tensor is 'complex64' or 'complex128', respectively.

4247
    The shape of the input tensor is ``(* ,2)``, (``*`` means arbitary shape), i.e.
4248 4249 4250 4251 4252 4253 4254 4255
    the size of the last axis shoule be 2, which represent the real and imag part
    of a complex number. The shape of the returned tensor is ``(*,)``.

    Args:
        x (Tensor): The input tensor. Data type is 'float32' or 'float64'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4256
        Tensor, The output. Data type is 'complex64' or 'complex128', with the same precision as the input.
4257

4258 4259 4260 4261 4262 4263
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
4264
            print(y)
4265

4266 4267 4268
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(gpu:0), stop_gradient=True,
            #        [[1j      , (2+3j)  , (4+5j)  ],
            #         [(6+7j)  , (8+9j)  , (10+11j)]])
4269
    """
4270
    if in_dynamic_mode():
4271
        return _C_ops.as_complex(x)
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'as_complex')
        op_type = "as_complex"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": x}
        out = helper.create_variable_for_type_inference(
            dtype=_real_to_complex_dtype(x.dtype)
        )
        outputs = {"Out": out}
        attrs = {}
        helper.append_op(
            type=op_type, inputs=inputs, attrs=attrs, outputs=outputs
        )
        return out
4286 4287 4288


def as_real(x, name=None):
4289 4290 4291
    """Transform a complex tensor to a real tensor.

    The data type of the input tensor is 'complex64' or 'complex128', and the data
4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302
    type of the returned tensor is 'float32' or 'float64', respectively.

    When the shape of the input tensor is ``(*, )``, (``*`` means arbitary shape),
    the shape of the output tensor is ``(*, 2)``, i.e. the shape of the output is
    the shape of the input appended by an extra ``2``.

    Args:
        x (Tensor): The input tensor. Data type is 'complex64' or 'complex128'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4303
        Tensor, The output. Data type is 'float32' or 'float64', with the same precision as the input.
4304

4305 4306 4307 4308 4309 4310 4311
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            z = paddle.as_real(y)
4312
            print(z)
4313

4314 4315 4316 4317
            # Tensor(shape=[2, 3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[0. , 1. ],
            #          [2. , 3. ],
            #          [4. , 5. ]],
4318

4319 4320 4321
            #         [[6. , 7. ],
            #          [8. , 9. ],
            #          [10., 11.]]])
4322
    """
4323
    if in_dynamic_mode():
4324
        return _C_ops.as_real(x)
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
    else:
        check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'as_real')
        op_type = "as_real"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": x}
        out = helper.create_variable_for_type_inference(
            dtype=_complex_to_real_dtype(x.dtype)
        )
        outputs = {"Out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
        return out
4336 4337


K
kuizhiqing 已提交
4338 4339 4340 4341 4342 4343 4344 4345 4346
def repeat_interleave(x, repeats, axis=None, name=None):
    """

    Returns a new tensor which repeats the ``x`` tensor along dimension ``axis`` using
    the entries in ``repeats`` which is a int or a Tensor.

    Args:
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        repeats (Tensor or int): The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis.
4347
        axis (int, optional): The dimension in which we manipulate. Default: None, the output tensor is flatten.
K
kuizhiqing 已提交
4348 4349 4350 4351 4352
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4353
        Tensor, A Tensor with same data type as ``x``.
K
kuizhiqing 已提交
4354

4355 4356 4357 4358 4359
    Examples:
        .. code-block:: python

            import paddle

K
kuizhiqing 已提交
4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            repeats  = paddle.to_tensor([3, 2, 1], dtype='int32')

            paddle.repeat_interleave(x, repeats, 1)
            # [[1, 1, 1, 2, 2, 3],
            #  [4, 4, 4, 5, 5, 6]]

            paddle.repeat_interleave(x, 2, 0)
            # [[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]]

            paddle.repeat_interleave(x, 2, None)
            # [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]
    """

    if axis is None:
        x = paddle.flatten(x)
        axis = 0
4377
    if in_dynamic_mode():
S
seemingwang 已提交
4378
        if isinstance(repeats, Variable):
4379 4380
            return _C_ops.repeat_interleave_with_tensor_index(x, repeats, axis)
        return _C_ops.repeat_interleave(x, repeats, axis)
K
kuizhiqing 已提交
4381 4382

    helper = LayerHelper("repeat_interleave", **locals())
4383 4384 4385 4386 4387 4388
    check_variable_and_dtype(
        x,
        'x',
        ['float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.repeat_interleave',
    )
K
kuizhiqing 已提交
4389 4390 4391

    out = helper.create_variable_for_type_inference(x.dtype)

4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
    helper.append_op(
        type='repeat_interleave',
        inputs={
            'X': x,
            'RepeatsTensor': repeats if isinstance(repeats, Variable) else None,
        },
        outputs={'Out': out},
        attrs={
            'dim': axis,
            'Repeats': repeats if isinstance(repeats, int) else 0,
        },
    )
K
kuizhiqing 已提交
4404 4405 4406
    return out


4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
def moveaxis(x, source, destination, name=None):
    """
    Move the axis of tensor from ``source`` position to ``destination`` position.

    Other axis that have not been moved remain their original order.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, int32, int64, float32, float64, complex64, complex128.
        source(int|tuple|list): ``source`` position of axis that will be moved. Each element must be unique and integer.
        destination(int|tuple|list(int)): ``destination`` position of axis that has been moved. Each element must be unique and integer.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4421
        Tensor, A new tensor whose axis have been moved.
4422 4423 4424

    Examples:
        .. code-block:: python
4425

4426 4427 4428 4429 4430 4431 4432
            import paddle

            x = paddle.ones([3, 2, 4])
            paddle.moveaxis(x, [0, 1], [1, 2]).shape
            # [4, 3, 2]

            x = paddle.ones([2, 3])
4433
            paddle.moveaxis(x, 0, 1).shape # equivalent to paddle.t(x)
4434
            # [3, 2]
4435 4436 4437 4438 4439
    """
    src = [source] if isinstance(source, int) else source
    dst = [destination] if isinstance(destination, int) else destination

    assert len(src) == len(
4440 4441
        dst
    ), "'source' must have the same number with 'destination'"
4442

4443
    if len(src) != len(set(src)):
4444
        raise ValueError("Each elemment of 'source' must be unique!")
4445
    if len(dst) != len(set(dst)):
4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
        raise ValueError("Each elemment of 'destination' must be unique!")

    ndim = len(x.shape)

    # perm is the new order after move axis
    perm = list(range(ndim))
    src_dims = list(range(ndim))
    dst_dims = list(range(ndim))

    for i, axis in enumerate(zip(src, dst)):
4456 4457 4458
        assert isinstance(
            axis[0], int
        ), "Each elemment of 'source' must be integer."
4459
        if axis[0] < 0:
4460 4461 4462
            assert (
                axis[0] >= -ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4463 4464
            src[i] += ndim
        else:
4465 4466 4467
            assert (
                axis[0] < ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4468

4469 4470 4471
        assert isinstance(
            axis[1], int
        ), "Each elemment of 'source' must be integer."
4472
        if axis[1] < 0:
4473 4474 4475
            assert (
                axis[1] >= -ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4476 4477
            dst[i] += ndim
        else:
4478 4479 4480
            assert (
                axis[1] < ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4481 4482 4483 4484 4485 4486 4487
        perm[dst[i]] = src[i]
        src_dims.remove(src[i])
        dst_dims.remove(dst[i])

    for i in range(len(src_dims)):
        perm[dst_dims[i]] = src_dims[i]

4488
    if in_dynamic_mode():
4489
        out = _C_ops.transpose(x, perm)
4490
        return out
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
    else:
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'moveaxis',
        )
4507

4508 4509 4510 4511 4512 4513 4514 4515 4516
        helper = LayerHelper('moveaxis', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='transpose2',
            inputs={'X': [x]},
            outputs={'Out': [out], 'XShape': [x_shape]},
            attrs={'axis': perm},
        )
4517 4518
        return out

4519

4520 4521 4522
def non_negative_axis(arr, axis):
    ndim = len(arr.shape)
    if axis >= 0:
4523 4524 4525
        assert (
            axis < ndim
        ), "'axis'  must be in the range of [-{0}, {0})".format(ndim)
4526
    else:
4527 4528 4529
        assert (
            axis >= -ndim
        ), "'axis'  must be in the range of [-{0}, {0})".format(ndim)
4530 4531 4532 4533 4534 4535
        axis += ndim

    return axis


def infer_broadcast_shape(arr, indices, axis):
4536
    # This function is used in take/put_along_axis
4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
    broadcast_shape_list = list(arr.shape)
    broadcast_shape_list[axis] = list(indices.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    for i in range(len(arr.shape)):
        if arr.shape[i] < indices.shape[i]:
            # if indices matrix has larger size than arr matrix, do not broadcast.
            return None
    return broadcast_shape


4547 4548 4549 4550 4551
def take_along_axis(arr, indices, axis):
    """
    Take values from the input array by given indices matrix along the designated axis.

    Args:
4552
        arr (Tensor) : The input Tensor. Supported data types are float32 and float64.
4553
        indices (Tensor) : Indices to take along each 1d slice of arr. This must match the dimension of arr,
4554
            and need to broadcast against arr. Supported data type are int and int64.
4555
        axis (int) : The axis to take 1d slices along.
4556

4557
    Returns:
L
Ligoml 已提交
4558
        Tensor, The indexed element, same dtype with arr
4559

4560 4561 4562 4563 4564
    Examples:
        .. code-block:: python

            import paddle

4565 4566
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7,8,9]])
            index = paddle.to_tensor([[0]])
4567 4568 4569 4570 4571
            axis = 0
            result = paddle.take_along_axis(x, index, axis)
            print(result)
            # [[1, 2, 3]]
    """
4572
    if len(arr.shape) != len(indices.shape):
4573
        raise ValueError(
4574 4575
            "`indices` and `arr` must have the same number of dimensions!"
        )
4576 4577 4578 4579 4580
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
    if not broadcast_shape:
        # if indices matrix have larger size than arr, arr should broadcast into indices shape.
        broadcast_shape = indices.shape
4581
    if in_dynamic_mode():
4582
        indices = paddle.broadcast_to(indices, broadcast_shape)
4583 4584 4585 4586
        broadcast_shape_list = list(broadcast_shape)
        broadcast_shape_list[axis] = list(arr.shape)[axis]
        broadcast_shape = tuple(broadcast_shape_list)
        arr = paddle.broadcast_to(arr, broadcast_shape)
4587 4588 4589 4590 4591
        return _C_ops.take_along_axis(arr, indices, axis)
    else:
        check_variable_and_dtype(
            arr,
            'x',
4592 4593 4594 4595 4596 4597 4598 4599 4600
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
                'uint16',
            ],
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
            'take_along_axis',
        )
        check_variable_and_dtype(
            indices, 'index', ['int32', 'int64'], 'take_along_axis'
        )
        indices = paddle.broadcast_to(indices, broadcast_shape)
        broadcast_shape_list = list(broadcast_shape)
        broadcast_shape_list[axis] = list(arr.shape)[axis]
        broadcast_shape = tuple(broadcast_shape_list)
        arr = paddle.broadcast_to(arr, broadcast_shape)
        helper = LayerHelper('take_along_axis', **locals())
        dtype = helper.input_dtype()
        result = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="take_along_axis",
            inputs={"Input": arr, "Index": indices},
            attrs={"Axis": axis},
            outputs={"Result": result},
        )
        return result
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630


def put_along_axis(arr, indices, values, axis, reduce='assign'):
    """
    Put values into the destination array by given indices matrix along the designated axis.

    Args:
        arr (Tensor) : The Destination Tensor. Supported data types are float32 and float64.
        indices (Tensor) : Indices to put along each 1d slice of arr. This must match the dimension of arr,
            and need to broadcast against arr. Supported data type are int and int64.
4631
        axis (int) : The axis to put 1d slices along.
G
gouzil 已提交
4632 4633 4634
        reduce (str, optional): The reduce operation, default is 'assign', support 'add', 'assign', 'mul' and 'multiply'.

    Returns:
L
Ligoml 已提交
4635
        Tensor, The indexed element, same dtype with arr
4636

4637 4638 4639 4640 4641
    Examples:
        .. code-block:: python

            import paddle

4642 4643
            x = paddle.to_tensor([[10, 30, 20], [60, 40, 50]])
            index = paddle.to_tensor([[0]])
4644 4645 4646 4647 4648 4649 4650 4651
            value = 99
            axis = 0
            result = paddle.put_along_axis(x, index, value, axis)
            print(result)
            # [[99, 99, 99],
            # [60, 40, 50]]

    """
4652
    if len(arr.shape) != len(indices.shape):
4653
        raise ValueError(
4654 4655
            "`indices` and `arr` must have the same number of dimensions!"
        )
4656 4657
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
4658
    if in_dynamic_mode():
4659 4660 4661 4662 4663
        values = (
            paddle.to_tensor(values)
            if not isinstance(values, paddle.Tensor)
            else values
        )
4664 4665 4666
        if broadcast_shape:
            indices = paddle.broadcast_to(indices, broadcast_shape)
        values = paddle.broadcast_to(values, indices.shape)
4667 4668 4669 4670 4671
        return _C_ops.put_along_axis(arr, indices, values, axis, reduce)
    else:
        check_variable_and_dtype(
            arr,
            'x',
4672 4673 4674 4675 4676 4677 4678 4679 4680
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
                'uint16',
            ],
4681
            'put_along_axis',
4682
        )
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
        check_variable_and_dtype(
            indices, 'index', ['int32', 'int64'], 'put_along_axis'
        )
        if broadcast_shape:
            indices = paddle.broadcast_to(indices, broadcast_shape)
        values = paddle.broadcast_to(values, indices.shape)
        helper = LayerHelper('put_along_axis', **locals())
        dtype = helper.input_dtype()
        result = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="put_along_axis",
            inputs={"Input": arr, "Index": indices, "Value": values},
            attrs={"Axis": axis, "Reduce": reduce},
            outputs={"Result": result},
        )
        return result
4699 4700 4701 4702 4703


@inplace_apis_in_dygraph_only
def put_along_axis_(arr, indices, values, axis, reduce='assign'):
    r"""
4704
    Inplace version of ``put_along_axis`` API, the output Tensor will be inplaced with input ``arr``.
4705 4706
    Please refer to :ref:`api_tensor_put_along_axis`.
    """
4707
    if len(arr.shape) != len(indices.shape):
4708
        raise ValueError(
4709 4710
            "`indices` and `arr` must have the same number of dimensions!"
        )
4711 4712
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
4713 4714 4715 4716 4717
    values = (
        paddle.to_tensor(values)
        if not isinstance(values, paddle.Tensor)
        else values
    )
4718 4719 4720
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4721
    return _C_ops.put_along_axis_(arr, indices, values, axis, reduce)
4722 4723


L
Li Min 已提交
4724 4725 4726 4727 4728 4729 4730 4731
def index_add(x, index, axis, value, name=None):
    """
    Adds the elements of the input tensor with value tensor by selecting the indices in the order given in index.

    Args:
        x (Tensor) : The Destination Tensor. Supported data types are int32, int64, float16, float32, float64.
        index (Tensor): The 1-D Tensor containing the indices to index.
            The data type of ``index`` must be int32 or int64.
4732
        axis (int): The dimension in which we index.
L
Li Min 已提交
4733 4734 4735 4736
        value (Tensor): The tensor used to add the elements along the target axis.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
L
Ligoml 已提交
4737
        Tensor, same dimention and dtype with x.
L
Li Min 已提交
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1, 1], [1, 1, 1]], dtype="float32")
            outplace_res = paddle.index_add(input_tensor, index, 0, value)
4749 4750 4751 4752 4753
            print(outplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 2., 2.],
            #         [1., 1., 1.],
            #         [2., 2., 2.]])
L
Li Min 已提交
4754
    """
4755
    if in_dynamic_mode():
L
Li Min 已提交
4756 4757 4758 4759
        return _C_ops.index_add(x, index, value, axis)

    helper = LayerHelper("index_add", **locals())
    check_variable_and_dtype(
4760 4761
        x,
        'x',
4762
        ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
4763 4764 4765 4766 4767 4768 4769 4770
        'paddle.tensor.manipulation.index_add',
    )
    check_variable_and_dtype(
        index,
        'index',
        ['int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
L
Li Min 已提交
4771
    check_variable_and_dtype(
4772 4773
        value,
        'add_value',
4774
        ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
4775 4776
        'paddle.tensor.manipulation.index_add',
    )
L
Li Min 已提交
4777 4778 4779

    out = helper.create_variable_for_type_inference(x.dtype)

4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
    helper.append_op(
        type='index_add',
        inputs={
            'X': x,
            'Index': index,
            'AddValue': value,
        },
        outputs={'Out': out},
        attrs={'axis': axis},
    )
L
Li Min 已提交
4790 4791 4792 4793 4794 4795 4796
    return out


@inplace_apis_in_dygraph_only
def index_add_(x, index, axis, value, name=None):
    """
    Inplace version of ``index_add`` API, the output Tensor will be inplaced with input ``x``.
4797
    Please refer to :ref:`api_paddle_index_add`.
4798

L
Li Min 已提交
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1], [1, 1], [1, 1]], dtype="float32")
            inplace_res = paddle.index_add_(input_tensor, index, 1, value)
4809 4810 4811 4812 4813
            print(inplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 1., 2.],
            #         [2., 1., 2.],
            #         [2., 1., 2.]])
L
Li Min 已提交
4814 4815 4816 4817
    """
    return _C_ops.index_add_(x, index, value, axis)


傅剑寒 已提交
4818 4819 4820 4821 4822 4823 4824 4825 4826 4827
@inplace_apis_in_dygraph_only
def index_put_(x, indices, value, accumulate=False, name=None):
    """
    Puts values from the tensor values into the tensor x using the indices specified in indices (which is a tuple of Tensors).
    The expression paddle.index_put_(x, indices, values) is equivalent to tensor[indices] = values. Returns x.
    If accumulate is True, the elements in values are added to x. If accumulate is False, the behavior is undefined if indices contain duplicate elements.

    Args:
        x (Tensor) : The Source Tensor. Supported data types are int32, int64, float16, float32, float64, bool.
        indices (Tuple of Tensor): The tuple of Tensor containing the indices to index.
4828
            The data type of ``tensor in indices`` must be int32, int64 or bool.
傅剑寒 已提交
4829 4830 4831 4832 4833 4834 4835 4836 4837
        value (Tensor): The tensor used to be assigned to x.
        accummulate (Bool, optional): Whether the elements in values are added to x. Default: False.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        Tensor, same dimention and dtype with x.

    Examples:
        .. code-block:: python
4838

傅剑寒 已提交
4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868
            import paddle

            x = paddle.zeros([3, 3])
            value = paddle.ones([3])
            ix1 = paddle.to_tensor([0,1,2])
            ix2 = paddle.to_tensor([1,2,1])
            indices=(ix1,ix2)

            out = paddle.index_put_(x,indices,value)
            print(x)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0., 1., 0.],
            #         [0., 0., 1.],
            #         [0., 1., 0.]])
            print(out)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0., 1., 0.],
            #         [0., 0., 1.],
            #         [0., 1., 0.]])
    """
    return _C_ops.index_put_(x, indices, value, accumulate)


def index_put(x, indices, value, accumulate=False, name=None):
    """
    Outplace version of ``index_put_`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_index_put`.

    Examples:
        .. code-block:: python
4869

傅剑寒 已提交
4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889
            import paddle

            x = paddle.zeros([3, 3])
            value = paddle.ones([3])
            ix1 = paddle.to_tensor([0,1,2])
            ix2 = paddle.to_tensor([1,2,1])
            indices=(ix1,ix2)

            out = paddle.index_put(x,indices,value)
            print(x)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0., 0., 0.],
            #         [0., 0., 0.],
            #         [0., 0., 0.]])
            print(out)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0., 1., 0.],
            #         [0., 0., 1.],
            #         [0., 1., 0.]])
    """
4890
    if in_dynamic_mode():
傅剑寒 已提交
4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921
        return _C_ops.index_put(x, indices, value, accumulate)

    helper = LayerHelper("index_put", **locals())
    check_variable_and_dtype(
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'paddle.tensor.manipulation.index_put',
    )
    check_variable_and_dtype(
        value,
        'value',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'paddle.tensor.manipulation.index_put',
    )

    out = helper.create_variable_for_type_inference(x.dtype)

    helper.append_op(
        type='index_put',
        inputs={
            'x': x,
            'indices': indices,
            'value': value,
        },
        outputs={'out': out},
        attrs={'accumulate': accumulate},
    )
    return out


4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989
def unflatten(x, axis, shape, name=None):
    """
    Expand a certain dimension of the input x Tensor into a desired shape.

    Args:
        x (Tensor) : An N-D Tensor. The data type is float16, float32, float64, int16, int32, int64, bool, uint16.
        axis (int): :attr:`axis` to be unflattened, specified as an index into `x.shape`.
        shape (list|tuple|Tensor): Unflatten :attr:`shape` on the specified :attr:`axis`. At most one dimension of the target :attr:`shape` can be -1.
            If the input :attr:`shape` does not contain -1 , the product of all elements in ``shape`` should be equal to ``x.shape[axis]``.
            The data type is `int` . If :attr:`shape` is a list or tuple, the elements of it should be integers or Tensors with shape [].
            If :attr:`shape` is an Tensor, it should be an 1-D Tensor.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        Tensor, return the unflatten tensor of :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.randn(shape=[4, 6, 8])
            shape = [2, 3]
            axis = 1
            res = paddle.unflatten(x, axis, shape)
            print(res.shape)
            # [4, 2, 3, 8]

            x = paddle.randn(shape=[4, 6, 8])
            shape = (-1, 2)
            axis = -1
            res = paddle.unflatten(x, axis, shape)
            print(res.shape)
            # [4, 6, 4, 2]

            x = paddle.randn(shape=[4, 6, 8])
            shape = paddle.to_tensor([2, 2])
            axis = 0
            res = paddle.unflatten(x, axis, shape)
            print(res.shape)
            # [2, 2, 6, 8]
    """

    # determine whether the input axis is valid.
    axis = non_negative_axis(x, axis)
    if isinstance(shape, (list, tuple)):
        new_shape = (
            list(x.shape[:axis]) + list(shape) + list(x.shape[axis + 1 :])
        )
    elif isinstance(shape, Variable):
        # The data type returned by `paddle.shape` is only 'int32'.
        new_shape = paddle.concat(
            [
                paddle.shape(x)[:axis],
                paddle.cast(shape, 'int32'),
                paddle.shape(x)[axis + 1 :],
            ]
        )
    else:
        raise TypeError(
            "The data type of x should be one of ['List', 'Tuple', 'Tensor'], but got {}".format(
                type(shape)
            )
        )
    x = x.reshape(new_shape)
    return x


W
wanghuancoder 已提交
4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
@dygraph_only
def as_strided(x, shape, stride, offset=0, name=None):
    """
    View x with specified shape, stride and offset.

    Note that the output Tensor will share data with origin Tensor and doesn't
    have a Tensor copy in ``dygraph`` mode.

    Args:
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        shape (list|tuple): Define the target shape. Each element of it should be integer.
        stride (list|tuple): Define the target stride. Each element of it should be integer.
        offset (int): Define the target Tensor's offset from x's holder. Default: 0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, A as_strided Tensor with the same data type as ``x``.

    Examples:
        .. code-block:: python

            import paddle
            paddle.fluid.set_flags({"FLAGS_use_stride_kernel": True})

            x = paddle.rand([2, 4, 6], dtype="float32")

            out = paddle.as_strided(x, [8, 6], [6, 1])
            print(out)
            # the shape is [8, 6].
            # the stride is [6, 1].
    """
    return _C_ops.as_strided(x, shape, stride, offset)


@dygraph_only
def view(x, shape_or_dtype, name=None):
    """
    View x with specified shape or dtype.

    Note that the output Tensor will share data with origin Tensor and doesn't
    have a Tensor copy in ``dygraph`` mode.

    Args:
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        shape_or_dtype (list|tuple|np.dtype|str|VarType): Define the target shape or dtype. If list or tuple, shape_or_dtype represents shape, each element of it should be integer. If np.dtype or str or VarType, shape_or_dtype represents dtype, it can be bool, float16, float32, float64, int8, int32, int64, uint8.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, A viewed Tensor with the same data as ``x``.

    Examples:
        .. code-block:: python

            import paddle
            paddle.fluid.set_flags({"FLAGS_use_stride_kernel": True})

            x = paddle.rand([2, 4, 6], dtype="float32")

            out = paddle.view(x, [8, 6])
            print(out)


            import paddle
            paddle.fluid.set_flags({"FLAGS_use_stride_kernel": True})

            x = paddle.rand([2, 4, 6], dtype="float32")

            out = paddle.view(x, "uint8")
            print(out)
    """
    if isinstance(shape_or_dtype, (list, tuple)):
        return _C_ops.view_shape(x, shape_or_dtype)
    else:
        if not isinstance(shape_or_dtype, core.VarDesc.VarType):
            shape_or_dtype = convert_np_dtype_to_dtype_(shape_or_dtype)
        return _C_ops.view_dtype(x, shape_or_dtype)


@dygraph_only
def view_as(x, other, name=None):
    """
    View x with other's shape.

    Note that the output Tensor will share data with origin Tensor and doesn't
    have a Tensor copy in ``dygraph`` mode.

    Args:
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        other (Tensor): The result tensor has the same size as other.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, A viewed Tensor with the same shape as ``other``.

    Examples:
        .. code-block:: python

            import paddle
            paddle.fluid.set_flags({"FLAGS_use_stride_kernel": True})

            x = paddle.rand([2, 4, 6], dtype="float32")
            y = paddle.rand([8, 6], dtype="float32")

            out = paddle.view_as(x, y)
            print(out)
    """
    return _C_ops.view_shape(x, other.shape)


@dygraph_only
def unfold(x, axis, size, step, name=None):
    """
    View x with specified shape, stride and offset, which contains all slices of size from x in the dimension axis.

    Note that the output Tensor will share data with origin Tensor and doesn't
    have a Tensor copy in ``dygraph`` mode.

    Args:
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        axis (int): The axis along which the input is unfolded.
        size (int): The size of each slice that is unfolded.
        step (int): The step between each slice.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, A unfold Tensor with the same data type as ``x``.

    Examples:
        .. code-block:: python

            import paddle
            paddle.fluid.set_flags({"FLAGS_use_stride_kernel": True})

            x = paddle.arange(9, dtype="float64")

            out = paddle.unfold(x, 0, 2, 4)
            print(out) # [[0, 1], [4, 5]]
    """
    return _C_ops.tensor_unfold(x, axis, size, step)


5131 5132 5133 5134 5135 5136 5137
# TODO(dev): We need avoid implementing it by this way.
__METHODS = {
    'fill_': fill_,
    'zero_': zero_,
    'fill_diagonal_': fill_diagonal_,
    'fill_diagonal_tensor_': fill_diagonal_tensor_,
    "fill_diagonal_tensor": fill_diagonal_tensor,
5138
    'tolist': tolist,
5139 5140 5141
}
for name, func in __METHODS.items():
    setattr(core.eager.Tensor, name, func)