manipulation.py 170.8 KB
Newer Older
L
Ligoml 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
# TODO: define functions to manipulate a tensor

17
from collections import Counter
W
Wilber 已提交
18

myq406450149's avatar
myq406450149 已提交
19
import numpy as np
20

21
import paddle
22
from paddle import _C_ops, _legacy_C_ops
23

24
from ..common_ops_import import _varbase_creator, fill_constant
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
from ..fluid.data_feeder import (
    check_dtype,
    check_type,
    check_variable_and_dtype,
    convert_dtype,
)
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
from ..fluid.framework import _in_legacy_dygraph, _non_static_mode
from ..fluid.layers import utils
from ..framework import (
    LayerHelper,
    convert_np_dtype_to_dtype_,
    core,
    dygraph_only,
    in_dygraph_mode,
)
from ..static import Variable
from .creation import _complex_to_real_dtype, _real_to_complex_dtype, zeros
43

44 45
__all__ = []

W
Wilber 已提交
46

47 48 49 50 51 52 53 54
def cast(x, dtype):
    """

    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.

    Args:
55
        x (Tensor): An input N-D Tensor with data type bool, float16,
56
            float32, float64, int32, int64, uint8.
57
        dtype (np.dtype|str): Data type of the output:
58 59 60
            bool, float16, float32, float64, int8, int32, int64, uint8.

    Returns:
L
Ligoml 已提交
61
        Tensor, A Tensor with the same shape as input's.
62 63 64 65 66 67 68 69 70 71 72 73

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
    """
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
74
        return _C_ops.cast(x, dtype)
75 76 77 78

    if _non_static_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
79
        out = _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
80 81
        return out

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'cast',
    )
    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'cast',
    )
115 116 117

    helper = LayerHelper('cast', **locals())
    out = helper.create_variable_for_type_inference(
118 119 120 121 122 123 124 125
        dtype=dtype, stop_gradient=x.stop_gradient
    )
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype, 'out_dtype': out.dtype},
    )
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    return out


def slice(input, axes, starts, ends):
    """
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
    Following examples will explain how slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
            Then:
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
163

164 165 166 167 168 169 170 171 172 173 174
    Args:
        input (Tensor): A ``Tensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to .
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.

    Returns:
L
Ligoml 已提交
175
        Tensor, A ``Tensor``. The data type is same as ``input``.
176 177 178 179 180 181 182 183 184 185 186 187 188

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 5, 6], dtype='float32')
            # example 1:
            # attr starts is a list which doesn't contain tensor.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = paddle.slice(input, axes=axes, starts=starts, ends=ends)
Z
zyfncg 已提交
189
            # sliced_1 is input[1:3, 0:2, 2:4].
190 191 192 193 194

            # example 2:
            # attr starts is a list which contain tensor.
            minus_3 = paddle.full([1], -3, "int32")
            sliced_2 = paddle.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
Z
zyfncg 已提交
195
            # sliced_2 is input[1:3, 0:2, 2:4].
196 197 198 199 200 201 202 203 204 205
    """
    if in_dygraph_mode():
        attrs = ()
        starts_tensor = None
        ends_tensor = None

        if isinstance(axes, (list, tuple)):
            axes = list(axes)
            if len(axes) == 0:
                raise ValueError(
206 207
                    "Input axes should not be an empty list/tuple."
                )
208 209 210 211 212 213 214 215
            for i in range(len(axes)):
                if axes[i] < 0:
                    axes[i] = max(0, axes[i] + len(input.shape))
                else:
                    axes[i] = min(len(input.shape) - 1, axes[i])

        else:
            raise ValueError(
216 217 218 219
                "Input axes must be a python list or tuple, but reveived {}".format(
                    type(axes)
                )
            )
220 221 222 223 224 225 226 227

        infer_flags = list(1 for i in range(len(axes)))

        tmp_tensor_type = core.eager.Tensor

        if isinstance(starts, (list, tuple)):
            starts = [
                item.numpy().item(0)
228 229
                if isinstance(item, tmp_tensor_type)
                else item
230 231 232
                for item in starts
            ]
        elif isinstance(starts, tmp_tensor_type):
233 234
            tensor_t = starts.numpy()
            starts = [ele for ele in tensor_t]
235 236 237 238 239
            infer_flags = list(-1 for i in range(len(axes)))

        if isinstance(ends, (list, tuple)):
            ends = [
                item.numpy().item(0)
240 241 242
                if isinstance(item, tmp_tensor_type)
                else item
                for item in ends
243 244
            ]
        elif isinstance(ends, tmp_tensor_type):
245
            tensor_t = ends.numpy()
246
            ends = [ele for ele in tensor_t]
247
            infer_flags = list(-1 for i in range(len(axes)))
248

249
        return _C_ops.slice(input, axes, starts, ends, infer_flags, [])
250 251 252 253 254 255 256 257 258 259
    else:
        if _in_legacy_dygraph():
            attrs = ()
            starts_tensor = None
            ends_tensor = None

            if isinstance(axes, (list, tuple)):
                axes = list(axes)
                if len(axes) == 0:
                    raise ValueError(
260 261
                        "Input axes should not be an empty list/tuple."
                    )
262 263 264 265 266 267 268 269
                for i in range(len(axes)):
                    if axes[i] < 0:
                        axes[i] = max(0, axes[i] + len(input.shape))
                    else:
                        axes[i] = min(len(input.shape) - 1, axes[i])

            else:
                raise ValueError(
270 271 272 273
                    "Input axes must be a python list or tuple, but reveived {}".format(
                        type(axes)
                    )
                )
274 275 276 277 278 279 280 281

            infer_flags = list(1 for i in range(len(axes)))

            tmp_tensor_type = Variable

            if isinstance(starts, (list, tuple)):
                starts = [
                    item.numpy().item(0)
282 283
                    if isinstance(item, tmp_tensor_type)
                    else item
284 285 286 287 288 289 290 291 292 293 294
                    for item in starts
                ]
                attrs += ('starts', starts)
            elif isinstance(starts, tmp_tensor_type):
                starts_tensor = starts
                starts.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

            if isinstance(ends, (list, tuple)):
                ends = [
                    item.numpy().item(0)
295 296
                    if isinstance(item, tmp_tensor_type)
                    else item
297 298 299 300 301 302 303 304
                    for item in ends
                ]
                attrs += ('ends', ends)
            elif isinstance(ends, tmp_tensor_type):
                ends_tensor = ends
                ends_tensor.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

305 306 307 308 309 310 311 312 313 314 315 316
            return _legacy_C_ops.slice(
                input,
                starts_tensor,
                ends_tensor,
                None,
                None,
                'axes',
                axes,
                'infer_flags',
                infer_flags,
                *attrs,
            )
317 318 319

    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
320 321
            "Input starts must be an Variable, python list or tuple."
        )
322 323
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
324 325
            "Input ends must be an Variable, python list or tuple."
        )
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

    helper = LayerHelper('slice', **locals())

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    # starts
    if isinstance(starts, Variable):
        starts.stop_gradient = True
        inputs['StartsTensor'] = starts
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(starts, (list, tuple)):
        attrs['starts'] = []
        if utils._contain_var(starts):
            inputs['StartsTensorList'] = utils._convert_to_tensor_list(starts)
            for i, dim in enumerate(starts):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
        else:
            attrs['starts'] = starts

    # ends
    if isinstance(ends, Variable):
        ends.stop_gradient = True
        inputs['EndsTensor'] = ends
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(ends, (list, tuple)):
        attrs['ends'] = []
        if utils._contain_var(ends):
            inputs['EndsTensorList'] = utils._convert_to_tensor_list(ends)
            for i, dim in enumerate(ends):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
        else:
            attrs['ends'] = ends

    # infer_flags
    attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
372 373 374 375 376
        dtype=helper.input_dtype('input')
    )
    helper.append_op(
        type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out}
    )
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

    return out


def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
L
Ligoml 已提交
394
        Tensor, A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
432
        return _C_ops.transpose(x, perm)
433 434
    else:
        if _in_legacy_dygraph():
435
            out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
436 437
            return out

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'transpose',
    )
453 454 455 456 457 458 459 460
    check_type(perm, 'perm', (list, tuple), 'transpose')
    if isinstance(perm, tuple):
        perm = list(perm)
    if len(perm) != len(x.shape):
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
461 462
            "the length of Input(perm) is %s." % (len(x.shape), len(perm))
        )
463 464 465 466 467
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
468 469
                "dimension %d." % (idx, perm[idx], len(x.shape))
            )
470 471 472 473

    helper = LayerHelper('transpose', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
474 475 476 477 478 479
    helper.append_op(
        type='transpose2',
        inputs={'X': [x]},
        outputs={'Out': [out], 'XShape': [x_shape]},
        attrs={'axis': perm},
    )
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
    return out


def unstack(x, axis=0, num=None):
    """
    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.

    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised.

    Args:
        x (Tensor): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.

    Returns:
L
Ligoml 已提交
498
        list(Tensor), The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.
499 500 501 502 503 504 505 506 507

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.ones(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = paddle.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]

    """
508
    if in_dygraph_mode():
509
        if num is None:
510 511 512
            num = x.shape[axis]
        if num == 0:
            return []
513
        return _C_ops.unstack(x, axis, num)
514

515
    if _non_static_mode():
516
        if num is None:
517 518 519
            num = x.shape[axis]
        if num == 0:
            return []
520
        return _legacy_C_ops.unstack(x, num, 'axis', int(axis), 'num', num)
521 522 523 524 525 526 527 528 529 530 531 532

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in range(num):
        outs.append(helper.create_variable_for_type_inference(x.dtype))

533 534 535 536 537 538
    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis, 'num': num},
    )
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
    return outs


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    Reset the values of `input` according to the shard it beloning to.
    Every value in `input` must be a non-negative integer, and
    the parameter `index_num` represents the integer above the maximum
    value of `input`. Thus, all values in `input` must be in the range
    [0, index_num) and each value can be regarded as the offset to the beginning
    of the range. The range is further split into multiple shards. Specifically,
    we first compute the `shard_size` according to the following formula,
    which represents the number of integers each shard can hold. So for the
    i'th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size).
    ::

        shard_size = (index_num + nshards - 1) // nshards

    For each value `v` in `input`, we reset it to a new value according to the
    following formula:
    ::
560

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
        v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value

    That is, the value `v` is set to the new offset within the range represented by the shard `shard_id`
    if it in the range. Otherwise, we reset it to be `ignore_value`.

    Args:
        input (Tensor): Input tensor with data type int64 or int32. It's last dimension must be 1.
        index_num (int): An integer represents the integer above the maximum value of `input`.
        nshards (int): The number of shards.
        shard_id (int): The index of the current shard.
        ignore_value (int): An integer value out of sharded index range.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python

            import paddle
            label = paddle.to_tensor([[16], [1]], "int64")
            shard_label = paddle.shard_index(input=label,
                                             index_num=20,
                                             nshards=2,
                                             shard_id=0)
            print(shard_label)
            # [[-1], [1]]
    """
    if in_dygraph_mode():
589 590 591
        return _C_ops.shard_index(
            input, index_num, nshards, shard_id, ignore_value
        )
592 593 594 595 596

    check_variable_and_dtype(input, 'input', ['int64', 'int32'], 'shard_index')
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
597 598 599
        raise ValueError(
            'The shard_id(%d) should be in [0, %d)' % (shard_id, nshards)
        )
600 601

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
602 603 604 605 606 607 608 609 610 611 612 613
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value,
        },
        stop_gradient=True,
    )
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
    return out


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1 (input is a 2-D Tensor):
            Input:
                X.shape = [3, 5]
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
                shape = [2, 2, -1]
                offsets = [0, 0, 1]
            Output:
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]

    Parameters:
        x (Tensor): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
657
        shape (list|tuple|Tensor, optional): The output shape is specified
658 659 660 661 662 663 664 665 666 667 668
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
            the same as the dimension size of `x`. If a Tensor, it should be a 1-D Tensor.
            When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
            must be the same as the dimension size of `x`. If a Tensor, it should be a 1-D
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
669
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
670 671

    Returns:
L
Ligoml 已提交
672
        Tensor, The cropped Tensor has same data type with `x`.
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702

    Examples:

        .. code-block:: python

            import paddle
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
            # x.shape = [3, 3]
            # x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

            # shape can be a 1-D Tensor or list or tuple.
            shape = paddle.to_tensor([2, 2], dtype='int32')
            # shape = [2, 2]
            # shape = (2, 2)
            out = paddle.crop(x, shape)
            # out.shape = [2, 2]
            # out = [[1,2], [4,5]]

            # offsets can be a 1-D Tensor or list or tuple.
            offsets = paddle.to_tensor([0, 1], dtype='int32')
            # offsets = [1, 0]
            # offsets = (1, 1)
            out = paddle.crop(x, shape, offsets)
            # out.shape = [2, 2]
            # if offsets = [0, 0], out = [[1,2], [4,5]]
            # if offsets = [0, 1], out = [[2,3], [5,6]]
            # if offsets = [1, 0], out = [[4,5], [7,8]]
            # if offsets = [1, 1], out = [[5,6], [8,9]]

    """
703

704
    helper = LayerHelper('crop_tensor', **locals())
705 706 707 708 709 710 711 712 713
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'crop_tensor'
    )
    check_type(
        shape, 'shape', (list, tuple, Variable, type(None)), 'crop_tensor'
    )
    check_type(
        offsets, 'offsets', (list, tuple, Variable, type(None)), 'crop_tensor'
    )
714 715 716 717

    if offsets is None:
        offsets = [0] * len(x.shape)

P
PuQing 已提交
718 719 720
    if shape is None:
        shape = x.shape

721
    if in_dygraph_mode():
722
        return _C_ops.crop(x, shape, offsets)
723

724 725 726 727 728 729 730 731
    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
732 733
                % type(shape_val)
            )
734 735 736
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
737 738
                % str(shape_val)
            )
739 740 741
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
742 743
                % str(shape_val)
            )
744 745 746 747 748

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
749 750
                % type(offset_val)
            )
751 752 753
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
754 755
                % str(offset_val)
            )
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795

    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
        attrs['offsets'] = [-1] * len(x.shape)
    elif utils._contain_var(offsets):
        new_offsets_tensor = []
        offsets_attr = []
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
                offsets_attr.append(-1)
            else:
                _attr_offsets_check(dim)
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
                offsets_attr.append(dim)
        ipts['OffsetsTensor'] = new_offsets_tensor
        attrs['offsets'] = offsets_attr
    else:
        for offset in offsets:
            _attr_offsets_check(offset)
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
    elif utils._contain_var(shape):
        new_shape_tensor = []
        shape_attr = []
        for dim_size in shape:
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
                shape_attr.append(0)
            else:
                _attr_shape_check(dim_size)
                temp_out = helper.create_variable_for_type_inference('int32')
796 797 798
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
799 800 801 802 803 804 805 806 807
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
        for dim_size in shape:
            _attr_shape_check(dim_size)
        attrs['shape'] = shape

808 809 810 811 812 813
    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs,
    )
814 815 816
    return out


817 818 819 820 821 822 823 824 825
@dygraph_only
def fill_(x, value):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with value inplace.

    Args:
826 827
        x (Tensor): ``x`` is the Tensor we want to filled data inplace
        value (Scale): ``value`` is the value to be filled in x
828 829

    Returns:
L
Ligoml 已提交
830
        x(Tensor), Tensor x filled with value inplace
831 832 833 834 835 836 837 838 839 840 841 842 843 844

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.fill_(0)
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
    if not isinstance(value, (float, int)):
        raise TypeError(
845 846 847
            "The type of 'value'  must be int or float, but received %s."
            % (type(value))
        )
848
    if in_dygraph_mode():
849
        return _C_ops.fill_(x, value)
850
    else:
851 852 853
        return _legacy_C_ops.fill_any_(
            x, "value_float", float(value), "value_int", int(value)
        )
854 855 856 857 858 859 860 861 862 863 864


@dygraph_only
def zero_(x):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with zero inplace.

    Args:
865
        x (Tensor): ``x`` is the Tensor we want to filled with zero inplace
866 867

    Returns:
L
Ligoml 已提交
868
        x (Tensor), Tensor x filled with zero inplace
869 870 871 872 873 874 875 876 877 878 879 880

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.zero_()
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
881
    if in_dygraph_mode():
882
        return _C_ops.fill_(x, 0.0)
883
    else:
884 885 886
        return _legacy_C_ops.fill_any_(
            x, "value_float", 0.0, "value_int", int(0)
        )
887 888


889 890 891
@dygraph_only
def fill_diagonal_(x, value, offset=0, wrap=False, name=None):
    """
892 893
    Note:
        This API is ONLY available in Dygraph mode.
894

895
    This function fill the value into the x Tensor's diagonal inplace.
896

897 898 899 900 901 902
    Args:
        x(Tensor): ``x`` is the original Tensor
        value(Scale): ``value`` is the value to filled in x
        offset(int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        wrap(bool,optional): the diagonal 'wrapped' after N columns for tall matrices.
        name(str,optional): Name for the operation (optional, default is None)
903

904
    Returns:
L
Ligoml 已提交
905
        Tensor, Tensor with diagonal filled with value.
906

907 908 909 910 911 912 913
    Examples:
        .. code-block:: python
            import paddle
            x = paddle.ones((4, 3)) * 2
            x.fill_diagonal_(1.0)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]
    """
Z
zhiboniu 已提交
914

915 916 917
    helper = LayerHelper("fill_diagonal_", **locals())
    check_type(x, 'X', (Variable), 'fill_diagonal_')
    dtype = helper.input_dtype('x')
918 919 920 921 922 923
    check_dtype(
        dtype,
        'X',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'fill_diagonal_',
    )
924 925 926 927 928
    check_type(value, 'value', (bool, int, float), 'fill_diagonal_')
    check_type(wrap, 'wrap', (bool), 'fill_diagonal_')

    inshape = x.shape
    inshapeset = set(inshape)
929
    assert len(inshape) >= 2, 'Tensor dims should >= 2 in fill_diagonal_ API'
930
    if len(inshape) > 2:
931 932 933
        assert (
            len(inshapeset) == 1
        ), 'Tensor dims should be equal while input dims > 2 in fill_diagonal_ API'
Z
zhiboniu 已提交
934 935
    if in_dygraph_mode():
        if len(inshape) == 2:
936 937
            return _C_ops.fill_diagonal_(x, value, offset, wrap)
        return _C_ops.fill_diagonal_(x, value, offset, True)
Z
zhiboniu 已提交
938

939
    if len(inshape) == 2:
940 941 942 943 944 945
        return _legacy_C_ops.fill_diagonal_(
            x, 'value', value, 'offset', offset, 'wrap', wrap
        )
    return _legacy_C_ops.fill_diagonal_(
        x, 'value', value, 'offset', offset, 'wrap', True
    )
946 947


948 949
def _fill_diagonal_tensor_impl(x, y, offset=0, dim1=0, dim2=1, inplace=False):
    inshape = x.shape
950 951 952 953 954 955 956
    assert dim1 < len(inshape) and dim1 >= -len(
        inshape
    ), 'dim1 should between [-rank,rank) in fill_diagonal_tensor_'
    assert dim2 < len(inshape) and dim2 >= -len(
        inshape
    ), 'dim2 should between [-rank,rank) in fill_diagonal_tensor_'
    assert len(inshape) >= 2, 'Tensor dims should >= 2 in fill_diagonal_tensor_'
957 958 959 960 961 962 963
    dim1 %= len(inshape)
    dim2 %= len(inshape)

    predshape = []
    for i in range(len(inshape)):
        if i != dim1 and i != dim2:
            predshape.append(inshape[i])
964 965 966 967
    diaglen = min(
        min(inshape[dim1], inshape[dim1] + offset),
        min(inshape[dim2], inshape[dim2] - offset),
    )
968
    predshape.append(diaglen)
969
    assert tuple(predshape) == tuple(
970 971
        y.shape
    ), "the y shape should be {}".format(predshape)
972 973 974 975
    if len(y.shape) == 1:
        y = y.reshape([1, -1])

    if inplace:
Z
zhiboniu 已提交
976
        if in_dygraph_mode():
977
            return _C_ops.fill_diagonal_tensor_(x, y, offset, dim1, dim2)
Z
zhiboniu 已提交
978
        else:
979 980 981
            return _legacy_C_ops.fill_diagonal_tensor_(
                x, y, 'offset', offset, 'dim1', dim1, 'dim2', dim2
            )
Z
zhiboniu 已提交
982
    if in_dygraph_mode():
983
        return _C_ops.fill_diagonal_tensor(x, y, offset, dim1, dim2)
Z
zhiboniu 已提交
984
    else:
985 986 987
        return _legacy_C_ops.fill_diagonal_tensor(
            x, y, 'offset', offset, 'dim1', dim1, 'dim2', dim2
        )
988 989 990 991


def fill_diagonal_tensor_(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
992 993
    Note:
        This API is ONLY available in Dygraph mode.
994 995 996 997

    This function fill the source Tensor y into the x Tensor's diagonal inplace.

    Args:
998 999 1000 1001 1002 1003
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1004 1005

    Returns:
L
Ligoml 已提交
1006
        Tensor, Tensor with diagonal filled with y.
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            x.fill_diagonal_tensor_(y)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
1019 1020 1021
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=True
    )
1022 1023 1024 1025 1026 1027 1028


def fill_diagonal_tensor(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
    This function fill the source Tensor y into the x Tensor's diagonal.

    Args:
1029 1030 1031 1032 1033 1034
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1035 1036

    Returns:
L
Ligoml 已提交
1037
        Tensor, Tensor with diagonal filled with y.
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            nx = x.fill_diagonal_tensor(y)
            print(nx.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
1050 1051 1052
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=False
    )
1053 1054


Z
zhiboniu 已提交
1055 1056 1057
@dygraph_only
def tolist(x):
    """
1058 1059
    Note:
        This API is ONLY available in Dygraph mode.
Z
zhiboniu 已提交
1060 1061 1062 1063

    This function translate the paddle.Tensor to python list.

    Args:
1064
        x (Tensor): ``x`` is the Tensor we want to translate to list.
Z
zhiboniu 已提交
1065 1066

    Returns:
L
Ligoml 已提交
1067
        list, A list that contain the same value of current Tensor.
Z
zhiboniu 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085


    Examples:
        .. code-block:: python

            import paddle

            t = paddle.to_tensor([0,1,2,3,4])
            expectlist = t.tolist()
            print(expectlist)   #[0, 1, 2, 3, 4]

            expectlist = paddle.tolist(t)
            print(expectlist)   #[0, 1, 2, 3, 4]

    """
    return x.numpy().tolist()


1086 1087 1088
def concat(x, axis=0, name=None):
    """

1089
    Concatenates the input along the axis.
1090 1091

    Args:
1092
        x (list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16,
1093
            float32, float64, int32, int64, int8, uint8. All the Tensors in ``x`` must have same data type.
1094
        axis (int|Tensor, optional): Specify the axis to operate on the input Tensors.
1095
            It's a scalar with data type int or a Tensor with shape [1] and data type int32
1096 1097
            or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
            it works the same way as ``axis+R``. Default is 0.
1098
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1099 1100

    Returns:
L
Ligoml 已提交
1101
        Tensor, A Tensor with the same data type as ``x``.
1102 1103 1104

    Examples:
        .. code-block:: python
1105

1106
            import paddle
1107

1108 1109 1110 1111 1112 1113
            x1 = paddle.to_tensor([[1, 2, 3],
                                   [4, 5, 6]])
            x2 = paddle.to_tensor([[11, 12, 13],
                                   [14, 15, 16]])
            x3 = paddle.to_tensor([[21, 22],
                                   [23, 24]])
1114 1115 1116
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
1117 1118 1119
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
1120 1121 1122 1123 1124 1125 1126 1127 1128
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
1129 1130 1131 1132 1133 1134 1135
    input = x
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
1136
        return _C_ops.concat(input, axis)
1137 1138 1139 1140 1141 1142 1143 1144

    if _in_legacy_dygraph():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
        out = _varbase_creator()
1145
        _legacy_C_ops.concat(input, out, 'axis', axis)
1146 1147 1148 1149 1150
        return out

    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
                [
                    'bool',
                    'float16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'int8',
                    'unit8',
                ],
                'concat',
            )
1166 1167
            if x.dtype != input[0].dtype:
                raise TypeError(
1168 1169
                    "All the Tensors in the input must have the same data type."
                )
1170 1171 1172 1173 1174 1175
    else:
        input = [input]
    check_type(axis, 'axis', (int, Variable), 'concat')

    if isinstance(axis, Variable):
        check_dtype(
1176 1177 1178 1179 1180
            axis.dtype,
            'axis',
            ['int32', 'int64'],
            'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor",
1181
        )
1182 1183 1184 1185 1186 1187 1188 1189 1190

    helper = LayerHelper('concat', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

1191 1192 1193 1194
        assert len(input) == 1, (
            "If the elements of 'input' in concat are Variable(LoDTensorArray), "
            "number of the elements must be 1, but received %s." % len(input)
        )
1195
        out_index = helper.create_variable_for_type_inference(dtype="int32")
1196 1197 1198 1199 1200 1201
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out], 'OutIndex': [out_index]},
            attrs={'axis': axis, 'use_stack': False},
        )
1202 1203 1204 1205 1206
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
1207 1208 1209
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis
1210

1211 1212 1213
        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs
        )
1214
    return out
1215 1216


1217 1218
def broadcast_tensors(input, name=None):
    """
1219
    Broadcast a list of tensors following broadcast semantics
1220

1221
    Note:
1222 1223 1224
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

    .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1225 1226

    Args:
1227
        input (list|tuple): ``input`` is a Tensor list or Tensor tuple which is with data type bool,
1228 1229
            float16, float32, float64, int32, int64. All the Tensors in ``input`` must have same data type.
            Currently we only support tensors with rank no greater than 5.
1230
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1231 1232

    Returns:
L
Ligoml 已提交
1233
        list(Tensor), The list of broadcasted tensors following the same order as ``input``.
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246

    Examples:
        .. code-block:: python

            import paddle
            x1 = paddle.rand([1, 2, 3, 4]).astype('float32')
            x2 = paddle.rand([1, 2, 1, 4]).astype('float32')
            x3 = paddle.rand([1, 1, 3, 1]).astype('float32')
            out1, out2, out3 = paddle.broadcast_tensors(input=[x1, x2, x3])
            # out1, out2, out3: tensors broadcasted from x1, x2, x3 with shape [1,2,3,4]
    """

    num_inputs = len(input)
1247
    if paddle.framework.in_dygraph_mode():
1248
        return _C_ops.broadcast_tensors(input)
1249
    if paddle.framework._non_static_mode():
1250
        return _legacy_C_ops.broadcast_tensors(input, num_inputs)
1251 1252 1253 1254

    check_type(input, 'input', (list, tuple), 'broadcast_tensors')
    if num_inputs < 1:
        raise TypeError(
1255 1256
            "At least 1 tensor is needed to perform broadcast_tensors"
        )
1257 1258 1259 1260

    # Check input types
    for id, x in enumerate(input):
        check_variable_and_dtype(
1261 1262
            x,
            'input[' + str(id) + ']',
1263
            ['bool', 'float32', 'float64', 'int32', 'int64'],
1264 1265
            'broadcast_tensors',
        )
1266 1267
        if x.dtype != input[0].dtype:
            raise TypeError(
1268 1269
                "All the Tensors in the input must have the same data type."
            )
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286

    # Check bcast semantics
    output_shape_r_last_tensor_index = []
    output_shape_r = []

    # Use while loop due to weird behaviour of "range()"
    j = 0
    while j < len(input):
        tensor = input[j]
        shape = list(reversed(tensor.shape))

        i = 0
        while i < len(shape):
            if len(output_shape_r) <= i:
                output_shape_r.append(shape[i])
                output_shape_r_last_tensor_index.append(j)
            else:
1287 1288 1289 1290 1291
                invalid = (
                    output_shape_r[i] != shape[i]
                    and output_shape_r[i] != 1
                    and shape[i] != 1
                )
1292 1293 1294 1295
                if invalid:
                    last_index = output_shape_r_last_tensor_index[i]
                    raise TypeError(
                        "Input tensors to broadcast_tensors does not follow bcast semantics"
1296
                        "Tensor {last_index} conflicts with Tensor {j} in reversed dimension {i}"
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
                    )
                if output_shape_r[i] <= shape[i]:
                    output_shape_r[i] = shape[i]
                    output_shape_r_last_tensor_index[i] = j
            i += 1  # while i < len(shape)
        j += 1  # while j < len(input)

    helper = LayerHelper('broadcast_tensors', **locals())
    i = 0
    out = []
    while i < num_inputs:
        out.append(
1309
            helper.create_variable_for_type_inference(
1310 1311 1312
                dtype=helper.input_dtype()
            )
        )
1313 1314 1315
        i += 1

    inputs = {'X': input}
1316 1317 1318
    helper.append_op(
        type='broadcast_tensors', inputs=inputs, outputs={'Out': out}, attrs={}
    )
1319 1320 1321 1322

    return out


Y
yaoxuefeng 已提交
1323
def flip(x, axis, name=None):
W
Wilber 已提交
1324
    """
Y
yaoxuefeng 已提交
1325
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
1326 1327

    Args:
Y
yaoxuefeng 已提交
1328
        x (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
1329
            should be float32, float64, int32, int64, bool.
R
Roc 已提交
1330
        axis (list|tuple|int): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
1331
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
Wilber 已提交
1332 1333

    Returns:
L
Ligoml 已提交
1334
        Tensor, Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
1335 1336 1337 1338 1339

    Examples:
        .. code-block:: python

          import paddle
Y
yaoxuefeng 已提交
1340 1341

          image_shape=(3, 2, 2)
1342
          img = paddle.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
R
Roc 已提交
1343 1344
          tmp = paddle.flip(img, [0,1])
          print(tmp) # [[[10,11],[8, 9]], [[6, 7],[4, 5]], [[2, 3],[0, 1]]]
Y
yaoxuefeng 已提交
1345

R
Roc 已提交
1346 1347
          out = paddle.flip(tmp,-1)
          print(out) # [[[11,10],[9, 8]], [[7, 6],[5, 4]], [[3, 2],[1, 0]]]
W
Wilber 已提交
1348
    """
R
Roc 已提交
1349 1350
    if isinstance(axis, int):
        axis = [axis]
H
hong 已提交
1351 1352

    if in_dygraph_mode():
1353
        return _C_ops.flip(x, axis)
H
hong 已提交
1354

Z
zhiboniu 已提交
1355
    if paddle.in_dynamic_mode():
1356
        return _legacy_C_ops.flip(x, "axis", axis)
R
Roc 已提交
1357

W
Wilber 已提交
1358
    helper = LayerHelper("flip", **locals())
Y
yaoxuefeng 已提交
1359 1360
    check_type(x, 'X', (Variable), 'flip')
    dtype = helper.input_dtype('x')
1361 1362 1363 1364 1365 1366
    check_dtype(
        dtype,
        'X',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'flip',
    )
Y
yaoxuefeng 已提交
1367
    check_type(axis, 'axis', (list, tuple), 'flip')
W
Wilber 已提交
1368 1369 1370 1371 1372
    if name is None:
        out = helper.create_variable_for_type_inference(dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

1373 1374 1375
    helper.append_op(
        type="flip", inputs={"X": x}, outputs={"Out": out}, attrs={"axis": axis}
    )
W
Wilber 已提交
1376
    return out
1377 1378


Z
zmxdream 已提交
1379 1380
def rot90(x, k=1, axes=[0, 1], name=None):
    """
1381
    Rotate a n-D tensor by 90 degrees. The rotation direction and times are specified by axes and the absolute value of k. Rotation direction is from axes[0] towards axes[1] if k > 0, and from axes[1] towards axes[0] for k < 0.
Z
zmxdream 已提交
1382 1383 1384

    Args:
        x (Tensor): The input Tensor(or LoDTensor). The data type of the input Tensor x
Z
zmxdream 已提交
1385
            should be float16, float32, float64, int32, int64, bool. float16 is only supported on gpu.
Z
zmxdream 已提交
1386 1387
        k (int, optional): Direction and number of times to rotate, default value: 1.
        axes (list|tuple, optional): Axes to rotate, dimension must be 2. default value: [0, 1].
Z
zmxdream 已提交
1388 1389 1390 1391
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
1392
        Tensor, Tensor or LoDTensor calculated by rot90 layer. The data type is same with input x.
Z
zmxdream 已提交
1393 1394 1395 1396 1397 1398 1399 1400

    Examples:
        .. code-block:: python

          import paddle

          data = paddle.arange(4)
          data = paddle.reshape(data, (2, 2))
1401
          print(data)
Z
zmxdream 已提交
1402 1403 1404
          #[[0, 1],
          # [2, 3]]

Z
zmxdream 已提交
1405
          y = paddle.rot90(data, 1, [0, 1])
1406
          print(y)
Z
zmxdream 已提交
1407 1408 1409
          #[[1, 3],
          # [0, 2]]

Z
zmxdream 已提交
1410
          y= paddle.rot90(data, -1, [0, 1])
1411
          print(y)
Z
zmxdream 已提交
1412 1413 1414
          #[[2, 0],
          # [3, 1]]

Z
zmxdream 已提交
1415 1416
          data2 = paddle.arange(8)
          data2 = paddle.reshape(data2, (2,2,2))
1417
          print(data2)
Z
zmxdream 已提交
1418 1419 1420 1421 1422
          #[[[0, 1],
          #  [2, 3]],
          # [[4, 5],
          #  [6, 7]]]

Z
zmxdream 已提交
1423
          y = paddle.rot90(data2, 1, [1, 2])
Z
zmxdream 已提交
1424 1425 1426 1427 1428
          print(y)
          #[[[1, 3],
          #  [0, 2]],
          # [[5, 7],
          #  [4, 6]]]
Z
zmxdream 已提交
1429 1430 1431 1432 1433
    """

    helper = LayerHelper("rot90", **locals())
    check_type(x, 'X', (Variable), 'rot90')
    dtype = helper.input_dtype('x')
1434 1435 1436 1437 1438 1439
    check_dtype(
        dtype,
        'X',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'rot90',
    )
Z
zmxdream 已提交
1440 1441 1442 1443 1444
    check_type(axes, 'axes', (list, tuple), 'rot90')

    input_total_dims = len(x.shape)
    total_rot_dims = len(axes)
    if total_rot_dims != 2:
1445 1446
        raise ValueError(
            "expected total rotation axes == 2, but got axes = {}".format(
1447 1448 1449
                total_rot_dims
            )
        )
Z
zmxdream 已提交
1450
    if input_total_dims < 2:
1451 1452
        raise ValueError(
            "expected total dims >= 2, but got total dims = {}".format(
1453 1454 1455
                input_total_dims
            )
        )
Z
zmxdream 已提交
1456 1457 1458

    if not (axes[0] != axes[1] and abs(axes[0] - axes[1]) != input_total_dims):
        raise ValueError(
1459 1460 1461 1462
            "expected rotation axes to be different, but got axis0 = {}, and axis1 = {}".format(
                axes[0], axes[1]
            )
        )
Z
zmxdream 已提交
1463 1464

    if not (axes[0] < input_total_dims and axes[0] >= -input_total_dims):
1465 1466 1467
        raise ValueError(
            "Rotation axis0 out of range, axis0 = {}".format(axes[0])
        )
Z
zmxdream 已提交
1468
    if not (axes[1] < input_total_dims and axes[1] >= -input_total_dims):
1469 1470 1471
        raise ValueError(
            "Rotation axis1 out of range, axis1 = {}".format(axes[1])
        )
Z
zmxdream 已提交
1472

Z
zmxdream 已提交
1473
    k %= 4
Z
zmxdream 已提交
1474 1475 1476 1477 1478 1479
    if k == 0:
        return x
    if k == 2:
        return flip(flip(x, axes[0]), axes[1])

    axes_list = list(range(0, input_total_dims))
1480 1481 1482 1483
    (axes_list[axes[0]], axes_list[axes[1]]) = (
        axes_list[axes[1]],
        axes_list[axes[0]],
    )
Z
zmxdream 已提交
1484 1485 1486 1487 1488 1489 1490
    if k == 1:
        return transpose(flip(x, axes[1]), axes_list)
    else:
        # k == 3
        return flip(transpose(x, axes_list), axes[1])


1491
def flatten(x, start_axis=0, stop_axis=-1, name=None):
1492
    r"""
1493 1494
    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

1495
    Note:
1496
        The output Tensor will share data with origin Tensor and doesn't have a Tensor copy in ``dygraph`` mode.
1497
        If you want to use the Tensor copy version, please use `Tensor.clone` like ``flatten_clone_x = x.flatten().clone()``.
1498

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
Y
yaoxuefeng 已提交
1528
        x (Tensor): A tensor of number of dimentions >= axis. A tensor with data type float32,
1529
                      float64, int8, int32, int64, uint8.
1530 1531
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
1532
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1533 1534

    Returns:
L
Ligoml 已提交
1535
        Tensor, A tensor with the contents of the input tensor, with input \
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Examples:

        .. code-block:: python

            import paddle

            image_shape=(2, 3, 4, 4)
1546

Y
yaoxuefeng 已提交
1547 1548
            x = paddle.arange(end=image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3])
            img = paddle.reshape(x, image_shape)
1549

1550 1551
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
1552 1553 1554 1555

            # out shares data with img in dygraph mode
            img[0, 0, 0, 0] = -1
            print(out[0, 0, 0]) # [-1]
1556 1557
    """
    if not (isinstance(x, Variable)):
Y
yaoxuefeng 已提交
1558
        raise ValueError("The input x should be a Tensor")
1559

Z
zhiboniu 已提交
1560
    if not paddle.in_dynamic_mode():
1561
        check_variable_and_dtype(
1562 1563
            x,
            'x',
1564
            ['float32', 'float64', 'int8', 'int16', 'int32', 'int64', 'uint8'],
1565 1566
            'flatten',
        )
1567 1568

    x_dim = len(x.shape)
1569 1570 1571 1572 1573
    if (
        not (isinstance(start_axis, int))
        or (start_axis > x_dim - 1)
        or start_axis < -x_dim
    ):
1574
        raise ValueError(
1575 1576 1577 1578 1579 1580 1581
            "The start_axis should be a int, and in range [-rank(x), rank(x))"
        )
    if (
        not (isinstance(stop_axis, int))
        or (stop_axis > x_dim - 1)
        or stop_axis < -x_dim
    ):
1582
        raise ValueError(
1583 1584
            "The stop_axis should be a int, and in range [-rank(x), rank(x))"
        )
1585 1586 1587 1588 1589 1590 1591
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1592
    if in_dygraph_mode():
1593
        return _C_ops.flatten(x, start_axis, stop_axis)
1594 1595

    if _in_legacy_dygraph():
1596
        dy_out, _ = _legacy_C_ops.flatten_contiguous_range(
1597 1598
            x, 'start_axis', start_axis, 'stop_axis', stop_axis
        )
1599 1600
        return dy_out

1601
    helper = LayerHelper('flatten', **locals())
1602 1603
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
1604 1605 1606 1607 1608 1609
    helper.append_op(
        type='flatten_contiguous_range',
        inputs={"X": x},
        outputs={'Out': out, 'XShape': x_shape},
        attrs={"start_axis": start_axis, "stop_axis": stop_axis},
    )
1610 1611 1612
    return out


1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
@inplace_apis_in_dygraph_only
def flatten_(x, start_axis=0, stop_axis=-1, name=None):
    """
    Inplace version of ``flatten`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_flatten`.
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Tensor")

    x_dim = len(x.shape)
1623 1624 1625 1626 1627
    if (
        not (isinstance(start_axis, int))
        or (start_axis > x_dim - 1)
        or start_axis < -x_dim
    ):
1628
        raise ValueError(
1629 1630 1631 1632 1633 1634 1635
            "The start_axis should be a int, and in range [-rank(x), rank(x))"
        )
    if (
        not (isinstance(stop_axis, int))
        or (stop_axis > x_dim - 1)
        or stop_axis < -x_dim
    ):
1636
        raise ValueError(
1637 1638
            "The stop_axis should be a int, and in range [-rank(x), rank(x))"
        )
1639 1640 1641 1642 1643 1644 1645
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1646
    if in_dygraph_mode():
1647
        return _C_ops.flatten_(x, start_axis, stop_axis)
1648 1649

    if _in_legacy_dygraph():
1650
        dy_out, _ = _legacy_C_ops.flatten_contiguous_range_(
1651 1652
            x, 'start_axis', start_axis, 'stop_axis', stop_axis
        )
1653
        return dy_out
1654 1655


Y
yaoxuefeng 已提交
1656
def roll(x, shifts, axis=None, name=None):
1657
    """
1658 1659 1660
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that
    roll beyond the last position are re-introduced at the first according to 'shifts'.
    If a axis is not specified,
1661 1662 1663
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
1664
        x (Tensor): The x tensor as input.
1665
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
1666
                           of the `x` tensor are shifted.
Y
Yuang Liu 已提交
1667
        axis (int|list|tuple, optional): axis(axes) along which to roll. Default: None
C
Chen Long 已提交
1668 1669 1670
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                For more information, please refer to :ref:`api_guide_Name` .

1671 1672

    Returns:
L
Ligoml 已提交
1673
        Tensor, A Tensor with same data type as `x`.
1674 1675 1676

    Examples:
        .. code-block:: python
1677

1678 1679
            import paddle

1680 1681 1682
            x = paddle.to_tensor([[1.0, 2.0, 3.0],
                                  [4.0, 5.0, 6.0],
                                  [7.0, 8.0, 9.0]])
Y
yaoxuefeng 已提交
1683
            out_z1 = paddle.roll(x, shifts=1)
Y
yaoxuefeng 已提交
1684
            print(out_z1)
Y
yaoxuefeng 已提交
1685 1686 1687 1688
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
Y
yaoxuefeng 已提交
1689
            print(out_z2)
Y
yaoxuefeng 已提交
1690 1691 1692
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
Y
Yuang Liu 已提交
1693 1694 1695 1696 1697
            out_z3 = paddle.roll(x, shifts=1, axis=1)
            print(out_z3)
            #[[3. 1. 2.]
            # [6. 4. 5.]
            # [9. 7. 8.]]
1698
    """
Y
yaoxuefeng 已提交
1699
    origin_shape = x.shape
1700 1701
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
1702 1703 1704 1705
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
1706
    if axis is not None:
Y
yaoxuefeng 已提交
1707 1708 1709
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
1710 1711 1712 1713
                    "axis is out of range, it should be in range [{}, {}), but received {}".format(
                        -len_origin_shape, len_origin_shape, axis
                    )
                )
S
sunli 已提交
1714 1715 1716
    else:
        axis = []

F
From00 已提交
1717
    if in_dygraph_mode():
1718
        return _C_ops.roll(x, shifts, axis)
F
From00 已提交
1719 1720

    if _in_legacy_dygraph():
1721
        return _legacy_C_ops.roll(x, 'axis', axis, 'shifts', shifts)
1722

1723 1724
    helper = LayerHelper("roll", **locals())
    check_type(axis, 'axis', (list, tuple), 'roll')
1725

Y
yaoxuefeng 已提交
1726
    out = helper.create_variable_for_type_inference(x.dtype)
1727

1728
    if isinstance(shifts, Variable):
1729 1730 1731 1732 1733 1734
        helper.append_op(
            type='roll',
            inputs={'X': x, "ShiftsTensor": shifts},
            outputs={'Out': out},
            attrs={'axis': axis},
        )
1735 1736
    else:
        check_type(shifts, 'shifts', (list, tuple), 'roll')
1737 1738 1739 1740 1741 1742
        helper.append_op(
            type='roll',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'axis': axis, 'shifts': shifts},
        )
1743
    return out
1744 1745


L
Leo Chen 已提交
1746
def stack(x, axis=0, name=None):
1747
    """
1748
    Stacks all the input tensors ``x`` along ``axis`` dimemsion.
L
Leo Chen 已提交
1749
    All tensors must be of the same shape and same dtype.
1750 1751 1752

    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked
L
Leo Chen 已提交
1753
    tensor is [A, N, B], etc.
1754

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
1790
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
1791 1792 1793 1794 1795 1796 1797 1798

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
1799
        x (list[Tensor]|tuple[Tensor]): Input ``x`` can be a ``list`` or ``tuple`` of tensors, the Tensors in ``x``
1800
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
1801
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
1802
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``.
L
Leo Chen 已提交
1803
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
1804
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1805

1806
    Returns:
L
Ligoml 已提交
1807
        Tensor, The stacked tensor with same data type as input.
1808

1809
    Example:
1810
        .. code-block:: python
L
Leo Chen 已提交
1811

1812
            import paddle
1813

L
Leo Chen 已提交
1814 1815 1816
            x1 = paddle.to_tensor([[1.0, 2.0]])
            x2 = paddle.to_tensor([[3.0, 4.0]])
            x3 = paddle.to_tensor([[5.0, 6.0]])
1817

L
Leo Chen 已提交
1818 1819
            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
L
Leo Chen 已提交
1820
            print(out)
L
Leo Chen 已提交
1821 1822 1823
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
1824

1825 1826 1827 1828 1829 1830
        out = paddle.stack([x1, x2, x3], axis=-2)
        print(out.shape)  # [1, 3, 2]
        print(out)
        # [[[1., 2.],
        #   [3., 4.],
        #   [5., 6.]]]
L
Leo Chen 已提交
1831
    """
1832 1833 1834
    axis = 0 if axis is None else axis

    if in_dygraph_mode():
1835
        return _C_ops.stack(x, axis)
1836 1837

    if _in_legacy_dygraph():
1838
        return _legacy_C_ops.stack(x, 'axis', axis)
1839 1840 1841 1842

    if not isinstance(x, list) and not isinstance(x, tuple):
        # NOTE:(zhiqiu) Only support Variable as input if the Variable is a LOD_TENSOR_ARRAY create by create_array, array_write, array_read, etc.
        # In that case, Variable is array of tensors indeed.
1843 1844 1845 1846
        if (
            isinstance(x, Variable)
            and x.desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        ):
1847 1848
            x = [x]
        else:
1849
            raise TypeError(
1850 1851 1852 1853 1854 1855 1856 1857
                "The type of '%s' in %s must be %s, but received %s"
                % (
                    'x',
                    'stack',
                    'list[Tensor], tuple[Tensor] or TensorArray',
                    type(x),
                )
            )
1858 1859 1860 1861 1862

    helper = LayerHelper('stack', **locals())

    out = helper.create_variable_for_type_inference(x[0].dtype)
    if x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
1863 1864 1865 1866
        assert len(x) == 1, (
            "If the elements of 'x' in stack are Variable(LoDTensorArray), "
            "number of the elements must be 1, but received %s." % len(x)
        )
1867 1868 1869
        out_index = helper.create_variable_for_type_inference(dtype="int32")

        for i in x:
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
            check_variable_and_dtype(
                i,
                'x',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'stack',
            )

        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': x[0]},
            outputs={'Out': [out], 'OutIndex': [out_index]},
            attrs={'axis': axis, 'use_stack': True},
        )
1883
    else:
1884 1885 1886 1887 1888 1889
        helper.append_op(
            type='stack',
            inputs={'X': x},
            outputs={'Y': out},
            attrs={'axis': axis},
        )
1890 1891

    return out
1892 1893


1894
def split(x, num_or_sections, axis=0, name=None):
1895 1896
    """
    Split the input tensor into multiple sub-Tensors.
1897

1898
    Args:
1899
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, uint8, int8, int32 or int64.
1900
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
1901 1902 1903 1904
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
1905
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type
1906 1907 1908 1909
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
1910
    Returns:
L
Ligoml 已提交
1911
        list(Tensor), The list of segmented Tensors.
1912

1913 1914
    Example:
        .. code-block:: python
1915

1916
            import paddle
1917

L
Leo Chen 已提交
1918 1919
            # x is a Tensor of shape [3, 9, 5]
            x = paddle.rand([3, 9, 5])
1920

L
Leo Chen 已提交
1921 1922 1923 1924
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=1)
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1925 1926

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
L
Leo Chen 已提交
1927 1928 1929
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1930 1931

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
L
Leo Chen 已提交
1932 1933 1934
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1935

L
Leo Chen 已提交
1936
            # axis is negative, the real axis is (rank(x) + axis)=1
1937
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
L
Leo Chen 已提交
1938 1939 1940
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1941
    """
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
    input = x
    dim = axis
    if _non_static_mode():
        num = None
        attrs = ()

        if isinstance(dim, Variable):
            dim = dim.numpy()
            dim = dim.item(0)
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input.shape) + dim) if dim < 0 else dim
        attrs += ('axis', dim)

        if isinstance(num_or_sections, int):
            num = num_or_sections
            attrs += ('num', num_or_sections)
        elif isinstance(num_or_sections, (list, tuple)):
            num = len(num_or_sections)
            if utils._contain_var(num_or_sections):
                for index, item in enumerate(num_or_sections):
                    if isinstance(item, Variable):
1963 1964 1965
                        num_or_sections[index] = num_or_sections[index].numpy()[
                            0
                        ]
1966 1967 1968 1969 1970 1971
                attrs += ('sections', list(num_or_sections))
            else:
                attrs += ('sections', list(num_or_sections))
        else:
            raise TypeError(
                "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but "
1972 1973
                "received %s." % (type(num_or_sections))
            )
1974
        if in_dygraph_mode():
C
Charles-hit 已提交
1975 1976 1977 1978
            if isinstance(num_or_sections, int):
                return _C_ops.split_with_num(input, num_or_sections, dim)
            else:
                return _C_ops.split(input, num_or_sections, dim)
1979 1980
        elif _in_legacy_dygraph():
            out = [_varbase_creator() for n in range(num)]
1981
            _legacy_C_ops.split(input, out, *attrs)
1982
            return out
1983

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
    check_variable_and_dtype(
        input,
        'input',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'uint8',
            'int8',
        ],
        'split',
    )
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
    check_type(num_or_sections, 'num_or_sections', (list, int, tuple), 'split')
    check_type(dim, 'dim', (int, Variable), 'split')
    if isinstance(dim, Variable):
        check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split')

    helper = LayerHelper('split', **locals())

    input_shape = input.shape
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
2018
                assert isinstance(dim_size, int)
2019 2020 2021
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
2022 2023 2024
                        "be -1. But received num_or_section[%d] is also -1."
                        % idx
                    )
2025 2026
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
2027 2028 2029
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        if isinstance(dim, int) and input_shape[dim] > 0:
2044 2045 2046 2047 2048 2049
            assert input_shape[dim] % num_or_sections == 0, (
                "The input's size along the split dimension "
                "must be evenly divisible by Attr(num_or_sections). "
                "But %d is not evenly divisible by %d. "
                % (num_or_sections, input_shape[dim])
            )
2050 2051 2052
        num = num_or_sections
    else:
        if isinstance(dim, int) and input_shape[dim] > 0:
2053 2054 2055
            assert (
                len(num_or_sections) <= input_shape[dim]
            ), 'len(num_or_sections) must not be more than input.shape[dim].'
2056 2057
        num = len(num_or_sections)
        attrs['sections'] = list(
2058 2059 2060 2061 2062
            map(
                lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections,
            )
        )
2063 2064
        if utils._contain_var(num_or_sections):
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
2065 2066
                num_or_sections
            )
2067 2068 2069 2070 2071

    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
2072 2073 2074
    helper.append_op(
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs
    )
2075
    return outs
2076 2077


2078 2079 2080
def vsplit(x, num_or_sections, name=None):
    """
    Split the input tensor into multiple sub-Tensors along the vertical axis, which is equivalent to ``paddle.split`` with ``axis=0``.
2081

2082 2083
    Args:
        x (Tensor): A Tensor whose dimension must be greater than 1. The data type is bool, float16, float32, float64, uint8, int8, int32 or int64.
2084
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
2085 2086 2087 2088 2089 2090 2091 2092
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of axis 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list[Tensor], The list of segmented Tensors.
2093

2094 2095
    Example:
        .. code-block:: python
2096

2097
            import paddle
2098

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
            # x is a Tensor of shape [8, 6, 7]
            x = paddle.rand([8, 6, 7])
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=2)
            print(out0.shape)  # [4, 6, 7]
            print(out1.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[1, 3, 4])
            print(out0.shape)  # [1, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[2, 3, -1])
            print(out0.shape)  # [2, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [3, 6, 7]
    """
    if x.ndim < 2:
        raise ValueError(
2115 2116 2117 2118
            "The input tensor's dimension must be greater than 1, but got {}".format(
                x.ndim
            )
        )
2119 2120 2121
    return split(x, num_or_sections, axis=0, name=name)


L
Leo Chen 已提交
2122
def squeeze(x, axis=None, name=None):
2123
    """
2124 2125 2126 2127
    Squeeze the dimension(s) of size 1 of input tensor x's shape.

    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2128
    please use `Tensor.clone` like ``squeeze_clone_x = x.squeeze().clone()``.
2129

2130 2131
    If axis is provided, it will remove the dimension(s) by given axis that of size 1.
    If the dimension of given axis is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
2132
    If axis is not provided, all dims equal of size 1 will be removed.
2133 2134 2135 2136 2137 2138

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
2139 2140
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
2141
          Output:
L
Leo Chen 已提交
2142
            out.shape = [3, 5]
2143 2144 2145 2146

        Case2:

          Input:
L
Leo Chen 已提交
2147 2148 2149 2150
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
2151

L
Leo Chen 已提交
2152 2153 2154
        Case4:

          Input:
2155
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
2156
            axis = [0, 2, 3]
2157
          Output:
L
Leo Chen 已提交
2158
            out.shape = [3, 5]
2159

L
Leo Chen 已提交
2160
        Case4:
2161 2162

          Input:
2163
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x).
L
Leo Chen 已提交
2164
            axis = [-2]
2165
          Output:
L
Leo Chen 已提交
2166
            out.shape = [1, 3, 5]
2167 2168

    Args:
2169
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
2170
        axis (int|list|tuple, optional): An integer or list/tuple of integers, indicating the dimensions to be squeezed. Default is None.
2171 2172 2173
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
2174 2175 2176
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
L
Ligoml 已提交
2177
        Tensor, Squeezed Tensor with the same data type as input Tensor.
2178 2179 2180

    Examples:
        .. code-block:: python
2181

2182
            import paddle
2183

L
Leo Chen 已提交
2184 2185
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
2186 2187

            print(x.shape)  # [5, 1, 10]
L
Leo Chen 已提交
2188
            print(output.shape)  # [5, 10]
2189

2190 2191 2192 2193
            # output shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(output[0, 0]) # [10.]

2194
    """
L
Leo Chen 已提交
2195 2196 2197 2198 2199 2200
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
2201

2202 2203 2204
    input = x
    axes = axis
    if in_dygraph_mode():
2205
        return _C_ops.squeeze(input, axes)
2206
    if _in_legacy_dygraph():
2207
        out, _ = _legacy_C_ops.squeeze2(input, 'axes', axes)
2208 2209 2210
        return out

    helper = LayerHelper("squeeze", **locals())
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'squeeze',
    )
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'squeeze')
    attrs = {}
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        attrs["axes"] = axes
    elif isinstance(axes, (list, tuple)):
        if utils._contain_var(axes):
            attrs["axes"] = utils._convert_to_tensor_list(axes)
        else:
            attrs["axes"] = axes

2239 2240
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
2241 2242 2243 2244 2245 2246
    helper.append_op(
        type="squeeze2",
        inputs={"X": input},
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
2247 2248

    return out
2249 2250


2251
@inplace_apis_in_dygraph_only
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
def squeeze_(x, axis=None, name=None):
    """
    Inplace version of ``squeeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_squeeze`.
    """
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)

2264 2265 2266
    input = x
    axes = axis
    if in_dygraph_mode():
2267
        return _C_ops.squeeze_(input, axes)
2268
    if _in_legacy_dygraph():
2269
        out, _ = _legacy_C_ops.squeeze2_(input, 'axes', axes)
2270
        return out
2271 2272


2273 2274 2275 2276 2277 2278 2279 2280
def unique_consecutive(
    x,
    return_inverse=False,
    return_counts=False,
    axis=None,
    dtype="int64",
    name=None,
):
D
duanboqiang 已提交
2281 2282 2283
    r"""
    Eliminates all but the first element from every consecutive group of equivalent elements.

2284 2285
    Note:
        This function is different from :func:`paddle.unique` in the sense that this function
D
duanboqiang 已提交
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
        only eliminates consecutive duplicate values. This semantics is similar to `std::unique` in C++.

    Args:
        x(Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique consecutive tensor. Default is False.
        return_counts(bool, optional): If True, also return the counts for each unique consecutive element.
            Default is False.
        axis(int, optional): The axis to apply unique consecutive. If None, the input will be flattened.
            Default is None.
        dtype(np.dtype|str, optional): The data type `inverse` tensor: int32 or int64.
            Default: int64.
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default is None.

    Returns:
L
Ligoml 已提交
2302
        tuple (out, inverse, counts). `out` is the unique consecutive tensor for `x`. `inverse` is provided only if `return_inverse` is True. `counts` is provided only if `return_counts` is True.
D
duanboqiang 已提交
2303 2304 2305 2306

    Example:
        .. code-block:: python

2307
            import paddle
D
duanboqiang 已提交
2308 2309

            x = paddle.to_tensor([1, 1, 2, 2, 3, 1, 1, 2])
2310
            output = paddle.unique_consecutive(x) #
2311 2312 2313 2314
            print(output)
            # Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 3, 1, 2])

D
duanboqiang 已提交
2315
            _, inverse, counts = paddle.unique_consecutive(x, return_inverse=True, return_counts=True)
2316 2317 2318 2319 2320 2321
            print(inverse)
            # Tensor(shape=[8], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [0, 0, 1, 1, 2, 3, 3, 4])
            print(counts)
            # Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [2, 2, 1, 2, 1])
D
duanboqiang 已提交
2322 2323

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
2324
            output = paddle.unique_consecutive(x, axis=0) #
2325 2326 2327 2328 2329
            print(output)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1],
            #         [2, 1, 3]])
D
duanboqiang 已提交
2330 2331

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
2332
            output = paddle.unique_consecutive(x, axis=0) #
2333 2334 2335 2336 2337
            print(output)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1],
            #         [2, 1, 3]])
D
duanboqiang 已提交
2338 2339 2340 2341 2342 2343 2344
    """

    if axis is None:
        axis = []
    else:
        axis = [axis]
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2345
    if in_dygraph_mode():
2346
        out, inverse, counts = _C_ops.unique_consecutive(
2347 2348
            x, return_inverse, return_counts, axis, attr_dtype
        )
2349 2350 2351 2352 2353 2354 2355 2356 2357
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
    elif paddle.in_dynamic_mode():
2358
        out, inverse, counts = _legacy_C_ops.unique_consecutive(
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
            x,
            'dtype',
            attr_dtype,
            'return_inverse',
            return_inverse,
            'return_counts',
            return_counts,
            'axis',
            axis,
        )
D
duanboqiang 已提交
2369 2370 2371 2372 2373 2374 2375 2376
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
2377 2378 2379 2380 2381 2382
    check_variable_and_dtype(
        x,
        "input",
        ['float32', 'float64', 'int32', 'int64'],
        'unique_consecutive',
    )
D
duanboqiang 已提交
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
    check_type(return_inverse, 'return_inverse', bool, 'unique_consecutive')
    check_type(return_counts, 'return_counts', bool, 'unique_consecutive')
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique_consecutive')
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique_consecutive')
    helper = LayerHelper('unique_consecutive', **locals())
    attrs = {
        'dtype': attr_dtype,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
    }
2395 2396 2397 2398 2399 2400 2401 2402 2403
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True
    )
    inverse = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
    counts = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
D
duanboqiang 已提交
2404 2405 2406 2407 2408 2409
    outputs = {"Out": out, "Index": inverse, "Counts": counts}
    outs = [out]
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)
2410 2411 2412
    helper.append_op(
        type="unique_consecutive", inputs={"X": x}, attrs=attrs, outputs=outputs
    )
D
duanboqiang 已提交
2413 2414 2415 2416 2417
    if len(outs) == 1:
        return outs[0]
    return tuple(outs)


2418 2419 2420 2421 2422 2423 2424 2425 2426
def unique(
    x,
    return_index=False,
    return_inverse=False,
    return_counts=False,
    axis=None,
    dtype="int64",
    name=None,
):
2427
    r"""
Z
Zhang Ting 已提交
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
    Returns the unique elements of `x` in ascending order.

    Args:
        x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
        return_index(bool, optional): If True, also return the indices of the input tensor that
            result in the unique Tensor.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique tensor.
        return_counts(bool, optional): If True, also return the counts for each unique element.
        axis(int, optional): The axis to apply unique. If None, the input will be flattened.
            Default: None.
Z
Zhang Ting 已提交
2439 2440
        dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
            Default: int64.
Z
Zhang Ting 已提交
2441 2442 2443
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default: None.

2444
    Returns:
2445
        tuple (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is \
Z
Zhang Ting 已提交
2446 2447 2448 2449 2450
            provided only if `return_index` is True. `inverse` is provided only if `return_inverse` \
            is True. `counts` is provided only if `return_counts` is True.

    Examples:
        .. code-block:: python
2451

Z
Zhang Ting 已提交
2452 2453
            import paddle

2454
            x = paddle.to_tensor([2, 3, 3, 1, 5, 3])
Z
Zhang Ting 已提交
2455
            unique = paddle.unique(x)
2456 2457 2458 2459
            print(unique)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 3, 5])

Z
Zhang Ting 已提交
2460
            _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
2461 2462 2463 2464 2465 2466 2467 2468 2469
            print(indices)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [3, 0, 1, 4])
            print(inverse)
            # Tensor(shape=[6], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 2, 0, 3, 2])
            print(counts)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 1, 3, 1])
Z
Zhang Ting 已提交
2470

2471
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
Z
Zhang Ting 已提交
2472
            unique = paddle.unique(x)
2473 2474 2475
            print(unique)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [0, 1, 2, 3])
Z
Zhang Ting 已提交
2476 2477

            unique = paddle.unique(x, axis=0)
2478 2479 2480 2481
            print(unique)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1]])
Z
Zhang Ting 已提交
2482 2483 2484 2485 2486
    """
    if axis is None:
        axis = []
    else:
        axis = [axis]
Z
Zhang Ting 已提交
2487
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2488 2489
    if _non_static_mode():
        if in_dygraph_mode():
2490
            out, indices, inverse, counts = _C_ops.unique(
2491 2492
                x, return_index, return_inverse, return_counts, axis, attr_dtype
            )
2493
        if _in_legacy_dygraph():
2494
            out, inverse, indices, counts = _legacy_C_ops.unique(
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
                x,
                'dtype',
                attr_dtype,
                'return_index',
                return_index,
                'return_inverse',
                return_inverse,
                'return_counts',
                return_counts,
                'axis',
                axis,
                "is_sorted",
                True,
            )
Z
Zhang Ting 已提交
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)

2522 2523 2524
    check_variable_and_dtype(
        x, "input", ['float32', 'float64', 'int32', 'int64'], 'unique'
    )
Z
Zhang Ting 已提交
2525 2526 2527
    check_type(return_index, 'return_index', bool, 'unique')
    check_type(return_inverse, 'return_inverse', bool, 'unique')
    check_type(return_counts, 'return_counts', bool, 'unique')
Z
Zhang Ting 已提交
2528
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique')
Z
Zhang Ting 已提交
2529 2530 2531 2532 2533
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique')

    helper = LayerHelper('unique', **locals())
    attrs = {
Z
Zhang Ting 已提交
2534
        'dtype': attr_dtype,
Z
Zhang Ting 已提交
2535 2536 2537 2538
        "return_index": return_index,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
2539
        "is_sorted": True,
Z
Zhang Ting 已提交
2540
    }
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True
    )
    indices = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
    inverse = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
    counts = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
2553 2554 2555 2556
    outputs = {
        "Out": out,
        "Indices": indices,
        "Index": inverse,
2557
        "Counts": counts,
2558
    }
Z
Zhang Ting 已提交
2559 2560 2561 2562 2563 2564 2565 2566
    outs = [out]
    if return_index:
        outs.append(indices)
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)

2567 2568 2569
    helper.append_op(
        type="unique", inputs={"X": x}, attrs=attrs, outputs=outputs
    )
Z
Zhang Ting 已提交
2570 2571 2572 2573 2574 2575 2576

    if len(outs) == 1:
        return outs[0]

    return tuple(outs)


2577
def unsqueeze(x, axis, name=None):
2578
    """
2579 2580 2581
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
2582

2583 2584
    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2585 2586
    please use `Tensor.clone` like ``unsqueeze_clone_x = x.unsqueeze(-1).clone()``.

2587
    Args:
2588
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
2589 2590
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` .
                                    If ``axis`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
2591 2592 2593
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
2594 2595

    Returns:
L
Ligoml 已提交
2596
        Tensor, Unsqueezed Tensor with the same data type as input Tensor.
2597 2598 2599

    Examples:
        .. code-block:: python
2600

2601 2602
            import paddle

2603 2604
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
2605

2606 2607
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
2608 2609

            out2 = paddle.unsqueeze(x, axis=[0, 2])
2610
            print(out2.shape)  # [1, 5, 1, 10]
2611

L
Leo Chen 已提交
2612
            axis = paddle.to_tensor([0, 1, 2])
2613
            out3 = paddle.unsqueeze(x, axis=axis)
2614
            print(out3.shape)  # [1, 1, 1, 5, 10]
2615 2616 2617 2618 2619 2620

            # out1, out2, out3 share data with x in dygraph mode
            x[0, 0] = 10.
            print(out1[0, 0, 0]) # [10.]
            print(out2[0, 0, 0, 0]) # [10.]
            print(out3[0, 0, 0, 0, 0]) # [10.]
2621

2622
    """
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
    input = x
    axes = axis
    if _non_static_mode():
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
            axes = axes.numpy().tolist()
        elif isinstance(axes, (list, tuple)):
            axes = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in axes
            ]
        if _in_legacy_dygraph():
2636
            out, _ = _legacy_C_ops.unsqueeze2(input, 'axes', axes)
2637
            return out
2638
        return _C_ops.unsqueeze(input, axes)
2639 2640

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int16',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'unsqueeze',
    )
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
        if utils._contain_var(axes):
            inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes)
        else:
            attrs["axes"] = axes

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
2675 2676 2677 2678 2679 2680
    helper.append_op(
        type="unsqueeze2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
2681

2682
    return out
2683 2684


2685
@inplace_apis_in_dygraph_only
2686 2687 2688 2689 2690
def unsqueeze_(x, axis, name=None):
    """
    Inplace version of ``unsqueeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_unsqueeze`.
    """
2691 2692 2693 2694 2695 2696 2697 2698
    input = x
    axes = axis
    if isinstance(axes, int):
        axes = [axes]
    elif isinstance(axes, Variable):
        axes = axes.numpy().tolist()
    elif isinstance(axes, (list, tuple)):
        axes = [
2699
            item.numpy().item(0) if isinstance(item, Variable) else item
2700
            for item in axes
2701
        ]
2702
    if in_dygraph_mode():
2703 2704
        return _C_ops.unsqueeze_(input, axes)
    out, _ = _legacy_C_ops.unsqueeze2_(input, 'axes', axes)
2705
    return out
2706 2707


2708
def gather(x, index, axis=None, name=None):
2709
    """
2710 2711
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
2712 2713 2714 2715 2716 2717

    .. code-block:: text


                Given:

2718
                x = [[1, 2],
2719 2720 2721
                     [3, 4],
                     [5, 6]]

2722 2723
                index = [1, 2]
                axis=[0]
2724 2725 2726

                Then:

2727
                out = [[3, 4],
2728
                       [5, 6]]
2729

2730
    Args:
2731
        x (Tensor): The source input tensor with rank>=1. Supported data type is
2732 2733
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
2734
        index (Tensor): The index input tensor with rank=0 or rank=1. Data type is int32 or int64.
2735
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
2736 2737
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
2738 2739

    Returns:
2740
        output (Tensor), If the index is a 1-D tensor, the output is a tensor with the same shape as ``x``. If the index is a 0-D tensor, the output will reduce the dimension where the axis pointing.
2741

2742 2743 2744 2745 2746 2747
    Examples:

        .. code-block:: python

            import paddle

2748 2749
            input = paddle.to_tensor([[1,2],[3,4],[5,6]])
            index = paddle.to_tensor([0,1])
2750 2751
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
2752
    """
2753 2754
    if axis is None:
        axis = 0
2755

2756
    if in_dygraph_mode():
2757
        return _C_ops.gather(x, index, axis)
2758
    if _in_legacy_dygraph():
2759
        axis = axis.item() if isinstance(axis, paddle.Tensor) else axis
2760 2761 2762
        return _legacy_C_ops.gather(
            x, index, None, "axis", axis, "overwrite", False
        )
2763 2764

    check_variable_and_dtype(
2765 2766
        x,
        'x',
2767
        ['float16', 'float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
2768 2769
        'gather',
    )
2770
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
2771

2772 2773 2774
    if isinstance(axis, Variable):
        check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')

2775
    helper = LayerHelper('gather', **locals())
2776
    dtype = helper.input_dtype('x')
2777
    out = helper.create_variable_for_type_inference(dtype)
2778
    if not isinstance(axis, Variable):
2779 2780 2781 2782 2783 2784
        helper.append_op(
            type="gather",
            inputs={"X": x, "Index": index},
            attrs={'axis': axis, 'overwrite': False},
            outputs={"Out": out},
        )
2785
    else:
2786 2787 2788 2789 2790 2791
        helper.append_op(
            type="gather",
            inputs={"X": x, "Index": index, "Axis": axis},
            attrs={"overwrite": False},
            outputs={"Out": out},
        )
2792

2793
    return out
myq406450149's avatar
myq406450149 已提交
2794 2795 2796 2797


def unbind(input, axis=0):
    """
S
swtkiwi 已提交
2798

myq406450149's avatar
myq406450149 已提交
2799
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
2800

myq406450149's avatar
myq406450149 已提交
2801
    Args:
2802
        input (Tensor): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
2803
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind.
2804
            If :math:`axis < 0`, the dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
myq406450149's avatar
myq406450149 已提交
2805
    Returns:
L
Ligoml 已提交
2806
        list(Tensor), The list of segmented Tensor variables.
myq406450149's avatar
myq406450149 已提交
2807 2808 2809

    Example:
        .. code-block:: python
2810

myq406450149's avatar
myq406450149 已提交
2811
            import paddle
2812

C
Chen Long 已提交
2813 2814
            # input is a Tensor which shape is [3, 4, 5]
            input = paddle.rand([3, 4, 5])
2815

2816
            [x0, x1, x2] = paddle.unbind(input, axis=0)
myq406450149's avatar
myq406450149 已提交
2817 2818 2819
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
C
Chen Long 已提交
2820

2821
            [x0, x1, x2, x3] = paddle.unbind(input, axis=1)
myq406450149's avatar
myq406450149 已提交
2822 2823 2824 2825 2826
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]
    """
2827
    if in_dygraph_mode():
2828
        return _C_ops.unbind(input, axis)
2829

myq406450149's avatar
myq406450149 已提交
2830
    if not isinstance(axis, (int)):
2831 2832 2833
        raise TypeError(
            "The type of 'axis'  must be int, but received %s." % (type(axis))
        )
myq406450149's avatar
myq406450149 已提交
2834 2835 2836 2837 2838
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
2839
    if _in_legacy_dygraph():
2840
        return _legacy_C_ops.unbind(input, num, 'axis', axis)
2841 2842 2843 2844

    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
2845 2846 2847
    check_dtype(
        dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'], 'unbind'
    )
myq406450149's avatar
myq406450149 已提交
2848 2849 2850 2851
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
2852 2853 2854 2855 2856 2857
    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis},
    )
myq406450149's avatar
myq406450149 已提交
2858
    return outs
L
lilong12 已提交
2859 2860


S
ShenLiang 已提交
2861 2862 2863 2864
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
2865

S
ShenLiang 已提交
2866
    .. code-block:: python
2867

S
ShenLiang 已提交
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
        import numpy as np
        #input:
        x = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
                x[index[i]] = np.zeros((2))
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]

2889
    **NOTICE**: The order in which updates are applied is nondeterministic,
S
ShenLiang 已提交
2890 2891 2892 2893
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
2894 2895
        index (Tensor): The index is a 1-D or 0-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): Update input with updates parameter based on index. When the index is a 1-D tensor, the updates shape should be the same as input, and dim value with dim > 1 should be the same as input. When the index is a 0-D tensor, the updates should be a (N-1)-D tensor, the ith dim of the updates should be queal with the (i+1)th dim of the input.
2896 2897
        overwrite (bool): The mode that updating the output when there are same indices.

S
sunzhongkai588 已提交
2898
            If True, use the overwrite mode to update the output of the same index,
2899
            if False, use the accumulate mode to update the output of the same index.Default value is True.
2900

S
ShenLiang 已提交
2901
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2902

S
ShenLiang 已提交
2903
    Returns:
L
Ligoml 已提交
2904
        Tensor, The output is a Tensor with the same shape as x.
S
ShenLiang 已提交
2905 2906 2907

    Examples:
        .. code-block:: python
2908

S
ShenLiang 已提交
2909 2910
            import paddle

2911 2912 2913
            x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
            index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
            updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
2914

S
ShenLiang 已提交
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
J
Jiabin Yang 已提交
2935
    if in_dygraph_mode():
2936
        return _C_ops.scatter(x, index, updates, overwrite)
J
Jiabin Yang 已提交
2937 2938
    else:
        if _in_legacy_dygraph():
2939 2940 2941
            return _legacy_C_ops.scatter(
                x, index, updates, 'overwrite', overwrite
            )
J
Jiabin Yang 已提交
2942 2943
        else:
            check_variable_and_dtype(
2944 2945 2946 2947 2948
                x,
                'dtype',
                ['float32', 'float64', 'float16', 'int32', 'int64'],
                'scatter',
            )
J
Jiabin Yang 已提交
2949 2950 2951
            check_type(overwrite, 'overwrite', bool, 'scatter')
            helper = LayerHelper('scatter', **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
2952 2953 2954 2955 2956 2957
            helper.append_op(
                type="scatter",
                inputs={"X": x, "Ids": index, "Updates": updates},
                attrs={'overwrite': overwrite},
                outputs={"Out": out},
            )
J
Jiabin Yang 已提交
2958
            return out
S
ShenLiang 已提交
2959 2960


2961
@inplace_apis_in_dygraph_only
2962 2963 2964 2965 2966
def scatter_(x, index, updates, overwrite=True, name=None):
    """
    Inplace version of ``scatter`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_scatter`.
    """
2967
    if in_dygraph_mode():
2968 2969
        return _C_ops.scatter_(x, index, updates, overwrite)
    return _legacy_C_ops.scatter_(x, index, updates, 'overwrite', overwrite)
2970 2971


2972
def scatter_nd_add(x, index, updates, name=None):
2973
    r"""
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014

    Output is obtained by applying sparse addition to a single value
    or slice in a Tensor.

    :attr:`x` is a Tensor with ndim :math:`R`
    and :attr:`index` is a Tensor with ndim :math:`K` . Thus, :attr:`index`
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
    is a Tensor with ndim :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + x.shape[index.shape[-1]:]` .

    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`x` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text

        Given:

        * Case 1:
            x = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:

            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            x = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            x.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:

            output = [[67, 19], [-16, -27]]

    Args:
Z
Zeng Jinle 已提交
3015
        x (Tensor): The x input. Its dtype should be int32, int64, float32, float64.
3016 3017 3018 3019 3020 3021 3022
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= x.ndim.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd_add op, and it must have the same dtype
                            as x. It must have the shape index.shape[:-1] + x.shape[index.shape[-1]:].
        name (str|None): The output tensor name. If set None, the layer will be named automatically.

    Returns:
L
Ligoml 已提交
3023
        output (Tensor), The output is a tensor with the same shape and dtype as x.
3024 3025 3026 3027 3028 3029 3030 3031 3032

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32')
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
C
Chen Long 已提交
3033 3034 3035
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype='int64')
3036

3037
            output = paddle.scatter_nd_add(x, index, updates)
C
Chen Long 已提交
3038 3039
            print(output.shape)
            # [3, 5, 9, 10]
3040
    """
3041
    if in_dygraph_mode():
3042
        return _C_ops.scatter_nd_add(x, index, updates)
3043 3044
    else:
        if _in_legacy_dygraph():
3045
            op = getattr(_legacy_C_ops, 'scatter_nd_add')
3046 3047 3048 3049 3050 3051 3052 3053
            return op(x, index, updates)
        else:
            if x.dtype != updates.dtype:
                raise ValueError("x and updates must have same data type.")

            helper = LayerHelper('scatter_nd_add', **locals())
            dtype = helper.input_dtype(input_param_name='x')
            output = helper.create_variable_for_type_inference(dtype)
3054 3055 3056 3057 3058
            helper.append_op(
                type="scatter_nd_add",
                inputs={"X": x, "Index": index, "Updates": updates},
                outputs={"Out": output},
            )
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
            return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)`
    is equal to :code:`scatter_nd_add(paddle.zeros(shape, updates.dtype), index, updates)` .
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated.
    Because of the numerical approximation issues, the different order of repeated elements
    in :attr:`index` may cause different results. The specific calculation method can be
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= len(shape).
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd op. Its dtype should be float32, float64.
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
        name (str|None): The output Tensor name. If set None, the layer will be named automatically.

    Returns:
L
Ligoml 已提交
3084
        output (Tensor), The output is a tensor with the same type as :attr:`updates` .
3085 3086 3087 3088 3089 3090 3091

    Examples:

        .. code-block:: python

            import paddle

3092 3093 3094
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype="int64")
3095 3096 3097 3098 3099 3100
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
            shape = [3, 5, 9, 10]

            output = paddle.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)
3101 3102


3103 3104 3105
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
3106

3107 3108 3109
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
3110
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type
3111 3112 3113 3114 3115
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
L
Ligoml 已提交
3116
        list(Tensor), The list of segmented Tensors.
3117

3118
    Examples:
3119
        .. code-block:: python
3120

3121
            import paddle
3122

3123
            x = paddle.rand([3, 9, 5])
3124

3125
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=1)
3126 3127 3128 3129
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

3130

3131 3132 3133 3134 3135 3136 3137 3138
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
3139
    return split(x, num_or_sections=chunks, axis=axis, name=name)
3140 3141


L
lilong12 已提交
3142 3143
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
3144 3145

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
3146
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
3147 3148 3149

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
3150
    Args:
L
lilong12 已提交
3151
        x (Tensor): The input tensor, its data type should be bool, float32, float64, int32 or int64.
3152
        repeat_times (list|tuple|Tensor): The number of repeating times. If repeat_times is a list or tuple, all its elements
L
lilong12 已提交
3153 3154 3155
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
3156
    Returns:
3157
        N-D Tensor. The data type is the same as ``x``. The size of the i-th dimension is equal to ``x[i] * repeat_times[i]``.
L
lilong12 已提交
3158

L
lilong12 已提交
3159 3160
    Examples:
        .. code-block:: python
L
lilong12 已提交
3161

L
lilong12 已提交
3162
            import paddle
L
lilong12 已提交
3163

3164
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3165
            out = paddle.tile(data, repeat_times=[2, 1])
3166 3167 3168 3169
            print(out)
            # Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3],
            #         [1, 2, 3]])
L
lilong12 已提交
3170

3171
            out = paddle.tile(data, repeat_times=(2, 2))
3172 3173 3174 3175
            print(out)
            # Tensor(shape=[2, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3, 1, 2, 3],
            #         [1, 2, 3, 1, 2, 3]])
L
lilong12 已提交
3176

3177
            repeat_times = paddle.to_tensor([1, 2], dtype='int32')
L
lilong12 已提交
3178
            out = paddle.tile(data, repeat_times=repeat_times)
3179 3180 3181
            print(out)
            # Tensor(shape=[1, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3, 1, 2, 3]])
L
lilong12 已提交
3182
    """
H
hong 已提交
3183
    if in_dygraph_mode():
3184
        if isinstance(repeat_times, core.eager.Tensor):
3185 3186 3187
            assert (
                repeat_times.ndim == 1
            ), "Only support ndim == 1 while repeat_times is a Tensor."
3188 3189
            repeat_times = repeat_times.numpy().tolist()

3190
        return _C_ops.tile(x, repeat_times)
H
hong 已提交
3191 3192

    if _in_legacy_dygraph():
3193
        return _legacy_C_ops.tile(x, 'repeat_times', repeat_times)
H
hong 已提交
3194

3195 3196
    check_type(repeat_times, 'repeat_times', (list, tuple, Variable), 'tile')
    if isinstance(repeat_times, Variable):
3197 3198 3199
        assert (
            len(repeat_times.shape) == 1
        ), 'repeat_times must be an 1-D Tensor.'
3200 3201 3202
    else:
        for elem in repeat_times:
            if isinstance(elem, Variable):
3203 3204 3205
                assert (
                    len(elem.shape) == 1
                ), 'Elements in repeat_times must be 1-D Tensors or integers.'
3206
            else:
T
tianshuo78520a 已提交
3207
                type_tuple = (int, np.int32, np.int64)
3208 3209 3210
                assert isinstance(
                    elem, type_tuple
                ), 'Elements in repeat_times must be 1-D Tensors or integers.'
3211

3212 3213 3214
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'tile'
    )
3215
    if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
L
lilong12 已提交
3216 3217
        raise ValueError(
            "When the date type is bool for the input 'x' of tile op, you "
L
lilong12 已提交
3218
            "must set its stop_gradient to be True by "
3219 3220
            "some_var.stop_gradient == True supporting some_var is the input."
        )
3221 3222

    helper = LayerHelper('tile', **locals())
L
lilong12 已提交
3223

L
lilong12 已提交
3224 3225 3226
    inputs = {"X": [x]}
    attrs = {}

L
lilong12 已提交
3227 3228 3229 3230 3231 3232 3233
    def get_attr_repeat_times(list_repeat_times):
        attrs_repeat_times = []
        for idx, times in enumerate(list_repeat_times):
            if isinstance(times, Variable):
                attrs_repeat_times.append(-1)
            else:
                attrs_repeat_times.append(times)
3234 3235 3236
                assert (
                    times > 0
                ), "All elements in repeat_times must be positive for tile."
L
lilong12 已提交
3237 3238 3239 3240
        return attrs_repeat_times

    if isinstance(repeat_times, Variable):
        repeat_times.stop_gradient = True
3241 3242
        inputs['RepeatTimes'] = repeat_times
        attrs['repeat_times'] = [-1]
L
lilong12 已提交
3243 3244 3245
    elif isinstance(repeat_times, (list, tuple)):
        attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
        if utils._contain_var(repeat_times):
3246
            inputs['repeat_times_tensor'] = utils._convert_to_tensor_list(
3247 3248
                repeat_times
            )
L
lilong12 已提交
3249 3250 3251

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3252 3253 3254
    helper.append_op(
        type='tile', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
L
lilong12 已提交
3255
    return out
3256 3257


L
lilong12 已提交
3258 3259 3260 3261 3262 3263 3264 3265 3266
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 1.

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
3267
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
3268 3269 3270
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
3271
        N-D Tensor, A Tensor with the same shape as ``y``. The data type is the same as ``x``.
L
lilong12 已提交
3272 3273 3274 3275 3276 3277

    Examples:
        .. code-block:: python

            import paddle

3278 3279
            data_x = paddle.to_tensor([1, 2, 3], 'int32')
            data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
L
lilong12 已提交
3280
            out = paddle.expand_as(data_x, data_y)
3281 3282 3283 3284
            print(out)
            # Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3],
            #         [1, 2, 3]])
L
lilong12 已提交
3285
    """
H
hong 已提交
3286
    if in_dygraph_mode():
3287
        return _C_ops.expand_as(x, None, y.shape)
H
hong 已提交
3288

H
hong 已提交
3289
    if _non_static_mode():
3290
        return _legacy_C_ops.expand_as_v2(x, 'target_shape', y.shape)
3291

3292 3293 3294
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand_as'
    )
L
lilong12 已提交
3295 3296
    check_type(y, 'y', Variable, 'expand_as')

3297
    if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
L
lilong12 已提交
3298 3299 3300 3301
        raise ValueError(
            "When the data type of input 'x' for expand_as is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
3302 3303
            "some_var as the input 'x'."
        )
3304
    inputs = {"X": [x], "Y": [y]}
L
lilong12 已提交
3305

3306
    helper = LayerHelper('expand_as', **locals())
L
lilong12 已提交
3307 3308
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3309 3310 3311 3312 3313 3314
    helper.append_op(
        type='expand_as_v2',
        inputs=inputs,
        attrs={'target_shape': y.shape},
        outputs={'Out': out},
    )
L
lilong12 已提交
3315 3316 3317
    return out


3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
def broadcast_to(x, shape, name=None):
    """

    Broadcast the input tensor to a given shape.

    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to broadcast to must have a value 1.


    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after broadcasting. The data type is int32. If shape is a list or tuple, all its elements
3329
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
3330
            The value -1 in shape means keeping the corresponding dimension unchanged.
3331
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3332
    Returns:
L
Ligoml 已提交
3333
        N-D Tensor, A Tensor with the given shape. The data type is the same as ``x``.
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([1, 2, 3], dtype='int32')
            out = paddle.broadcast_to(data, shape=[2, 3])
            print(out)
            # [[1, 2, 3], [1, 2, 3]]
    """
3345
    if in_dygraph_mode():
3346
        return _C_ops.expand(x, shape)
3347
    if _in_legacy_dygraph():
3348
        return _legacy_C_ops.expand_v2(x, 'shape', shape)
3349 3350

    if isinstance(shape, Variable):
3351
        assert len(shape.shape) == 1, 'shape must be an 1-D Tensor.'
3352 3353 3354
    else:
        for elem in shape:
            if isinstance(elem, Variable):
3355 3356 3357
                assert (
                    len(elem.shape) == 1
                ), 'Elements in shape must be 1-D Tensors or integers.'
3358
            else:
T
tianshuo78520a 已提交
3359
                type_tuple = (int, np.int32, np.int64)
3360 3361 3362
                assert isinstance(
                    elem, type_tuple
                ), 'Elements in shape must be 1-D Tensors or integers.'
3363

3364 3365 3366
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'broadcast_to'
    )
3367
    check_type(shape, 'shape', (list, tuple, Variable), 'broadcast_to')
3368
    if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
3369 3370 3371 3372
        raise ValueError(
            "When the data type of input 'x' for broadcast_to is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
3373 3374
            "some_var as the input."
        )
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387

    inputs = {"X": [x]}
    attrs = {}

    helper = LayerHelper('expand', **locals())

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
                attrs_expand_shape.append(-1)
            else:
                attrs_expand_shape.append(shape)
3388 3389 3390
                assert (
                    shape > 0 or shape == -1
                ), "All elements in shape of broadcast_to must be positive or -1."
3391 3392 3393 3394 3395 3396 3397 3398 3399
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
3400 3401
                shape
            )
3402 3403 3404

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3405 3406 3407
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
3408 3409 3410
    return out


3411 3412 3413 3414 3415
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

3416
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. And the number of dimensions of ``x`` should be less than the number of elements in ``shape``. The dimension to expand must have a value 1.
3417 3418 3419


    Args:
C
Chen Long 已提交
3420
        x (Tensor): The input Tensor, its data type is bool, float32, float64, int32 or int64.
L
lilong12 已提交
3421
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
3422
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
L
lilong12 已提交
3423
            The value -1 in shape means keeping the corresponding dimension unchanged.
3424 3425 3426
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
3427
        N-D Tensor, A Tensor with the given shape. The data type is the same as ``x``.
3428 3429 3430 3431 3432 3433

    Examples:
        .. code-block:: python

            import paddle

3434
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3435
            out = paddle.expand(data, shape=[2, 3])
3436
            print(out)
3437 3438
            # [[1, 2, 3], [1, 2, 3]]
    """
H
hong 已提交
3439
    if in_dygraph_mode():
3440
        return _C_ops.expand(x, shape)
H
hong 已提交
3441

Z
zhiboniu 已提交
3442
    if paddle.in_dynamic_mode():
3443
        return _legacy_C_ops.expand_v2(x, 'shape', shape)
3444

3445
    if isinstance(shape, Variable):
3446
        assert len(shape.shape) == 1, 'shape must be an 1-D Tensor.'
3447 3448 3449
    else:
        for elem in shape:
            if isinstance(elem, Variable):
3450 3451 3452
                assert (
                    len(elem.shape) == 1
                ), 'Elements in shape must be 1-D Tensors or integers.'
3453
            else:
T
tianshuo78520a 已提交
3454
                type_tuple = (int, np.int32, np.int64)
3455 3456 3457
                assert isinstance(
                    elem, type_tuple
                ), 'Elements in shape must be 1-D Tensors or integers.'
3458

3459
    check_variable_and_dtype(
3460 3461 3462 3463 3464
        x,
        'x',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'expand',
    )
3465
    check_type(shape, 'shape', (list, tuple, Variable), 'expand')
3466
    if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
3467 3468 3469 3470 3471 3472
        raise ValueError(
            "When the data type of input 'x' for expand is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input."
        )
3473

3474 3475 3476
    inputs = {"X": [x]}
    attrs = {}

3477
    helper = LayerHelper('expand', **locals())
3478 3479 3480 3481 3482

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
L
lilong12 已提交
3483
                attrs_expand_shape.append(-2)
3484 3485
            else:
                attrs_expand_shape.append(shape)
3486 3487 3488
                assert (
                    shape > 0 or shape == -1
                ), "All elements in shape of expand must be positive or -1."
3489 3490 3491 3492 3493 3494 3495 3496 3497
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
3498 3499
                shape
            )
3500 3501 3502

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3503 3504 3505
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
3506
    return out
L
lilong12 已提交
3507 3508


3509 3510
def reshape(x, shape, name=None):
    """
3511
    Changes the shape of ``x`` without changing its data.
3512

3513
    Note that the output Tensor will share data with origin Tensor and doesn't
3514 3515
    have a Tensor copy in ``dygraph`` mode.
    If you want to use the Tensor copy version, please use `Tensor.clone` like
3516 3517
    ``reshape_clone_x = x.reshape([-1]).clone()``.

3518 3519
    Some tricks exist when specifying the target shape.

3520
        - 1. -1 means the value of this dimension is inferred from the total element number of x and remaining dimensions. Thus one and only one dimension can be set -1.
3521

3522
        - 2. 0 means the actual dimension value is going to be copied from the corresponding dimension of x. The index of 0s in shape can not exceed the dimension of x.
3523 3524 3525

    Here are some examples to explain it.

3526
        - 1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [6, 8], the reshape operator will transform x into a 2-D tensor with shape [6, 8] and leaving x's data unchanged.
3527

3528
        - 2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape specified is [2, 3, -1, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this case, one dimension of the target shape is set to -1, the value of this dimension is inferred from the total element number of x and remaining dimensions.
3529

3530
        - 3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case, besides -1, 0 means the actual dimension value is going to be copied from the corresponding dimension of x.
3531 3532

    Args:
3533 3534
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        shape (list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
3535 3536
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
3537
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3538 3539

    Returns:
L
Ligoml 已提交
3540
        Tensor, A reshaped Tensor with the same data type as ``x``.
3541 3542 3543 3544 3545 3546

    Examples:
        .. code-block:: python

            import paddle

3547 3548
            x = paddle.rand([2, 4, 6], dtype="float32")
            positive_four = paddle.full([1], 4, "int32")
3549

3550 3551 3552
            out = paddle.reshape(x, [-1, 0, 3, 2])
            print(out)
            # the shape is [2,4,3,2].
3553

3554 3555
            out = paddle.reshape(x, shape=[positive_four, 12])
            print(out)
3556
            # the shape of out_2 is [4, 12].
3557

3558
            shape_tensor = paddle.to_tensor([8, 6], dtype=paddle.int32)
3559
            out = paddle.reshape(x, shape=shape_tensor)
3560
            print(out.shape)
3561
            # the shape is [8, 6].
3562 3563 3564 3565 3566
            # out shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(out[0, 0])
            # the value is [10.]

3567
    """
3568 3569 3570 3571 3572 3573
    actual_shape = None

    if in_dygraph_mode():
        tmp_tensor_type = core.eager.Tensor
        if isinstance(shape, (list, tuple)):
            shape = [
3574
                item.numpy().item(0)
3575 3576 3577
                if isinstance(item, tmp_tensor_type)
                else item
                for item in shape
3578
            ]
3579 3580 3581 3582 3583
            if shape == x.shape:
                out = x
            else:
                out = _C_ops.reshape(x, shape)
        elif isinstance(shape, core.eager.Tensor):
3584
            shape.stop_gradient = True
3585
            out = _C_ops.reshape(x, shape)
3586 3587 3588
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
3589 3590
                " got '{}.'".format(type(shape))
            )
3591

3592
        return out
3593 3594 3595 3596 3597 3598 3599 3600
    else:
        if _in_legacy_dygraph():
            tmp_tensor_type = Variable
            if isinstance(shape, (list, tuple)):
                shape = [
                    item.numpy().item(0) if isinstance(item, Variable) else item
                    for item in shape
                ]
3601
                out, _ = _legacy_C_ops.reshape2(x, None, 'shape', shape)
3602 3603
            elif isinstance(shape, tmp_tensor_type):
                shape.stop_gradient = True
3604
                out, _ = _legacy_C_ops.reshape2(x, shape)
3605 3606 3607
            else:
                raise ValueError(
                    "shape must be an instance of `list`, `tuple` or `Variable`,"
3608 3609
                    " got '{}.'".format(type(shape))
                )
3610

3611
            return out
3612

3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
    check_variable_and_dtype(
        x,
        'x',
        [
            'float16',
            'float32',
            'float64',
            'int16',
            'int32',
            'int64',
            'bool',
            'uint16',
        ],
        'reshape',
    )
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
    check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
    check_type(actual_shape, 'actual_shape', (Variable, type(None)), 'reshape')

    helper = LayerHelper("reshape2", **locals())

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one dimension value of 'shape' in reshape can "
                        "be -1. But received shape[%d] is also -1.\n"
                        "\n\t# N = x.shape()[2]\t\t# N is an int. "
                        "(NOT recommend under @to_static)\n\tN = paddle.shape(x)[2]\t\t"
                        "# N is a Tensor. (Recommend)\n\tz = paddle.reshape([N, -1, 4])"
                        "\t# z.shape is [-1, -1, 4]\n\n"
                        "    If your target shape in Reshape represents dynamic shape, "
                        "please turn it into a Tensor under @to_static. See above example for details."
3651 3652
                        % dim_idx
                    )
3653 3654 3655 3656 3657
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
                        "The index of 0 in `shape` must be less than "
                        "the input tensor X's dimensions. "
3658 3659 3660
                        "But received shape[%d] = 0, X's dimensions = %d."
                        % (dim_idx, len(x.shape))
                    )
3661 3662 3663 3664
                else:
                    assert dim_size > 0, (
                        "Each dimension value of 'shape' in reshape must not "
                        "be negative except one unknown dimension. "
3665 3666 3667
                        "But received shape[%d] = %s."
                        % (dim_idx, str(dim_size))
                    )
3668 3669 3670 3671 3672 3673 3674 3675
        return attrs_shape

    inputs = {"X": x}
    attrs = {}
    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs["Shape"] = shape
    elif isinstance(shape, (list, tuple)):
3676 3677 3678 3679
        assert len(shape) > 0, (
            "The size of 'shape' in reshape can't be zero, "
            "but received %s." % len(shape)
        )
3680 3681 3682 3683 3684 3685 3686
        attrs["shape"] = get_attr_shape(shape)
        if utils._contain_var(shape):
            inputs['ShapeTensor'] = utils._convert_to_tensor_list(shape)
        elif isinstance(actual_shape, Variable):
            actual_shape.stop_gradient = True
            inputs["Shape"] = actual_shape

3687
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
3688
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
3689 3690 3691 3692 3693 3694
    helper.append_op(
        type="reshape2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
3695

3696
    return out
3697 3698


3699
@inplace_apis_in_dygraph_only
3700 3701 3702 3703 3704
def reshape_(x, shape, name=None):
    """
    Inplace version of ``reshape`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_reshape`.
    """
3705 3706 3707 3708 3709
    if in_dygraph_mode():
        tmp_tensor_type = core.eager.Tensor
        if isinstance(shape, (list, tuple)):
            shape = [
                item.numpy().item(0)
3710 3711 3712
                if isinstance(item, tmp_tensor_type)
                else item
                for item in shape
3713
            ]
3714 3715 3716 3717
            if shape == x.shape:
                out = x
            else:
                out = _C_ops.reshape_(x, shape)
3718 3719
        elif isinstance(shape, tmp_tensor_type):
            shape.stop_gradient = True
3720
            out = _C_ops.reshape_(x, shape)
3721 3722 3723
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
3724 3725
                " got '{}.'".format(type(shape))
            )
3726

3727
        return out
3728 3729 3730 3731 3732 3733
    else:
        if isinstance(shape, (list, tuple)):
            shape = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in shape
            ]
3734
            out, _ = _legacy_C_ops.reshape2_(x, None, 'shape', shape)
3735 3736 3737 3738 3739 3740 3741 3742 3743
            return out
        elif isinstance(shape, Variable):
            shape.stop_gradient = True
            # NOTE(pangyoki): Cannot support the case where the shape Tensor
            # is negative. In the infer_shape stage, the input's dim will
            # be changed to a negative number.
            # Thus, convert Shape Tensor to list firstly and then call
            # reshape inplace op.
            shape_list = shape.numpy().tolist()
3744
            out, _ = _legacy_C_ops.reshape2_(x, None, 'shape', shape_list)
3745
            return out
3746 3747


3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
3767 3768 3769 3770 3771 3772 3773
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
3774 3775 3776 3777

            * Case 1:
                index = [[1]]

3778 3779
                gather_nd(x, index)
                         = [x[1, :, :]]
3780 3781 3782 3783 3784 3785 3786
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

3787 3788
                gather_nd(x, index)
                         = [x[0, 2, :]]
3789 3790 3791 3792 3793
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

3794 3795
                gather_nd(x, index)
                         = [x[1, 2, 3]]
3796 3797 3798 3799 3800 3801
                         = [23]

    Args:
        x (Tensor): The input Tensor which it's data type should be bool, float32, float64, int32, int64.
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
3802
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3803 3804

    Returns:
L
Ligoml 已提交
3805
        output (Tensor), A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
3806

3807 3808 3809
    Examples:

        .. code-block:: python
3810

3811
            import paddle
3812

3813 3814 3815
            x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]],
                                  [[7, 8], [9, 10], [11, 12]]])
            index = paddle.to_tensor([[0, 1]])
3816

3817 3818 3819
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """
3820
    if in_dygraph_mode():
3821
        return _C_ops.gather_nd(x, index)
3822 3823
    else:
        if _in_legacy_dygraph():
3824
            return _legacy_C_ops.gather_nd(x, index)
3825
    check_variable_and_dtype(
3826 3827 3828 3829 3830
        x,
        'x',
        ['bool', 'float32', 'float64', 'int16', 'int32', 'int64'],
        'gather_np',
    )
3831 3832 3833 3834
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather_np')
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
3835 3836 3837 3838 3839
    helper.append_op(
        type="gather_nd",
        inputs={"X": x, "Index": index},
        outputs={"Out": output},
    )
3840
    return output
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888


def strided_slice(x, axes, starts, ends, strides, name=None):
    """
    This operator produces a slice of ``x`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
                strides = [1, 1]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
                strides = [1, 3]
            Then:
                result = [ [2], ]
3889

3890
    Args:
3891
        x (Tensor): An N-D ``Tensor``. The data type is ``bool``, ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of                                                                                          it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.                                                                                    It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .                                                                                     It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Tensor): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Tensor, it should be an 1-D Tensor .                                                                                  It represents slice step of corresponding axis in ``axes``.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
3903
        Tensor, A ``Tensor`` with the same dimension as ``x``. The data type is same as ``x``.
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.zeros(shape=[3,4,5,6], dtype="float32")
            # example 1:
            # attr starts is a list which doesn't contain Tensor.
            axes = [1, 2, 3]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = paddle.strided_slice(x, axes=axes, starts=starts, ends=ends, strides=strides_1)
3918
            # sliced_1 is x[:, 1:3:1, 0:2:1, 2:4:1].
3919 3920
            # example 2:
            # attr starts is a list which contain tensor Tensor.
3921
            minus_3 = paddle.full(shape=[1], fill_value=-3, dtype='int32')
3922 3923 3924
            sliced_2 = paddle.strided_slice(x, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is x[:, 1:3:1, 0:2:1, 2:4:2].
    """
3925
    if in_dygraph_mode():
3926
        return _C_ops.strided_slice(x, axes, starts, ends, strides)
3927

3928 3929
    helper = LayerHelper('strided_slice', **locals())

3930
    check_variable_and_dtype(
3931 3932 3933 3934 3935
        x,
        'x',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'strided_slice',
    )
3936 3937 3938 3939 3940 3941 3942
    check_type(axes, 'axes', (list, tuple), 'strided_slice')
    check_type(starts, 'starts', (list, tuple, Variable), 'strided_slice')
    check_type(ends, 'ends', (list, tuple, Variable), 'strided_slice')
    check_type(strides, 'strides', (list, tuple, Variable), 'strided_slice')

    def check_list_elements_dtype(list_input, input_name):
        if isinstance(list_input, Variable):
3943 3944 3945
            check_dtype(
                list_input.dtype, input_name, ['int32'], 'strided_slice'
            )
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
        else:
            for i, var in enumerate(list_input):
                var_name = input_name + '[' + str(i) + ']'
                if isinstance(var, Variable):
                    check_dtype(var.dtype, var_name, ['int32'], 'strided_slice')

    check_list_elements_dtype(axes, 'axes')
    check_list_elements_dtype(starts, 'starts')
    check_list_elements_dtype(ends, 'ends')
    check_list_elements_dtype(strides, 'strides')

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
3964
                assert isinstance(dim, int)
3965 3966 3967 3968 3969 3970 3971 3972 3973
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': x}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

3974
    if _in_legacy_dygraph():
3975 3976 3977 3978 3979 3980
        inputs = {'Input': x}
        attrs = {
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'strides': strides,
3981
            'infer_flags': infer_flags,
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
            if utils._contain_var(starts):
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
            else:
                attrs['starts'] = starts

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
            if utils._contain_var(ends):
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
            else:
                attrs['ends'] = ends

        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
            if utils._contain_var(strides):
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
            else:
                attrs['strides'] = strides
        attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
4036 4037 4038 4039 4040
        dtype=helper.input_dtype('x')
    )
    helper.append_op(
        type='strided_slice', inputs=inputs, attrs=attrs, outputs={'Out': out}
    )
4041 4042

    return out
F
From00 已提交
4043 4044 4045 4046


def tensordot(x, y, axes=2, name=None):
    r"""
4047
    This function computes a contraction, which sum the product of elements from two tensors along the given axes.
F
From00 已提交
4048 4049 4050 4051 4052 4053

    Args:
        x (Tensor): The left tensor for contraction with data type ``float32`` or ``float64``.
        y (Tensor): The right tensor for contraction with the same data type as ``x``.
        axes (int|tuple|list|Tensor, optional):  The axes to contract for ``x`` and ``y``, defaulted to integer ``2``.

4054
            1. It could be a non-negative integer ``n``,
F
From00 已提交
4055
               in which the function will sum over the last ``n`` axes of ``x`` and the first ``n`` axes of ``y`` in order.
4056 4057

            2. It could be a 1-d tuple or list with data type ``int``, in which ``x`` and ``y`` will be contracted along the same given axes.
F
From00 已提交
4058
               For example, ``axes`` =[0, 1] applies contraction along the first two axes for ``x`` and the first two axes for ``y``.
4059 4060 4061 4062

            3. It could be a tuple or list containing one or two 1-d tuple|list|Tensor with data type ``int``.
               When containing one tuple|list|Tensor, the data in tuple|list|Tensor specified the same axes for ``x`` and ``y`` to contract.
               When containing two tuple|list|Tensor, the first will be applied to ``x`` and the second to ``y``.
F
From00 已提交
4063
               When containing more than two tuple|list|Tensor, only the first two axis sequences will be used while the others will be ignored.
4064 4065 4066

            4. It could be a tensor, in which the ``axes`` tensor will be translated to a python list
               and applied the same rules described above to determine the contraction axes.
F
From00 已提交
4067
               Note that the ``axes`` with Tensor type is ONLY available in Dygraph mode.
4068
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
F
From00 已提交
4069 4070
                             For more information, please refer to :ref:`api_guide_Name` .

4071
    Return:
L
Ligoml 已提交
4072
        Output (Tensor), The contraction result with the same data type as ``x`` and ``y``.
F
From00 已提交
4073
        In general, :math:`output.ndim = x.ndim + y.ndim - 2 \times n_{axes}`, where :math:`n_{axes}` denotes the number of axes to be contracted.
4074

F
From00 已提交
4075
    NOTES:
4076
        1. This function supports tensor broadcast,
F
From00 已提交
4077
           the size in the corresponding dimensions of ``x`` and ``y`` should be equal, or applies to the broadcast rules.
4078 4079 4080 4081 4082
        2. This function also supports axes expansion,
           when the two given axis sequences for ``x`` and ``y`` are of different lengths,
           the shorter sequence will expand the same axes as the longer one at the end.
           For example, if ``axes`` =[[0, 1, 2, 3], [1, 0]],
           the axis sequence for ``x`` is [0, 1, 2, 3],
F
From00 已提交
4083
           while the corresponding axis sequences for ``y`` will be expanded from [1, 0] to [1, 0, 2, 3].
4084

F
From00 已提交
4085 4086 4087 4088 4089 4090 4091 4092
    Examples:
        .. code-block:: python

            import paddle

            data_type = 'float64'

            # For two 2-d tensor x and y, the case axes=0 is equivalent to outer product.
4093
            # Note that tensordot supports empty axis sequence, so all the axes=0, axes=[], axes=[[]], and axes=[[],[]] are equivalent cases.
F
From00 已提交
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
            x = paddle.arange(4, dtype=data_type).reshape([2, 2])
            y = paddle.arange(4, dtype=data_type).reshape([2, 2])
            z = paddle.tensordot(x, y, axes=0)
            # z = [[[[0., 0.],
            #        [0., 0.]],
            #
            #       [[0., 1.],
            #        [2., 3.]]],
            #
            #
            #      [[[0., 2.],
            #        [4., 6.]],
            #
            #       [[0., 3.],
            #        [6., 9.]]]]


            # For two 1-d tensor x and y, the case axes=1 is equivalent to inner product.
            x = paddle.arange(10, dtype=data_type)
            y = paddle.arange(10, dtype=data_type)
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.dot(x, y)
            # z1 = z2 = [285.]


            # For two 2-d tensor x and y, the case axes=1 is equivalent to matrix multiplication.
            x = paddle.arange(6, dtype=data_type).reshape([2, 3])
            y = paddle.arange(12, dtype=data_type).reshape([3, 4])
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.matmul(x, y)
            # z1 = z2 =  [[20., 23., 26., 29.],
            #             [56., 68., 80., 92.]]


            # When axes is a 1-d int list, x and y will be contracted along the same given axes.
            # Note that axes=[1, 2] is equivalent to axes=[[1, 2]], axes=[[1, 2], []], axes=[[1, 2], [1]], and axes=[[1, 2], [1, 2]].
            x = paddle.arange(24, dtype=data_type).reshape([2, 3, 4])
            y = paddle.arange(36, dtype=data_type).reshape([3, 3, 4])
            z = paddle.tensordot(x, y, axes=[1, 2])
            # z =  [[506. , 1298., 2090.],
            #       [1298., 3818., 6338.]]


            # When axes is a list containing two 1-d int list, the first will be applied to x and the second to y.
            x = paddle.arange(60, dtype=data_type).reshape([3, 4, 5])
            y = paddle.arange(24, dtype=data_type).reshape([4, 3, 2])
            z = paddle.tensordot(x, y, axes=([1, 0], [0, 1]))
            # z =  [[4400., 4730.],
            #       [4532., 4874.],
            #       [4664., 5018.],
            #       [4796., 5162.],
            #       [4928., 5306.]]


            # Thanks to the support of axes expansion, axes=[[0, 1, 3, 4], [1, 0, 3, 4]] can be abbreviated as axes= [[0, 1, 3, 4], [1, 0]].
            x = paddle.arange(720, dtype=data_type).reshape([2, 3, 4, 5, 6])
            y = paddle.arange(720, dtype=data_type).reshape([3, 2, 4, 5, 6])
            z = paddle.tensordot(x, y, axes=[[0, 1, 3, 4], [1, 0]])
            # z = [[23217330., 24915630., 26613930., 28312230.],
            #      [24915630., 26775930., 28636230., 30496530.],
            #      [26613930., 28636230., 30658530., 32680830.],
4155
            #      [28312230., 30496530., 32680830., 34865130.]]
F
From00 已提交
4156 4157 4158 4159 4160 4161 4162 4163 4164
    """
    op_type = 'tensordot'
    input_dtype = ['float32', 'float64']

    check_variable_and_dtype(x, 'x', input_dtype, op_type)
    check_variable_and_dtype(y, 'y', input_dtype, op_type)
    check_type(axes, 'axes', (int, tuple, list, Variable), op_type)

    def _var_to_list(var):
Z
zhiboniu 已提交
4165
        if paddle.in_dynamic_mode():
F
From00 已提交
4166 4167
            return tolist(var)
        raise TypeError(
4168 4169 4170
            "The 'axes' with type 'Tensor' in "
            + op_type
            + " is not available in static graph mode, "
F
From00 已提交
4171 4172 4173 4174 4175 4176 4177
            "please convert its type to int|Tuple|List, or use dynamic graph mode."
        )

    axes_x = []
    axes_y = []
    if np.issubdtype(type(axes), np.integer):
        assert axes >= 0, (
4178 4179 4180 4181
            "The 'axes' in "
            + op_type
            + f" should not be negative, but received axes={axes}."
        )
F
From00 已提交
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
        axes_x = range(x.ndim - axes, x.ndim)
        axes_y = range(axes)
    else:
        if isinstance(axes, Variable):
            axes = _var_to_list(axes)

        if not axes or np.issubdtype(type(axes[0]), np.integer):
            axes_x = axes
        else:
            axes_x = axes[0]
            if len(axes) > 1:
                axes_y = axes[1]

            if isinstance(axes_x, Variable):
                axes_x = _var_to_list(axes_x)
            if isinstance(axes_y, Variable):
                axes_y = _var_to_list(axes_y)

    axes_x, axes_y = list(axes_x), list(axes_y)
    len_axes_x, len_axes_y = len(axes_x), len(axes_y)
    if len_axes_x < len_axes_y:
        axes_x.extend(axes_y[len_axes_x:])
    elif len_axes_y < len_axes_x:
        axes_y.extend(axes_x[len_axes_y:])

    shape_x, shape_y = list(x.shape), list(y.shape)
    need_contracted_dim_x = np.zeros((x.ndim), dtype=bool)
    need_contracted_dim_y = np.zeros((y.ndim), dtype=bool)
    contraction_size = 1
    for i in range(len(axes_x)):
        dim_x, dim_y = axes_x[i], axes_y[i]
        sx, sy = shape_x[dim_x], shape_y[dim_y]
        if sx == 1:
            shape_y[dim_y] = 1
            y = y.sum(dim_y).reshape(shape_y)
        elif sy == 1:
            shape_x[dim_x] = 1
            x = x.sum(dim_x).reshape(shape_x)
        else:
4221 4222 4223 4224 4225
            assert sx == sy, (
                "The dimensional size for 'x' and 'y' in "
                + op_type
                + f" should match each other, but 'x' has size {sx} in dim {dim_x} while 'y' has size {sy} in dim {dim_y}."
            )
F
From00 已提交
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252

        need_contracted_dim_x[dim_x] = True
        need_contracted_dim_y[dim_y] = True
        contraction_size *= shape_x[dim_x]

    perm_x = []
    perm_y = []
    shape_out = []
    not_contraction_size_x = 1
    not_contraction_size_y = 1
    for i in range(x.ndim):
        if not need_contracted_dim_x[i]:
            perm_x.append(i)
            shape_out.append(shape_x[i])
            not_contraction_size_x *= shape_x[i]
    perm_x.extend(axes_x)
    perm_y.extend(axes_y)
    for i in range(y.ndim):
        if not need_contracted_dim_y[i]:
            perm_y.append(i)
            shape_out.append(shape_y[i])
            not_contraction_size_y *= shape_y[i]

    if not shape_out:
        shape_out = [1]

    x = x.transpose(perm=perm_x).reshape(
4253 4254
        [not_contraction_size_x, contraction_size]
    )
F
From00 已提交
4255
    y = y.transpose(perm=perm_y).reshape(
4256 4257
        [contraction_size, not_contraction_size_y]
    )
F
From00 已提交
4258 4259
    out = x.matmul(y).reshape(shape_out)
    return out
4260 4261 4262


def as_complex(x, name=None):
4263 4264
    """Transform a real tensor to a complex tensor.

4265 4266 4267
    The data type of the input tensor is 'float32' or 'float64', and the data
    type of the returned tensor is 'complex64' or 'complex128', respectively.

4268
    The shape of the input tensor is ``(* ,2)``, (``*`` means arbitary shape), i.e.
4269 4270 4271 4272 4273 4274 4275 4276
    the size of the last axis shoule be 2, which represent the real and imag part
    of a complex number. The shape of the returned tensor is ``(*,)``.

    Args:
        x (Tensor): The input tensor. Data type is 'float32' or 'float64'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4277
        Tensor, The output. Data type is 'complex64' or 'complex128', with the same precision as the input.
4278

4279 4280 4281 4282 4283 4284
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
4285
            print(y)
4286

4287 4288 4289
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(gpu:0), stop_gradient=True,
            #        [[1j      , (2+3j)  , (4+5j)  ],
            #         [(6+7j)  , (8+9j)  , (10+11j)]])
4290
    """
4291 4292
    if in_dygraph_mode():
        return _C_ops.as_complex(x)
4293 4294
    if _in_legacy_dygraph():
        return _legacy_C_ops.as_complex(x)
4295 4296 4297 4298 4299 4300

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'as_complex')
    op_type = "as_complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
4301 4302
        dtype=_real_to_complex_dtype(x.dtype)
    )
4303 4304 4305 4306 4307 4308 4309
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out


def as_real(x, name=None):
4310 4311 4312
    """Transform a complex tensor to a real tensor.

    The data type of the input tensor is 'complex64' or 'complex128', and the data
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
    type of the returned tensor is 'float32' or 'float64', respectively.

    When the shape of the input tensor is ``(*, )``, (``*`` means arbitary shape),
    the shape of the output tensor is ``(*, 2)``, i.e. the shape of the output is
    the shape of the input appended by an extra ``2``.

    Args:
        x (Tensor): The input tensor. Data type is 'complex64' or 'complex128'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4324
        Tensor, The output. Data type is 'float32' or 'float64', with the same precision as the input.
4325

4326 4327 4328 4329 4330 4331 4332
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            z = paddle.as_real(y)
4333
            print(z)
4334

4335 4336 4337 4338
            # Tensor(shape=[2, 3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[0. , 1. ],
            #          [2. , 3. ],
            #          [4. , 5. ]],
4339

4340 4341 4342
            #         [[6. , 7. ],
            #          [8. , 9. ],
            #          [10., 11.]]])
4343
    """
4344 4345
    if in_dygraph_mode():
        return _C_ops.as_real(x)
4346 4347
    if _in_legacy_dygraph():
        return _legacy_C_ops.as_real(x)
4348 4349 4350 4351 4352 4353

    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'as_real')
    op_type = "as_real"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
4354 4355
        dtype=_complex_to_real_dtype(x.dtype)
    )
4356 4357 4358
    outputs = {"Out": out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
4359 4360


K
kuizhiqing 已提交
4361 4362 4363 4364 4365 4366 4367 4368 4369
def repeat_interleave(x, repeats, axis=None, name=None):
    """

    Returns a new tensor which repeats the ``x`` tensor along dimension ``axis`` using
    the entries in ``repeats`` which is a int or a Tensor.

    Args:
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        repeats (Tensor or int): The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis.
4370
        axis (int, optional): The dimension in which we manipulate. Default: None, the output tensor is flatten.
K
kuizhiqing 已提交
4371 4372 4373 4374 4375
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4376
        Tensor, A Tensor with same data type as ``x``.
K
kuizhiqing 已提交
4377

4378 4379 4380 4381 4382
    Examples:
        .. code-block:: python

            import paddle

K
kuizhiqing 已提交
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            repeats  = paddle.to_tensor([3, 2, 1], dtype='int32')

            paddle.repeat_interleave(x, repeats, 1)
            # [[1, 1, 1, 2, 2, 3],
            #  [4, 4, 4, 5, 5, 6]]

            paddle.repeat_interleave(x, 2, 0)
            # [[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]]

            paddle.repeat_interleave(x, 2, None)
            # [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]
    """

    if axis is None:
        x = paddle.flatten(x)
        axis = 0

S
seemingwang 已提交
4401 4402
    if in_dygraph_mode():
        if isinstance(repeats, Variable):
4403 4404
            return _C_ops.repeat_interleave_with_tensor_index(x, repeats, axis)
        return _C_ops.repeat_interleave(x, repeats, axis)
K
kuizhiqing 已提交
4405 4406

    helper = LayerHelper("repeat_interleave", **locals())
4407 4408 4409 4410 4411 4412
    check_variable_and_dtype(
        x,
        'x',
        ['float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.repeat_interleave',
    )
K
kuizhiqing 已提交
4413 4414 4415

    out = helper.create_variable_for_type_inference(x.dtype)

4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
    helper.append_op(
        type='repeat_interleave',
        inputs={
            'X': x,
            'RepeatsTensor': repeats if isinstance(repeats, Variable) else None,
        },
        outputs={'Out': out},
        attrs={
            'dim': axis,
            'Repeats': repeats if isinstance(repeats, int) else 0,
        },
    )
K
kuizhiqing 已提交
4428 4429 4430
    return out


4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
def moveaxis(x, source, destination, name=None):
    """
    Move the axis of tensor from ``source`` position to ``destination`` position.

    Other axis that have not been moved remain their original order.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, int32, int64, float32, float64, complex64, complex128.
        source(int|tuple|list): ``source`` position of axis that will be moved. Each element must be unique and integer.
        destination(int|tuple|list(int)): ``destination`` position of axis that has been moved. Each element must be unique and integer.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4445
        Tensor, A new tensor whose axis have been moved.
4446 4447 4448

    Examples:
        .. code-block:: python
4449

4450 4451 4452 4453 4454 4455 4456
            import paddle

            x = paddle.ones([3, 2, 4])
            paddle.moveaxis(x, [0, 1], [1, 2]).shape
            # [4, 3, 2]

            x = paddle.ones([2, 3])
4457
            paddle.moveaxis(x, 0, 1).shape # equivalent to paddle.t(x)
4458
            # [3, 2]
4459 4460 4461 4462 4463
    """
    src = [source] if isinstance(source, int) else source
    dst = [destination] if isinstance(destination, int) else destination

    assert len(src) == len(
4464 4465
        dst
    ), "'source' must have the same number with 'destination'"
4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481

    count = Counter(src).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'source' must be unique!")
    count = Counter(dst).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'destination' must be unique!")

    ndim = len(x.shape)

    # perm is the new order after move axis
    perm = list(range(ndim))
    src_dims = list(range(ndim))
    dst_dims = list(range(ndim))

    for i, axis in enumerate(zip(src, dst)):
4482 4483 4484
        assert isinstance(
            axis[0], int
        ), "Each elemment of 'source' must be integer."
4485
        if axis[0] < 0:
4486 4487 4488
            assert (
                axis[0] >= -ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4489 4490
            src[i] += ndim
        else:
4491 4492 4493
            assert (
                axis[0] < ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4494

4495 4496 4497
        assert isinstance(
            axis[1], int
        ), "Each elemment of 'source' must be integer."
4498
        if axis[1] < 0:
4499 4500 4501
            assert (
                axis[1] >= -ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4502 4503
            dst[i] += ndim
        else:
4504 4505 4506
            assert (
                axis[1] < ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4507 4508 4509 4510 4511 4512 4513
        perm[dst[i]] = src[i]
        src_dims.remove(src[i])
        dst_dims.remove(dst[i])

    for i in range(len(src_dims)):
        perm[dst_dims[i]] = src_dims[i]

4514
    if in_dygraph_mode():
4515
        out = _C_ops.transpose(x, perm)
4516 4517 4518
        return out

    if _in_legacy_dygraph():
4519
        out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
4520 4521
        return out

4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'moveaxis',
    )
4537 4538 4539 4540

    helper = LayerHelper('moveaxis', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
4541 4542 4543 4544 4545 4546
    helper.append_op(
        type='transpose2',
        inputs={'X': [x]},
        outputs={'Out': [out], 'XShape': [x_shape]},
        attrs={'axis': perm},
    )
4547
    return out
4548 4549


4550 4551 4552
def non_negative_axis(arr, axis):
    ndim = len(arr.shape)
    if axis >= 0:
4553 4554 4555
        assert (
            axis < ndim
        ), "'axis'  must be in the range of [-{0}, {0})".format(ndim)
4556
    else:
4557 4558 4559
        assert (
            axis >= -ndim
        ), "'axis'  must be in the range of [-{0}, {0})".format(ndim)
4560 4561 4562 4563 4564 4565
        axis += ndim

    return axis


def infer_broadcast_shape(arr, indices, axis):
4566
    # This function is used in take/put_along_axis
4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
    broadcast_shape_list = list(arr.shape)
    broadcast_shape_list[axis] = list(indices.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    for i in range(len(arr.shape)):
        if arr.shape[i] < indices.shape[i]:
            # if indices matrix has larger size than arr matrix, do not broadcast.
            return None
    return broadcast_shape


4577 4578 4579 4580 4581
def take_along_axis(arr, indices, axis):
    """
    Take values from the input array by given indices matrix along the designated axis.

    Args:
4582
        arr (Tensor) : The input Tensor. Supported data types are float32 and float64.
4583
        indices (Tensor) : Indices to take along each 1d slice of arr. This must match the dimension of arr,
4584
            and need to broadcast against arr. Supported data type are int and int64.
4585
        axis (int) : The axis to take 1d slices along.
4586

4587
    Returns:
L
Ligoml 已提交
4588
        Tensor, The indexed element, same dtype with arr
4589

4590 4591 4592 4593 4594
    Examples:
        .. code-block:: python

            import paddle

4595 4596
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7,8,9]])
            index = paddle.to_tensor([[0]])
4597 4598 4599 4600 4601
            axis = 0
            result = paddle.take_along_axis(x, index, axis)
            print(result)
            # [[1, 2, 3]]
    """
4602
    if len(arr.shape) != len(indices.shape):
4603
        raise ValueError(
4604 4605
            "`indices` and `arr` must have the same number of dimensions!"
        )
4606 4607 4608 4609 4610
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
    if not broadcast_shape:
        # if indices matrix have larger size than arr, arr should broadcast into indices shape.
        broadcast_shape = indices.shape
H
hong 已提交
4611
    if _non_static_mode():
4612
        indices = paddle.broadcast_to(indices, broadcast_shape)
4613 4614 4615 4616
        broadcast_shape_list = list(broadcast_shape)
        broadcast_shape_list[axis] = list(arr.shape)[axis]
        broadcast_shape = tuple(broadcast_shape_list)
        arr = paddle.broadcast_to(arr, broadcast_shape)
H
hong 已提交
4617
        if not _in_legacy_dygraph():
4618 4619
            return _C_ops.take_along_axis(arr, indices, axis)
        return _legacy_C_ops.take_along_axis(arr, indices, 'Axis', axis)
4620
    check_variable_and_dtype(
4621 4622 4623 4624 4625 4626 4627 4628
        arr,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'take_along_axis',
    )
    check_variable_and_dtype(
        indices, 'index', ['int32', 'int64'], 'take_along_axis'
    )
4629
    indices = paddle.broadcast_to(indices, broadcast_shape)
4630 4631 4632 4633
    broadcast_shape_list = list(broadcast_shape)
    broadcast_shape_list[axis] = list(arr.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    arr = paddle.broadcast_to(arr, broadcast_shape)
4634 4635 4636
    helper = LayerHelper('take_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
4637 4638 4639 4640 4641 4642
    helper.append_op(
        type="take_along_axis",
        inputs={"Input": arr, "Index": indices},
        attrs={"Axis": axis},
        outputs={"Result": result},
    )
4643
    return result
4644 4645 4646 4647 4648 4649 4650 4651 4652 4653


def put_along_axis(arr, indices, values, axis, reduce='assign'):
    """
    Put values into the destination array by given indices matrix along the designated axis.

    Args:
        arr (Tensor) : The Destination Tensor. Supported data types are float32 and float64.
        indices (Tensor) : Indices to put along each 1d slice of arr. This must match the dimension of arr,
            and need to broadcast against arr. Supported data type are int and int64.
4654
        axis (int) : The axis to put 1d slices along.
G
gouzil 已提交
4655 4656 4657
        reduce (str, optional): The reduce operation, default is 'assign', support 'add', 'assign', 'mul' and 'multiply'.

    Returns:
L
Ligoml 已提交
4658
        Tensor, The indexed element, same dtype with arr
4659

4660 4661 4662 4663 4664
    Examples:
        .. code-block:: python

            import paddle

4665 4666
            x = paddle.to_tensor([[10, 30, 20], [60, 40, 50]])
            index = paddle.to_tensor([[0]])
4667 4668 4669 4670 4671 4672 4673 4674
            value = 99
            axis = 0
            result = paddle.put_along_axis(x, index, value, axis)
            print(result)
            # [[99, 99, 99],
            # [60, 40, 50]]

    """
4675
    if len(arr.shape) != len(indices.shape):
4676
        raise ValueError(
4677 4678
            "`indices` and `arr` must have the same number of dimensions!"
        )
4679 4680
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
H
hong 已提交
4681
    if _non_static_mode():
4682 4683 4684 4685 4686
        values = (
            paddle.to_tensor(values)
            if not isinstance(values, paddle.Tensor)
            else values
        )
4687 4688 4689
        if broadcast_shape:
            indices = paddle.broadcast_to(indices, broadcast_shape)
        values = paddle.broadcast_to(values, indices.shape)
H
hong 已提交
4690
        if in_dygraph_mode():
4691
            return _C_ops.put_along_axis(arr, indices, values, axis, reduce)
4692 4693 4694
        return _legacy_C_ops.put_along_axis(
            arr, indices, values, "Axis", axis, "Reduce", reduce
        )
4695 4696

    check_variable_and_dtype(
4697 4698 4699 4700 4701 4702 4703 4704
        arr,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'put_along_axis',
    )
    check_variable_and_dtype(
        indices, 'index', ['int32', 'int64'], 'put_along_axis'
    )
4705 4706 4707
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4708 4709 4710
    helper = LayerHelper('put_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
4711 4712 4713 4714 4715 4716
    helper.append_op(
        type="put_along_axis",
        inputs={"Input": arr, "Index": indices, "Value": values},
        attrs={"Axis": axis, "Reduce": reduce},
        outputs={"Result": result},
    )
4717 4718 4719 4720 4721 4722
    return result


@inplace_apis_in_dygraph_only
def put_along_axis_(arr, indices, values, axis, reduce='assign'):
    r"""
4723
    Inplace version of ``put_along_axis`` API, the output Tensor will be inplaced with input ``arr``.
4724 4725
    Please refer to :ref:`api_tensor_put_along_axis`.
    """
4726
    if len(arr.shape) != len(indices.shape):
4727
        raise ValueError(
4728 4729
            "`indices` and `arr` must have the same number of dimensions!"
        )
4730 4731
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
4732 4733 4734 4735 4736
    values = (
        paddle.to_tensor(values)
        if not isinstance(values, paddle.Tensor)
        else values
    )
4737 4738 4739
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4740
    if in_dygraph_mode():
4741
        return _C_ops.put_along_axis_(arr, indices, values, axis, reduce)
4742 4743 4744
    return _legacy_C_ops.put_along_axis_(
        arr, indices, values, "Axis", axis, "Reduce", reduce
    )
4745 4746


L
Li Min 已提交
4747 4748 4749 4750 4751 4752 4753 4754
def index_add(x, index, axis, value, name=None):
    """
    Adds the elements of the input tensor with value tensor by selecting the indices in the order given in index.

    Args:
        x (Tensor) : The Destination Tensor. Supported data types are int32, int64, float16, float32, float64.
        index (Tensor): The 1-D Tensor containing the indices to index.
            The data type of ``index`` must be int32 or int64.
4755
        axis (int): The dimension in which we index.
L
Li Min 已提交
4756 4757 4758 4759
        value (Tensor): The tensor used to add the elements along the target axis.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
L
Ligoml 已提交
4760
        Tensor, same dimention and dtype with x.
L
Li Min 已提交
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1, 1], [1, 1, 1]], dtype="float32")
            outplace_res = paddle.index_add(input_tensor, index, 0, value)
4772 4773 4774 4775 4776
            print(outplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 2., 2.],
            #         [1., 1., 1.],
            #         [2., 2., 2.]])
L
Li Min 已提交
4777 4778 4779 4780 4781 4782
    """
    if in_dygraph_mode():
        return _C_ops.index_add(x, index, value, axis)

    helper = LayerHelper("index_add", **locals())
    check_variable_and_dtype(
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
    check_variable_and_dtype(
        index,
        'index',
        ['int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
L
Li Min 已提交
4794
    check_variable_and_dtype(
4795 4796 4797 4798 4799
        value,
        'add_value',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
L
Li Min 已提交
4800 4801 4802

    out = helper.create_variable_for_type_inference(x.dtype)

4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
    helper.append_op(
        type='index_add',
        inputs={
            'X': x,
            'Index': index,
            'AddValue': value,
        },
        outputs={'Out': out},
        attrs={'axis': axis},
    )
L
Li Min 已提交
4813 4814 4815 4816 4817 4818 4819
    return out


@inplace_apis_in_dygraph_only
def index_add_(x, index, axis, value, name=None):
    """
    Inplace version of ``index_add`` API, the output Tensor will be inplaced with input ``x``.
4820
    Please refer to :ref:`api_paddle_index_add`.
4821

L
Li Min 已提交
4822 4823 4824 4825 4826 4827 4828 4829 4830 4831
    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1], [1, 1], [1, 1]], dtype="float32")
            inplace_res = paddle.index_add_(input_tensor, index, 1, value)
4832 4833 4834 4835 4836
            print(inplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 1., 2.],
            #         [2., 1., 2.],
            #         [2., 1., 2.]])
L
Li Min 已提交
4837 4838 4839 4840
    """
    return _C_ops.index_add_(x, index, value, axis)


4841 4842 4843 4844 4845 4846 4847
# TODO(dev): We need avoid implementing it by this way.
__METHODS = {
    'fill_': fill_,
    'zero_': zero_,
    'fill_diagonal_': fill_diagonal_,
    'fill_diagonal_tensor_': fill_diagonal_tensor_,
    "fill_diagonal_tensor": fill_diagonal_tensor,
4848
    'tolist': tolist,
4849 4850 4851 4852
}
for name, func in __METHODS.items():
    setattr(core.VarBase, name, func)
    setattr(core.eager.Tensor, name, func)