Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a7de0e66
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a7de0e66
编写于
12月 17, 2021
作者:
K
kuizhiqing
提交者:
GitHub
12月 17, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add op/api repeat/interleave (#37981)
上级
885767e3
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
957 addition
and
1 deletion
+957
-1
paddle/fluid/operators/repeat_interleave_op.cc
paddle/fluid/operators/repeat_interleave_op.cc
+174
-0
paddle/fluid/operators/repeat_interleave_op.cu
paddle/fluid/operators/repeat_interleave_op.cu
+307
-0
paddle/fluid/operators/repeat_interleave_op.h
paddle/fluid/operators/repeat_interleave_op.h
+196
-0
paddle/fluid/pybind/op_function_generator.h
paddle/fluid/pybind/op_function_generator.h
+1
-0
python/paddle/__init__.py
python/paddle/__init__.py
+2
-0
python/paddle/fluid/tests/unittests/test_repeat_interleave_op.py
...paddle/fluid/tests/unittests/test_repeat_interleave_op.py
+212
-0
python/paddle/tensor/__init__.py
python/paddle/tensor/__init__.py
+3
-1
python/paddle/tensor/manipulation.py
python/paddle/tensor/manipulation.py
+62
-0
未找到文件。
paddle/fluid/operators/repeat_interleave_op.cc
0 → 100644
浏览文件 @
a7de0e66
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/repeat_interleave_op.h"
#include <memory>
namespace
paddle
{
namespace
operators
{
using
framework
::
Tensor
;
class
RepeatInterleaveOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"X"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Input(X) of RepeatInterleaveOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Out"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Output(Out) of RepeatInterleaveOp should not be null."
));
auto
input_dim
=
ctx
->
GetInputDim
(
"X"
);
auto
dim
=
ctx
->
Attrs
().
Get
<
int
>
(
"dim"
);
auto
output_dim
=
framework
::
vectorize
(
input_dim
);
PADDLE_ENFORCE_EQ
(
dim
<
input_dim
.
size
()
&&
dim
>=
(
0
-
input_dim
.
size
()),
true
,
platform
::
errors
::
OutOfRange
(
"Attr(dim) is out of range, It's expected "
"to be in range of [-%d, %d]. But received Attr(dim) = %d."
,
input_dim
.
size
(),
input_dim
.
size
()
-
1
,
dim
));
auto
repeats
=
ctx
->
Attrs
().
Get
<
int
>
(
"Repeats"
);
if
(
ctx
->
HasInput
(
"RepeatsTensor"
))
{
auto
repeats_dim
=
ctx
->
GetInputDim
(
"RepeatsTensor"
);
PADDLE_ENFORCE_EQ
(
repeats_dim
.
size
()
==
1
||
(
repeats_dim
.
size
()
==
2
&&
repeats_dim
[
1
]
==
1
),
true
,
platform
::
errors
::
InvalidArgument
(
"The 'shape' of Input(RepeatsTensor) must be 1-D tensor. "
"But received: the 'shape' of Input(Index) is [%s], "
"the dimension of Input(Index) is [%d]."
,
repeats_dim
,
repeats_dim
.
size
()));
PADDLE_ENFORCE_EQ
(
repeats_dim
[
0
]
!=
0
,
true
,
platform
::
errors
::
InvalidArgument
(
"The length of Input(RepeatsTensor) can't be 0."
));
if
(
dim
<
0
)
{
dim
+=
input_dim
.
size
();
}
output_dim
[
dim
]
=
-
1
;
}
else
if
(
repeats
>
0
)
{
output_dim
[
dim
]
=
input_dim
[
dim
]
*
repeats
;
}
VLOG
(
3
)
<<
"infershap out "
<<
output_dim
[
dim
];
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_dim
));
auto
type
=
ctx
->
GetInputsVarType
(
"X"
)[
0
];
if
(
type
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
data_type
=
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
);
return
framework
::
OpKernelType
(
data_type
,
ctx
.
device_context
());
}
};
class
RepeatInterleaveGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
true
,
platform
::
errors
::
InvalidArgument
(
"Input(Out@GRAD) should be not null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
true
,
platform
::
errors
::
InvalidArgument
(
"Output(X@GRAD) should be not null."
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
framework
::
GradVarName
(
"Out"
)),
ctx
.
device_context
());
}
};
class
RepeatInterleaveOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor) the input tensor."
);
AddInput
(
"RepeatsTensor"
,
"the 1-D tensor containing the repeats alongsize the axis."
)
.
AsDispensable
();
AddOutput
(
"Out"
,
"the output tensor."
);
AddAttr
<
int
>
(
"Repeats"
,
"the number of repetitions for each element."
)
.
SetDefault
(
0
);
AddAttr
<
int
>
(
"dim"
,
"the dimension in which we repeat."
).
SetDefault
(
0
);
AddComment
(
R"DOC(
Returns a new tensor which repeats the input tensor
along dimension dim using the entries in repeats which
is a Tensor or int.
The returned tensor has the same number of dimensions
as the original tensor (input), except along the given axis.
)DOC"
);
}
};
template
<
typename
T
>
class
RepeatInterleaveGradMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
public:
using
framework
::
SingleGradOpMaker
<
T
>::
SingleGradOpMaker
;
protected:
void
Apply
(
GradOpPtr
<
T
>
op
)
const
override
{
op
->
SetType
(
"repeat_interleave_grad"
);
op
->
SetInput
(
"X"
,
this
->
Input
(
"X"
));
op
->
SetInput
(
"RepeatsTensor"
,
this
->
Input
(
"RepeatsTensor"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
this
->
OutputGrad
(
"Out"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
this
->
InputGrad
(
"X"
));
op
->
SetAttrMap
(
this
->
Attrs
());
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERER
(
RepeatInterleaveGradNoNeedBufferVarsInferer
,
"X"
);
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
repeat_interleave
,
ops
::
RepeatInterleaveOp
,
ops
::
RepeatInterleaveOpMaker
,
ops
::
RepeatInterleaveGradMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
RepeatInterleaveGradMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OPERATOR
(
repeat_interleave_grad
,
ops
::
RepeatInterleaveGradOp
,
ops
::
RepeatInterleaveGradNoNeedBufferVarsInferer
);
REGISTER_OP_CPU_KERNEL
(
repeat_interleave
,
ops
::
RepeatInterleaveKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
RepeatInterleaveKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
RepeatInterleaveKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
RepeatInterleaveKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
REGISTER_OP_CPU_KERNEL
(
repeat_interleave_grad
,
ops
::
RepeatInterleaveGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
RepeatInterleaveGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
RepeatInterleaveGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
RepeatInterleaveGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
paddle/fluid/operators/repeat_interleave_op.cu
0 → 100644
浏览文件 @
a7de0e66
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/repeat_interleave_op.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
namespace
paddle
{
namespace
operators
{
using
platform
::
PADDLE_CUDA_NUM_THREADS
;
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
// function borrowed from repeat_interleave_op
template
<
typename
T
,
typename
IndexT
>
__global__
void
index_select_cuda_kernel
(
const
T
*
input
,
T
*
output
,
const
IndexT
*
index
,
int64_t
N
,
int64_t
stride
,
int64_t
size
,
int64_t
delta
)
{
int64_t
idx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
idx
>=
N
)
{
return
;
}
int64_t
pre_idx
=
idx
/
(
stride
*
size
);
int64_t
dim_idx
=
idx
%
(
stride
*
size
)
/
stride
;
IndexT
src_dim_idx
=
index
[
dim_idx
];
int64_t
input_idx
=
idx
+
(
delta
*
pre_idx
+
src_dim_idx
-
dim_idx
)
*
stride
;
output
[
idx
]
=
input
[
input_idx
];
}
template
<
typename
T
,
typename
IndexT
>
__global__
void
index_select_grad_cuda_kernel
(
const
T
*
output_grad
,
T
*
input_grad
,
const
IndexT
*
index
,
int64_t
nums
,
int64_t
N
,
int64_t
stride
,
int64_t
size
,
int64_t
delta
)
{
int64_t
idx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
idx
>=
N
)
{
return
;
}
int64_t
pre_idx
=
idx
/
(
stride
*
size
);
int64_t
dim_idx
=
idx
%
(
stride
*
size
)
/
stride
;
IndexT
src_dim_idx
=
index
[
dim_idx
];
int64_t
input_idx
=
idx
+
(
delta
*
pre_idx
+
src_dim_idx
-
dim_idx
)
*
stride
;
paddle
::
platform
::
CudaAtomicAdd
(
&
input_grad
[
input_idx
],
output_grad
[
idx
]);
}
template
<
typename
T
>
__global__
void
index_select_grad_init
(
T
*
input_grad
,
int64_t
N
)
{
int64_t
idx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
idx
>=
N
)
{
return
;
}
input_grad
[
idx
]
=
0.0
;
}
template
<
typename
DeviceContext
,
typename
T
>
class
RepeatInterleaveCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
// auto* index = context.Input<LoDTensor>("RepeatsTensor");
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
int
dim
=
context
.
Attr
<
int
>
(
"dim"
);
auto
input_dim
=
in
->
dims
();
dim
=
dim
>=
0
?
dim
:
dim
+
input_dim
.
size
();
auto
stride_dim
=
framework
::
stride
(
input_dim
);
int64_t
stride
=
stride_dim
[
dim
];
auto
stream
=
context
.
template
device_context
<
platform
::
CUDADeviceContext
>().
stream
();
int
repeats
=
context
.
Attr
<
int
>
(
"Repeats"
);
framework
::
LoDTensor
index
;
auto
*
in_data
=
in
->
data
<
T
>
();
if
(
context
.
HasInput
(
"RepeatsTensor"
))
{
auto
repeats_tensor
=
context
.
Input
<
framework
::
LoDTensor
>
(
"RepeatsTensor"
);
PADDLE_ENFORCE_EQ
(
repeats_tensor
->
dims
()[
0
]
==
in
->
dims
()[
dim
],
true
,
platform
::
errors
::
InvalidArgument
(
"The length of Input(RepeatsTensor) must be the "
"same as length of Input(X) in axis. "
"But received: [%s], required: [%d]."
,
repeats_tensor
->
dims
()[
0
],
in
->
dims
()[
dim
]));
const
auto
&
index_type
=
repeats_tensor
->
type
();
bool
index_type_match
=
index_type
==
framework
::
proto
::
VarType
::
INT64
||
index_type
==
framework
::
proto
::
VarType
::
INT32
;
PADDLE_ENFORCE_EQ
(
index_type_match
,
true
,
platform
::
errors
::
InvalidArgument
(
"Input(RepeatsTensor) holds the wrong type, it holds %s, but "
"desires to be %s or %s"
,
paddle
::
framework
::
DataTypeToString
(
index_type
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT32
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT64
)));
if
(
index_type
==
framework
::
proto
::
VarType
::
INT64
)
{
RepeatsTensor2IndexTensor
<
DeviceContext
,
int64_t
>
(
*
repeats_tensor
,
&
index
);
const
int64_t
*
index_data
=
index
.
data
<
int64_t
>
();
auto
output_dim
=
framework
::
vectorize
(
in
->
dims
());
output_dim
[
dim
]
=
index
.
dims
()[
0
];
out
->
Resize
(
framework
::
make_ddim
(
output_dim
));
auto
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int64_t
numel
=
out
->
numel
();
int64_t
size
=
output_dim
[
dim
];
int64_t
delta
=
input_dim
[
dim
]
-
size
;
index_select_cuda_kernel
<
T
,
int64_t
><<<
(
numel
+
PADDLE_CUDA_NUM_THREADS
-
1
)
/
PADDLE_CUDA_NUM_THREADS
,
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
in_data
,
out_data
,
index_data
,
numel
,
stride
,
size
,
delta
);
}
else
{
RepeatsTensor2IndexTensor
<
DeviceContext
,
int
>
(
*
repeats_tensor
,
&
index
);
const
int
*
index_data
=
index
.
data
<
int
>
();
auto
output_dim
=
framework
::
vectorize
(
in
->
dims
());
output_dim
[
dim
]
=
index
.
dims
()[
0
];
out
->
Resize
(
framework
::
make_ddim
(
output_dim
));
auto
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int64_t
numel
=
out
->
numel
();
int64_t
size
=
output_dim
[
dim
];
int64_t
delta
=
input_dim
[
dim
]
-
size
;
index_select_cuda_kernel
<
T
,
int
><<<
(
numel
+
PADDLE_CUDA_NUM_THREADS
-
1
)
/
PADDLE_CUDA_NUM_THREADS
,
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
in_data
,
out_data
,
index_data
,
numel
,
stride
,
size
,
delta
);
}
}
else
if
(
repeats
>
0
)
{
int64_t
index_size
=
in
->
dims
()[
dim
]
*
repeats
;
std
::
vector
<
int
>
index_vec
(
index_size
);
for
(
int
i
=
0
;
i
<
in
->
dims
()[
dim
];
i
++
)
{
std
::
fill_n
(
index_vec
.
begin
()
+
i
*
repeats
,
repeats
,
i
);
}
index
.
Resize
(
framework
::
make_ddim
({
index_size
}));
auto
ctx
=
paddle
::
platform
::
DeviceContextPool
::
Instance
().
Get
(
context
.
GetPlace
());
paddle
::
framework
::
TensorFromVector
<
int
>
(
index_vec
,
*
ctx
,
&
index
);
auto
output_dim
=
framework
::
vectorize
(
in
->
dims
());
output_dim
[
dim
]
=
index_size
;
out
->
Resize
(
framework
::
make_ddim
(
output_dim
));
auto
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int64_t
numel
=
out
->
numel
();
int64_t
size
=
output_dim
[
dim
];
int64_t
delta
=
input_dim
[
dim
]
-
size
;
const
int
*
index_data
=
index
.
data
<
int
>
();
index_select_cuda_kernel
<
T
,
int
><<<
(
numel
+
PADDLE_CUDA_NUM_THREADS
-
1
)
/
PADDLE_CUDA_NUM_THREADS
,
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
in_data
,
out_data
,
index_data
,
numel
,
stride
,
size
,
delta
);
platform
::
GpuStreamSync
(
stream
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"repeats must given with RepeatsTensor (tensor) or repeats (int)"
));
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
RepeatInterleaveGradCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
output_grad
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
in_grad
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
output_grad_data
=
output_grad
->
data
<
T
>
();
auto
*
in_grad_data
=
in_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
dim
=
context
.
Attr
<
int
>
(
"dim"
);
auto
input_dim
=
in_grad
->
dims
();
auto
output_dim
=
output_grad
->
dims
();
dim
=
dim
>=
0
?
dim
:
dim
+
input_dim
.
size
();
auto
stride_dim
=
framework
::
stride
(
input_dim
);
int64_t
stride
=
stride_dim
[
dim
];
int64_t
size
=
output_dim
[
dim
];
int64_t
delta
=
input_dim
[
dim
]
-
size
;
int64_t
numel
=
in_grad
->
numel
();
int64_t
out_nums
=
output_grad
->
numel
();
auto
stream
=
context
.
template
device_context
<
platform
::
CUDADeviceContext
>().
stream
();
index_select_grad_init
<
T
><<<
(
numel
+
PADDLE_CUDA_NUM_THREADS
-
1
)
/
PADDLE_CUDA_NUM_THREADS
,
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
in_grad_data
,
numel
);
int
repeats
=
context
.
Attr
<
int
>
(
"Repeats"
);
framework
::
LoDTensor
index
;
if
(
context
.
HasInput
(
"RepeatsTensor"
))
{
auto
repeats_tensor
=
context
.
Input
<
framework
::
LoDTensor
>
(
"RepeatsTensor"
);
const
auto
&
index_type
=
repeats_tensor
->
type
();
bool
index_type_match
=
index_type
==
framework
::
proto
::
VarType
::
INT64
||
index_type
==
framework
::
proto
::
VarType
::
INT32
;
PADDLE_ENFORCE_EQ
(
index_type_match
,
true
,
platform
::
errors
::
InvalidArgument
(
"Input(Index) holds the wrong type, it holds %s, but "
"desires to be %s or %s"
,
paddle
::
framework
::
DataTypeToString
(
index_type
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT32
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT64
)));
if
(
index_type
==
framework
::
proto
::
VarType
::
INT64
)
{
RepeatsTensor2IndexTensor
<
DeviceContext
,
int64_t
>
(
*
repeats_tensor
,
&
index
);
int64_t
index_nums
=
index
.
numel
();
const
int64_t
*
index_data
=
index
.
data
<
int64_t
>
();
index_select_grad_cuda_kernel
<
T
,
int64_t
><<<
(
out_nums
+
PADDLE_CUDA_NUM_THREADS
-
1
)
/
PADDLE_CUDA_NUM_THREADS
,
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
output_grad_data
,
in_grad_data
,
index_data
,
index_nums
,
out_nums
,
stride
,
size
,
delta
);
platform
::
GpuStreamSync
(
stream
);
}
else
{
RepeatsTensor2IndexTensor
<
DeviceContext
,
int
>
(
*
repeats_tensor
,
&
index
);
int64_t
index_nums
=
index
.
numel
();
const
int
*
index_data
=
index
.
data
<
int
>
();
index_select_grad_cuda_kernel
<
T
,
int
><<<
(
out_nums
+
PADDLE_CUDA_NUM_THREADS
-
1
)
/
PADDLE_CUDA_NUM_THREADS
,
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
output_grad_data
,
in_grad_data
,
index_data
,
index_nums
,
out_nums
,
stride
,
size
,
delta
);
platform
::
GpuStreamSync
(
stream
);
}
}
else
if
(
repeats
>
0
)
{
int64_t
index_size
=
in_grad
->
dims
()[
dim
]
*
repeats
;
std
::
vector
<
int
>
index_vec
(
index_size
);
for
(
int
i
=
0
;
i
<
in_grad
->
dims
()[
dim
];
i
++
)
{
std
::
fill_n
(
index_vec
.
begin
()
+
i
*
repeats
,
repeats
,
i
);
}
index
.
Resize
(
framework
::
make_ddim
({
index_size
}));
auto
ctx
=
paddle
::
platform
::
DeviceContextPool
::
Instance
().
Get
(
context
.
GetPlace
());
paddle
::
framework
::
TensorFromVector
<
int
>
(
index_vec
,
*
ctx
,
&
index
);
const
int
*
index_data
=
index
.
data
<
int
>
();
int64_t
index_nums
=
index
.
numel
();
index_select_grad_cuda_kernel
<
T
,
int
><<<
(
out_nums
+
PADDLE_CUDA_NUM_THREADS
-
1
)
/
PADDLE_CUDA_NUM_THREADS
,
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
output_grad_data
,
in_grad_data
,
index_data
,
index_nums
,
out_nums
,
stride
,
size
,
delta
);
platform
::
GpuStreamSync
(
stream
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"repeats must given with RepeatsTensor (tensor) or repeats (int)"
));
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
repeat_interleave
,
ops
::
RepeatInterleaveCUDAKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
RepeatInterleaveCUDAKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
RepeatInterleaveCUDAKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
float16
>
,
ops
::
RepeatInterleaveCUDAKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
RepeatInterleaveCUDAKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
REGISTER_OP_CUDA_KERNEL
(
repeat_interleave_grad
,
ops
::
RepeatInterleaveGradCUDAKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
RepeatInterleaveGradCUDAKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
RepeatInterleaveGradCUDAKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
float16
>
,
ops
::
RepeatInterleaveGradCUDAKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
RepeatInterleaveGradCUDAKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
paddle/fluid/operators/repeat_interleave_op.h
0 → 100644
浏览文件 @
a7de0e66
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/index_select_op.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
DDim
=
framework
::
DDim
;
template
<
typename
DeviceContext
,
typename
RepeatsT
=
int
>
void
RepeatsTensor2IndexTensor
(
const
LoDTensor
&
repeats
,
LoDTensor
*
index
)
{
LoDTensor
repeats_cpu_copy
;
if
(
!
platform
::
is_cpu_place
(
repeats
.
place
()))
{
framework
::
TensorCopySync
(
repeats
,
platform
::
CPUPlace
(),
&
repeats_cpu_copy
);
}
const
RepeatsT
*
repeats_data
=
platform
::
is_cpu_place
(
repeats
.
place
())
?
repeats
.
data
<
RepeatsT
>
()
:
repeats_cpu_copy
.
data
<
RepeatsT
>
();
int64_t
index_size
=
0
;
for
(
int
i
=
0
;
i
<
repeats
.
dims
()[
0
];
i
++
)
{
index_size
+=
repeats_data
[
i
];
}
std
::
vector
<
RepeatsT
>
index_vec
(
index_size
);
int
offset
=
0
;
for
(
int
i
=
0
;
i
<
repeats
.
dims
()[
0
];
i
++
)
{
std
::
fill_n
(
index_vec
.
begin
()
+
offset
,
repeats_data
[
i
],
i
);
offset
+=
repeats_data
[
i
];
}
index
->
Resize
(
framework
::
make_ddim
({
index_size
}));
auto
ctx
=
paddle
::
platform
::
DeviceContextPool
::
Instance
().
Get
(
repeats
.
place
());
paddle
::
framework
::
TensorFromVector
<
RepeatsT
>
(
index_vec
,
*
ctx
,
index
);
}
template
<
typename
DeviceContext
,
typename
T
>
class
RepeatInterleaveKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
inputs
=
*
context
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
*
output
=
context
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
int
dim
=
context
.
Attr
<
int
>
(
"dim"
);
if
(
dim
<
0
)
{
dim
+=
inputs
.
dims
().
size
();
}
int
repeats
=
context
.
Attr
<
int
>
(
"Repeats"
);
framework
::
LoDTensor
index
;
if
(
context
.
HasInput
(
"RepeatsTensor"
))
{
auto
repeats_tensor
=
context
.
Input
<
framework
::
LoDTensor
>
(
"RepeatsTensor"
);
PADDLE_ENFORCE_EQ
(
repeats_tensor
->
dims
()[
0
]
==
inputs
.
dims
()[
dim
],
true
,
platform
::
errors
::
InvalidArgument
(
"The length of Input(RepeatsTensor) must be the "
"same as length of Input(X) in axis. "
"But received: [%s], required: [%d]."
,
repeats_tensor
->
dims
()[
0
],
inputs
.
dims
()[
dim
]));
const
auto
&
index_type
=
repeats_tensor
->
type
();
bool
index_type_match
=
index_type
==
framework
::
proto
::
VarType
::
INT32
||
index_type
==
framework
::
proto
::
VarType
::
INT64
;
PADDLE_ENFORCE_EQ
(
index_type_match
,
true
,
platform
::
errors
::
InvalidArgument
(
"Input(RepeatsTensor) holds the wrong type, it holds %s, but "
"desires to be %s or %s"
,
paddle
::
framework
::
DataTypeToString
(
index_type
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT32
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT64
)));
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
RepeatsTensor2IndexTensor
<
DeviceContext
,
int
>
(
*
repeats_tensor
,
&
index
);
auto
output_dim
=
framework
::
vectorize
(
inputs
.
dims
());
output_dim
[
dim
]
=
index
.
dims
()[
0
];
output
->
Resize
(
framework
::
make_ddim
(
output_dim
));
IndexSelectInner
<
DeviceContext
,
T
,
int
>
(
context
,
&
inputs
,
index
,
output
,
dim
);
}
else
if
(
index_type
==
framework
::
proto
::
VarType
::
INT64
)
{
RepeatsTensor2IndexTensor
<
DeviceContext
,
int64_t
>
(
*
repeats_tensor
,
&
index
);
auto
output_dim
=
framework
::
vectorize
(
inputs
.
dims
());
output_dim
[
dim
]
=
index
.
dims
()[
0
];
output
->
Resize
(
framework
::
make_ddim
(
output_dim
));
IndexSelectInner
<
DeviceContext
,
T
,
int64_t
>
(
context
,
&
inputs
,
index
,
output
,
dim
);
}
}
else
if
(
repeats
>
0
)
{
int64_t
index_size
=
inputs
.
dims
()[
dim
]
*
repeats
;
std
::
vector
<
int
>
index_vec
(
index_size
);
for
(
int
i
=
0
;
i
<
inputs
.
dims
()[
dim
];
i
++
)
{
std
::
fill_n
(
index_vec
.
begin
()
+
i
*
repeats
,
repeats
,
i
);
}
index
.
Resize
(
framework
::
make_ddim
({
index_size
}));
paddle
::
framework
::
TensorFromVector
<
int
>
(
index_vec
,
&
index
);
auto
output_dim
=
framework
::
vectorize
(
inputs
.
dims
());
output_dim
[
dim
]
=
index_size
;
output
->
Resize
(
framework
::
make_ddim
(
output_dim
));
IndexSelectInner
<
DeviceContext
,
T
,
int
>
(
context
,
&
inputs
,
index
,
output
,
dim
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"repeats must given with RepeatsTensor (tensor) or repeats (int)"
));
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
RepeatInterleaveGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
x_grad
=
context
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
out_grad
=
context
.
Input
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
int
dim
=
context
.
Attr
<
int
>
(
"dim"
);
if
(
dim
<
0
)
{
dim
+=
out_grad
->
dims
().
size
();
}
int
repeats
=
context
.
Attr
<
int
>
(
"Repeats"
);
framework
::
LoDTensor
index
;
if
(
context
.
HasInput
(
"RepeatsTensor"
))
{
auto
repeats_tensor
=
context
.
Input
<
framework
::
LoDTensor
>
(
"RepeatsTensor"
);
const
auto
&
index_type
=
repeats_tensor
->
type
();
bool
index_type_match
=
index_type
==
framework
::
proto
::
VarType
::
INT32
||
index_type
==
framework
::
proto
::
VarType
::
INT64
;
PADDLE_ENFORCE_EQ
(
index_type_match
,
true
,
platform
::
errors
::
InvalidArgument
(
"Input(Repeats) holds the wrong type, it holds %s, but "
"desires to be %s or %s"
,
paddle
::
framework
::
DataTypeToString
(
index_type
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT32
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT64
)));
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
RepeatsTensor2IndexTensor
<
DeviceContext
,
int
>
(
*
repeats_tensor
,
&
index
);
IndexSelectGradInner
<
DeviceContext
,
T
,
int
>
(
context
,
*
out_grad
,
index
,
x_grad
,
dim
);
}
else
if
(
index_type
==
framework
::
proto
::
VarType
::
INT64
)
{
RepeatsTensor2IndexTensor
<
DeviceContext
,
int64_t
>
(
*
repeats_tensor
,
&
index
);
IndexSelectGradInner
<
DeviceContext
,
T
,
int64_t
>
(
context
,
*
out_grad
,
index
,
x_grad
,
dim
);
}
}
else
if
(
repeats
>
0
)
{
int64_t
index_size
=
x_grad
->
dims
()[
dim
]
*
repeats
;
std
::
vector
<
int
>
index_vec
(
index_size
);
for
(
int
i
=
0
;
i
<
x_grad
->
dims
()[
dim
];
i
++
)
{
std
::
fill_n
(
index_vec
.
begin
()
+
i
*
repeats
,
repeats
,
i
);
}
index
.
Resize
(
framework
::
make_ddim
({
index_size
}));
paddle
::
framework
::
TensorFromVector
<
int
>
(
index_vec
,
&
index
);
IndexSelectGradInner
<
DeviceContext
,
T
,
int
>
(
context
,
*
out_grad
,
index
,
x_grad
,
dim
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"repeats must given with RepeatsTensor (tensor) or repeats (int)"
));
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/pybind/op_function_generator.h
浏览文件 @
a7de0e66
...
...
@@ -44,6 +44,7 @@ std::map<std::string, std::set<std::string>> op_ins_map = {
{
"nll_loss"
,
{
"X"
,
"Label"
,
"Weight"
}},
{
"bilinear_tensor_product"
,
{
"X"
,
"Y"
,
"Weight"
,
"Bias"
}},
{
"gather"
,
{
"X"
,
"Index"
,
"Axis"
}},
{
"repeat_interleave"
,
{
"X"
,
"RepeatsTensor"
}},
{
"roi_pool"
,
{
"X"
,
"ROIs"
,
"RoisNum"
}},
{
"roi_align"
,
{
"X"
,
"ROIs"
,
"RoisNum"
}},
{
"psroi_pool"
,
{
"X"
,
"ROIs"
,
"RoisNum"
}},
...
...
python/paddle/__init__.py
浏览文件 @
a7de0e66
...
...
@@ -159,6 +159,7 @@ from .tensor.manipulation import tensordot # noqa: F401
from
.tensor.manipulation
import
as_complex
# noqa: F401
from
.tensor.manipulation
import
as_real
# noqa: F401
from
.tensor.manipulation
import
moveaxis
# noqa: F401
from
.tensor.manipulation
import
repeat_interleave
# noqa: F401
from
.tensor.math
import
abs
# noqa: F401
from
.tensor.math
import
acos
# noqa: F401
from
.tensor.math
import
asin
# noqa: F401
...
...
@@ -579,4 +580,5 @@ __all__ = [ # noqa
'fmax'
,
'fmin'
,
'moveaxis'
,
'repeat_interleave'
,
]
python/paddle/fluid/tests/unittests/test_repeat_interleave_op.py
0 → 100644
浏览文件 @
a7de0e66
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
paddle
import
numpy
as
np
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
class
TestRepeatInterleaveOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"repeat_interleave"
self
.
init_dtype_type
()
index_np
=
np
.
random
.
randint
(
low
=
0
,
high
=
3
,
size
=
self
.
index_size
).
astype
(
self
.
index_type
)
x_np
=
np
.
random
.
random
(
self
.
x_shape
).
astype
(
self
.
x_type
)
self
.
inputs
=
{
'X'
:
x_np
,
'RepeatsTensor'
:
index_np
}
self
.
attrs
=
{
'dim'
:
self
.
dim
}
outer_loop
=
np
.
prod
(
self
.
x_shape
[:
self
.
dim
])
x_reshape
=
[
outer_loop
]
+
list
(
self
.
x_shape
[
self
.
dim
:])
x_np_reshape
=
np
.
reshape
(
x_np
,
tuple
(
x_reshape
))
out_list
=
[]
for
i
in
range
(
outer_loop
):
for
j
in
range
(
self
.
index_size
):
for
k
in
range
(
index_np
[
j
]):
out_list
.
append
(
x_np_reshape
[
i
,
j
])
self
.
out_shape
=
list
(
self
.
x_shape
)
self
.
out_shape
[
self
.
dim
]
=
np
.
sum
(
index_np
)
self
.
out_shape
=
tuple
(
self
.
out_shape
)
out
=
np
.
reshape
(
out_list
,
self
.
out_shape
)
self
.
outputs
=
{
'Out'
:
out
}
def
init_dtype_type
(
self
):
self
.
dim
=
1
self
.
x_type
=
np
.
float64
self
.
index_type
=
np
.
int64
self
.
x_shape
=
(
8
,
4
,
5
)
self
.
index_size
=
self
.
x_shape
[
self
.
dim
]
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestRepeatInterleaveOp2
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"repeat_interleave"
self
.
init_dtype_type
()
index_np
=
2
x_np
=
np
.
random
.
random
(
self
.
x_shape
).
astype
(
self
.
x_type
)
self
.
inputs
=
{
'X'
:
x_np
}
#, 'RepeatsTensor': None}
self
.
attrs
=
{
'dim'
:
self
.
dim
,
'Repeats'
:
index_np
}
outer_loop
=
np
.
prod
(
self
.
x_shape
[:
self
.
dim
])
x_reshape
=
[
outer_loop
]
+
list
(
self
.
x_shape
[
self
.
dim
:])
x_np_reshape
=
np
.
reshape
(
x_np
,
tuple
(
x_reshape
))
out_list
=
[]
for
i
in
range
(
outer_loop
):
for
j
in
range
(
self
.
index_size
):
for
k
in
range
(
index_np
):
out_list
.
append
(
x_np_reshape
[
i
,
j
])
self
.
out_shape
=
list
(
self
.
x_shape
)
self
.
out_shape
[
self
.
dim
]
=
index_np
*
self
.
index_size
self
.
out_shape
=
tuple
(
self
.
out_shape
)
out
=
np
.
reshape
(
out_list
,
self
.
out_shape
)
self
.
outputs
=
{
'Out'
:
out
}
def
init_dtype_type
(
self
):
self
.
dim
=
1
self
.
x_type
=
np
.
float64
self
.
x_shape
=
(
8
,
4
,
5
)
self
.
index_size
=
self
.
x_shape
[
self
.
dim
]
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestIndexSelectAPI
(
unittest
.
TestCase
):
def
input_data
(
self
):
self
.
data_x
=
np
.
array
([[
1.0
,
2.0
,
3.0
,
4.0
],
[
5.0
,
6.0
,
7.0
,
8.0
],
[
9.0
,
10.0
,
11.0
,
12.0
]])
self
.
data_index
=
np
.
array
([
0
,
1
,
2
,
1
]).
astype
(
'int32'
)
def
test_repeat_interleave_api
(
self
):
paddle
.
enable_static
()
self
.
input_data
()
# case 1:
with
program_guard
(
Program
(),
Program
()):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
-
1
,
4
])
index
=
fluid
.
layers
.
data
(
name
=
'repeats'
,
shape
=
[
4
],
dtype
=
'int32'
,
append_batch_size
=
False
)
z
=
paddle
.
repeat_interleave
(
x
,
index
,
axis
=
1
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
res
,
=
exe
.
run
(
feed
=
{
'x'
:
self
.
data_x
,
'repeats'
:
self
.
data_index
},
fetch_list
=
[
z
.
name
],
return_numpy
=
False
)
expect_out
=
np
.
repeat
(
self
.
data_x
,
self
.
data_index
,
axis
=
1
)
self
.
assertTrue
(
np
.
allclose
(
expect_out
,
np
.
array
(
res
)))
# case 2:
repeats
=
np
.
array
([
1
,
2
,
1
]).
astype
(
'int32'
)
with
program_guard
(
Program
(),
Program
()):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
-
1
,
4
])
index
=
fluid
.
layers
.
data
(
name
=
'repeats'
,
shape
=
[
3
],
dtype
=
'int32'
,
append_batch_size
=
False
)
z
=
paddle
.
repeat_interleave
(
x
,
index
,
axis
=
0
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
res
,
=
exe
.
run
(
feed
=
{
'x'
:
self
.
data_x
,
'repeats'
:
repeats
,
},
fetch_list
=
[
z
.
name
],
return_numpy
=
False
)
expect_out
=
np
.
repeat
(
self
.
data_x
,
repeats
,
axis
=
0
)
self
.
assertTrue
(
np
.
allclose
(
expect_out
,
np
.
array
(
res
)))
repeats
=
2
with
program_guard
(
Program
(),
Program
()):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
-
1
,
4
])
z
=
paddle
.
repeat_interleave
(
x
,
repeats
,
axis
=
0
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
res
,
=
exe
.
run
(
feed
=
{
'x'
:
self
.
data_x
},
fetch_list
=
[
z
.
name
],
return_numpy
=
False
)
expect_out
=
np
.
repeat
(
self
.
data_x
,
repeats
,
axis
=
0
)
self
.
assertTrue
(
np
.
allclose
(
expect_out
,
np
.
array
(
res
)))
def
test_dygraph_api
(
self
):
self
.
input_data
()
# case axis none
input_x
=
np
.
array
([[
1
,
2
,
1
],
[
1
,
2
,
3
]]).
astype
(
'int32'
)
index_x
=
np
.
array
([
1
,
1
,
2
,
1
,
2
,
2
]).
astype
(
'int32'
)
with
fluid
.
dygraph
.
guard
():
x
=
fluid
.
dygraph
.
to_variable
(
input_x
)
index
=
fluid
.
dygraph
.
to_variable
(
index_x
)
z
=
paddle
.
repeat_interleave
(
x
,
index
,
None
)
np_z
=
z
.
numpy
()
expect_out
=
np
.
repeat
(
input_x
,
index_x
,
axis
=
None
)
self
.
assertTrue
(
np
.
allclose
(
expect_out
,
np_z
))
# case repeats int
with
fluid
.
dygraph
.
guard
():
x
=
fluid
.
dygraph
.
to_variable
(
input_x
)
index
=
2
z
=
paddle
.
repeat_interleave
(
x
,
index
,
None
)
np_z
=
z
.
numpy
()
expect_out
=
np
.
repeat
(
input_x
,
index
,
axis
=
None
)
self
.
assertTrue
(
np
.
allclose
(
expect_out
,
np_z
))
# case 1:
with
fluid
.
dygraph
.
guard
():
x
=
fluid
.
dygraph
.
to_variable
(
self
.
data_x
)
index
=
fluid
.
dygraph
.
to_variable
(
self
.
data_index
)
z
=
paddle
.
repeat_interleave
(
x
,
index
,
-
1
)
np_z
=
z
.
numpy
()
expect_out
=
np
.
repeat
(
self
.
data_x
,
self
.
data_index
,
axis
=-
1
)
self
.
assertTrue
(
np
.
allclose
(
expect_out
,
np_z
))
with
fluid
.
dygraph
.
guard
():
x
=
fluid
.
dygraph
.
to_variable
(
self
.
data_x
)
index
=
fluid
.
dygraph
.
to_variable
(
self
.
data_index
)
z
=
paddle
.
repeat_interleave
(
x
,
index
,
1
)
np_z
=
z
.
numpy
()
expect_out
=
np
.
repeat
(
self
.
data_x
,
self
.
data_index
,
axis
=
1
)
self
.
assertTrue
(
np
.
allclose
(
expect_out
,
np_z
))
# case 2:
index_x
=
np
.
array
([
1
,
2
,
1
]).
astype
(
'int32'
)
with
fluid
.
dygraph
.
guard
():
x
=
fluid
.
dygraph
.
to_variable
(
self
.
data_x
)
index
=
fluid
.
dygraph
.
to_variable
(
index_x
)
z
=
paddle
.
repeat_interleave
(
x
,
index
,
axis
=
0
)
np_z
=
z
.
numpy
()
expect_out
=
np
.
repeat
(
self
.
data_x
,
index
,
axis
=
0
)
self
.
assertTrue
(
np
.
allclose
(
expect_out
,
np_z
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/tensor/__init__.py
浏览文件 @
a7de0e66
...
...
@@ -114,6 +114,7 @@ from .manipulation import tensordot # noqa: F401
from
.manipulation
import
as_complex
# noqa: F401
from
.manipulation
import
as_real
# noqa: F401
from
.manipulation
import
moveaxis
# noqa: F401
from
.manipulation
import
repeat_interleave
# noqa: F401
from
.math
import
abs
# noqa: F401
from
.math
import
acos
# noqa: F401
from
.math
import
asin
# noqa: F401
...
...
@@ -436,7 +437,8 @@ tensor_method_func = [ #noqa
'lerp'
,
'lerp_'
,
'angle'
,
'moveaxis'
'moveaxis'
,
'repeat_interleave'
,
]
#this list used in math_op_patch.py for magic_method bind
...
...
python/paddle/tensor/manipulation.py
浏览文件 @
a7de0e66
...
...
@@ -2584,6 +2584,68 @@ def as_real(x, name=None):
return
out
def
repeat_interleave
(
x
,
repeats
,
axis
=
None
,
name
=
None
):
"""
Returns a new tensor which repeats the ``x`` tensor along dimension ``axis`` using
the entries in ``repeats`` which is a int or a Tensor.
Args:
x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
repeats (Tensor or int): The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis.
axis (int, optional): The dimension in which we manipulate. Default: if None, the output tensor is flatten.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
Tensor: A Tensor with same data type as ``x``.
x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
repeats = paddle.to_tensor([3, 2, 1], dtype='int32')
paddle.repeat_interleave(x, repeats, 1)
# [[1, 1, 1, 2, 2, 3],
# [4, 4, 4, 5, 5, 6]]
paddle.repeat_interleave(x, 2, 0)
# [[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]]
paddle.repeat_interleave(x, 2, None)
# [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]
"""
if
axis
is
None
:
x
=
paddle
.
flatten
(
x
)
axis
=
0
if
in_dygraph_mode
():
if
isinstance
(
repeats
,
int
):
return
_C_ops
.
repeat_interleave
(
x
,
None
,
'Repeats'
,
repeats
,
'dim'
,
axis
)
elif
isinstance
(
repeats
,
Variable
):
return
_C_ops
.
repeat_interleave
(
x
,
repeats
,
'dim'
,
axis
)
helper
=
LayerHelper
(
"repeat_interleave"
,
**
locals
())
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'paddle.tensor.manipulation.repeat_interleave'
)
out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
)
helper
.
append_op
(
type
=
'repeat_interleave'
,
inputs
=
{
'X'
:
x
,
'RepeatsTensor'
:
repeats
if
isinstance
(
repeats
,
Variable
)
else
None
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'dim'
:
axis
,
'Repeats'
:
repeats
if
isinstance
(
repeats
,
int
)
else
0
})
return
out
def
moveaxis
(
x
,
source
,
destination
,
name
=
None
):
"""
Move the axis of tensor from ``source`` position to ``destination`` position.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录