Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0a895bc0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0a895bc0
编写于
8月 25, 2020
作者:
Z
Zhang Ting
提交者:
GitHub
8月 25, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
improve unique op (#26537)
* add unique_v2 op * remove unique_v2 op * update doc
上级
a004dfde
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
613 addition
and
21 deletion
+613
-21
paddle/fluid/operators/unique_op.cc
paddle/fluid/operators/unique_op.cc
+97
-16
paddle/fluid/operators/unique_op.h
paddle/fluid/operators/unique_op.h
+235
-4
paddle/fluid/pybind/op_function_generator.cc
paddle/fluid/pybind/op_function_generator.cc
+1
-0
python/paddle/fluid/tests/unittests/test_unique.py
python/paddle/fluid/tests/unittests/test_unique.py
+160
-0
python/paddle/tensor/manipulation.py
python/paddle/tensor/manipulation.py
+120
-1
未找到文件。
paddle/fluid/operators/unique_op.cc
浏览文件 @
0a895bc0
...
...
@@ -24,17 +24,63 @@ class UniqueOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"unique"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Out"
),
"Output"
,
"Out"
,
"unique"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Index"
),
"Output"
,
"Index"
,
"unique"
);
auto
in_dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_EQ
(
in_dims
.
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"The Input(X) should be 1-D Tensor, "
"But now the dims of Input(X) is %d."
,
in_dims
.
size
()));
if
(
!
ctx
->
Attrs
().
Get
<
bool
>
(
"is_sorted"
))
{
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Index"
),
"Output"
,
"Index"
,
"unique"
);
PADDLE_ENFORCE_EQ
(
in_dims
.
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"The Input(X) should be 1-D Tensor, "
"But now the dims of Input(X) is %d."
,
in_dims
.
size
()));
ctx
->
SetOutputDim
(
"Out"
,
{
-
1
});
ctx
->
SetOutputDim
(
"Index"
,
in_dims
);
return
;
}
bool
return_index
=
ctx
->
Attrs
().
Get
<
bool
>
(
"return_index"
);
bool
return_inverse
=
ctx
->
Attrs
().
Get
<
bool
>
(
"return_inverse"
);
bool
return_counts
=
ctx
->
Attrs
().
Get
<
bool
>
(
"return_counts"
);
auto
axis_vec
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"axis"
);
if
(
return_index
)
{
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Indices"
),
"Output"
,
"Indices"
,
"unique"
);
}
if
(
return_inverse
)
{
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Index"
),
"Output"
,
"Index"
,
"unique"
);
}
if
(
return_counts
)
{
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Counts"
),
"Output"
,
"Counts"
,
"unique"
);
}
ctx
->
SetOutputDim
(
"Out"
,
{
-
1
});
ctx
->
SetOutputDim
(
"Index"
,
in_dims
);
if
(
axis_vec
.
empty
())
{
ctx
->
SetOutputDim
(
"Out"
,
{
-
1
});
if
(
return_inverse
)
{
ctx
->
SetOutputDim
(
"Index"
,
{
framework
::
product
(
in_dims
)});
}
}
else
{
int
axis
=
axis_vec
[
0
];
if
(
axis
<
0
)
{
axis
+=
in_dims
.
size
();
}
PADDLE_ENFORCE_LT
(
axis
,
in_dims
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The axis(%d) should be less than "
"the dimension size(%d) of x."
,
axis
,
in_dims
.
size
()));
auto
out_dims
=
in_dims
;
out_dims
[
axis
]
=
-
1
;
ctx
->
SetOutputDim
(
"Out"
,
out_dims
);
if
(
return_inverse
)
{
ctx
->
SetOutputDim
(
"Index"
,
{
in_dims
[
axis
]});
}
}
if
(
return_index
)
{
ctx
->
SetOutputDim
(
"Indices"
,
{
-
1
});
}
if
(
return_counts
)
{
ctx
->
SetOutputDim
(
"Counts"
,
{
-
1
});
}
}
protected:
...
...
@@ -49,14 +95,47 @@ class UniqueOp : public framework::OperatorWithKernel {
class
UniqueOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"Input tensor. It should be a 1-D tensor."
);
AddInput
(
"X"
,
"Input tensor. It should be a 1-D tensor when Attr(is_sorted)"
" is fasle or a N-D tensor when Attr(is_sorted) is true."
);
AddAttr
<
int
>
(
"dtype"
,
"data type for output index"
);
AddOutput
(
"Out"
,
"A unique subsequence for input tensor."
);
AddOutput
(
"Index"
,
"An index tensor pointing to unique subsequence, which has "
"identical shape with input tensor and int64 dtype."
);
"Equivalent to inverse in numpy.unique, "
"the indices for where elements in the original input ended up "
"in the returned unique tensor."
);
AddOutput
(
"Indices"
,
"The indices of the input tensor that result in the unique tensor."
)
.
AsDispensable
();
AddOutput
(
"Counts"
,
"The counts for each unique element."
).
AsDispensable
();
AddAttr
<
bool
>
(
"return_index"
,
"If True, also return the indices of the input"
" tensor that result in the unique Tensor."
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"return_inverse"
,
"If True, also return the indices for where elements"
" in the original input ended up in the returned unique tensor."
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"return_counts"
,
"If True, also return the counts for each unique element."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"axis"
,
"The axis to apply unique. If None, the input will be flattened."
)
.
SetDefault
({});
AddAttr
<
bool
>
(
"is_sorted"
,
"If True, the unique elements of X are in ascending order."
"Otherwise, the unique elements are not sorted."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
Return a unique subsequence for 1-D input tensor, and an index tensor pointing to this unique subsequence
1. Return a unique subsequence for 1-D input tensor, and an index tensor
pointing to this unique subsequence when Attr(is_sorted) is false. This
means paddle.unique is called.
2. Returns the unique elements of X in ascending order when Attr(is_sorted)
is true. This means fluid.layers.unique is called.
)DOC"
);
}
};
...
...
@@ -65,6 +144,8 @@ class UniqueOpMaker : public framework::OpProtoAndCheckerMaker {
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
unique
,
ops
::
UniqueOp
,
ops
::
UniqueOpMaker
);
REGISTER_OP_CPU_KERNEL
(
unique
,
ops
::
UniqueKernel
<
float
>
,
ops
::
UniqueKernel
<
double
>
,
ops
::
UniqueKernel
<
int32_t
>
,
ops
::
UniqueKernel
<
int64_t
>
);
REGISTER_OP_CPU_KERNEL
(
unique
,
ops
::
UniqueKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
UniqueKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
UniqueKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int32_t
>
,
ops
::
UniqueKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
paddle/fluid/operators/unique_op.h
浏览文件 @
0a895bc0
...
...
@@ -13,12 +13,17 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <cmath>
#include <numeric>
#include <set>
#include <unordered_map>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/transpose_op.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -104,17 +109,243 @@ struct UniqueOpFunctor {
}
};
static
std
::
vector
<
framework
::
Tensor
>
Unbind
(
const
framework
::
Tensor
&
in
)
{
int64_t
size
=
in
.
dims
()[
0
];
std
::
vector
<
framework
::
Tensor
>
tensors
(
size
);
for
(
int64_t
i
=
0
;
i
<
size
;
++
i
)
{
tensors
[
i
]
=
in
.
Slice
(
i
,
i
+
1
);
}
return
tensors
;
}
template
<
typename
T
>
static
bool
Equal
(
const
framework
::
Tensor
&
a
,
const
framework
::
Tensor
&
b
)
{
if
(
a
.
numel
()
!=
b
.
numel
())
{
return
false
;
}
for
(
int64_t
i
=
0
;
i
<
a
.
numel
();
++
i
)
{
if
(
a
.
data
<
T
>
()[
i
]
!=
b
.
data
<
T
>
()[
i
])
{
return
false
;
}
}
return
true
;
}
template
<
typename
T
>
static
void
UniqueFlattendTensor
(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
&
in
,
framework
::
Tensor
*
out
,
bool
return_index
,
bool
return_inverse
,
bool
return_counts
)
{
const
T
*
in_data
=
in
.
data
<
T
>
();
std
::
set
<
T
>
unique
(
in_data
,
in_data
+
in
.
numel
());
out
->
Resize
(
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
unique
.
size
())}));
auto
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
copy
(
unique
.
begin
(),
unique
.
end
(),
out_data
);
if
(
return_index
)
{
auto
*
indices
=
context
.
Output
<
framework
::
Tensor
>
(
"Indices"
);
indices
->
Resize
(
framework
::
make_ddim
({
out
->
numel
()}));
auto
indices_data
=
indices
->
mutable_data
<
int64_t
>
(
context
.
GetPlace
());
std
::
unordered_map
<
T
,
int64_t
>
indices_map
;
indices_map
.
reserve
(
out
->
numel
());
for
(
int64_t
i
=
0
;
i
<
in
.
numel
();
++
i
)
{
if
(
indices_map
.
find
(
in_data
[
i
])
!=
indices_map
.
end
())
continue
;
indices_map
[
in_data
[
i
]]
=
i
;
}
for
(
int64_t
i
=
0
;
i
<
out
->
numel
();
++
i
)
{
indices_data
[
i
]
=
indices_map
[
out_data
[
i
]];
}
}
if
(
return_inverse
)
{
auto
*
inverse
=
context
.
Output
<
framework
::
Tensor
>
(
"Index"
);
inverse
->
Resize
(
framework
::
make_ddim
({
in
.
numel
()}));
auto
inverse_data
=
inverse
->
mutable_data
<
int64_t
>
(
context
.
GetPlace
());
std
::
unordered_map
<
T
,
int64_t
>
inverse_map
;
inverse_map
.
reserve
(
out
->
numel
());
for
(
int64_t
i
=
0
;
i
<
out
->
numel
();
++
i
)
{
inverse_map
[
out_data
[
i
]]
=
i
;
}
for
(
int64_t
i
=
0
;
i
<
in
.
numel
();
++
i
)
{
inverse_data
[
i
]
=
inverse_map
[
in_data
[
i
]];
}
}
if
(
return_counts
)
{
auto
*
count
=
context
.
Output
<
framework
::
Tensor
>
(
"Counts"
);
count
->
Resize
(
framework
::
make_ddim
({
out
->
numel
()}));
auto
count_data
=
count
->
mutable_data
<
int64_t
>
(
context
.
GetPlace
());
std
::
unordered_map
<
T
,
int64_t
>
counts_map
;
counts_map
.
reserve
(
out
->
numel
());
for
(
int64_t
i
=
0
;
i
<
out
->
numel
();
++
i
)
{
counts_map
[
out_data
[
i
]]
=
0
;
}
for
(
int64_t
i
=
0
;
i
<
in
.
numel
();
i
++
)
{
counts_map
[
in_data
[
i
]]
+=
1
;
}
for
(
int64_t
i
=
0
;
i
<
out
->
numel
();
i
++
)
{
count_data
[
i
]
=
counts_map
[
out_data
[
i
]];
}
}
}
template
<
class
ForwardIt
,
typename
T
>
static
ForwardIt
UniqueDimImpl
(
const
framework
::
ExecutionContext
&
context
,
ForwardIt
first
,
ForwardIt
last
,
const
std
::
vector
<
int64_t
>&
sorted_indices_vec
,
std
::
vector
<
int64_t
>*
inverse_vec
,
std
::
vector
<
int64_t
>*
counts_vec
,
std
::
vector
<
int64_t
>*
indices_vec
)
{
if
(
first
==
last
)
{
return
last
;
}
(
*
inverse_vec
)[
sorted_indices_vec
[
0
]]
=
0
;
(
*
counts_vec
)[
0
]
=
1
;
(
*
indices_vec
)[
0
]
=
sorted_indices_vec
[
0
];
ForwardIt
begin
=
first
;
ForwardIt
result
=
first
;
while
(
++
first
!=
last
)
{
int64_t
idx_first
=
std
::
distance
(
begin
,
first
);
int64_t
idx_result
=
std
::
distance
(
begin
,
result
);
if
(
!
Equal
<
T
>
(
*
result
,
*
first
))
{
if
(
++
result
!=
first
)
{
*
result
=
std
::
move
(
*
first
);
}
idx_result
+=
1
;
(
*
indices_vec
)[
idx_result
]
=
sorted_indices_vec
[
idx_first
];
}
(
*
inverse_vec
)[
sorted_indices_vec
[
idx_first
]]
=
idx_result
;
(
*
counts_vec
)[
idx_result
]
+=
1
;
}
return
++
result
;
}
template
<
typename
DeviceContext
,
typename
T
>
static
void
UniqueDim
(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
&
in
,
framework
::
Tensor
*
out
,
bool
return_index
,
bool
return_inverse
,
bool
return_counts
,
int
axis
)
{
// transpose tensor: eg. axis=1, [dim0, dim1, dim2] -> [dim1, dim0, dim2]
std
::
vector
<
int
>
permute
(
in
.
dims
().
size
());
std
::
iota
(
permute
.
begin
(),
permute
.
end
(),
0
);
permute
[
axis
]
=
0
;
permute
[
0
]
=
axis
;
std
::
vector
<
int64_t
>
in_trans_dims_vec
(
framework
::
vectorize
(
in
.
dims
()));
in_trans_dims_vec
[
axis
]
=
in
.
dims
()[
0
];
in_trans_dims_vec
[
0
]
=
in
.
dims
()[
axis
];
framework
::
Tensor
in_trans
;
framework
::
DDim
in_trans_dims
=
framework
::
make_ddim
(
in_trans_dims_vec
);
in_trans
.
Resize
(
in_trans_dims
);
in_trans
.
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
TransCompute
<
DeviceContext
,
T
>
(
in
.
dims
().
size
(),
dev_ctx
,
in
,
&
in_trans
,
permute
);
// reshape tensor: eg. [dim1, dim0, dim2] -> [dim1, dim0*dim2]
framework
::
DDim
in_trans_flat_dims
=
framework
::
flatten_to_2d
(
in_trans_dims
,
1
);
in_trans
.
Resize
(
in_trans_flat_dims
);
// sort indices
std
::
vector
<
int64_t
>
sorted_indices_vec
(
in_trans
.
dims
()[
0
]);
std
::
iota
(
sorted_indices_vec
.
begin
(),
sorted_indices_vec
.
end
(),
0
);
int64_t
col
=
in_trans
.
dims
()[
1
];
const
T
*
in_trans_data
=
in_trans
.
data
<
T
>
();
std
::
sort
(
sorted_indices_vec
.
begin
(),
sorted_indices_vec
.
end
(),
[
&
](
int64_t
a
,
int64_t
b
)
->
bool
{
for
(
int64_t
i
=
0
;
i
<
col
;
++
i
)
{
T
lhs
=
in_trans_data
[
i
+
a
*
col
];
T
rhs
=
in_trans_data
[
i
+
b
*
col
];
if
(
lhs
<
rhs
)
{
return
true
;
}
else
if
(
lhs
>
rhs
)
{
return
false
;
}
}
return
false
;
});
// sort tensor according to indices
framework
::
Tensor
input_sorted
;
input_sorted
.
Resize
(
in_trans_dims
);
input_sorted
.
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
input_sorted_data
=
input_sorted
.
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
sorted_indices_vec
.
size
();
++
i
)
{
memcpy
(
input_sorted_data
+
i
*
col
,
in_trans_data
+
sorted_indices_vec
[
i
]
*
col
,
col
*
sizeof
(
T
));
}
std
::
vector
<
framework
::
Tensor
>
input_unbind
=
Unbind
(
input_sorted
);
std
::
vector
<
int64_t
>
inverse_vec
(
sorted_indices_vec
.
size
(),
0
);
std
::
vector
<
int64_t
>
counts_vec
(
sorted_indices_vec
.
size
(),
0
);
std
::
vector
<
int64_t
>
indices_vec
(
sorted_indices_vec
.
size
(),
0
);
auto
last
=
UniqueDimImpl
<
std
::
vector
<
framework
::
Tensor
>::
iterator
,
T
>
(
context
,
input_unbind
.
begin
(),
input_unbind
.
end
(),
sorted_indices_vec
,
&
inverse_vec
,
&
counts_vec
,
&
indices_vec
);
input_unbind
.
erase
(
last
,
input_unbind
.
end
());
counts_vec
.
erase
(
counts_vec
.
begin
()
+
input_unbind
.
size
(),
counts_vec
.
end
());
indices_vec
.
erase
(
indices_vec
.
begin
()
+
input_unbind
.
size
(),
indices_vec
.
end
());
math
::
ConcatFunctor
<
DeviceContext
,
T
>
concat_functor
;
framework
::
Tensor
out_trans
;
std
::
vector
<
int64_t
>
out_trans_dims_vec
=
in_trans_dims_vec
;
out_trans_dims_vec
[
0
]
=
input_unbind
.
size
();
out_trans
.
Resize
(
framework
::
make_ddim
(
out_trans_dims_vec
));
out_trans
.
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
swap
(
out_trans_dims_vec
[
0
],
out_trans_dims_vec
[
axis
]);
out
->
Resize
(
framework
::
make_ddim
(
out_trans_dims_vec
));
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
concat_functor
(
dev_ctx
,
input_unbind
,
0
,
&
out_trans
);
TransCompute
<
DeviceContext
,
T
>
(
out_trans
.
dims
().
size
(),
dev_ctx
,
out_trans
,
out
,
permute
);
if
(
return_inverse
)
{
auto
*
inverse
=
context
.
Output
<
framework
::
Tensor
>
(
"Index"
);
framework
::
TensorFromVector
(
inverse_vec
,
context
.
device_context
(),
inverse
);
}
if
(
return_counts
)
{
auto
*
count
=
context
.
Output
<
framework
::
Tensor
>
(
"Counts"
);
framework
::
TensorFromVector
(
counts_vec
,
context
.
device_context
(),
count
);
}
if
(
return_index
)
{
auto
*
indices
=
context
.
Output
<
framework
::
Tensor
>
(
"Indices"
);
framework
::
TensorFromVector
(
indices_vec
,
context
.
device_context
(),
indices
);
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
UniqueKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
data_type
=
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
context
.
Attr
<
int
>
(
"dtype"
));
auto
*
x
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
index
=
context
.
Output
<
framework
::
Tensor
>
(
"Index"
);
if
(
!
context
.
Attr
<
bool
>
(
"is_sorted"
))
{
auto
data_type
=
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
context
.
Attr
<
int
>
(
"dtype"
));
auto
*
index
=
context
.
Output
<
framework
::
Tensor
>
(
"Index"
);
framework
::
VisitDataType
(
data_type
,
UniqueOpFunctor
<
T
>
(
out
,
index
,
x
));
return
;
}
framework
::
VisitDataType
(
data_type
,
UniqueOpFunctor
<
T
>
(
out
,
index
,
x
));
std
::
vector
<
int
>
axis_vec
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"axis"
);
bool
return_index
=
context
.
Attr
<
bool
>
(
"return_index"
);
bool
return_inverse
=
context
.
Attr
<
bool
>
(
"return_inverse"
);
bool
return_counts
=
context
.
Attr
<
bool
>
(
"return_counts"
);
if
(
axis_vec
.
empty
())
{
UniqueFlattendTensor
<
T
>
(
context
,
*
x
,
out
,
return_index
,
return_inverse
,
return_counts
);
}
else
{
int
axis
=
axis_vec
[
0
];
UniqueDim
<
DeviceContext
,
T
>
(
context
,
*
x
,
out
,
return_index
,
return_inverse
,
return_counts
,
axis
);
}
}
};
...
...
paddle/fluid/pybind/op_function_generator.cc
浏览文件 @
0a895bc0
...
...
@@ -62,6 +62,7 @@ std::map<std::string, std::set<std::string>> op_outs_map = {
{
"sync_batch_norm"
,
{
"Y"
,
"MeanOut"
,
"VarianceOut"
,
"SavedMean"
,
"SavedVariance"
,
"ReserveSpace"
}},
{
"unique"
,
{
"Out"
,
"Index"
,
"Indices"
,
"Counts"
}},
};
// NOTE(zhiqiu): Commonly, the outputs in auto-generated OP function are
...
...
python/paddle/fluid/tests/unittests/test_unique.py
浏览文件 @
0a895bc0
...
...
@@ -17,6 +17,7 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
...
...
@@ -125,5 +126,164 @@ class TestRandomGPU(TestUniqueOp):
self
.
check_output_with_place
(
place
,
atol
=
1e-5
)
class
TestSortedUniqueOp
(
TestUniqueOp
):
def
init_config
(
self
):
self
.
inputs
=
{
'X'
:
np
.
array
([
2
,
3
,
3
,
1
,
5
,
3
],
dtype
=
'int64'
)}
unique
,
indices
,
inverse
,
count
=
np
.
unique
(
self
.
inputs
[
'X'
],
return_index
=
True
,
return_inverse
=
True
,
return_counts
=
True
,
axis
=
None
)
self
.
attrs
=
{
'dtype'
:
int
(
core
.
VarDesc
.
VarType
.
INT32
),
"return_index"
:
True
,
"return_inverse"
:
True
,
"return_counts"
:
True
,
"axis"
:
None
,
"is_sorted"
:
True
}
self
.
outputs
=
{
'Out'
:
unique
,
'Indices'
:
indices
,
"Index"
:
inverse
,
"Counts"
:
count
,
}
class
TestUniqueOpAxisNone
(
TestUniqueOp
):
def
init_config
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
4
,
7
,
10
)).
astype
(
'float64'
)}
unique
,
indices
,
inverse
,
counts
=
np
.
unique
(
self
.
inputs
[
'X'
],
return_index
=
True
,
return_inverse
=
True
,
return_counts
=
True
,
axis
=
None
)
self
.
attrs
=
{
'dtype'
:
int
(
core
.
VarDesc
.
VarType
.
INT32
),
"return_index"
:
True
,
"return_inverse"
:
True
,
"return_counts"
:
True
,
"axis"
:
None
,
"is_sorted"
:
True
}
self
.
outputs
=
{
'Out'
:
unique
,
'Indices'
:
indices
,
"Index"
:
inverse
,
"Counts"
:
counts
,
}
class
TestUniqueOpAxis1
(
TestUniqueOp
):
def
init_config
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
3
,
8
,
8
)).
astype
(
'float64'
)}
unique
,
indices
,
inverse
,
counts
=
np
.
unique
(
self
.
inputs
[
'X'
],
return_index
=
True
,
return_inverse
=
True
,
return_counts
=
True
,
axis
=
1
)
self
.
attrs
=
{
'dtype'
:
int
(
core
.
VarDesc
.
VarType
.
INT32
),
"return_index"
:
True
,
"return_inverse"
:
True
,
"return_counts"
:
True
,
"axis"
:
[
1
],
"is_sorted"
:
True
}
self
.
outputs
=
{
'Out'
:
unique
,
'Indices'
:
indices
,
"Index"
:
inverse
,
"Counts"
:
counts
,
}
class
TestUniqueAPI
(
unittest
.
TestCase
):
def
test_dygraph_api_out
(
self
):
paddle
.
disable_static
()
x_data
=
x_data
=
np
.
random
.
randint
(
0
,
10
,
(
120
))
x
=
paddle
.
to_tensor
(
x_data
)
out
=
paddle
.
unique
(
x
)
expected_out
=
np
.
unique
(
x_data
)
self
.
assertTrue
((
out
.
numpy
()
==
expected_out
).
all
(),
True
)
paddle
.
enable_static
()
def
test_dygraph_api_attr
(
self
):
paddle
.
disable_static
()
x_data
=
np
.
random
.
random
((
3
,
5
,
5
)).
astype
(
"float32"
)
x
=
paddle
.
to_tensor
(
x_data
)
out
,
index
,
inverse
,
counts
=
paddle
.
unique
(
x
,
return_index
=
True
,
return_inverse
=
True
,
return_counts
=
True
,
axis
=
0
)
np_out
,
np_index
,
np_inverse
,
np_counts
=
np
.
unique
(
x_data
,
return_index
=
True
,
return_inverse
=
True
,
return_counts
=
True
,
axis
=
0
)
self
.
assertTrue
((
out
.
numpy
()
==
np_out
).
all
(),
True
)
self
.
assertTrue
((
index
.
numpy
()
==
np_index
).
all
(),
True
)
self
.
assertTrue
((
inverse
.
numpy
()
==
np_inverse
).
all
(),
True
)
self
.
assertTrue
((
counts
.
numpy
()
==
np_counts
).
all
(),
True
)
paddle
.
enable_static
()
def
test_static_graph
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
(),
paddle
.
static
.
Program
()):
x
=
paddle
.
data
(
name
=
'x'
,
shape
=
[
3
,
2
],
dtype
=
'float64'
)
unique
,
inverse
,
counts
=
paddle
.
unique
(
x
,
return_inverse
=
True
,
return_counts
=
True
,
axis
=
0
)
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
x_np
=
np
.
array
([[
1
,
2
],
[
3
,
4
],
[
1
,
2
]]).
astype
(
'float64'
)
result
=
exe
.
run
(
feed
=
{
"x"
:
x_np
},
fetch_list
=
[
unique
,
inverse
,
counts
])
np_unique
,
np_inverse
,
np_counts
=
np
.
unique
(
x_np
,
return_inverse
=
True
,
return_counts
=
True
,
axis
=
0
)
self
.
assertTrue
(
np
.
allclose
(
result
[
0
],
np_unique
))
self
.
assertTrue
(
np
.
allclose
(
result
[
1
],
np_inverse
))
self
.
assertTrue
(
np
.
allclose
(
result
[
2
],
np_counts
))
class
TestUniqueError
(
unittest
.
TestCase
):
def
test_input_dtype
(
self
):
def
test_x_dtype
():
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
(),
paddle
.
static
.
Program
()):
x
=
paddle
.
data
(
name
=
'x'
,
shape
=
[
10
,
10
],
dtype
=
'float16'
)
result
=
paddle
.
unique
(
x
)
self
.
assertRaises
(
TypeError
,
test_x_dtype
)
def
test_attr
(
self
):
x
=
paddle
.
data
(
name
=
'x'
,
shape
=
[
10
,
10
],
dtype
=
'float64'
)
def
test_return_index
():
result
=
paddle
.
unique
(
x
,
return_index
=
0
)
self
.
assertRaises
(
TypeError
,
test_return_index
)
def
test_return_inverse
():
result
=
paddle
.
unique
(
x
,
return_inverse
=
's'
)
self
.
assertRaises
(
TypeError
,
test_return_inverse
)
def
test_return_counts
():
result
=
paddle
.
unique
(
x
,
return_counts
=
3
)
self
.
assertRaises
(
TypeError
,
test_return_counts
)
def
test_axis
():
result
=
paddle
.
unique
(
x
,
axis
=
'12'
)
self
.
assertRaises
(
TypeError
,
test_axis
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/tensor/manipulation.py
浏览文件 @
0a895bc0
...
...
@@ -27,7 +27,6 @@ from ..fluid.layers import expand_as #DEFINE_ALIAS
from
..fluid.layers
import
slice
#DEFINE_ALIAS
from
..fluid.layers
import
strided_slice
#DEFINE_ALIAS
from
..fluid.layers
import
transpose
#DEFINE_ALIAS
from
..fluid.layers
import
unique
#DEFINE_ALIAS
from
..fluid.layers
import
unstack
#DEFINE_ALIAS
from
..fluid.layers
import
scatter_nd_add
#DEFINE_ALIAS
...
...
@@ -608,6 +607,126 @@ def squeeze(x, axis=None, name=None):
return
layers
.
squeeze
(
x
,
axis
,
name
)
def
unique
(
x
,
return_index
=
False
,
return_inverse
=
False
,
return_counts
=
False
,
axis
=
None
,
name
=
None
):
"""
Returns the unique elements of `x` in ascending order.
Args:
x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
return_index(bool, optional): If True, also return the indices of the input tensor that
result in the unique Tensor.
return_inverse(bool, optional): If True, also return the indices for where elements in
the original input ended up in the returned unique tensor.
return_counts(bool, optional): If True, also return the counts for each unique element.
axis(int, optional): The axis to apply unique. If None, the input will be flattened.
Default: None.
name(str, optional): Name for the operation. For more information, please refer to
:ref:`api_guide_Name`. Default: None.
Returns:
tuple: (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is
\
provided only if `return_index` is True. `inverse` is provided only if `return_inverse`
\
is True. `counts` is provided only if `return_counts` is True.
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x_data = np.array([2, 3, 3, 1, 5, 3])
x = paddle.to_tensor(x_data)
unique = paddle.unique(x)
np_unique = unique.numpy() # [1 2 3 5]
_, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
np_indices = indices.numpy() # [3 0 1 4]
np_inverse = inverse.numpy() # [1 2 2 0 3 2]
np_counts = counts.numpy() # [1 1 3 1]
x_data = np.array([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
unique = paddle.unique(x)
np_unique = unique.numpy() # [0 1 2 3]
unique = paddle.unique(x, axis=0)
np_unique = unique.numpy()
# [[2 1 3]
# [3 0 1]]
"""
if
axis
is
None
:
axis
=
[]
else
:
axis
=
[
axis
]
if
in_dygraph_mode
():
out
,
inverse
,
indices
,
counts
=
core
.
ops
.
unique
(
x
,
'dtype'
,
convert_np_dtype_to_dtype_
(
'int32'
),
'return_index'
,
return_index
,
'return_inverse'
,
return_inverse
,
'return_counts'
,
return_counts
,
'axis'
,
axis
,
"is_sorted"
,
True
)
outs
=
[
out
]
if
return_index
:
outs
.
append
(
indices
)
if
return_inverse
:
outs
.
append
(
inverse
)
if
return_counts
:
outs
.
append
(
counts
)
if
len
(
outs
)
==
1
:
return
outs
[
0
]
return
tuple
(
outs
)
check_variable_and_dtype
(
x
,
"input"
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'unique'
)
check_type
(
return_index
,
'return_index'
,
bool
,
'unique'
)
check_type
(
return_inverse
,
'return_inverse'
,
bool
,
'unique'
)
check_type
(
return_counts
,
'return_counts'
,
bool
,
'unique'
)
if
len
(
axis
)
!=
0
:
check_type
(
axis
[
0
],
'axis'
,
int
,
'unique'
)
helper
=
LayerHelper
(
'unique'
,
**
locals
())
attrs
=
{
'dtype'
:
int
(
core
.
VarDesc
.
VarType
.
INT32
),
"return_index"
:
return_index
,
"return_inverse"
:
return_inverse
,
"return_counts"
:
return_counts
,
"axis"
:
axis
,
"is_sorted"
:
True
}
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
,
stop_gradient
=
True
)
inverse
=
helper
.
create_variable_for_type_inference
(
dtype
=
core
.
VarDesc
.
VarType
.
INT64
,
stop_gradient
=
True
)
outputs
=
{
"Out"
:
out
,
"Index"
:
inverse
}
outs
=
[
out
]
if
return_index
:
indices
=
helper
.
create_variable_for_type_inference
(
dtype
=
core
.
VarDesc
.
VarType
.
INT64
,
stop_gradient
=
True
)
outputs
[
"Indices"
]
=
indices
outs
.
append
(
indices
)
if
return_inverse
:
outs
.
append
(
inverse
)
if
return_counts
:
counts
=
helper
.
create_variable_for_type_inference
(
dtype
=
core
.
VarDesc
.
VarType
.
INT64
,
stop_gradient
=
True
)
outputs
[
"Counts"
]
=
counts
outs
.
append
(
counts
)
helper
.
append_op
(
type
=
"unique"
,
inputs
=
{
"X"
:
x
},
attrs
=
attrs
,
outputs
=
outputs
)
if
len
(
outs
)
==
1
:
return
outs
[
0
]
return
tuple
(
outs
)
def
unsqueeze
(
x
,
axis
,
name
=
None
):
"""
:alias_main: paddle.unsqueeze
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录