manipulation.py 184.1 KB
Newer Older
L
Ligoml 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
# TODO: define functions to manipulate a tensor

myq406450149's avatar
myq406450149 已提交
17
import numpy as np
18

19
import paddle
20
from paddle import _C_ops
21
from paddle.tensor import fill_constant
22
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only
23 24 25 26 27 28 29

from ..fluid.data_feeder import (
    check_dtype,
    check_type,
    check_variable_and_dtype,
    convert_dtype,
)
30
from ..fluid.framework import Variable
31 32 33 34 35
from ..framework import (
    LayerHelper,
    convert_np_dtype_to_dtype_,
    core,
    dygraph_only,
36
    in_dynamic_mode,
37 38
)
from .creation import _complex_to_real_dtype, _real_to_complex_dtype, zeros
39

40 41
__all__ = []

W
Wilber 已提交
42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
def tensor_array_to_tensor(input, axis=1, use_stack=False, name=None):
    r"""
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]

    Args:
        input(TensorArray): A TensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Tensor: The concatenated or stacked tensor variable.
        Tensor: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.

    Examples:
        .. code-block:: python

            import numpy
            import paddle
            x0 = paddle.assign(numpy.random.rand(2, 2).astype("float32"))
            x1 = paddle.assign(numpy.random.rand(2, 2).astype("float32"))
            i = paddle.full(shape=[1], dtype="int64", fill_value=0)
            array = paddle.tensor.array.create_array(dtype='float32')
            paddle.tensor.array.array_write(x0, i, array)
            paddle.tensor.array.array_write(x1, i + 1, array)
            output, output_index = paddle.tensor.manipulation.tensor_array_to_tensor(input=array)
    """
123
    if in_dynamic_mode():
124 125 126 127 128 129 130
        assert isinstance(
            input, list
        ), "The 'input' in tensor_array_to_tensor must be list"
        from paddle import concat, stack

        op = stack if use_stack else concat
        res = op(input, axis=axis)
131
        sizes = paddle.to_tensor(np.array([int(x.shape[axis]) for x in input]))
132
        return res, sizes
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    else:
        check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
        if isinstance(input, list):
            for i, input_x in enumerate(input):
                check_type(
                    input_x,
                    'input[' + str(i) + ']',
                    Variable,
                    'tensor_array_to_tensor',
                )
        helper = LayerHelper('tensor_array_to_tensor', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input},
            outputs={'Out': [out], 'OutIndex': [out_index]},
            attrs={'axis': axis, 'use_stack': use_stack},
        )
        return out, out_index
155 156


157 158 159
def cast(x, dtype):
    """

160
    Take in the Tensor :attr:`x` with :attr:`x.dtype` and cast it
161 162 163 164
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.

    Args:
165
        x (Tensor): An input N-D Tensor with data type bool, float16,
166
            float32, float64, int32, int64, uint8.
167
        dtype (np.dtype|str): Data type of the output:
168 169 170
            bool, float16, float32, float64, int8, int32, int64, uint8.

    Returns:
L
Ligoml 已提交
171
        Tensor, A Tensor with the same shape as input's.
172 173 174 175 176 177 178 179 180

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
    """
X
xiongkun 已提交
181 182
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
183
    if in_dynamic_mode():
184
        return _C_ops.cast(x, dtype)
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    else:
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'uint8',
                'uint16',
            ],
            'cast',
        )
        check_dtype(
            dtype,
            'dtype',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int8',
                'int16',
                'int32',
                'int64',
                'uint8',
                'uint16',
            ],
            'cast',
        )
219

220 221 222 223 224 225 226 227 228 229
        helper = LayerHelper('cast', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=dtype, stop_gradient=x.stop_gradient
        )
        helper.append_op(
            type='cast',
            inputs={'X': [x]},
            outputs={'Out': [out]},
            attrs={'in_dtype': x.dtype, 'out_dtype': out.dtype},
        )
230 231 232
        return out


233 234 235 236 237 238 239 240 241 242 243 244
@inplace_apis_in_dygraph_only
def cast_(x, dtype):
    """
    Inplace version of ``cast`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_cast`.
    """
    if in_dynamic_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        return _C_ops.cast_(x, dtype)


245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
def slice(input, axes, starts, ends):
    """
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
    Following examples will explain how slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
            Then:
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
279

280 281 282
    Args:
        input (Tensor): A ``Tensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to .
283 284
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, each element of
                it should be integer or 0-D int Tensor with shape []. If ``starts`` is an Tensor, it should be an 1-D Tensor.
285
                It represents starting indices of corresponding axis in ``axes``.
286 287
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, each element of
                it should be integer or 0-D int Tensor with shape []. If ``ends`` is an Tensor, it should be an 1-D Tensor .
288 289 290
                It represents ending indices of corresponding axis in ``axes``.

    Returns:
L
Ligoml 已提交
291
        Tensor, A ``Tensor``. The data type is same as ``input``.
292 293 294 295 296 297 298 299 300 301 302 303 304

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 5, 6], dtype='float32')
            # example 1:
            # attr starts is a list which doesn't contain tensor.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = paddle.slice(input, axes=axes, starts=starts, ends=ends)
Z
zyfncg 已提交
305
            # sliced_1 is input[1:3, 0:2, 2:4].
306 307 308 309 310

            # example 2:
            # attr starts is a list which contain tensor.
            minus_3 = paddle.full([1], -3, "int32")
            sliced_2 = paddle.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
Z
zyfncg 已提交
311
            # sliced_2 is input[1:3, 0:2, 2:4].
312
    """
313
    if in_dynamic_mode():
314 315 316 317 318 319 320 321
        attrs = ()
        starts_tensor = None
        ends_tensor = None

        if isinstance(axes, (list, tuple)):
            axes = list(axes)
            if len(axes) == 0:
                raise ValueError(
322 323
                    "Input axes should not be an empty list/tuple."
                )
324 325 326 327 328 329 330 331
            for i in range(len(axes)):
                if axes[i] < 0:
                    axes[i] = max(0, axes[i] + len(input.shape))
                else:
                    axes[i] = min(len(input.shape) - 1, axes[i])

        else:
            raise ValueError(
332 333 334 335
                "Input axes must be a python list or tuple, but reveived {}".format(
                    type(axes)
                )
            )
336

337
        infer_flags = [1 for i in range(len(axes))]
338 339 340

        if isinstance(starts, (list, tuple)):
            starts = [
W
wanghuancoder 已提交
341
                item.item(0) if isinstance(item, core.eager.Tensor) else item
342 343
                for item in starts
            ]
W
wanghuancoder 已提交
344
        elif isinstance(starts, core.eager.Tensor):
345
            tensor_t = starts.numpy(False)
346
            starts = list(tensor_t)
347
            infer_flags = [-1 for i in range(len(axes))]
348 349 350

        if isinstance(ends, (list, tuple)):
            ends = [
W
wanghuancoder 已提交
351
                item.item(0) if isinstance(item, core.eager.Tensor) else item
352
                for item in ends
353
            ]
W
wanghuancoder 已提交
354
        elif isinstance(ends, core.eager.Tensor):
355
            tensor_t = ends.numpy(False)
356
            ends = list(tensor_t)
357
            infer_flags = [-1 for i in range(len(axes))]
358

359
        return _C_ops.slice(input, axes, starts, ends, infer_flags, [])
360
    else:
361 362 363 364 365 366 367 368
        if not isinstance(starts, (list, tuple, Variable)):
            raise ValueError(
                "Input starts must be an Variable, python list or tuple."
            )
        if not isinstance(ends, (list, tuple, Variable)):
            raise ValueError(
                "Input ends must be an Variable, python list or tuple."
            )
369

370 371 372 373
        helper = LayerHelper('slice', **locals())

        inputs = {'Input': input}
        attrs = {'axes': axes}
374
        infer_flags = [1 for i in range(len(axes))]
375 376 377 378 379

        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
380
            infer_flags = [-1 for i in range(len(axes))]
381 382
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
383 384 385 386
            if paddle.utils._contain_var(starts):
                inputs[
                    'StartsTensorList'
                ] = paddle.utils._convert_to_tensor_list(starts)
387 388 389 390 391 392 393 394
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
            else:
                attrs['starts'] = starts
395

396 397 398 399
        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
400
            infer_flags = [-1 for i in range(len(axes))]
401 402
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
403 404 405 406
            if paddle.utils._contain_var(ends):
                inputs['EndsTensorList'] = paddle.utils._convert_to_tensor_list(
                    ends
                )
407 408 409 410 411 412 413 414
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
            else:
                attrs['ends'] = ends
415

416 417 418 419
        # infer_flags
        attrs['infer_flags'] = infer_flags
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('input')
420
        )
421 422
        helper.append_op(
            type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out}
423
        )
424

425
        return out
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440


def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
L
Ligoml 已提交
441
        Tensor, A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
478
    if in_dynamic_mode():
479
        return _C_ops.transpose(x, perm)
480
    else:
481 482 483 484 485 486 487 488 489 490
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
491
                'uint16',
492 493 494 495
                'complex64',
                'complex128',
            ],
            'transpose',
496
        )
497 498 499 500
        check_type(perm, 'perm', (list, tuple), 'transpose')
        if isinstance(perm, tuple):
            perm = list(perm)
        if len(perm) != len(x.shape):
501
            raise ValueError(
502 503
                "Input(perm) is the permutation of dimensions of Input(x), "
                "its length should be equal to dimensions of Input(x), "
504 505 506 507
                "but received dimension of Input(x) is {}, "
                "the length of Input(perm) is {}.".format(
                    len(x.shape), len(perm)
                )
508
            )
509 510 511 512 513 514 515
        for idx, dim in enumerate(perm):
            if dim >= len(x.shape):
                raise ValueError(
                    "Each element in Input(perm) should be less than Input(x)'s dimension, "
                    "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                    "dimension %d." % (idx, perm[idx], len(x.shape))
                )
516

517 518 519 520 521 522 523 524 525 526
        helper = LayerHelper('transpose', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='transpose2',
            inputs={'X': [x]},
            outputs={'Out': [out], 'XShape': [x_shape]},
            attrs={'axis': perm},
        )
        return out
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543


def unstack(x, axis=0, num=None):
    """
    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.

    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised.

    Args:
        x (Tensor): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.

    Returns:
L
Ligoml 已提交
544
        list(Tensor), The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.
545 546 547 548 549 550 551 552 553

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.ones(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = paddle.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]

    """
554 555 556 557
    if not (-x.ndim <= axis < x.ndim):
        raise ValueError(
            '`axis` must be in the range [-{0}, {0})'.format(x.ndim)
        )
W
wanghuancoder 已提交
558 559
    if num is not None and (num < 0 or num > x.shape[axis]):
        raise ValueError(f'`num` must be in the range [0, {x.shape[axis]})')
560
    if in_dynamic_mode():
561
        if num is None:
562 563 564
            num = x.shape[axis]
        if num == 0:
            return []
565
        return _C_ops.unstack(x, axis, num)
566 567
    else:
        helper = LayerHelper('unstack', **locals())
568
        if num is None:
569 570 571 572
            if axis is None or x.shape[axis] <= 0:
                raise ValueError('unknown unstack number')
            else:
                num = x.shape[axis]
573

574 575 576
        outs = []
        for _ in range(num):
            outs.append(helper.create_variable_for_type_inference(x.dtype))
577

578 579 580 581 582 583 584
        helper.append_op(
            type='unstack',
            inputs={'X': [x]},
            outputs={'Y': outs},
            attrs={'axis': axis, 'num': num},
        )
        return outs
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    Reset the values of `input` according to the shard it beloning to.
    Every value in `input` must be a non-negative integer, and
    the parameter `index_num` represents the integer above the maximum
    value of `input`. Thus, all values in `input` must be in the range
    [0, index_num) and each value can be regarded as the offset to the beginning
    of the range. The range is further split into multiple shards. Specifically,
    we first compute the `shard_size` according to the following formula,
    which represents the number of integers each shard can hold. So for the
    i'th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size).
    ::

        shard_size = (index_num + nshards - 1) // nshards

    For each value `v` in `input`, we reset it to a new value according to the
    following formula:
    ::
605

606 607 608 609 610 611 612 613 614 615
        v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value

    That is, the value `v` is set to the new offset within the range represented by the shard `shard_id`
    if it in the range. Otherwise, we reset it to be `ignore_value`.

    Args:
        input (Tensor): Input tensor with data type int64 or int32. It's last dimension must be 1.
        index_num (int): An integer represents the integer above the maximum value of `input`.
        nshards (int): The number of shards.
        shard_id (int): The index of the current shard.
L
LoneRanger 已提交
616
        ignore_value (int, optional): An integer value out of sharded index range. The default value is -1.
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632

    Returns:
        Tensor.

    Examples:
        .. code-block:: python

            import paddle
            label = paddle.to_tensor([[16], [1]], "int64")
            shard_label = paddle.shard_index(input=label,
                                             index_num=20,
                                             nshards=2,
                                             shard_id=0)
            print(shard_label)
            # [[-1], [1]]
    """
633
    if in_dynamic_mode():
634 635 636
        return _C_ops.shard_index(
            input, index_num, nshards, shard_id, ignore_value
        )
637 638 639 640 641

    check_variable_and_dtype(input, 'input', ['int64', 'int32'], 'shard_index')
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
642 643 644
        raise ValueError(
            'The shard_id(%d) should be in [0, %d)' % (shard_id, nshards)
        )
645 646

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
647 648 649 650 651 652 653 654 655 656 657 658
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value,
        },
        stop_gradient=True,
    )
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
    return out


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1 (input is a 2-D Tensor):
            Input:
                X.shape = [3, 5]
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
                shape = [2, 2, -1]
                offsets = [0, 0, 1]
            Output:
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]

    Parameters:
        x (Tensor): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
702
        shape (list|tuple|Tensor, optional): The output shape is specified
703 704 705 706 707 708 709 710 711 712 713
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
            the same as the dimension size of `x`. If a Tensor, it should be a 1-D Tensor.
            When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
            must be the same as the dimension size of `x`. If a Tensor, it should be a 1-D
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
714
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
715 716

    Returns:
L
Ligoml 已提交
717
        Tensor, The cropped Tensor has same data type with `x`.
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747

    Examples:

        .. code-block:: python

            import paddle
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
            # x.shape = [3, 3]
            # x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

            # shape can be a 1-D Tensor or list or tuple.
            shape = paddle.to_tensor([2, 2], dtype='int32')
            # shape = [2, 2]
            # shape = (2, 2)
            out = paddle.crop(x, shape)
            # out.shape = [2, 2]
            # out = [[1,2], [4,5]]

            # offsets can be a 1-D Tensor or list or tuple.
            offsets = paddle.to_tensor([0, 1], dtype='int32')
            # offsets = [1, 0]
            # offsets = (1, 1)
            out = paddle.crop(x, shape, offsets)
            # out.shape = [2, 2]
            # if offsets = [0, 0], out = [[1,2], [4,5]]
            # if offsets = [0, 1], out = [[2,3], [5,6]]
            # if offsets = [1, 0], out = [[4,5], [7,8]]
            # if offsets = [1, 1], out = [[5,6], [8,9]]

    """
748

749
    helper = LayerHelper('crop_tensor', **locals())
750 751 752 753 754 755 756 757 758
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'crop_tensor'
    )
    check_type(
        shape, 'shape', (list, tuple, Variable, type(None)), 'crop_tensor'
    )
    check_type(
        offsets, 'offsets', (list, tuple, Variable, type(None)), 'crop_tensor'
    )
759 760 761 762

    if offsets is None:
        offsets = [0] * len(x.shape)

P
PuQing 已提交
763 764 765
    if shape is None:
        shape = x.shape

766
    if in_dynamic_mode():
767
        return _C_ops.crop(x, shape, offsets)
768

769 770 771 772 773 774 775 776
    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
777 778
                % type(shape_val)
            )
779 780 781
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
782 783
                % str(shape_val)
            )
784 785 786
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
787 788
                % str(shape_val)
            )
789 790 791 792 793

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
794 795
                % type(offset_val)
            )
796 797 798
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
799 800
                % str(offset_val)
            )
801 802 803 804 805

    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
        attrs['offsets'] = [-1] * len(x.shape)
806
    elif paddle.utils._contain_var(offsets):
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
        new_offsets_tensor = []
        offsets_attr = []
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
                offsets_attr.append(-1)
            else:
                _attr_offsets_check(dim)
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
                offsets_attr.append(dim)
        ipts['OffsetsTensor'] = new_offsets_tensor
        attrs['offsets'] = offsets_attr
    else:
        for offset in offsets:
            _attr_offsets_check(offset)
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
830
    elif paddle.utils._contain_var(shape):
831 832 833 834 835 836 837 838 839 840
        new_shape_tensor = []
        shape_attr = []
        for dim_size in shape:
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
                shape_attr.append(0)
            else:
                _attr_shape_check(dim_size)
                temp_out = helper.create_variable_for_type_inference('int32')
841 842 843
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
844 845 846 847 848 849 850 851 852
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
        for dim_size in shape:
            _attr_shape_check(dim_size)
        attrs['shape'] = shape

853 854 855 856 857 858
    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs,
    )
859 860 861
    return out


862 863 864 865 866 867 868 869 870
@dygraph_only
def fill_(x, value):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with value inplace.

    Args:
871 872
        x (Tensor): ``x`` is the Tensor we want to filled data inplace
        value (Scale): ``value`` is the value to be filled in x
873 874

    Returns:
L
Ligoml 已提交
875
        x(Tensor), Tensor x filled with value inplace
876 877 878 879 880 881 882 883 884 885 886 887 888 889

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.fill_(0)
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
    if not isinstance(value, (float, int)):
        raise TypeError(
890 891 892
            "The type of 'value'  must be int or float, but received %s."
            % (type(value))
        )
893
    return _C_ops.fill_(x, value)
894 895 896 897 898 899 900 901 902 903 904


@dygraph_only
def zero_(x):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with zero inplace.

    Args:
905
        x (Tensor): ``x`` is the Tensor we want to filled with zero inplace
906 907

    Returns:
L
Ligoml 已提交
908
        x (Tensor), Tensor x filled with zero inplace
909 910 911 912 913 914 915 916 917 918 919 920

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.zero_()
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
921
    return _C_ops.fill_(x, 0.0)
922 923


924 925 926
@dygraph_only
def fill_diagonal_(x, value, offset=0, wrap=False, name=None):
    """
927 928
    Note:
        This API is ONLY available in Dygraph mode.
929

930
    This function fill the value into the x Tensor's diagonal inplace.
931

932 933 934 935 936 937
    Args:
        x(Tensor): ``x`` is the original Tensor
        value(Scale): ``value`` is the value to filled in x
        offset(int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        wrap(bool,optional): the diagonal 'wrapped' after N columns for tall matrices.
        name(str,optional): Name for the operation (optional, default is None)
938

939
    Returns:
L
Ligoml 已提交
940
        Tensor, Tensor with diagonal filled with value.
941

942 943 944 945 946 947 948
    Examples:
        .. code-block:: python
            import paddle
            x = paddle.ones((4, 3)) * 2
            x.fill_diagonal_(1.0)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]
    """
949
    if in_dynamic_mode():
950
        if len(x.shape) == 2:
951 952
            return _C_ops.fill_diagonal_(x, value, offset, wrap)
        return _C_ops.fill_diagonal_(x, value, offset, True)
Z
zhiboniu 已提交
953

954

955 956
def _fill_diagonal_tensor_impl(x, y, offset=0, dim1=0, dim2=1, inplace=False):
    inshape = x.shape
957 958 959 960 961 962 963
    assert dim1 < len(inshape) and dim1 >= -len(
        inshape
    ), 'dim1 should between [-rank,rank) in fill_diagonal_tensor_'
    assert dim2 < len(inshape) and dim2 >= -len(
        inshape
    ), 'dim2 should between [-rank,rank) in fill_diagonal_tensor_'
    assert len(inshape) >= 2, 'Tensor dims should >= 2 in fill_diagonal_tensor_'
964 965 966 967 968 969 970
    dim1 %= len(inshape)
    dim2 %= len(inshape)

    predshape = []
    for i in range(len(inshape)):
        if i != dim1 and i != dim2:
            predshape.append(inshape[i])
971 972 973 974
    diaglen = min(
        min(inshape[dim1], inshape[dim1] + offset),
        min(inshape[dim2], inshape[dim2] - offset),
    )
975
    predshape.append(diaglen)
976
    assert tuple(predshape) == tuple(
977
        y.shape
978
    ), f"the y shape should be {predshape}"
979 980 981 982
    if len(y.shape) == 1:
        y = y.reshape([1, -1])

    if inplace:
983 984
        return _C_ops.fill_diagonal_tensor_(x, y, offset, dim1, dim2)
    return _C_ops.fill_diagonal_tensor(x, y, offset, dim1, dim2)
985 986 987 988


def fill_diagonal_tensor_(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
989 990
    Note:
        This API is ONLY available in Dygraph mode.
991 992 993 994

    This function fill the source Tensor y into the x Tensor's diagonal inplace.

    Args:
995 996 997 998 999 1000
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1001 1002

    Returns:
L
Ligoml 已提交
1003
        Tensor, Tensor with diagonal filled with y.
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            x.fill_diagonal_tensor_(y)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
1016 1017 1018
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=True
    )
1019 1020 1021 1022 1023 1024 1025


def fill_diagonal_tensor(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
    This function fill the source Tensor y into the x Tensor's diagonal.

    Args:
1026 1027 1028 1029 1030 1031
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1032 1033

    Returns:
L
Ligoml 已提交
1034
        Tensor, Tensor with diagonal filled with y.
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            nx = x.fill_diagonal_tensor(y)
            print(nx.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
1047 1048 1049
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=False
    )
1050 1051


Z
zhiboniu 已提交
1052 1053 1054
@dygraph_only
def tolist(x):
    """
1055 1056
    Note:
        This API is ONLY available in Dygraph mode.
Z
zhiboniu 已提交
1057 1058 1059 1060

    This function translate the paddle.Tensor to python list.

    Args:
1061
        x (Tensor): ``x`` is the Tensor we want to translate to list.
Z
zhiboniu 已提交
1062 1063

    Returns:
L
Ligoml 已提交
1064
        list, A list that contain the same value of current Tensor.
Z
zhiboniu 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079


    Examples:
        .. code-block:: python

            import paddle

            t = paddle.to_tensor([0,1,2,3,4])
            expectlist = t.tolist()
            print(expectlist)   #[0, 1, 2, 3, 4]

            expectlist = paddle.tolist(t)
            print(expectlist)   #[0, 1, 2, 3, 4]

    """
1080
    # TODO(zhouwei): will remove 0-D Tensor.numpy() hack
1081
    return x.numpy(False).tolist()
Z
zhiboniu 已提交
1082 1083


1084 1085 1086
def concat(x, axis=0, name=None):
    """

1087 1088
    Concatenates the input along the axis. It doesn't support 0-D Tensor because it requires a certain axis, and 0-D Tensor
    doesn't have any axis.
1089 1090

    Args:
1091
        x (list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16,
1092
            float32, float64, int32, int64, int8, uint8. All the Tensors in ``x`` must have same data type.
1093
        axis (int|Tensor, optional): Specify the axis to operate on the input Tensors.
1094
            Tt should be integer or 0-D int Tensor with shape []. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
1095
            it works the same way as ``axis+R``. Default is 0.
1096
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1097 1098

    Returns:
L
Ligoml 已提交
1099
        Tensor, A Tensor with the same data type as ``x``.
1100 1101 1102

    Examples:
        .. code-block:: python
1103

1104
            import paddle
1105

1106 1107 1108 1109 1110 1111
            x1 = paddle.to_tensor([[1, 2, 3],
                                   [4, 5, 6]])
            x2 = paddle.to_tensor([[11, 12, 13],
                                   [14, 15, 16]])
            x3 = paddle.to_tensor([[21, 22],
                                   [23, 24]])
1112 1113 1114
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
1115 1116 1117
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
1118 1119 1120 1121 1122 1123 1124 1125 1126
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
1127
    input = x
1128
    if in_dynamic_mode():
1129 1130 1131 1132
        if isinstance(axis, Variable):
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
1133
        return _C_ops.concat(input, axis)
1134
    else:
1135
        if paddle.ir.core._use_new_ir_api():
1136
            if not isinstance(input, paddle.ir.Value):
1137 1138
                input = [t for t in input if t.shape.count(0) == 0]
            return paddle._ir_ops.concat(input, axis)
1139
        check_type(input, 'input', (list, tuple, Variable), 'concat')
1140
        if not isinstance(input, Variable):
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
            for id, x in enumerate(input):
                check_variable_and_dtype(
                    x,
                    'input[' + str(id) + ']',
                    [
                        'bool',
                        'float16',
                        'float32',
                        'float64',
                        'int32',
                        'int64',
                        'int8',
                        'unit8',
W
wangzhen38 已提交
1154
                        'uint16',
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
                    ],
                    'concat',
                )
                if x.dtype != input[0].dtype:
                    raise TypeError(
                        "All the Tensors in the input must have the same data type."
                    )
        else:
            input = [input]
        check_type(axis, 'axis', (int, Variable), 'concat')
1165

1166 1167 1168 1169 1170
        if isinstance(axis, Variable):
            check_dtype(
                axis.dtype,
                'axis',
                ['int32', 'int64'],
1171
                'concat',
1172
                "The data type of axis must be int32 or int64 when axis is a Tensor",
1173
            )
1174

1175 1176 1177
        helper = LayerHelper('concat', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
1178
        )
1179

1180 1181 1182
        if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            # NOTE(liym27): Don't remove this if branch!
            # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
1183
            # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static graph mode.
1184

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
            assert len(input) == 1, (
                "If the elements of 'input' in concat are Variable(LoDTensorArray), "
                "number of the elements must be 1, but received %s."
                % len(input)
            )
            out_index = helper.create_variable_for_type_inference(dtype="int32")
            helper.append_op(
                type='tensor_array_to_tensor',
                inputs={'X': input[0]},
                outputs={'Out': [out], 'OutIndex': [out_index]},
                attrs={'axis': axis, 'use_stack': False},
            )
1197
        else:
1198 1199 1200 1201 1202 1203 1204
            inputs = {'X': input}
            attrs = {}
            if isinstance(axis, Variable):
                axis.stop_gradient = True
                inputs['AxisTensor'] = axis
            else:
                attrs['axis'] = axis
1205

1206 1207 1208 1209 1210 1211 1212
            helper.append_op(
                type='concat',
                inputs=inputs,
                outputs={'Out': [out]},
                attrs=attrs,
            )
        return out
1213 1214


1215 1216
def broadcast_tensors(input, name=None):
    """
1217
    Broadcast a list of tensors following broadcast semantics
1218

1219
    Note:
1220 1221 1222
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

    .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1223 1224

    Args:
1225
        input (list|tuple): ``input`` is a Tensor list or Tensor tuple which is with data type bool,
1226 1227
            float16, float32, float64, int32, int64. All the Tensors in ``input`` must have same data type.
            Currently we only support tensors with rank no greater than 5.
1228
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1229 1230

    Returns:
L
Ligoml 已提交
1231
        list(Tensor), The list of broadcasted tensors following the same order as ``input``.
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

    Examples:
        .. code-block:: python

            import paddle
            x1 = paddle.rand([1, 2, 3, 4]).astype('float32')
            x2 = paddle.rand([1, 2, 1, 4]).astype('float32')
            x3 = paddle.rand([1, 1, 3, 1]).astype('float32')
            out1, out2, out3 = paddle.broadcast_tensors(input=[x1, x2, x3])
            # out1, out2, out3: tensors broadcasted from x1, x2, x3 with shape [1,2,3,4]
    """

    num_inputs = len(input)
1245
    if in_dynamic_mode():
1246
        return _C_ops.broadcast_tensors(input)
1247 1248 1249
    else:
        check_type(input, 'input', (list, tuple), 'broadcast_tensors')
        if num_inputs < 1:
1250
            raise TypeError(
1251
                "At least 1 tensor is needed to perform broadcast_tensors"
1252
            )
1253

1254 1255 1256 1257 1258
        # Check input types
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
C
co63oc 已提交
1259 1260 1261 1262 1263 1264 1265 1266 1267
                [
                    'bool',
                    'float16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'uint16',
                ],
1268 1269 1270 1271 1272 1273
                'broadcast_tensors',
            )
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type."
                )
1274

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
        # Check bcast semantics
        output_shape_r_last_tensor_index = []
        output_shape_r = []

        # Use while loop due to weird behaviour of "range()"
        j = 0
        while j < len(input):
            tensor = input[j]
            shape = list(reversed(tensor.shape))

            i = 0
            while i < len(shape):
                if len(output_shape_r) <= i:
                    output_shape_r.append(shape[i])
                    output_shape_r_last_tensor_index.append(j)
                else:
                    invalid = (
                        output_shape_r[i] != shape[i]
                        and output_shape_r[i] != 1
                        and shape[i] != 1
                    )
                    if invalid:
                        last_index = output_shape_r_last_tensor_index[i]
                        raise TypeError(
                            "Input tensors to broadcast_tensors does not follow bcast semantics"
1300
                            f"Tensor {last_index} conflicts with Tensor {j} in reversed dimension {i}"
1301 1302 1303 1304 1305 1306 1307 1308
                        )
                    if output_shape_r[i] <= shape[i]:
                        output_shape_r[i] = shape[i]
                        output_shape_r_last_tensor_index[i] = j
                i += 1  # while i < len(shape)
            j += 1  # while j < len(input)

        helper = LayerHelper('broadcast_tensors', **locals())
1309
        i = 0
1310 1311 1312 1313 1314
        out = []
        while i < num_inputs:
            out.append(
                helper.create_variable_for_type_inference(
                    dtype=helper.input_dtype()
1315 1316
                )
            )
1317
            i += 1
1318

1319 1320 1321 1322 1323 1324 1325
        inputs = {'X': input}
        helper.append_op(
            type='broadcast_tensors',
            inputs=inputs,
            outputs={'Out': out},
            attrs={},
        )
1326

1327
        return out
1328 1329


Y
yaoxuefeng 已提交
1330
def flip(x, axis, name=None):
W
Wilber 已提交
1331
    """
Y
yaoxuefeng 已提交
1332
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
1333 1334

    Args:
Y
yaoxuefeng 已提交
1335
        x (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
1336
            should be float32, float64, int32, int64, bool.
R
Roc 已提交
1337
        axis (list|tuple|int): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
1338
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
Wilber 已提交
1339 1340

    Returns:
L
Ligoml 已提交
1341
        Tensor, Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
1342 1343 1344 1345 1346

    Examples:
        .. code-block:: python

          import paddle
Y
yaoxuefeng 已提交
1347 1348

          image_shape=(3, 2, 2)
1349
          img = paddle.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
R
Roc 已提交
1350 1351
          tmp = paddle.flip(img, [0,1])
          print(tmp) # [[[10,11],[8, 9]], [[6, 7],[4, 5]], [[2, 3],[0, 1]]]
Y
yaoxuefeng 已提交
1352

R
Roc 已提交
1353 1354
          out = paddle.flip(tmp,-1)
          print(out) # [[[11,10],[9, 8]], [[7, 6],[5, 4]], [[3, 2],[1, 0]]]
W
Wilber 已提交
1355
    """
R
Roc 已提交
1356 1357
    if isinstance(axis, int):
        axis = [axis]
H
hong 已提交
1358

1359
    if in_dynamic_mode():
1360
        return _C_ops.flip(x, axis)
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
    else:
        helper = LayerHelper("flip", **locals())
        check_type(x, 'X', (Variable), 'flip')
        dtype = helper.input_dtype('x')
        check_dtype(
            dtype,
            'X',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
            'flip',
        )
        check_type(axis, 'axis', (list, tuple), 'flip')
        if name is None:
            out = helper.create_variable_for_type_inference(dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=dtype, persistable=False
            )
H
hong 已提交
1378

1379 1380 1381 1382 1383 1384 1385
        helper.append_op(
            type="flip",
            inputs={"X": x},
            outputs={"Out": out},
            attrs={"axis": axis},
        )
        return out
1386 1387


Z
zmxdream 已提交
1388 1389
def rot90(x, k=1, axes=[0, 1], name=None):
    """
1390
    Rotate a n-D tensor by 90 degrees. The rotation direction and times are specified by axes and the absolute value of k. Rotation direction is from axes[0] towards axes[1] if k > 0, and from axes[1] towards axes[0] for k < 0.
Z
zmxdream 已提交
1391 1392 1393

    Args:
        x (Tensor): The input Tensor(or LoDTensor). The data type of the input Tensor x
Z
zmxdream 已提交
1394
            should be float16, float32, float64, int32, int64, bool. float16 is only supported on gpu.
Z
zmxdream 已提交
1395 1396
        k (int, optional): Direction and number of times to rotate, default value: 1.
        axes (list|tuple, optional): Axes to rotate, dimension must be 2. default value: [0, 1].
Z
zmxdream 已提交
1397 1398 1399 1400
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
1401
        Tensor, Tensor or LoDTensor calculated by rot90 layer. The data type is same with input x.
Z
zmxdream 已提交
1402 1403 1404 1405 1406 1407 1408 1409

    Examples:
        .. code-block:: python

          import paddle

          data = paddle.arange(4)
          data = paddle.reshape(data, (2, 2))
1410
          print(data)
Z
zmxdream 已提交
1411 1412 1413
          #[[0, 1],
          # [2, 3]]

Z
zmxdream 已提交
1414
          y = paddle.rot90(data, 1, [0, 1])
1415
          print(y)
Z
zmxdream 已提交
1416 1417 1418
          #[[1, 3],
          # [0, 2]]

Z
zmxdream 已提交
1419
          y= paddle.rot90(data, -1, [0, 1])
1420
          print(y)
Z
zmxdream 已提交
1421 1422 1423
          #[[2, 0],
          # [3, 1]]

Z
zmxdream 已提交
1424 1425
          data2 = paddle.arange(8)
          data2 = paddle.reshape(data2, (2,2,2))
1426
          print(data2)
Z
zmxdream 已提交
1427 1428 1429 1430 1431
          #[[[0, 1],
          #  [2, 3]],
          # [[4, 5],
          #  [6, 7]]]

Z
zmxdream 已提交
1432
          y = paddle.rot90(data2, 1, [1, 2])
Z
zmxdream 已提交
1433 1434 1435 1436 1437
          print(y)
          #[[[1, 3],
          #  [0, 2]],
          # [[5, 7],
          #  [4, 6]]]
Z
zmxdream 已提交
1438 1439 1440 1441 1442
    """

    helper = LayerHelper("rot90", **locals())
    check_type(x, 'X', (Variable), 'rot90')
    dtype = helper.input_dtype('x')
1443 1444 1445 1446 1447 1448
    check_dtype(
        dtype,
        'X',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'rot90',
    )
Z
zmxdream 已提交
1449 1450 1451 1452 1453
    check_type(axes, 'axes', (list, tuple), 'rot90')

    input_total_dims = len(x.shape)
    total_rot_dims = len(axes)
    if total_rot_dims != 2:
1454 1455
        raise ValueError(
            "expected total rotation axes == 2, but got axes = {}".format(
1456 1457 1458
                total_rot_dims
            )
        )
Z
zmxdream 已提交
1459
    if input_total_dims < 2:
1460 1461
        raise ValueError(
            "expected total dims >= 2, but got total dims = {}".format(
1462 1463 1464
                input_total_dims
            )
        )
Z
zmxdream 已提交
1465 1466 1467

    if not (axes[0] != axes[1] and abs(axes[0] - axes[1]) != input_total_dims):
        raise ValueError(
1468 1469 1470 1471
            "expected rotation axes to be different, but got axis0 = {}, and axis1 = {}".format(
                axes[0], axes[1]
            )
        )
Z
zmxdream 已提交
1472 1473

    if not (axes[0] < input_total_dims and axes[0] >= -input_total_dims):
1474
        raise ValueError(f"Rotation axis0 out of range, axis0 = {axes[0]}")
Z
zmxdream 已提交
1475
    if not (axes[1] < input_total_dims and axes[1] >= -input_total_dims):
1476
        raise ValueError(f"Rotation axis1 out of range, axis1 = {axes[1]}")
Z
zmxdream 已提交
1477

Z
zmxdream 已提交
1478
    k %= 4
Z
zmxdream 已提交
1479 1480 1481 1482 1483 1484
    if k == 0:
        return x
    if k == 2:
        return flip(flip(x, axes[0]), axes[1])

    axes_list = list(range(0, input_total_dims))
1485 1486 1487 1488
    (axes_list[axes[0]], axes_list[axes[1]]) = (
        axes_list[axes[1]],
        axes_list[axes[0]],
    )
Z
zmxdream 已提交
1489 1490 1491 1492 1493 1494 1495
    if k == 1:
        return transpose(flip(x, axes[1]), axes_list)
    else:
        # k == 3
        return flip(transpose(x, axes_list), axes[1])


1496
def flatten(x, start_axis=0, stop_axis=-1, name=None):
1497
    r"""
1498 1499
    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

1500
    Note:
1501
        The output Tensor will share data with origin Tensor and doesn't have a Tensor copy in ``dygraph`` mode.
1502
        If you want to use the Tensor copy version, please use `Tensor.clone` like ``flatten_clone_x = x.flatten().clone()``.
1503

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
1518
            Out.shape = (3, 100 * 100, 4)
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
张春乔 已提交
1533
        x (Tensor): A tensor of number of dimentions >= axis. A tensor with data type float16, float32,
1534
                      float64, int8, int32, int64, uint8.
1535 1536
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
1537
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1538 1539

    Returns:
L
Ligoml 已提交
1540
        Tensor, A tensor with the contents of the input tensor, with input \
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Examples:

        .. code-block:: python

            import paddle

            image_shape=(2, 3, 4, 4)
1551

Y
yaoxuefeng 已提交
1552 1553
            x = paddle.arange(end=image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3])
            img = paddle.reshape(x, image_shape)
1554

1555 1556
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
1557 1558 1559 1560

            # out shares data with img in dygraph mode
            img[0, 0, 0, 0] = -1
            print(out[0, 0, 0]) # [-1]
1561 1562
    """
    if not (isinstance(x, Variable)):
Y
yaoxuefeng 已提交
1563
        raise ValueError("The input x should be a Tensor")
1564 1565

    x_dim = len(x.shape)
1566 1567 1568
    if x_dim == 0:
        if not (isinstance(start_axis, int)) or start_axis not in [0, -1]:
            raise ValueError(
1569
                "The start_axis should be int, and should be 0 or -1 when the input tensor is a 0-D-Tensor"
1570 1571 1572
            )
        if not (isinstance(stop_axis, int)) or stop_axis not in [0, -1]:
            raise ValueError(
1573
                "The stop_axis should be int, and should be 0 or -1 when the input tensor is a 0-D-Tensor"
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
            )
    else:
        if (
            not (isinstance(start_axis, int))
            or (start_axis > x_dim - 1)
            or start_axis < -x_dim
        ):
            raise ValueError(
                "The start_axis should be a int, and in range [-rank(x), rank(x))"
            )
        if (
            not (isinstance(stop_axis, int))
            or (stop_axis > x_dim - 1)
            or stop_axis < -x_dim
        ):
            raise ValueError(
                "The stop_axis should be a int, and in range [-rank(x), rank(x))"
            )
        if start_axis < 0:
            start_axis = start_axis + x_dim
        if stop_axis < 0:
            stop_axis = stop_axis + x_dim
        if start_axis > stop_axis:
            raise ValueError("The stop_axis should be larger than stat_axis")
1598

1599
    if in_dynamic_mode():
1600
        return _C_ops.flatten(x, start_axis, stop_axis)
1601
    else:
W
Weilong Wu 已提交
1602 1603 1604
        check_variable_and_dtype(
            x,
            'x',
X
xiaoguoguo626807 已提交
1605 1606 1607 1608 1609 1610 1611 1612 1613
            [
                'float16',
                'float32',
                'float64',
                'int8',
                'int16',
                'int32',
                'int64',
                'uint8',
1614
                'uint16',
X
xiaoguoguo626807 已提交
1615
            ],
W
Weilong Wu 已提交
1616 1617
            'flatten',
        )
1618 1619 1620 1621 1622 1623 1624 1625
        helper = LayerHelper('flatten', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='flatten_contiguous_range',
            inputs={"X": x},
            outputs={'Out': out, 'XShape': x_shape},
            attrs={"start_axis": start_axis, "stop_axis": stop_axis},
1626
        )
1627
        return out
1628 1629


1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
@inplace_apis_in_dygraph_only
def flatten_(x, start_axis=0, stop_axis=-1, name=None):
    """
    Inplace version of ``flatten`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_flatten`.
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Tensor")

    x_dim = len(x.shape)
1640 1641 1642 1643 1644
    if (
        not (isinstance(start_axis, int))
        or (start_axis > x_dim - 1)
        or start_axis < -x_dim
    ):
1645
        raise ValueError(
1646 1647 1648 1649 1650 1651 1652
            "The start_axis should be a int, and in range [-rank(x), rank(x))"
        )
    if (
        not (isinstance(stop_axis, int))
        or (stop_axis > x_dim - 1)
        or stop_axis < -x_dim
    ):
1653
        raise ValueError(
1654 1655
            "The stop_axis should be a int, and in range [-rank(x), rank(x))"
        )
1656 1657 1658 1659 1660 1661 1662
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1663
    if in_dynamic_mode():
1664
        return _C_ops.flatten_(x, start_axis, stop_axis)
1665

1666

Y
yaoxuefeng 已提交
1667
def roll(x, shifts, axis=None, name=None):
1668
    """
1669 1670 1671
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that
    roll beyond the last position are re-introduced at the first according to 'shifts'.
    If a axis is not specified,
1672 1673 1674
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
1675
        x (Tensor): The x tensor as input.
1676
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
1677
                           of the `x` tensor are shifted.
Y
Yuang Liu 已提交
1678
        axis (int|list|tuple, optional): axis(axes) along which to roll. Default: None
C
Chen Long 已提交
1679 1680 1681
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                For more information, please refer to :ref:`api_guide_Name` .

1682 1683

    Returns:
L
Ligoml 已提交
1684
        Tensor, A Tensor with same data type as `x`.
1685 1686 1687

    Examples:
        .. code-block:: python
1688

1689 1690
            import paddle

1691 1692 1693
            x = paddle.to_tensor([[1.0, 2.0, 3.0],
                                  [4.0, 5.0, 6.0],
                                  [7.0, 8.0, 9.0]])
Y
yaoxuefeng 已提交
1694
            out_z1 = paddle.roll(x, shifts=1)
Y
yaoxuefeng 已提交
1695
            print(out_z1)
Y
yaoxuefeng 已提交
1696 1697 1698 1699
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
Y
yaoxuefeng 已提交
1700
            print(out_z2)
Y
yaoxuefeng 已提交
1701 1702 1703
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
Y
Yuang Liu 已提交
1704 1705 1706 1707 1708
            out_z3 = paddle.roll(x, shifts=1, axis=1)
            print(out_z3)
            #[[3. 1. 2.]
            # [6. 4. 5.]
            # [9. 7. 8.]]
1709
    """
Y
yaoxuefeng 已提交
1710
    origin_shape = x.shape
1711 1712
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
1713 1714 1715 1716
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
1717
    if axis is not None:
Y
yaoxuefeng 已提交
1718 1719 1720
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
1721 1722 1723 1724
                    "axis is out of range, it should be in range [{}, {}), but received {}".format(
                        -len_origin_shape, len_origin_shape, axis
                    )
                )
S
sunli 已提交
1725 1726 1727
    else:
        axis = []

1728
    if in_dynamic_mode():
1729
        return _C_ops.roll(x, shifts, axis)
1730
    else:
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
        check_variable_and_dtype(
            x,
            'dtype',
            [
                'float16',
                'float32',
                'uint16',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'roll',
        )
1746 1747
        helper = LayerHelper("roll", **locals())
        check_type(axis, 'axis', (list, tuple), 'roll')
F
From00 已提交
1748

1749
        out = helper.create_variable_for_type_inference(x.dtype)
1750

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
        if isinstance(shifts, Variable):
            helper.append_op(
                type='roll',
                inputs={'X': x, "ShiftsTensor": shifts},
                outputs={'Out': out},
                attrs={'axis': axis},
            )
        else:
            check_type(shifts, 'shifts', (list, tuple), 'roll')
            helper.append_op(
                type='roll',
                inputs={'X': x},
                outputs={'Out': out},
                attrs={'axis': axis, 'shifts': shifts},
            )
        return out
1767 1768


L
Leo Chen 已提交
1769
def stack(x, axis=0, name=None):
1770
    """
1771
    Stacks all the input tensors ``x`` along ``axis`` dimemsion.
L
Leo Chen 已提交
1772
    All tensors must be of the same shape and same dtype.
1773 1774 1775

    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked
L
Leo Chen 已提交
1776
    tensor is [A, N, B], etc.
1777

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
1813
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
1814 1815 1816 1817 1818 1819 1820 1821

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
1822
        x (list[Tensor]|tuple[Tensor]): Input ``x`` can be a ``list`` or ``tuple`` of tensors, the Tensors in ``x``
1823
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
1824
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
1825
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``.
L
Leo Chen 已提交
1826
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
1827
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1828

1829
    Returns:
L
Ligoml 已提交
1830
        Tensor, The stacked tensor with same data type as input.
1831

1832
    Example:
1833
        .. code-block:: python
L
Leo Chen 已提交
1834

1835
            import paddle
1836

L
Leo Chen 已提交
1837 1838 1839
            x1 = paddle.to_tensor([[1.0, 2.0]])
            x2 = paddle.to_tensor([[3.0, 4.0]])
            x3 = paddle.to_tensor([[5.0, 6.0]])
1840

L
Leo Chen 已提交
1841 1842
            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
L
Leo Chen 已提交
1843
            print(out)
L
Leo Chen 已提交
1844 1845 1846
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
1847

1848 1849 1850 1851 1852 1853
        out = paddle.stack([x1, x2, x3], axis=-2)
        print(out.shape)  # [1, 3, 2]
        print(out)
        # [[[1., 2.],
        #   [3., 4.],
        #   [5., 6.]]]
L
Leo Chen 已提交
1854
    """
1855 1856
    axis = 0 if axis is None else axis

1857
    if in_dynamic_mode():
1858
        return _C_ops.stack(x, axis)
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
    else:
        if not isinstance(x, list) and not isinstance(x, tuple):
            # NOTE:(zhiqiu) Only support Variable as input if the Variable is a LOD_TENSOR_ARRAY create by create_array, array_write, array_read, etc.
            # In that case, Variable is array of tensors indeed.
            if (
                isinstance(x, Variable)
                and x.desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY
            ):
                x = [x]
            else:
                raise TypeError(
1870
                    "The type of '{}' in {} must be {}, but received {}".format(
1871 1872 1873 1874 1875 1876
                        'x',
                        'stack',
                        'list[Tensor], tuple[Tensor] or TensorArray',
                        type(x),
                    )
                )
1877

1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
        helper = LayerHelper('stack', **locals())

        out = helper.create_variable_for_type_inference(x[0].dtype)
        if x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            assert len(x) == 1, (
                "If the elements of 'x' in stack are Variable(LoDTensorArray), "
                "number of the elements must be 1, but received %s." % len(x)
            )
            out_index = helper.create_variable_for_type_inference(dtype="int32")

            for i in x:
                check_variable_and_dtype(
                    i,
1891
                    'x',
C
ccrrong 已提交
1892 1893 1894 1895 1896 1897 1898 1899
                    [
                        'float16',
                        'float32',
                        'float64',
                        'int32',
                        'int64',
                        'uint16',
                    ],
1900 1901
                    'stack',
                )
1902

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
            helper.append_op(
                type='tensor_array_to_tensor',
                inputs={'X': x[0]},
                outputs={'Out': [out], 'OutIndex': [out_index]},
                attrs={'axis': axis, 'use_stack': True},
            )
        else:
            helper.append_op(
                type='stack',
                inputs={'X': x},
                outputs={'Y': out},
                attrs={'axis': axis},
1915 1916
            )

1917
        return out
1918 1919


1920
def split(x, num_or_sections, axis=0, name=None):
1921 1922
    """
    Split the input tensor into multiple sub-Tensors.
1923

1924
    Args:
1925
        x (Tensor): A N-D Tensor. The data type is bool, bfloat16, float16, float32, float64, uint8, int8, int32 or int64.
1926
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
1927 1928 1929 1930
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
1931 1932
        axis (int|Tensor, optional): The axis along which to split, it can be a integer or a ``0-D Tensor``
            with shape [] and data type  ``int32`` or ``int64``.
1933 1934 1935
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
1936
    Returns:
L
Ligoml 已提交
1937
        list(Tensor), The list of segmented Tensors.
1938

1939 1940
    Example:
        .. code-block:: python
1941

1942
            import paddle
1943

L
Leo Chen 已提交
1944 1945
            # x is a Tensor of shape [3, 9, 5]
            x = paddle.rand([3, 9, 5])
1946

L
Leo Chen 已提交
1947 1948 1949 1950
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=1)
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1951 1952

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
L
Leo Chen 已提交
1953 1954 1955
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1956 1957

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
L
Leo Chen 已提交
1958 1959 1960
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1961

L
Leo Chen 已提交
1962
            # axis is negative, the real axis is (rank(x) + axis)=1
1963
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
L
Leo Chen 已提交
1964 1965 1966
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1967
    """
1968 1969
    input = x
    dim = axis
1970
    if in_dynamic_mode():
1971 1972 1973 1974 1975
        if isinstance(dim, Variable):
            dim = dim.item(0)
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input.shape) + dim) if dim < 0 else dim

1976
        if isinstance(num_or_sections, (list, tuple)):
1977
            if paddle.utils._contain_var(num_or_sections):
1978 1979
                for index, item in enumerate(num_or_sections):
                    if isinstance(item, Variable):
1980
                        num_or_sections[index] = num_or_sections[index].item()
1981
        elif not isinstance(num_or_sections, int):
1982 1983
            raise TypeError(
                "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but "
1984 1985
                "received %s." % (type(num_or_sections))
            )
1986 1987 1988 1989 1990
        if isinstance(num_or_sections, int):
            return _C_ops.split_with_num(input, num_or_sections, dim)
        else:
            return _C_ops.split(input, num_or_sections, dim)
    else:
1991 1992 1993 1994 1995 1996 1997 1998
        if paddle.ir.core._use_new_ir_api():
            if not isinstance(num_or_sections, int):
                return paddle._ir_ops.split(input, num_or_sections, dim)
            else:
                raise NotImplementedError(
                    "_ir_ops.split_with_num is not implemented, please change sections as list"
                )

1999 2000 2001 2002 2003
        check_variable_and_dtype(
            input,
            'input',
            [
                'bool',
2004
                'bfloat16',
2005
                'float16',
2006
                'uint16',
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
                'int8',
            ],
            'split',
        )
        check_type(
            num_or_sections, 'num_or_sections', (list, int, tuple), 'split'
        )
        check_type(dim, 'dim', (int, Variable), 'split')
        if isinstance(dim, Variable):
            check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split')
2022

2023
        helper = LayerHelper('split', **locals())
2024

2025 2026 2027 2028 2029
        input_shape = input.shape
        inputs = {'X': input}
        attrs = {
            'num': num_or_sections if isinstance(num_or_sections, int) else 0
        }
2030

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
        def _get_SectionsTensorList(one_list):
            tensor_list = []
            unk_dim_idx = -1
            for idx, dim_size in enumerate(one_list):
                if isinstance(dim_size, Variable):
                    dim_size.stop_gradient = True
                    tensor_list.append(dim_size)
                else:
                    assert isinstance(dim_size, int)
                    if dim_size == -1:
                        assert unk_dim_idx == -1, (
                            "Only one value of 'num_or_section' in split can "
                            "be -1. But received num_or_section[%d] is also -1."
                            % idx
                        )
                        unk_dim_idx = idx
                    temp_out = helper.create_variable_for_type_inference(
                        'int32'
2049
                    )
2050 2051 2052 2053 2054
                    fill_constant(
                        [1], 'int32', dim_size, force_cpu=True, out=temp_out
                    )
                    tensor_list.append(temp_out)
            return tensor_list
2055

2056 2057 2058 2059 2060 2061 2062 2063 2064
        if isinstance(dim, Variable):
            dim.stop_gradient = True
            inputs['AxisTensor'] = dim
        else:
            assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
            dim = (len(input_shape) + dim) if dim < 0 else dim
            attrs['axis'] = dim

        if isinstance(num_or_sections, int):
X
xiongkun 已提交
2065
            assert num_or_sections > 0, 'num_or_sections must be than 0.'
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
            if isinstance(dim, int) and input_shape[dim] > 0:
                assert input_shape[dim] % num_or_sections == 0, (
                    "The input's size along the split dimension "
                    "must be evenly divisible by Attr(num_or_sections). "
                    "But %d is not evenly divisible by %d. "
                    % (num_or_sections, input_shape[dim])
                )
            num = num_or_sections
        else:
            if isinstance(dim, int) and input_shape[dim] > 0:
                assert (
                    len(num_or_sections) <= input_shape[dim]
                ), 'len(num_or_sections) must not be more than input.shape[dim].'
            num = len(num_or_sections)
2080 2081 2082 2083
            attrs['sections'] = [
                -1 if isinstance(ele, Variable) else ele
                for ele in num_or_sections
            ]
2084
            if paddle.utils._contain_var(num_or_sections):
2085 2086 2087 2088 2089 2090 2091
                inputs['SectionsTensorList'] = _get_SectionsTensorList(
                    num_or_sections
                )

        outs = [
            helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
2092
            )
2093 2094 2095 2096
            for i in range(num)
        ]
        helper.append_op(
            type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs
2097
        )
2098
        return outs
2099 2100


2101 2102 2103
def vsplit(x, num_or_sections, name=None):
    """
    Split the input tensor into multiple sub-Tensors along the vertical axis, which is equivalent to ``paddle.split`` with ``axis=0``.
2104

2105 2106
    Args:
        x (Tensor): A Tensor whose dimension must be greater than 1. The data type is bool, float16, float32, float64, uint8, int8, int32 or int64.
2107
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
2108 2109 2110 2111 2112 2113 2114 2115
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of axis 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list[Tensor], The list of segmented Tensors.
2116

2117 2118
    Example:
        .. code-block:: python
2119

2120
            import paddle
2121

2122 2123
            # x is a Tensor of shape [8, 6, 7]
            x = paddle.rand([8, 6, 7])
2124
            out0, out1 = paddle.vsplit(x, num_or_sections=2)
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
            print(out0.shape)  # [4, 6, 7]
            print(out1.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[1, 3, 4])
            print(out0.shape)  # [1, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[2, 3, -1])
            print(out0.shape)  # [2, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [3, 6, 7]
    """
    if x.ndim < 2:
        raise ValueError(
2138 2139 2140 2141
            "The input tensor's dimension must be greater than 1, but got {}".format(
                x.ndim
            )
        )
2142 2143 2144
    return split(x, num_or_sections, axis=0, name=name)


L
Leo Chen 已提交
2145
def squeeze(x, axis=None, name=None):
2146
    """
2147 2148 2149 2150
    Squeeze the dimension(s) of size 1 of input tensor x's shape.

    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2151
    please use `Tensor.clone` like ``squeeze_clone_x = x.squeeze().clone()``.
2152

2153 2154
    If axis is provided, it will remove the dimension(s) by given axis that of size 1.
    If the dimension of given axis is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
2155
    If axis is not provided, all dims equal of size 1 will be removed.
2156 2157 2158 2159 2160 2161

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
2162 2163
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
2164
          Output:
L
Leo Chen 已提交
2165
            out.shape = [3, 5]
2166 2167 2168 2169

        Case2:

          Input:
L
Leo Chen 已提交
2170 2171 2172 2173
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
2174

L
Leo Chen 已提交
2175 2176 2177
        Case4:

          Input:
2178
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
2179
            axis = [0, 2, 3]
2180
          Output:
L
Leo Chen 已提交
2181
            out.shape = [3, 5]
2182

L
Leo Chen 已提交
2183
        Case4:
2184 2185

          Input:
2186
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x).
L
Leo Chen 已提交
2187
            axis = [-2]
2188
          Output:
L
Leo Chen 已提交
2189
            out.shape = [1, 3, 5]
2190 2191

    Args:
2192
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
2193
        axis (int|list|tuple, optional): An integer or list/tuple of integers, indicating the dimensions to be squeezed. Default is None.
2194 2195 2196
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
2197 2198 2199
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
L
Ligoml 已提交
2200
        Tensor, Squeezed Tensor with the same data type as input Tensor.
2201 2202 2203

    Examples:
        .. code-block:: python
2204

2205
            import paddle
2206

L
Leo Chen 已提交
2207 2208
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
2209 2210

            print(x.shape)  # [5, 1, 10]
L
Leo Chen 已提交
2211
            print(output.shape)  # [5, 10]
2212

2213 2214 2215 2216
            # output shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(output[0, 0]) # [10.]

2217
    """
L
Leo Chen 已提交
2218 2219 2220 2221 2222 2223
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
2224

2225 2226
    input = x
    axes = axis
2227
    if in_dynamic_mode():
2228
        return _C_ops.squeeze(input, axes)
2229 2230 2231 2232 2233 2234 2235
    else:
        helper = LayerHelper("squeeze", **locals())
        check_variable_and_dtype(
            input,
            'input',
            [
                'float16',
2236
                'uint16',
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
                'float32',
                'float64',
                'bool',
                'int8',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'squeeze',
        )
2248

2249 2250 2251 2252
        check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'squeeze')
        attrs = {}
        if isinstance(axes, Variable):
            axes.stop_gradient = True
2253
            attrs["axes"] = axes
2254
        elif isinstance(axes, (list, tuple)):
2255 2256
            if paddle.utils._contain_var(axes):
                attrs["axes"] = paddle.utils._convert_to_tensor_list(axes)
2257 2258
            else:
                attrs["axes"] = axes
2259

2260 2261 2262 2263 2264 2265 2266 2267
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type="squeeze2",
            inputs={"X": input},
            attrs=attrs,
            outputs={"Out": out, "XShape": x_shape},
        )
2268

2269
        return out
2270 2271


2272
@inplace_apis_in_dygraph_only
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
def squeeze_(x, axis=None, name=None):
    """
    Inplace version of ``squeeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_squeeze`.
    """
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)

2285 2286
    input = x
    axes = axis
2287
    if in_dynamic_mode():
2288
        return _C_ops.squeeze_(input, axes)
2289 2290


2291 2292 2293 2294 2295 2296 2297 2298
def unique_consecutive(
    x,
    return_inverse=False,
    return_counts=False,
    axis=None,
    dtype="int64",
    name=None,
):
Z
Zman 已提交
2299
    """
D
duanboqiang 已提交
2300 2301
    Eliminates all but the first element from every consecutive group of equivalent elements.

2302
    Note:
Z
Zman 已提交
2303 2304
        This function is different from :ref:`api_paddle_unique` in the sense that this function
        only eliminates consecutive duplicate values. This semantics is similar to :ref:`api_paddle_unique` in C++.
D
duanboqiang 已提交
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319

    Args:
        x(Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique consecutive tensor. Default is False.
        return_counts(bool, optional): If True, also return the counts for each unique consecutive element.
            Default is False.
        axis(int, optional): The axis to apply unique consecutive. If None, the input will be flattened.
            Default is None.
        dtype(np.dtype|str, optional): The data type `inverse` tensor: int32 or int64.
            Default: int64.
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default is None.

    Returns:
Z
Zman 已提交
2320 2321 2322 2323 2324 2325
        - out (Tensor), the unique consecutive tensor for x.
        - inverse (Tensor), the element of the input tensor corresponds to
            the index of the elements in the unique consecutive tensor for x.
            inverse is provided only if return_inverse is True.
        - counts (Tensor), the counts of the every unique consecutive element in the input tensor.
            counts is provided only if return_counts is True.
D
duanboqiang 已提交
2326 2327 2328 2329

    Example:
        .. code-block:: python

2330
            import paddle
D
duanboqiang 已提交
2331 2332

            x = paddle.to_tensor([1, 1, 2, 2, 3, 1, 1, 2])
2333
            output = paddle.unique_consecutive(x) #
2334 2335 2336 2337
            print(output)
            # Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 3, 1, 2])

D
duanboqiang 已提交
2338
            _, inverse, counts = paddle.unique_consecutive(x, return_inverse=True, return_counts=True)
2339 2340 2341 2342 2343 2344
            print(inverse)
            # Tensor(shape=[8], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [0, 0, 1, 1, 2, 3, 3, 4])
            print(counts)
            # Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [2, 2, 1, 2, 1])
D
duanboqiang 已提交
2345 2346

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
2347
            output = paddle.unique_consecutive(x, axis=0) #
2348 2349 2350 2351 2352
            print(output)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1],
            #         [2, 1, 3]])
D
duanboqiang 已提交
2353 2354

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
2355
            output = paddle.unique_consecutive(x, axis=0) #
2356 2357 2358 2359 2360
            print(output)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1],
            #         [2, 1, 3]])
D
duanboqiang 已提交
2361 2362 2363 2364 2365 2366 2367
    """

    if axis is None:
        axis = []
    else:
        axis = [axis]
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2368
    if in_dynamic_mode():
2369
        out, inverse, counts = _C_ops.unique_consecutive(
2370 2371
            x, return_inverse, return_counts, axis, attr_dtype
        )
2372 2373 2374 2375 2376 2377 2378 2379
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
2380 2381
    else:
        check_variable_and_dtype(
2382
            x,
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
            "input",
            ['float32', 'float64', 'int32', 'int64'],
            'unique_consecutive',
        )
        check_type(return_inverse, 'return_inverse', bool, 'unique_consecutive')
        check_type(return_counts, 'return_counts', bool, 'unique_consecutive')
        check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique_consecutive')
        if len(axis) != 0:
            check_type(axis[0], 'axis', int, 'unique_consecutive')
        helper = LayerHelper('unique_consecutive', **locals())
        attrs = {
            'dtype': attr_dtype,
            "return_inverse": return_inverse,
            "return_counts": return_counts,
            "axis": axis,
        }
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True
2401
        )
2402 2403 2404 2405 2406 2407 2408
        inverse = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        counts = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        outputs = {"Out": out, "Index": inverse, "Counts": counts}
D
duanboqiang 已提交
2409 2410 2411 2412 2413
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
2414 2415 2416 2417 2418 2419
        helper.append_op(
            type="unique_consecutive",
            inputs={"X": x},
            attrs=attrs,
            outputs=outputs,
        )
D
duanboqiang 已提交
2420 2421 2422 2423 2424
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)


2425 2426 2427 2428 2429 2430 2431 2432 2433
def unique(
    x,
    return_index=False,
    return_inverse=False,
    return_counts=False,
    axis=None,
    dtype="int64",
    name=None,
):
2434
    r"""
Z
Zhang Ting 已提交
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
    Returns the unique elements of `x` in ascending order.

    Args:
        x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
        return_index(bool, optional): If True, also return the indices of the input tensor that
            result in the unique Tensor.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique tensor.
        return_counts(bool, optional): If True, also return the counts for each unique element.
        axis(int, optional): The axis to apply unique. If None, the input will be flattened.
            Default: None.
Z
Zhang Ting 已提交
2446 2447
        dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
            Default: int64.
Z
Zhang Ting 已提交
2448 2449 2450
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default: None.

2451
    Returns:
2452
        tuple (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is \
Z
Zhang Ting 已提交
2453 2454 2455 2456 2457
            provided only if `return_index` is True. `inverse` is provided only if `return_inverse` \
            is True. `counts` is provided only if `return_counts` is True.

    Examples:
        .. code-block:: python
2458

Z
Zhang Ting 已提交
2459 2460
            import paddle

2461
            x = paddle.to_tensor([2, 3, 3, 1, 5, 3])
Z
Zhang Ting 已提交
2462
            unique = paddle.unique(x)
2463 2464 2465 2466
            print(unique)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 3, 5])

Z
Zhang Ting 已提交
2467
            _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
2468 2469 2470 2471 2472 2473 2474 2475 2476
            print(indices)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [3, 0, 1, 4])
            print(inverse)
            # Tensor(shape=[6], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 2, 0, 3, 2])
            print(counts)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 1, 3, 1])
Z
Zhang Ting 已提交
2477

2478
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
Z
Zhang Ting 已提交
2479
            unique = paddle.unique(x)
2480 2481 2482
            print(unique)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [0, 1, 2, 3])
Z
Zhang Ting 已提交
2483 2484

            unique = paddle.unique(x, axis=0)
2485 2486 2487 2488
            print(unique)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1]])
Z
Zhang Ting 已提交
2489 2490 2491 2492 2493
    """
    if axis is None:
        axis = []
    else:
        axis = [axis]
Z
Zhang Ting 已提交
2494
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2495
    if in_dynamic_mode():
2496 2497 2498
        out, indices, inverse, counts = _C_ops.unique(
            x, return_index, return_inverse, return_counts, axis, attr_dtype
        )
Z
Zhang Ting 已提交
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)
2511 2512
    else:
        check_variable_and_dtype(
2513 2514 2515 2516
            x,
            "input",
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'unique',
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
        )
        check_type(return_index, 'return_index', bool, 'unique')
        check_type(return_inverse, 'return_inverse', bool, 'unique')
        check_type(return_counts, 'return_counts', bool, 'unique')
        check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique')
        if len(axis) != 0:
            check_type(axis[0], 'axis', int, 'unique')

        helper = LayerHelper('unique', **locals())
        attrs = {
            'dtype': attr_dtype,
            "return_index": return_index,
            "return_inverse": return_inverse,
            "return_counts": return_counts,
            "axis": axis,
            "is_sorted": True,
        }
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True
        )
        indices = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        inverse = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        counts = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        outputs = {
            "Out": out,
            "Indices": indices,
            "Index": inverse,
            "Counts": counts,
        }
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
Z
Zhang Ting 已提交
2559

2560 2561 2562
        helper.append_op(
            type="unique", inputs={"X": x}, attrs=attrs, outputs=outputs
        )
Z
Zhang Ting 已提交
2563

2564 2565
        if len(outs) == 1:
            return outs[0]
Z
Zhang Ting 已提交
2566

2567
        return tuple(outs)
Z
Zhang Ting 已提交
2568 2569


2570
def unsqueeze(x, axis, name=None):
2571
    """
2572 2573 2574
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
2575

2576 2577
    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2578 2579
    please use `Tensor.clone` like ``unsqueeze_clone_x = x.unsqueeze(-1).clone()``.

2580
    Args:
2581
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: bfloat16, float16, float32, float64, bool, int8, int32, int64.
2582
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` .
2583
                                    If ``axis`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
2584 2585 2586
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
2587 2588

    Returns:
L
Ligoml 已提交
2589
        Tensor, Unsqueezed Tensor with the same data type as input Tensor.
2590 2591 2592

    Examples:
        .. code-block:: python
2593

2594 2595
            import paddle

2596 2597
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
2598

2599 2600
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
2601 2602

            out2 = paddle.unsqueeze(x, axis=[0, 2])
2603
            print(out2.shape)  # [1, 5, 1, 10]
2604

L
Leo Chen 已提交
2605
            axis = paddle.to_tensor([0, 1, 2])
2606
            out3 = paddle.unsqueeze(x, axis=axis)
2607
            print(out3.shape)  # [1, 1, 1, 5, 10]
2608 2609 2610 2611 2612 2613

            # out1, out2, out3 share data with x in dygraph mode
            x[0, 0] = 10.
            print(out1[0, 0, 0]) # [10.]
            print(out2[0, 0, 0, 0]) # [10.]
            print(out3[0, 0, 0, 0, 0]) # [10.]
2614

2615
    """
2616 2617
    input = x
    axes = axis
2618
    if in_dynamic_mode():
2619 2620 2621
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
2622
            axes = axes.tolist()
2623 2624
        elif isinstance(axes, (list, tuple)):
            axes = [
2625
                item.item(0) if isinstance(item, Variable) else item
2626 2627
                for item in axes
            ]
2628
        return _C_ops.unsqueeze(input, axes)
2629 2630 2631 2632 2633 2634
    else:
        check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
        check_variable_and_dtype(
            input,
            'input',
            [
2635
                'uint16',
2636
                'float16',
2637
                'uint16',
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
                'float32',
                'float64',
                'bool',
                'int8',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'unsqueeze',
        )
        helper = LayerHelper("unsqueeze2", **locals())
        inputs = {"X": input}
        attrs = {}
2653

2654 2655 2656 2657 2658 2659
        if isinstance(axes, int):
            axes = [axes]
        if isinstance(axes, Variable):
            axes.stop_gradient = True
            inputs["AxesTensor"] = axes
        elif isinstance(axes, (list, tuple)):
2660 2661 2662 2663
            if paddle.utils._contain_var(axes):
                inputs["AxesTensorList"] = paddle.utils._convert_to_tensor_list(
                    axes
                )
2664 2665
            else:
                attrs["axes"] = axes
2666

2667 2668 2669 2670 2671 2672 2673 2674
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type="unsqueeze2",
            inputs=inputs,
            attrs=attrs,
            outputs={"Out": out, "XShape": x_shape},
        )
2675

2676
        return out
2677 2678


2679
@inplace_apis_in_dygraph_only
2680 2681 2682 2683 2684
def unsqueeze_(x, axis, name=None):
    """
    Inplace version of ``unsqueeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_unsqueeze`.
    """
2685 2686 2687 2688 2689
    input = x
    axes = axis
    if isinstance(axes, int):
        axes = [axes]
    elif isinstance(axes, Variable):
2690
        axes = axes.tolist()
2691 2692
    elif isinstance(axes, (list, tuple)):
        axes = [
2693
            item.item(0) if isinstance(item, Variable) else item
2694
            for item in axes
2695
        ]
2696
    return _C_ops.unsqueeze_(input, axes)
2697 2698


2699
def gather(x, index, axis=None, name=None):
2700
    """
2701 2702
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
2703 2704 2705 2706 2707 2708

    .. code-block:: text


                Given:

2709
                x = [[1, 2],
2710 2711 2712
                     [3, 4],
                     [5, 6]]

2713 2714
                index = [1, 2]
                axis=[0]
2715 2716 2717

                Then:

2718
                out = [[3, 4],
2719
                       [5, 6]]
2720

2721
    Args:
2722
        x (Tensor): The source input tensor with rank>=1. Supported data type is
2723 2724
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
2725
        index (Tensor): The index input tensor with rank=0 or rank=1. Data type is int32 or int64.
2726
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
2727 2728
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
2729 2730

    Returns:
2731
        output (Tensor), If the index is a 1-D tensor, the output is a tensor with the same shape as ``x``. If the index is a 0-D tensor, the output will reduce the dimension where the axis pointing.
2732

2733 2734 2735 2736 2737 2738
    Examples:

        .. code-block:: python

            import paddle

2739 2740
            input = paddle.to_tensor([[1,2],[3,4],[5,6]])
            index = paddle.to_tensor([0,1])
2741 2742
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
2743
    """
2744 2745
    if axis is None:
        axis = 0
2746

2747
    if in_dynamic_mode():
2748
        return _C_ops.gather(x, index, axis)
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
    else:
        check_variable_and_dtype(
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'uint8',
2761
                'uint16',
2762 2763
            ],
            'gather',
2764
        )
2765
        check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
2766

2767 2768
        if isinstance(axis, Variable):
            check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')
2769

2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
        helper = LayerHelper('gather', **locals())
        dtype = helper.input_dtype('x')
        out = helper.create_variable_for_type_inference(dtype)
        if not isinstance(axis, Variable):
            helper.append_op(
                type="gather",
                inputs={"X": x, "Index": index},
                attrs={'axis': axis, 'overwrite': False},
                outputs={"Out": out},
            )
        else:
            helper.append_op(
                type="gather",
                inputs={"X": x, "Index": index, "Axis": axis},
                attrs={"overwrite": False},
                outputs={"Out": out},
            )
2787

2788
        return out
myq406450149's avatar
myq406450149 已提交
2789 2790 2791 2792


def unbind(input, axis=0):
    """
S
swtkiwi 已提交
2793

myq406450149's avatar
myq406450149 已提交
2794
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
2795

myq406450149's avatar
myq406450149 已提交
2796
    Args:
L
Leo Chen 已提交
2797
        input (Tensor): The input variable which is an N-D Tensor, data type being bool, float16, float32, float64, int32 or int64.
2798
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind.
2799
            If :math:`axis < 0`, the dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
myq406450149's avatar
myq406450149 已提交
2800
    Returns:
L
Ligoml 已提交
2801
        list(Tensor), The list of segmented Tensor variables.
myq406450149's avatar
myq406450149 已提交
2802 2803 2804

    Example:
        .. code-block:: python
2805

myq406450149's avatar
myq406450149 已提交
2806
            import paddle
2807

C
Chen Long 已提交
2808 2809
            # input is a Tensor which shape is [3, 4, 5]
            input = paddle.rand([3, 4, 5])
2810

2811
            [x0, x1, x2] = paddle.unbind(input, axis=0)
myq406450149's avatar
myq406450149 已提交
2812 2813 2814
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
C
Chen Long 已提交
2815

2816
            [x0, x1, x2, x3] = paddle.unbind(input, axis=1)
myq406450149's avatar
myq406450149 已提交
2817 2818 2819 2820 2821
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]
    """
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
    if not isinstance(axis, (int)):
        raise TypeError(
            "The type of 'axis'  must be int, but received %s." % (type(axis))
        )

    if axis not in range(-input.ndim, input.ndim):
        raise ValueError(
            f'The axis must in range({-input.ndim}, {input.ndim}).'
        )

2832
    if in_dynamic_mode():
2833
        return _C_ops.unbind(input, axis)
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
    else:
        if isinstance(axis, np.generic):
            axis = np.asscalar(axis)
        input_shape = input.shape
        axis_ = axis if axis >= 0 else len(input_shape) + axis
        num = input_shape[axis_]
        helper = LayerHelper("unbind", **locals())
        check_type(input, 'input', (Variable), 'unbind')
        dtype = helper.input_dtype()
        check_dtype(
张春乔 已提交
2844 2845
            dtype,
            'unbind',
2846 2847 2848 2849 2850 2851 2852 2853 2854
            [
                'bool',
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
张春乔 已提交
2855
            'unbind',
2856
        )
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
        outs = [
            helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
            for i in range(num)
        ]
        helper.append_op(
            type="unbind",
            inputs={"X": input},
            outputs={"Out": outs},
            attrs={"axis": axis},
        )
        return outs
L
lilong12 已提交
2870 2871


S
ShenLiang 已提交
2872 2873 2874 2875
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
2876

S
ShenLiang 已提交
2877
    .. code-block:: python
2878
        :name: code-example1
2879

H
hg-1099255210 已提交
2880
        import paddle
S
ShenLiang 已提交
2881
        #input:
H
hg-1099255210 已提交
2882 2883
        x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
        index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
S
ShenLiang 已提交
2884 2885
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
H
hg-1099255210 已提交
2886
        updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
S
ShenLiang 已提交
2887 2888 2889 2890
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
H
hg-1099255210 已提交
2891
                x[index[i]] = paddle.zeros([2])
S
ShenLiang 已提交
2892 2893 2894 2895 2896 2897
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
H
hg-1099255210 已提交
2898
        out = paddle.to_tensor([[3, 3], [6, 6], [1, 1]])
S
ShenLiang 已提交
2899 2900
        out.shape # [3, 2]

2901
    **NOTICE**: The order in which updates are applied is nondeterministic,
S
ShenLiang 已提交
2902 2903 2904 2905
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
2906 2907
        index (Tensor): The index is a 1-D or 0-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): Update input with updates parameter based on index. When the index is a 1-D tensor, the updates shape should be the same as input, and dim value with dim > 1 should be the same as input. When the index is a 0-D tensor, the updates should be a (N-1)-D tensor, the ith dim of the updates should be queal with the (i+1)th dim of the input.
H
hg-1099255210 已提交
2908
        overwrite (bool, optional): The mode that updating the output when there are same indices.
2909

S
sunzhongkai588 已提交
2910
            If True, use the overwrite mode to update the output of the same index,
H
hg-1099255210 已提交
2911
            if False, use the accumulate mode to update the output of the same index. Default value is True.
2912

S
ShenLiang 已提交
2913
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2914

S
ShenLiang 已提交
2915
    Returns:
L
Ligoml 已提交
2916
        Tensor, The output is a Tensor with the same shape as x.
S
ShenLiang 已提交
2917 2918 2919

    Examples:
        .. code-block:: python
2920

S
ShenLiang 已提交
2921 2922
            import paddle

2923 2924 2925
            x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
            index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
            updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
2926

S
ShenLiang 已提交
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
2947
    if in_dynamic_mode():
2948
        return _C_ops.scatter(x, index, updates, overwrite)
J
Jiabin Yang 已提交
2949
    else:
2950 2951 2952
        check_variable_and_dtype(
            x,
            'dtype',
Z
zxcd 已提交
2953
            ['float32', 'float64', 'float16', 'int32', 'int64', 'uint16'],
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
            'scatter',
        )
        check_type(overwrite, 'overwrite', bool, 'scatter')
        helper = LayerHelper('scatter', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type="scatter",
            inputs={"X": x, "Ids": index, "Updates": updates},
            attrs={'overwrite': overwrite},
            outputs={"Out": out},
        )
        return out
S
ShenLiang 已提交
2966 2967


2968
@inplace_apis_in_dygraph_only
2969 2970 2971 2972 2973
def scatter_(x, index, updates, overwrite=True, name=None):
    """
    Inplace version of ``scatter`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_scatter`.
    """
2974
    return _C_ops.scatter_(x, index, updates, overwrite)
2975 2976


2977
def scatter_nd_add(x, index, updates, name=None):
2978
    r"""
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019

    Output is obtained by applying sparse addition to a single value
    or slice in a Tensor.

    :attr:`x` is a Tensor with ndim :math:`R`
    and :attr:`index` is a Tensor with ndim :math:`K` . Thus, :attr:`index`
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
    is a Tensor with ndim :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + x.shape[index.shape[-1]:]` .

    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`x` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text

        Given:

        * Case 1:
            x = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:

            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            x = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            x.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:

            output = [[67, 19], [-16, -27]]

    Args:
Z
Zeng Jinle 已提交
3020
        x (Tensor): The x input. Its dtype should be int32, int64, float32, float64.
3021 3022 3023 3024 3025 3026 3027
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= x.ndim.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd_add op, and it must have the same dtype
                            as x. It must have the shape index.shape[:-1] + x.shape[index.shape[-1]:].
        name (str|None): The output tensor name. If set None, the layer will be named automatically.

    Returns:
L
Ligoml 已提交
3028
        output (Tensor), The output is a tensor with the same shape and dtype as x.
3029 3030 3031 3032 3033 3034 3035 3036 3037

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32')
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
C
Chen Long 已提交
3038 3039 3040
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype='int64')
3041

3042
            output = paddle.scatter_nd_add(x, index, updates)
C
Chen Long 已提交
3043 3044
            print(output.shape)
            # [3, 5, 9, 10]
3045
    """
3046
    if in_dynamic_mode():
3047
        return _C_ops.scatter_nd_add(x, index, updates)
3048
    else:
3049 3050
        if x.dtype != updates.dtype:
            raise ValueError("x and updates must have same data type.")
3051

3052 3053 3054 3055 3056 3057 3058 3059 3060
        helper = LayerHelper('scatter_nd_add', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        output = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="scatter_nd_add",
            inputs={"X": x, "Index": index, "Updates": updates},
            outputs={"Out": output},
        )
        return output
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)`
    is equal to :code:`scatter_nd_add(paddle.zeros(shape, updates.dtype), index, updates)` .
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated.
    Because of the numerical approximation issues, the different order of repeated elements
    in :attr:`index` may cause different results. The specific calculation method can be
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
3077
        index (Tensor): The index input with ndim >= 1 and index.shape[-1] <= len(shape).
3078 3079 3080 3081 3082 3083 3084
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd op. Its dtype should be float32, float64.
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
        name (str|None): The output Tensor name. If set None, the layer will be named automatically.

    Returns:
L
Ligoml 已提交
3085
        output (Tensor), The output is a tensor with the same type as :attr:`updates` .
3086 3087 3088 3089 3090 3091 3092

    Examples:

        .. code-block:: python

            import paddle

3093 3094 3095
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype="int64")
3096 3097 3098 3099 3100 3101
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
            shape = [3, 5, 9, 10]

            output = paddle.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)
3102 3103


3104 3105 3106
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
3107

3108 3109 3110
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
3111 3112
        axis (int|Tensor, optional): The axis along which to split, it can be a integer or a ``0-D Tensor``
            with shape [] and data type  ``int32`` or ``int64``.
3113 3114 3115 3116
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
L
Ligoml 已提交
3117
        list(Tensor), The list of segmented Tensors.
3118

3119
    Examples:
3120
        .. code-block:: python
3121

3122
            import paddle
3123

3124
            x = paddle.rand([3, 9, 5])
3125

3126
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=1)
3127 3128 3129 3130
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

3131

3132 3133 3134 3135 3136 3137 3138 3139
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
3140
    return split(x, num_or_sections=chunks, axis=axis, name=name)
3141 3142


L
lilong12 已提交
3143 3144
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
3145 3146

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
3147
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
3148 3149 3150

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
3151
    Args:
I
Infinity_lee 已提交
3152
        x (Tensor): The input tensor, its data type should be bool, float16, float32, float64, int32 or int64.
3153
        repeat_times (list|tuple|Tensor): The number of repeating times. If repeat_times is a list or tuple, all its elements
L
lilong12 已提交
3154 3155 3156
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
3157
    Returns:
3158
        N-D Tensor. The data type is the same as ``x``. The size of the i-th dimension is equal to ``x[i] * repeat_times[i]``.
L
lilong12 已提交
3159

L
lilong12 已提交
3160 3161
    Examples:
        .. code-block:: python
L
lilong12 已提交
3162

L
lilong12 已提交
3163
            import paddle
L
lilong12 已提交
3164

3165
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3166
            out = paddle.tile(data, repeat_times=[2, 1])
3167 3168 3169 3170
            print(out)
            # Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3],
            #         [1, 2, 3]])
L
lilong12 已提交
3171

3172
            out = paddle.tile(data, repeat_times=(2, 2))
3173 3174 3175 3176
            print(out)
            # Tensor(shape=[2, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3, 1, 2, 3],
            #         [1, 2, 3, 1, 2, 3]])
L
lilong12 已提交
3177

3178
            repeat_times = paddle.to_tensor([1, 2], dtype='int32')
L
lilong12 已提交
3179
            out = paddle.tile(data, repeat_times=repeat_times)
3180 3181 3182
            print(out)
            # Tensor(shape=[1, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3, 1, 2, 3]])
L
lilong12 已提交
3183
    """
3184
    if in_dynamic_mode():
3185
        if isinstance(repeat_times, core.eager.Tensor):
3186 3187 3188
            assert (
                repeat_times.ndim == 1
            ), "Only support ndim == 1 while repeat_times is a Tensor."
3189
            repeat_times = repeat_times.tolist()
3190

3191
        return _C_ops.tile(x, repeat_times)
3192
    else:
3193 3194 3195 3196 3197
        check_type(
            repeat_times, 'repeat_times', (list, tuple, Variable), 'tile'
        )
        if isinstance(repeat_times, Variable):
            assert (
3198 3199
                repeat_times.numel() == 1
            ), 'repeat_times must be a Tensor with one element.'
3200 3201 3202 3203
        else:
            for elem in repeat_times:
                if isinstance(elem, Variable):
                    assert (
3204 3205
                        elem.numel() == 1
                    ), 'Elements in repeat_times must be Tensor with one element or integers.'
3206 3207 3208 3209
                else:
                    type_tuple = (int, np.int32, np.int64)
                    assert isinstance(
                        elem, type_tuple
3210
                    ), 'Elements in repeat_times must be Tensor with one element or integers.'
3211

3212
        check_variable_and_dtype(
I
Infinity_lee 已提交
3213 3214
            x,
            'x',
Y
yangjianfengo1 已提交
3215 3216 3217
            [
                'bool',
                'float16',
Y
yangjianfengo1 已提交
3218
                'uint16',
Y
yangjianfengo1 已提交
3219 3220 3221 3222 3223
                'float32',
                'float64',
                'int32',
                'int64',
            ],
I
Infinity_lee 已提交
3224
            'tile',
3225
        )
3226 3227 3228 3229 3230 3231
        if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
            raise ValueError(
                "When the date type is bool for the input 'x' of tile op, you "
                "must set its stop_gradient to be True by "
                "some_var.stop_gradient == True supporting some_var is the input."
            )
3232

3233
        helper = LayerHelper('tile', **locals())
L
lilong12 已提交
3234

3235 3236
        inputs = {"X": [x]}
        attrs = {}
L
lilong12 已提交
3237

3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
        def get_attr_repeat_times(list_repeat_times):
            attrs_repeat_times = []
            for idx, times in enumerate(list_repeat_times):
                if isinstance(times, Variable):
                    attrs_repeat_times.append(-1)
                else:
                    attrs_repeat_times.append(times)
                    assert (
                        times > 0
                    ), "All elements in repeat_times must be positive for tile."
            return attrs_repeat_times

        if isinstance(repeat_times, Variable):
            repeat_times.stop_gradient = True
            inputs['RepeatTimes'] = repeat_times
            attrs['repeat_times'] = [-1]
        elif isinstance(repeat_times, (list, tuple)):
            attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
3256 3257 3258 3259
            if paddle.utils._contain_var(repeat_times):
                inputs[
                    'repeat_times_tensor'
                ] = paddle.utils._convert_to_tensor_list(repeat_times)
L
lilong12 已提交
3260

3261 3262 3263 3264 3265 3266
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='tile', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
3267 3268


L
lilong12 已提交
3269 3270 3271 3272 3273
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

3274
    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 0.
L
lilong12 已提交
3275 3276 3277

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
3278
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
3279 3280 3281
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
3282
        N-D Tensor, A Tensor with the same shape as ``y``. The data type is the same as ``x``.
L
lilong12 已提交
3283 3284 3285 3286 3287 3288

    Examples:
        .. code-block:: python

            import paddle

3289 3290
            data_x = paddle.to_tensor([1, 2, 3], 'int32')
            data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
L
lilong12 已提交
3291
            out = paddle.expand_as(data_x, data_y)
3292 3293 3294 3295
            print(out)
            # Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3],
            #         [1, 2, 3]])
L
lilong12 已提交
3296
    """
3297
    if in_dynamic_mode():
3298
        return _C_ops.expand_as(x, None, y.shape)
3299 3300 3301 3302
    else:
        check_variable_and_dtype(
            x,
            'x',
3303 3304 3305 3306 3307 3308 3309 3310 3311
            [
                'bool',
                'float32',
                'float64',
                'int32',
                'int64',
                'float16',
                'uint16',
            ],
3312 3313 3314
            'expand_as',
        )
        check_type(y, 'y', Variable, 'expand_as')
H
hong 已提交
3315

3316 3317 3318 3319 3320 3321 3322 3323
        if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
            raise ValueError(
                "When the data type of input 'x' for expand_as is bool, "
                "you must set its stop_gradient to be False by "
                "some_var.stop_gradient = True, supporting "
                "some_var as the input 'x'."
            )
        inputs = {"X": [x], "Y": [y]}
L
lilong12 已提交
3324

3325 3326 3327 3328 3329 3330 3331 3332
        helper = LayerHelper('expand_as', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='expand_as_v2',
            inputs=inputs,
            attrs={'target_shape': y.shape},
            outputs={'Out': out},
3333
        )
3334
        return out
L
lilong12 已提交
3335 3336


3337 3338 3339 3340 3341
def broadcast_to(x, shape, name=None):
    """

    Broadcast the input tensor to a given shape.

3342
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to broadcast to must have a value 0.
3343 3344 3345


    Args:
张春乔 已提交
3346
        x (Tensor): The input tensor, its data type is bool, float16, float32, float64, int32 or int64.
3347
        shape (list|tuple|Tensor): The result shape after broadcasting. The data type is int32. If shape is a list or tuple, all its elements
3348
            should be integers or 0-D or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
3349
            The value -1 in shape means keeping the corresponding dimension unchanged.
3350
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3351
    Returns:
L
Ligoml 已提交
3352
        N-D Tensor, A Tensor with the given shape. The data type is the same as ``x``.
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([1, 2, 3], dtype='int32')
            out = paddle.broadcast_to(data, shape=[2, 3])
            print(out)
            # [[1, 2, 3], [1, 2, 3]]
    """
3364
    if in_dynamic_mode():
3365
        return _C_ops.expand(x, shape)
3366
    else:
3367 3368 3369
        if isinstance(shape, Variable):
            assert len(shape.shape) == 1, 'shape must be an 1-D Tensor.'
        else:
3370
            type_tuple = (int, np.int32, np.int64)
3371 3372 3373 3374 3375 3376 3377 3378 3379
            for elem in shape:
                if isinstance(elem, Variable):
                    assert (
                        len(elem.shape) == 1
                    ), 'Elements in shape must be 1-D Tensors or integers.'
                else:
                    assert isinstance(
                        elem, type_tuple
                    ), 'Elements in shape must be 1-D Tensors or integers.'
3380

3381 3382 3383
        check_variable_and_dtype(
            x,
            'x',
3384 3385 3386 3387 3388 3389 3390 3391 3392
            [
                'bool',
                'uint16',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
3393
            'broadcast_to',
3394
        )
3395 3396 3397 3398 3399 3400 3401 3402
        check_type(shape, 'shape', (list, tuple, Variable), 'broadcast_to')
        if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
            raise ValueError(
                "When the data type of input 'x' for broadcast_to is bool, "
                "you must set its stop_gradient to be False by "
                "some_var.stop_gradient = True, supporting "
                "some_var as the input."
            )
3403

3404 3405
        inputs = {"X": [x]}
        attrs = {}
3406

3407
        helper = LayerHelper('expand', **locals())
3408

3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
        def get_attr_expand_shape(list_expand_shape):
            attrs_expand_shape = []
            for idx, shape in enumerate(list_expand_shape):
                if isinstance(shape, Variable):
                    attrs_expand_shape.append(-1)
                else:
                    attrs_expand_shape.append(shape)
                    assert (
                        shape > 0 or shape == -1
                    ), "All elements in shape of broadcast_to must be positive or -1."
            return attrs_expand_shape
3420

3421 3422 3423 3424 3425
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs['Shape'] = shape
        elif isinstance(shape, (list, tuple)):
            attrs['shape'] = get_attr_expand_shape(shape)
3426 3427 3428 3429
            if paddle.utils._contain_var(shape):
                inputs[
                    'expand_shapes_tensor'
                ] = paddle.utils._convert_to_tensor_list(shape)
3430

3431 3432 3433 3434 3435 3436
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
3437 3438


3439 3440 3441 3442 3443
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

3444
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. And the number of dimensions of ``x`` should be less than the number of elements in ``shape``. The dimension to expand must have a value 0.
3445 3446

    Args:
C
Chen Long 已提交
3447
        x (Tensor): The input Tensor, its data type is bool, float32, float64, int32 or int64.
L
lilong12 已提交
3448
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
3449
            should be integers or 0-D or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
L
lilong12 已提交
3450
            The value -1 in shape means keeping the corresponding dimension unchanged.
3451 3452 3453
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
3454
        N-D Tensor, A Tensor with the given shape. The data type is the same as ``x``.
3455 3456 3457 3458 3459 3460

    Examples:
        .. code-block:: python

            import paddle

3461
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3462
            out = paddle.expand(data, shape=[2, 3])
3463
            print(out)
3464 3465
            # [[1, 2, 3], [1, 2, 3]]
    """
3466
    if in_dynamic_mode():
3467
        return _C_ops.expand(x, shape)
3468
    else:
3469
        if isinstance(shape, Variable):
3470
            assert shape.numel() == 1, 'shape must be a Tensor with one element'
3471 3472 3473 3474
        else:
            for elem in shape:
                if isinstance(elem, Variable):
                    assert (
3475 3476
                        elem.numel() == 1
                    ), 'Elements in shape must be Tensor with one element or integers.'
3477 3478 3479 3480
                else:
                    type_tuple = (int, np.int32, np.int64)
                    assert isinstance(
                        elem, type_tuple
3481
                    ), 'Elements in shape must be Tensor with one element or integers.'
3482

3483 3484 3485
        check_variable_and_dtype(
            x,
            'x',
3486 3487 3488 3489 3490 3491 3492 3493 3494
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
3495
            'expand',
3496
        )
3497 3498 3499 3500 3501 3502 3503 3504
        check_type(shape, 'shape', (list, tuple, Variable), 'expand')
        if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
            raise ValueError(
                "When the data type of input 'x' for expand is bool, "
                "you must set its stop_gradient to be False by "
                "some_var.stop_gradient = True, supporting "
                "some_var as the input."
            )
3505

3506 3507
        inputs = {"X": [x]}
        attrs = {}
3508

3509
        helper = LayerHelper('expand', **locals())
3510

3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
        def get_attr_expand_shape(list_expand_shape):
            attrs_expand_shape = []
            for idx, shape in enumerate(list_expand_shape):
                if isinstance(shape, Variable):
                    attrs_expand_shape.append(-2)
                else:
                    attrs_expand_shape.append(shape)
                    assert (
                        shape > 0 or shape == -1
                    ), "All elements in shape of expand must be positive or -1."
            return attrs_expand_shape
3522

3523 3524 3525 3526 3527
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs['Shape'] = shape
        elif isinstance(shape, (list, tuple)):
            attrs['shape'] = get_attr_expand_shape(shape)
3528 3529 3530 3531
            if paddle.utils._contain_var(shape):
                inputs[
                    'expand_shapes_tensor'
                ] = paddle.utils._convert_to_tensor_list(shape)
3532

3533 3534 3535 3536 3537 3538
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
L
lilong12 已提交
3539 3540


3541 3542
def reshape(x, shape, name=None):
    """
3543
    Changes the shape of ``x`` without changing its data.
3544

3545
    Note that the output Tensor will share data with origin Tensor and doesn't
3546 3547
    have a Tensor copy in ``dygraph`` mode.
    If you want to use the Tensor copy version, please use `Tensor.clone` like
3548 3549
    ``reshape_clone_x = x.reshape([-1]).clone()``.

3550 3551
    Some tricks exist when specifying the target shape.

3552
        - 1. -1 means the value of this dimension is inferred from the total element number of x and remaining dimensions. Thus one and only one dimension can be set -1.
3553

3554
        - 2. 0 means the actual dimension value is going to be copied from the corresponding dimension of x. The index of 0s in shape can not exceed the dimension of x.
3555 3556 3557

    Here are some examples to explain it.

3558
        - 1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [6, 8], the reshape operator will transform x into a 2-D tensor with shape [6, 8] and leaving x's data unchanged.
3559

3560
        - 2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape specified is [2, 3, -1, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this case, one dimension of the target shape is set to -1, the value of this dimension is inferred from the total element number of x and remaining dimensions.
3561

3562
        - 3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case, besides -1, 0 means the actual dimension value is going to be copied from the corresponding dimension of x.
3563 3564

    Args:
3565 3566
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        shape (list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
3567
                        The data type is ``int32`` . If ``shape`` is a list or tuple, each element of it should be integer or Tensor with shape [].
3568
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
3569
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3570 3571

    Returns:
L
Ligoml 已提交
3572
        Tensor, A reshaped Tensor with the same data type as ``x``.
3573 3574 3575 3576 3577 3578

    Examples:
        .. code-block:: python

            import paddle

3579 3580
            x = paddle.rand([2, 4, 6], dtype="float32")
            positive_four = paddle.full([1], 4, "int32")
3581

3582 3583 3584
            out = paddle.reshape(x, [-1, 0, 3, 2])
            print(out)
            # the shape is [2,4,3,2].
3585

3586 3587
            out = paddle.reshape(x, shape=[positive_four, 12])
            print(out)
3588
            # the shape of out_2 is [4, 12].
3589

3590
            shape_tensor = paddle.to_tensor([8, 6], dtype=paddle.int32)
3591
            out = paddle.reshape(x, shape=shape_tensor)
3592
            print(out.shape)
3593
            # the shape is [8, 6].
3594 3595 3596 3597 3598
            # out shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(out[0, 0])
            # the value is [10.]

3599
    """
3600
    if in_dynamic_mode():
3601
        if isinstance(shape, (list, tuple)):
3602 3603 3604 3605 3606 3607 3608 3609
            new_shape = []
            for ele in shape:
                if isinstance(ele, core.eager.Tensor):
                    new_shape.append(ele.item())
                else:
                    new_shape.append(ele)

            if new_shape == x.shape:
3610 3611
                out = x
            else:
3612
                out = _C_ops.reshape(x, new_shape)
3613
        elif isinstance(shape, core.eager.Tensor):
3614
            shape.stop_gradient = True
3615
            out = _C_ops.reshape(x, shape)
3616 3617 3618
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
3619 3620
                " got '{}.'".format(type(shape))
            )
3621

3622
        return out
3623
    else:
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
        check_variable_and_dtype(
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'bool',
                'uint16',
            ],
            'reshape',
        )
        check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
3640

3641 3642 3643 3644 3645 3646
        def get_attr_shape(list_shape):
            unk_dim_idx = -1
            attrs_shape = []
            for dim_idx, dim_size in enumerate(list_shape):
                if isinstance(dim_size, Variable):
                    attrs_shape.append(-1)
3647
                else:
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
                    attrs_shape.append(dim_size)
                    if dim_size == -1:
                        assert unk_dim_idx == -1, (
                            "Only one dimension value of 'shape' in reshape can "
                            "be -1. But received shape[%d] is also -1.\n"
                            "\n\t# N = x.shape()[2]\t\t# N is an int. "
                            "(NOT recommend under @to_static)\n\tN = paddle.shape(x)[2]\t\t"
                            "# N is a Tensor. (Recommend)\n\tz = paddle.reshape([N, -1, 4])"
                            "\t# z.shape is [-1, -1, 4]\n\n"
                            "    If your target shape in Reshape represents dynamic shape, "
                            "please turn it into a Tensor under @to_static. See above example for details."
                            % dim_idx
                        )
                        unk_dim_idx = dim_idx
                    elif dim_size == 0:
                        assert dim_idx < len(x.shape), (
                            "The index of 0 in `shape` must be less than "
                            "the input tensor X's dimensions. "
                            "But received shape[%d] = 0, X's dimensions = %d."
                            % (dim_idx, len(x.shape))
                        )
                    else:
                        assert dim_size > 0, (
                            "Each dimension value of 'shape' in reshape must not "
                            "be negative except one unknown dimension. "
                            "But received shape[%d] = %s."
                            % (dim_idx, str(dim_size))
                        )
            return attrs_shape

        inputs = {"X": x}
        attrs = {}
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs["Shape"] = shape
        elif isinstance(shape, (list, tuple)):
            attrs["shape"] = get_attr_shape(shape)
3685 3686 3687 3688
            if paddle.utils._contain_var(shape):
                inputs['ShapeTensor'] = paddle.utils._convert_to_tensor_list(
                    shape
                )
3689

3690
        helper = LayerHelper("reshape2", **locals())
3691 3692 3693 3694 3695 3696 3697
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="reshape2",
            inputs=inputs,
            attrs=attrs,
            outputs={"Out": out, "XShape": x_shape},
3698
        )
3699

3700
        return out
3701 3702


3703
@inplace_apis_in_dygraph_only
3704 3705 3706 3707 3708
def reshape_(x, shape, name=None):
    """
    Inplace version of ``reshape`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_reshape`.
    """
3709
    if in_dynamic_mode():
3710 3711 3712
        tmp_tensor_type = core.eager.Tensor
        if isinstance(shape, (list, tuple)):
            shape = [
3713
                item.item(0) if isinstance(item, tmp_tensor_type) else item
3714
                for item in shape
3715
            ]
3716 3717 3718 3719
            if shape == x.shape:
                out = x
            else:
                out = _C_ops.reshape_(x, shape)
3720 3721
        elif isinstance(shape, tmp_tensor_type):
            shape.stop_gradient = True
3722
            out = _C_ops.reshape_(x, shape)
3723 3724 3725
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
3726 3727
                " got '{}.'".format(type(shape))
            )
3728

3729
        return out
3730 3731


3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
3751 3752 3753 3754 3755 3756 3757
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
3758 3759 3760 3761

            * Case 1:
                index = [[1]]

3762 3763
                gather_nd(x, index)
                         = [x[1, :, :]]
3764 3765 3766 3767 3768 3769 3770
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

3771 3772
                gather_nd(x, index)
                         = [x[0, 2, :]]
3773 3774 3775 3776 3777
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

3778 3779
                gather_nd(x, index)
                         = [x[1, 2, 3]]
3780 3781 3782
                         = [23]

    Args:
张春乔 已提交
3783
        x (Tensor): The input Tensor which it's data type should be bool, float16, float32, float64, int32, int64.
3784 3785
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
3786
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3787 3788

    Returns:
L
Ligoml 已提交
3789
        output (Tensor), A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
3790

3791 3792 3793
    Examples:

        .. code-block:: python
3794

3795
            import paddle
3796

3797 3798 3799
            x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]],
                                  [[7, 8], [9, 10], [11, 12]]])
            index = paddle.to_tensor([[0, 1]])
3800

3801 3802 3803
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """
3804
    if in_dynamic_mode():
3805
        return _C_ops.gather_nd(x, index)
3806
    else:
3807 3808 3809
        check_variable_and_dtype(
            x,
            'x',
张春乔 已提交
3810 3811 3812
            [
                'bool',
                'float16',
3813
                'uint16',
张春乔 已提交
3814 3815 3816 3817 3818 3819
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
            ],
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
            'gather_np',
        )
        check_variable_and_dtype(
            index, 'index', ['int32', 'int64'], 'gather_np'
        )
        helper = LayerHelper('gather_nd', **locals())
        dtype = helper.input_dtype()
        output = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="gather_nd",
            inputs={"X": x, "Index": index},
            outputs={"Out": output},
        )
        return output
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881


def strided_slice(x, axes, starts, ends, strides, name=None):
    """
    This operator produces a slice of ``x`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
                strides = [1, 1]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
                strides = [1, 3]
            Then:
                result = [ [2], ]
3882

3883
    Args:
3884
        x (Tensor): An N-D ``Tensor``. The data type is ``bool``, ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
3885 3886
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
3887 3888 3889 3890 3891 3892 3893 3894 3895
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of it should be
            integers or Tensors with shape []. If ``starts`` is an Tensor, it should be an 1-D Tensor.
            It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of it should be
            integers or Tensors with shape []. If ``ends`` is an Tensor, it should be an 1-D Tensor.
            It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Tensor): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of it should be
            integers or Tensors with shape []. If ``strides`` is an Tensor, it should be an 1-D Tensor.
            It represents slice step of corresponding axis in ``axes``.
3896 3897 3898 3899
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
3900
        Tensor, A ``Tensor`` with the same dimension as ``x``. The data type is same as ``x``.
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.zeros(shape=[3,4,5,6], dtype="float32")
            # example 1:
            # attr starts is a list which doesn't contain Tensor.
            axes = [1, 2, 3]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = paddle.strided_slice(x, axes=axes, starts=starts, ends=ends, strides=strides_1)
3915
            # sliced_1 is x[:, 1:3:1, 0:2:1, 2:4:1].
3916 3917
            # example 2:
            # attr starts is a list which contain tensor Tensor.
3918
            minus_3 = paddle.full(shape=[1], fill_value=-3, dtype='int32')
3919 3920 3921
            sliced_2 = paddle.strided_slice(x, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is x[:, 1:3:1, 0:2:1, 2:4:2].
    """
3922
    if in_dynamic_mode():
3923
        return _C_ops.strided_slice(x, axes, starts, ends, strides)
3924 3925
    else:
        helper = LayerHelper('strided_slice', **locals())
3926

3927 3928 3929
        check_variable_and_dtype(
            x,
            'x',
3930 3931 3932 3933 3934 3935 3936 3937 3938
            [
                'bool',
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
            'strided_slice',
        )
        check_type(axes, 'axes', (list, tuple), 'strided_slice')
        check_type(starts, 'starts', (list, tuple, Variable), 'strided_slice')
        check_type(ends, 'ends', (list, tuple, Variable), 'strided_slice')
        check_type(strides, 'strides', (list, tuple, Variable), 'strided_slice')

        def check_list_elements_dtype(list_input, input_name):
            if isinstance(list_input, Variable):
                check_dtype(
W
wanghuancoder 已提交
3949 3950 3951 3952
                    list_input.dtype,
                    input_name,
                    ['int32', 'int64'],
                    'strided_slice',
3953
                )
3954
            else:
3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
                for i, var in enumerate(list_input):
                    var_name = input_name + '[' + str(i) + ']'
                    if isinstance(var, Variable):
                        check_dtype(
                            var.dtype, var_name, ['int32'], 'strided_slice'
                        )

        check_list_elements_dtype(axes, 'axes')
        check_list_elements_dtype(starts, 'starts')
        check_list_elements_dtype(ends, 'ends')
        check_list_elements_dtype(strides, 'strides')

        def get_new_list_tensor(old_list):
            new_list_tensor = []
            for dim in old_list:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_list_tensor.append(dim)
                else:
                    assert isinstance(dim, int)
                    temp_out = helper.create_variable_for_type_inference(
                        'int32'
                    )
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out
                    )
                    new_list_tensor.append(temp_out)
            return new_list_tensor
3983 3984

        inputs = {'Input': x}
3985
        attrs = {'axes': axes}
3986
        infer_flags = [1 for i in range(len(axes))]
3987 3988 3989 3990 3991 3992
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
3993
            if paddle.utils._contain_var(starts):
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
            else:
                attrs['starts'] = starts

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
4010
            if paddle.utils._contain_var(ends):
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
            else:
                attrs['ends'] = ends

        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
4027
            if paddle.utils._contain_var(strides):
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
            else:
                attrs['strides'] = strides
        attrs['infer_flags'] = infer_flags
4038 4039 4040 4041 4042 4043 4044 4045 4046
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('x')
        )
        helper.append_op(
            type='strided_slice',
            inputs=inputs,
            attrs=attrs,
            outputs={'Out': out},
        )
4047

4048
        return out
F
From00 已提交
4049 4050 4051 4052


def tensordot(x, y, axes=2, name=None):
    r"""
4053
    This function computes a contraction, which sum the product of elements from two tensors along the given axes.
F
From00 已提交
4054 4055

    Args:
4056
        x (Tensor): The left tensor for contraction with data type ``float16`` or ``float32`` or ``float64``.
F
From00 已提交
4057 4058 4059
        y (Tensor): The right tensor for contraction with the same data type as ``x``.
        axes (int|tuple|list|Tensor, optional):  The axes to contract for ``x`` and ``y``, defaulted to integer ``2``.

4060
            1. It could be a non-negative integer ``n``,
F
From00 已提交
4061
               in which the function will sum over the last ``n`` axes of ``x`` and the first ``n`` axes of ``y`` in order.
4062 4063

            2. It could be a 1-d tuple or list with data type ``int``, in which ``x`` and ``y`` will be contracted along the same given axes.
F
From00 已提交
4064
               For example, ``axes`` =[0, 1] applies contraction along the first two axes for ``x`` and the first two axes for ``y``.
4065 4066 4067 4068

            3. It could be a tuple or list containing one or two 1-d tuple|list|Tensor with data type ``int``.
               When containing one tuple|list|Tensor, the data in tuple|list|Tensor specified the same axes for ``x`` and ``y`` to contract.
               When containing two tuple|list|Tensor, the first will be applied to ``x`` and the second to ``y``.
F
From00 已提交
4069
               When containing more than two tuple|list|Tensor, only the first two axis sequences will be used while the others will be ignored.
4070 4071 4072

            4. It could be a tensor, in which the ``axes`` tensor will be translated to a python list
               and applied the same rules described above to determine the contraction axes.
F
From00 已提交
4073
               Note that the ``axes`` with Tensor type is ONLY available in Dygraph mode.
4074
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
F
From00 已提交
4075 4076
                             For more information, please refer to :ref:`api_guide_Name` .

4077
    Return:
L
Ligoml 已提交
4078
        Output (Tensor), The contraction result with the same data type as ``x`` and ``y``.
F
From00 已提交
4079
        In general, :math:`output.ndim = x.ndim + y.ndim - 2 \times n_{axes}`, where :math:`n_{axes}` denotes the number of axes to be contracted.
4080

F
From00 已提交
4081
    NOTES:
4082
        1. This function supports tensor broadcast,
F
From00 已提交
4083
           the size in the corresponding dimensions of ``x`` and ``y`` should be equal, or applies to the broadcast rules.
4084 4085 4086 4087 4088
        2. This function also supports axes expansion,
           when the two given axis sequences for ``x`` and ``y`` are of different lengths,
           the shorter sequence will expand the same axes as the longer one at the end.
           For example, if ``axes`` =[[0, 1, 2, 3], [1, 0]],
           the axis sequence for ``x`` is [0, 1, 2, 3],
F
From00 已提交
4089
           while the corresponding axis sequences for ``y`` will be expanded from [1, 0] to [1, 0, 2, 3].
4090

F
From00 已提交
4091 4092 4093 4094 4095 4096 4097 4098
    Examples:
        .. code-block:: python

            import paddle

            data_type = 'float64'

            # For two 2-d tensor x and y, the case axes=0 is equivalent to outer product.
4099
            # Note that tensordot supports empty axis sequence, so all the axes=0, axes=[], axes=[[]], and axes=[[],[]] are equivalent cases.
F
From00 已提交
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
            x = paddle.arange(4, dtype=data_type).reshape([2, 2])
            y = paddle.arange(4, dtype=data_type).reshape([2, 2])
            z = paddle.tensordot(x, y, axes=0)
            # z = [[[[0., 0.],
            #        [0., 0.]],
            #
            #       [[0., 1.],
            #        [2., 3.]]],
            #
            #
            #      [[[0., 2.],
            #        [4., 6.]],
            #
            #       [[0., 3.],
            #        [6., 9.]]]]


            # For two 1-d tensor x and y, the case axes=1 is equivalent to inner product.
            x = paddle.arange(10, dtype=data_type)
            y = paddle.arange(10, dtype=data_type)
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.dot(x, y)
4122
            # z1 = z2 = 285.
F
From00 已提交
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160


            # For two 2-d tensor x and y, the case axes=1 is equivalent to matrix multiplication.
            x = paddle.arange(6, dtype=data_type).reshape([2, 3])
            y = paddle.arange(12, dtype=data_type).reshape([3, 4])
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.matmul(x, y)
            # z1 = z2 =  [[20., 23., 26., 29.],
            #             [56., 68., 80., 92.]]


            # When axes is a 1-d int list, x and y will be contracted along the same given axes.
            # Note that axes=[1, 2] is equivalent to axes=[[1, 2]], axes=[[1, 2], []], axes=[[1, 2], [1]], and axes=[[1, 2], [1, 2]].
            x = paddle.arange(24, dtype=data_type).reshape([2, 3, 4])
            y = paddle.arange(36, dtype=data_type).reshape([3, 3, 4])
            z = paddle.tensordot(x, y, axes=[1, 2])
            # z =  [[506. , 1298., 2090.],
            #       [1298., 3818., 6338.]]


            # When axes is a list containing two 1-d int list, the first will be applied to x and the second to y.
            x = paddle.arange(60, dtype=data_type).reshape([3, 4, 5])
            y = paddle.arange(24, dtype=data_type).reshape([4, 3, 2])
            z = paddle.tensordot(x, y, axes=([1, 0], [0, 1]))
            # z =  [[4400., 4730.],
            #       [4532., 4874.],
            #       [4664., 5018.],
            #       [4796., 5162.],
            #       [4928., 5306.]]


            # Thanks to the support of axes expansion, axes=[[0, 1, 3, 4], [1, 0, 3, 4]] can be abbreviated as axes= [[0, 1, 3, 4], [1, 0]].
            x = paddle.arange(720, dtype=data_type).reshape([2, 3, 4, 5, 6])
            y = paddle.arange(720, dtype=data_type).reshape([3, 2, 4, 5, 6])
            z = paddle.tensordot(x, y, axes=[[0, 1, 3, 4], [1, 0]])
            # z = [[23217330., 24915630., 26613930., 28312230.],
            #      [24915630., 26775930., 28636230., 30496530.],
            #      [26613930., 28636230., 30658530., 32680830.],
4161
            #      [28312230., 30496530., 32680830., 34865130.]]
F
From00 已提交
4162 4163
    """
    op_type = 'tensordot'
4164
    input_dtype = ['float16', 'float32', 'float64']
F
From00 已提交
4165 4166 4167 4168 4169 4170

    check_variable_and_dtype(x, 'x', input_dtype, op_type)
    check_variable_and_dtype(y, 'y', input_dtype, op_type)
    check_type(axes, 'axes', (int, tuple, list, Variable), op_type)

    def _var_to_list(var):
4171
        if in_dynamic_mode():
F
From00 已提交
4172 4173
            return tolist(var)
        raise TypeError(
4174 4175 4176
            "The 'axes' with type 'Tensor' in "
            + op_type
            + " is not available in static graph mode, "
F
From00 已提交
4177 4178 4179 4180 4181 4182 4183
            "please convert its type to int|Tuple|List, or use dynamic graph mode."
        )

    axes_x = []
    axes_y = []
    if np.issubdtype(type(axes), np.integer):
        assert axes >= 0, (
4184 4185 4186 4187
            "The 'axes' in "
            + op_type
            + f" should not be negative, but received axes={axes}."
        )
F
From00 已提交
4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
        axes_x = range(x.ndim - axes, x.ndim)
        axes_y = range(axes)
    else:
        if isinstance(axes, Variable):
            axes = _var_to_list(axes)

        if not axes or np.issubdtype(type(axes[0]), np.integer):
            axes_x = axes
        else:
            axes_x = axes[0]
            if len(axes) > 1:
                axes_y = axes[1]

            if isinstance(axes_x, Variable):
                axes_x = _var_to_list(axes_x)
            if isinstance(axes_y, Variable):
                axes_y = _var_to_list(axes_y)

    axes_x, axes_y = list(axes_x), list(axes_y)
    len_axes_x, len_axes_y = len(axes_x), len(axes_y)
    if len_axes_x < len_axes_y:
        axes_x.extend(axes_y[len_axes_x:])
    elif len_axes_y < len_axes_x:
        axes_y.extend(axes_x[len_axes_y:])

    shape_x, shape_y = list(x.shape), list(y.shape)
    need_contracted_dim_x = np.zeros((x.ndim), dtype=bool)
    need_contracted_dim_y = np.zeros((y.ndim), dtype=bool)
    contraction_size = 1
    for i in range(len(axes_x)):
        dim_x, dim_y = axes_x[i], axes_y[i]
        sx, sy = shape_x[dim_x], shape_y[dim_y]
        if sx == 1:
            shape_y[dim_y] = 1
            y = y.sum(dim_y).reshape(shape_y)
        elif sy == 1:
            shape_x[dim_x] = 1
            x = x.sum(dim_x).reshape(shape_x)
        else:
4227 4228 4229 4230 4231
            assert sx == sy, (
                "The dimensional size for 'x' and 'y' in "
                + op_type
                + f" should match each other, but 'x' has size {sx} in dim {dim_x} while 'y' has size {sy} in dim {dim_y}."
            )
F
From00 已提交
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255

        need_contracted_dim_x[dim_x] = True
        need_contracted_dim_y[dim_y] = True
        contraction_size *= shape_x[dim_x]

    perm_x = []
    perm_y = []
    shape_out = []
    not_contraction_size_x = 1
    not_contraction_size_y = 1
    for i in range(x.ndim):
        if not need_contracted_dim_x[i]:
            perm_x.append(i)
            shape_out.append(shape_x[i])
            not_contraction_size_x *= shape_x[i]
    perm_x.extend(axes_x)
    perm_y.extend(axes_y)
    for i in range(y.ndim):
        if not need_contracted_dim_y[i]:
            perm_y.append(i)
            shape_out.append(shape_y[i])
            not_contraction_size_y *= shape_y[i]

    x = x.transpose(perm=perm_x).reshape(
4256 4257
        [not_contraction_size_x, contraction_size]
    )
F
From00 已提交
4258
    y = y.transpose(perm=perm_y).reshape(
4259 4260
        [contraction_size, not_contraction_size_y]
    )
F
From00 已提交
4261 4262
    out = x.matmul(y).reshape(shape_out)
    return out
4263 4264 4265


def as_complex(x, name=None):
4266 4267
    """Transform a real tensor to a complex tensor.

4268 4269 4270
    The data type of the input tensor is 'float32' or 'float64', and the data
    type of the returned tensor is 'complex64' or 'complex128', respectively.

4271
    The shape of the input tensor is ``(* ,2)``, (``*`` means arbitary shape), i.e.
4272 4273 4274 4275 4276 4277 4278 4279
    the size of the last axis shoule be 2, which represent the real and imag part
    of a complex number. The shape of the returned tensor is ``(*,)``.

    Args:
        x (Tensor): The input tensor. Data type is 'float32' or 'float64'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4280
        Tensor, The output. Data type is 'complex64' or 'complex128', with the same precision as the input.
4281

4282 4283 4284 4285 4286 4287
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
4288
            print(y)
4289

4290 4291 4292
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(gpu:0), stop_gradient=True,
            #        [[1j      , (2+3j)  , (4+5j)  ],
            #         [(6+7j)  , (8+9j)  , (10+11j)]])
4293
    """
4294
    if in_dynamic_mode():
4295
        return _C_ops.as_complex(x)
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'as_complex')
        op_type = "as_complex"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": x}
        out = helper.create_variable_for_type_inference(
            dtype=_real_to_complex_dtype(x.dtype)
        )
        outputs = {"Out": out}
        attrs = {}
        helper.append_op(
            type=op_type, inputs=inputs, attrs=attrs, outputs=outputs
        )
        return out
4310 4311 4312


def as_real(x, name=None):
4313 4314 4315
    """Transform a complex tensor to a real tensor.

    The data type of the input tensor is 'complex64' or 'complex128', and the data
4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
    type of the returned tensor is 'float32' or 'float64', respectively.

    When the shape of the input tensor is ``(*, )``, (``*`` means arbitary shape),
    the shape of the output tensor is ``(*, 2)``, i.e. the shape of the output is
    the shape of the input appended by an extra ``2``.

    Args:
        x (Tensor): The input tensor. Data type is 'complex64' or 'complex128'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4327
        Tensor, The output. Data type is 'float32' or 'float64', with the same precision as the input.
4328

4329 4330 4331 4332 4333 4334 4335
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            z = paddle.as_real(y)
4336
            print(z)
4337

4338 4339 4340 4341
            # Tensor(shape=[2, 3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[0. , 1. ],
            #          [2. , 3. ],
            #          [4. , 5. ]],
4342

4343 4344 4345
            #         [[6. , 7. ],
            #          [8. , 9. ],
            #          [10., 11.]]])
4346
    """
4347
    if in_dynamic_mode():
4348
        return _C_ops.as_real(x)
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359
    else:
        check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'as_real')
        op_type = "as_real"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": x}
        out = helper.create_variable_for_type_inference(
            dtype=_complex_to_real_dtype(x.dtype)
        )
        outputs = {"Out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
        return out
4360 4361


K
kuizhiqing 已提交
4362 4363 4364 4365 4366 4367 4368 4369 4370
def repeat_interleave(x, repeats, axis=None, name=None):
    """

    Returns a new tensor which repeats the ``x`` tensor along dimension ``axis`` using
    the entries in ``repeats`` which is a int or a Tensor.

    Args:
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        repeats (Tensor or int): The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis.
4371
        axis (int, optional): The dimension in which we manipulate. Default: None, the output tensor is flatten.
K
kuizhiqing 已提交
4372 4373 4374 4375 4376
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4377
        Tensor, A Tensor with same data type as ``x``.
K
kuizhiqing 已提交
4378

4379 4380 4381 4382 4383
    Examples:
        .. code-block:: python

            import paddle

K
kuizhiqing 已提交
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            repeats  = paddle.to_tensor([3, 2, 1], dtype='int32')

            paddle.repeat_interleave(x, repeats, 1)
            # [[1, 1, 1, 2, 2, 3],
            #  [4, 4, 4, 5, 5, 6]]

            paddle.repeat_interleave(x, 2, 0)
            # [[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]]

            paddle.repeat_interleave(x, 2, None)
            # [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]
    """

    if axis is None:
        x = paddle.flatten(x)
        axis = 0
4401
    if in_dynamic_mode():
S
seemingwang 已提交
4402
        if isinstance(repeats, Variable):
4403 4404
            return _C_ops.repeat_interleave_with_tensor_index(x, repeats, axis)
        return _C_ops.repeat_interleave(x, repeats, axis)
K
kuizhiqing 已提交
4405 4406

    helper = LayerHelper("repeat_interleave", **locals())
4407 4408 4409 4410 4411 4412
    check_variable_and_dtype(
        x,
        'x',
        ['float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.repeat_interleave',
    )
K
kuizhiqing 已提交
4413 4414 4415

    out = helper.create_variable_for_type_inference(x.dtype)

4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
    helper.append_op(
        type='repeat_interleave',
        inputs={
            'X': x,
            'RepeatsTensor': repeats if isinstance(repeats, Variable) else None,
        },
        outputs={'Out': out},
        attrs={
            'dim': axis,
            'Repeats': repeats if isinstance(repeats, int) else 0,
        },
    )
K
kuizhiqing 已提交
4428 4429 4430
    return out


4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
def moveaxis(x, source, destination, name=None):
    """
    Move the axis of tensor from ``source`` position to ``destination`` position.

    Other axis that have not been moved remain their original order.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, int32, int64, float32, float64, complex64, complex128.
        source(int|tuple|list): ``source`` position of axis that will be moved. Each element must be unique and integer.
        destination(int|tuple|list(int)): ``destination`` position of axis that has been moved. Each element must be unique and integer.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4445
        Tensor, A new tensor whose axis have been moved.
4446 4447 4448

    Examples:
        .. code-block:: python
4449

4450 4451 4452 4453 4454 4455 4456
            import paddle

            x = paddle.ones([3, 2, 4])
            paddle.moveaxis(x, [0, 1], [1, 2]).shape
            # [4, 3, 2]

            x = paddle.ones([2, 3])
4457
            paddle.moveaxis(x, 0, 1).shape # equivalent to paddle.t(x)
4458
            # [3, 2]
4459 4460 4461 4462 4463
    """
    src = [source] if isinstance(source, int) else source
    dst = [destination] if isinstance(destination, int) else destination

    assert len(src) == len(
4464 4465
        dst
    ), "'source' must have the same number with 'destination'"
4466

4467
    if len(src) != len(set(src)):
4468
        raise ValueError("Each elemment of 'source' must be unique!")
4469
    if len(dst) != len(set(dst)):
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
        raise ValueError("Each elemment of 'destination' must be unique!")

    ndim = len(x.shape)

    # perm is the new order after move axis
    perm = list(range(ndim))
    src_dims = list(range(ndim))
    dst_dims = list(range(ndim))

    for i, axis in enumerate(zip(src, dst)):
4480 4481 4482
        assert isinstance(
            axis[0], int
        ), "Each elemment of 'source' must be integer."
4483
        if axis[0] < 0:
4484 4485 4486
            assert (
                axis[0] >= -ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4487 4488
            src[i] += ndim
        else:
4489 4490 4491
            assert (
                axis[0] < ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4492

4493 4494 4495
        assert isinstance(
            axis[1], int
        ), "Each elemment of 'source' must be integer."
4496
        if axis[1] < 0:
4497 4498 4499
            assert (
                axis[1] >= -ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4500 4501
            dst[i] += ndim
        else:
4502 4503 4504
            assert (
                axis[1] < ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4505 4506 4507 4508 4509 4510 4511
        perm[dst[i]] = src[i]
        src_dims.remove(src[i])
        dst_dims.remove(dst[i])

    for i in range(len(src_dims)):
        perm[dst_dims[i]] = src_dims[i]

4512
    if in_dynamic_mode():
4513
        out = _C_ops.transpose(x, perm)
4514
        return out
4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
    else:
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'moveaxis',
        )
4531

4532 4533 4534 4535 4536 4537 4538 4539 4540
        helper = LayerHelper('moveaxis', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='transpose2',
            inputs={'X': [x]},
            outputs={'Out': [out], 'XShape': [x_shape]},
            attrs={'axis': perm},
        )
4541 4542
        return out

4543

4544 4545 4546
def non_negative_axis(arr, axis):
    ndim = len(arr.shape)
    if axis >= 0:
4547 4548 4549
        assert (
            axis < ndim
        ), "'axis'  must be in the range of [-{0}, {0})".format(ndim)
4550
    else:
4551 4552 4553
        assert (
            axis >= -ndim
        ), "'axis'  must be in the range of [-{0}, {0})".format(ndim)
4554 4555 4556 4557 4558 4559
        axis += ndim

    return axis


def infer_broadcast_shape(arr, indices, axis):
4560
    # This function is used in take/put_along_axis
4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
    broadcast_shape_list = list(arr.shape)
    broadcast_shape_list[axis] = list(indices.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    for i in range(len(arr.shape)):
        if arr.shape[i] < indices.shape[i]:
            # if indices matrix has larger size than arr matrix, do not broadcast.
            return None
    return broadcast_shape


4571 4572 4573 4574 4575
def take_along_axis(arr, indices, axis):
    """
    Take values from the input array by given indices matrix along the designated axis.

    Args:
4576
        arr (Tensor) : The input Tensor. Supported data types are float32 and float64.
4577
        indices (Tensor) : Indices to take along each 1d slice of arr. This must match the dimension of arr,
4578
            and need to broadcast against arr. Supported data type are int and int64.
4579
        axis (int) : The axis to take 1d slices along.
4580

4581
    Returns:
L
Ligoml 已提交
4582
        Tensor, The indexed element, same dtype with arr
4583

4584 4585 4586 4587 4588
    Examples:
        .. code-block:: python

            import paddle

4589 4590
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7,8,9]])
            index = paddle.to_tensor([[0]])
4591 4592 4593 4594 4595
            axis = 0
            result = paddle.take_along_axis(x, index, axis)
            print(result)
            # [[1, 2, 3]]
    """
4596
    if len(arr.shape) != len(indices.shape):
4597
        raise ValueError(
4598 4599
            "`indices` and `arr` must have the same number of dimensions!"
        )
4600 4601 4602 4603 4604
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
    if not broadcast_shape:
        # if indices matrix have larger size than arr, arr should broadcast into indices shape.
        broadcast_shape = indices.shape
4605
    if in_dynamic_mode():
4606
        indices = paddle.broadcast_to(indices, broadcast_shape)
4607 4608 4609 4610
        broadcast_shape_list = list(broadcast_shape)
        broadcast_shape_list[axis] = list(arr.shape)[axis]
        broadcast_shape = tuple(broadcast_shape_list)
        arr = paddle.broadcast_to(arr, broadcast_shape)
4611 4612 4613 4614 4615
        return _C_ops.take_along_axis(arr, indices, axis)
    else:
        check_variable_and_dtype(
            arr,
            'x',
4616 4617 4618 4619 4620 4621 4622 4623 4624
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
                'uint16',
            ],
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
            'take_along_axis',
        )
        check_variable_and_dtype(
            indices, 'index', ['int32', 'int64'], 'take_along_axis'
        )
        indices = paddle.broadcast_to(indices, broadcast_shape)
        broadcast_shape_list = list(broadcast_shape)
        broadcast_shape_list[axis] = list(arr.shape)[axis]
        broadcast_shape = tuple(broadcast_shape_list)
        arr = paddle.broadcast_to(arr, broadcast_shape)
        helper = LayerHelper('take_along_axis', **locals())
        dtype = helper.input_dtype()
        result = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="take_along_axis",
            inputs={"Input": arr, "Index": indices},
            attrs={"Axis": axis},
            outputs={"Result": result},
        )
        return result
4645 4646 4647 4648 4649 4650 4651 4652 4653 4654


def put_along_axis(arr, indices, values, axis, reduce='assign'):
    """
    Put values into the destination array by given indices matrix along the designated axis.

    Args:
        arr (Tensor) : The Destination Tensor. Supported data types are float32 and float64.
        indices (Tensor) : Indices to put along each 1d slice of arr. This must match the dimension of arr,
            and need to broadcast against arr. Supported data type are int and int64.
4655
        axis (int) : The axis to put 1d slices along.
G
gouzil 已提交
4656 4657 4658
        reduce (str, optional): The reduce operation, default is 'assign', support 'add', 'assign', 'mul' and 'multiply'.

    Returns:
L
Ligoml 已提交
4659
        Tensor, The indexed element, same dtype with arr
4660

4661 4662 4663 4664 4665
    Examples:
        .. code-block:: python

            import paddle

4666 4667
            x = paddle.to_tensor([[10, 30, 20], [60, 40, 50]])
            index = paddle.to_tensor([[0]])
4668 4669 4670 4671 4672 4673 4674 4675
            value = 99
            axis = 0
            result = paddle.put_along_axis(x, index, value, axis)
            print(result)
            # [[99, 99, 99],
            # [60, 40, 50]]

    """
4676
    if len(arr.shape) != len(indices.shape):
4677
        raise ValueError(
4678 4679
            "`indices` and `arr` must have the same number of dimensions!"
        )
4680 4681
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
4682
    if in_dynamic_mode():
4683 4684 4685 4686 4687
        values = (
            paddle.to_tensor(values)
            if not isinstance(values, paddle.Tensor)
            else values
        )
4688 4689 4690
        if broadcast_shape:
            indices = paddle.broadcast_to(indices, broadcast_shape)
        values = paddle.broadcast_to(values, indices.shape)
4691 4692 4693 4694 4695
        return _C_ops.put_along_axis(arr, indices, values, axis, reduce)
    else:
        check_variable_and_dtype(
            arr,
            'x',
4696 4697 4698 4699 4700 4701 4702 4703 4704
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
                'uint16',
            ],
4705
            'put_along_axis',
4706
        )
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
        check_variable_and_dtype(
            indices, 'index', ['int32', 'int64'], 'put_along_axis'
        )
        if broadcast_shape:
            indices = paddle.broadcast_to(indices, broadcast_shape)
        values = paddle.broadcast_to(values, indices.shape)
        helper = LayerHelper('put_along_axis', **locals())
        dtype = helper.input_dtype()
        result = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="put_along_axis",
            inputs={"Input": arr, "Index": indices, "Value": values},
            attrs={"Axis": axis, "Reduce": reduce},
            outputs={"Result": result},
        )
        return result
4723 4724 4725 4726 4727


@inplace_apis_in_dygraph_only
def put_along_axis_(arr, indices, values, axis, reduce='assign'):
    r"""
4728
    Inplace version of ``put_along_axis`` API, the output Tensor will be inplaced with input ``arr``.
4729 4730
    Please refer to :ref:`api_tensor_put_along_axis`.
    """
4731
    if len(arr.shape) != len(indices.shape):
4732
        raise ValueError(
4733 4734
            "`indices` and `arr` must have the same number of dimensions!"
        )
4735 4736
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
4737 4738 4739 4740 4741
    values = (
        paddle.to_tensor(values)
        if not isinstance(values, paddle.Tensor)
        else values
    )
4742 4743 4744
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4745
    return _C_ops.put_along_axis_(arr, indices, values, axis, reduce)
4746 4747


L
Li Min 已提交
4748 4749 4750 4751 4752 4753 4754 4755
def index_add(x, index, axis, value, name=None):
    """
    Adds the elements of the input tensor with value tensor by selecting the indices in the order given in index.

    Args:
        x (Tensor) : The Destination Tensor. Supported data types are int32, int64, float16, float32, float64.
        index (Tensor): The 1-D Tensor containing the indices to index.
            The data type of ``index`` must be int32 or int64.
4756
        axis (int): The dimension in which we index.
L
Li Min 已提交
4757 4758 4759 4760
        value (Tensor): The tensor used to add the elements along the target axis.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
L
Ligoml 已提交
4761
        Tensor, same dimention and dtype with x.
L
Li Min 已提交
4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1, 1], [1, 1, 1]], dtype="float32")
            outplace_res = paddle.index_add(input_tensor, index, 0, value)
4773 4774 4775 4776 4777
            print(outplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 2., 2.],
            #         [1., 1., 1.],
            #         [2., 2., 2.]])
L
Li Min 已提交
4778
    """
4779
    if in_dynamic_mode():
L
Li Min 已提交
4780 4781 4782 4783
        return _C_ops.index_add(x, index, value, axis)

    helper = LayerHelper("index_add", **locals())
    check_variable_and_dtype(
4784 4785
        x,
        'x',
4786
        ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
4787 4788 4789 4790 4791 4792 4793 4794
        'paddle.tensor.manipulation.index_add',
    )
    check_variable_and_dtype(
        index,
        'index',
        ['int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
L
Li Min 已提交
4795
    check_variable_and_dtype(
4796 4797
        value,
        'add_value',
4798
        ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
4799 4800
        'paddle.tensor.manipulation.index_add',
    )
L
Li Min 已提交
4801 4802 4803

    out = helper.create_variable_for_type_inference(x.dtype)

4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
    helper.append_op(
        type='index_add',
        inputs={
            'X': x,
            'Index': index,
            'AddValue': value,
        },
        outputs={'Out': out},
        attrs={'axis': axis},
    )
L
Li Min 已提交
4814 4815 4816 4817 4818 4819 4820
    return out


@inplace_apis_in_dygraph_only
def index_add_(x, index, axis, value, name=None):
    """
    Inplace version of ``index_add`` API, the output Tensor will be inplaced with input ``x``.
4821
    Please refer to :ref:`api_paddle_index_add`.
4822

L
Li Min 已提交
4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1], [1, 1], [1, 1]], dtype="float32")
            inplace_res = paddle.index_add_(input_tensor, index, 1, value)
4833 4834 4835 4836 4837
            print(inplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 1., 2.],
            #         [2., 1., 2.],
            #         [2., 1., 2.]])
L
Li Min 已提交
4838 4839 4840 4841
    """
    return _C_ops.index_add_(x, index, value, axis)


傅剑寒 已提交
4842 4843 4844 4845 4846 4847 4848 4849 4850 4851
@inplace_apis_in_dygraph_only
def index_put_(x, indices, value, accumulate=False, name=None):
    """
    Puts values from the tensor values into the tensor x using the indices specified in indices (which is a tuple of Tensors).
    The expression paddle.index_put_(x, indices, values) is equivalent to tensor[indices] = values. Returns x.
    If accumulate is True, the elements in values are added to x. If accumulate is False, the behavior is undefined if indices contain duplicate elements.

    Args:
        x (Tensor) : The Source Tensor. Supported data types are int32, int64, float16, float32, float64, bool.
        indices (Tuple of Tensor): The tuple of Tensor containing the indices to index.
4852
            The data type of ``tensor in indices`` must be int32, int64 or bool.
傅剑寒 已提交
4853 4854 4855 4856 4857 4858 4859 4860 4861
        value (Tensor): The tensor used to be assigned to x.
        accummulate (Bool, optional): Whether the elements in values are added to x. Default: False.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        Tensor, same dimention and dtype with x.

    Examples:
        .. code-block:: python
4862

傅剑寒 已提交
4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892
            import paddle

            x = paddle.zeros([3, 3])
            value = paddle.ones([3])
            ix1 = paddle.to_tensor([0,1,2])
            ix2 = paddle.to_tensor([1,2,1])
            indices=(ix1,ix2)

            out = paddle.index_put_(x,indices,value)
            print(x)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0., 1., 0.],
            #         [0., 0., 1.],
            #         [0., 1., 0.]])
            print(out)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0., 1., 0.],
            #         [0., 0., 1.],
            #         [0., 1., 0.]])
    """
    return _C_ops.index_put_(x, indices, value, accumulate)


def index_put(x, indices, value, accumulate=False, name=None):
    """
    Outplace version of ``index_put_`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_index_put`.

    Examples:
        .. code-block:: python
4893

傅剑寒 已提交
4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
            import paddle

            x = paddle.zeros([3, 3])
            value = paddle.ones([3])
            ix1 = paddle.to_tensor([0,1,2])
            ix2 = paddle.to_tensor([1,2,1])
            indices=(ix1,ix2)

            out = paddle.index_put(x,indices,value)
            print(x)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0., 0., 0.],
            #         [0., 0., 0.],
            #         [0., 0., 0.]])
            print(out)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0., 1., 0.],
            #         [0., 0., 1.],
            #         [0., 1., 0.]])
    """
4914
    if in_dynamic_mode():
傅剑寒 已提交
4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
        return _C_ops.index_put(x, indices, value, accumulate)

    helper = LayerHelper("index_put", **locals())
    check_variable_and_dtype(
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'paddle.tensor.manipulation.index_put',
    )
    check_variable_and_dtype(
        value,
        'value',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'paddle.tensor.manipulation.index_put',
    )

    out = helper.create_variable_for_type_inference(x.dtype)

    helper.append_op(
        type='index_put',
        inputs={
            'x': x,
            'indices': indices,
            'value': value,
        },
        outputs={'out': out},
        attrs={'accumulate': accumulate},
    )
    return out


4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
def unflatten(x, axis, shape, name=None):
    """
    Expand a certain dimension of the input x Tensor into a desired shape.

    Args:
        x (Tensor) : An N-D Tensor. The data type is float16, float32, float64, int16, int32, int64, bool, uint16.
        axis (int): :attr:`axis` to be unflattened, specified as an index into `x.shape`.
        shape (list|tuple|Tensor): Unflatten :attr:`shape` on the specified :attr:`axis`. At most one dimension of the target :attr:`shape` can be -1.
            If the input :attr:`shape` does not contain -1 , the product of all elements in ``shape`` should be equal to ``x.shape[axis]``.
            The data type is `int` . If :attr:`shape` is a list or tuple, the elements of it should be integers or Tensors with shape [].
            If :attr:`shape` is an Tensor, it should be an 1-D Tensor.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        Tensor, return the unflatten tensor of :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.randn(shape=[4, 6, 8])
            shape = [2, 3]
            axis = 1
            res = paddle.unflatten(x, axis, shape)
            print(res.shape)
            # [4, 2, 3, 8]

            x = paddle.randn(shape=[4, 6, 8])
            shape = (-1, 2)
            axis = -1
            res = paddle.unflatten(x, axis, shape)
            print(res.shape)
            # [4, 6, 4, 2]

            x = paddle.randn(shape=[4, 6, 8])
            shape = paddle.to_tensor([2, 2])
            axis = 0
            res = paddle.unflatten(x, axis, shape)
            print(res.shape)
            # [2, 2, 6, 8]
    """

    # determine whether the input axis is valid.
    axis = non_negative_axis(x, axis)
    if isinstance(shape, (list, tuple)):
        new_shape = (
            list(x.shape[:axis]) + list(shape) + list(x.shape[axis + 1 :])
        )
    elif isinstance(shape, Variable):
        # The data type returned by `paddle.shape` is only 'int32'.
        new_shape = paddle.concat(
            [
                paddle.shape(x)[:axis],
                paddle.cast(shape, 'int32'),
                paddle.shape(x)[axis + 1 :],
            ]
        )
    else:
        raise TypeError(
            "The data type of x should be one of ['List', 'Tuple', 'Tensor'], but got {}".format(
                type(shape)
            )
        )
    x = x.reshape(new_shape)
    return x


W
wanghuancoder 已提交
5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154
@dygraph_only
def as_strided(x, shape, stride, offset=0, name=None):
    """
    View x with specified shape, stride and offset.

    Note that the output Tensor will share data with origin Tensor and doesn't
    have a Tensor copy in ``dygraph`` mode.

    Args:
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        shape (list|tuple): Define the target shape. Each element of it should be integer.
        stride (list|tuple): Define the target stride. Each element of it should be integer.
        offset (int): Define the target Tensor's offset from x's holder. Default: 0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, A as_strided Tensor with the same data type as ``x``.

    Examples:
        .. code-block:: python

            import paddle
            paddle.fluid.set_flags({"FLAGS_use_stride_kernel": True})

            x = paddle.rand([2, 4, 6], dtype="float32")

            out = paddle.as_strided(x, [8, 6], [6, 1])
            print(out)
            # the shape is [8, 6].
            # the stride is [6, 1].
    """
    return _C_ops.as_strided(x, shape, stride, offset)


@dygraph_only
def view(x, shape_or_dtype, name=None):
    """
    View x with specified shape or dtype.

    Note that the output Tensor will share data with origin Tensor and doesn't
    have a Tensor copy in ``dygraph`` mode.

    Args:
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        shape_or_dtype (list|tuple|np.dtype|str|VarType): Define the target shape or dtype. If list or tuple, shape_or_dtype represents shape, each element of it should be integer. If np.dtype or str or VarType, shape_or_dtype represents dtype, it can be bool, float16, float32, float64, int8, int32, int64, uint8.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, A viewed Tensor with the same data as ``x``.

    Examples:
        .. code-block:: python

            import paddle
            paddle.fluid.set_flags({"FLAGS_use_stride_kernel": True})

            x = paddle.rand([2, 4, 6], dtype="float32")

            out = paddle.view(x, [8, 6])
            print(out)


            import paddle
            paddle.fluid.set_flags({"FLAGS_use_stride_kernel": True})

            x = paddle.rand([2, 4, 6], dtype="float32")

            out = paddle.view(x, "uint8")
            print(out)
    """
    if isinstance(shape_or_dtype, (list, tuple)):
        return _C_ops.view_shape(x, shape_or_dtype)
    else:
        if not isinstance(shape_or_dtype, core.VarDesc.VarType):
            shape_or_dtype = convert_np_dtype_to_dtype_(shape_or_dtype)
        return _C_ops.view_dtype(x, shape_or_dtype)


@dygraph_only
def view_as(x, other, name=None):
    """
    View x with other's shape.

    Note that the output Tensor will share data with origin Tensor and doesn't
    have a Tensor copy in ``dygraph`` mode.

    Args:
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        other (Tensor): The result tensor has the same size as other.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, A viewed Tensor with the same shape as ``other``.

    Examples:
        .. code-block:: python

            import paddle
            paddle.fluid.set_flags({"FLAGS_use_stride_kernel": True})

            x = paddle.rand([2, 4, 6], dtype="float32")
            y = paddle.rand([8, 6], dtype="float32")

            out = paddle.view_as(x, y)
            print(out)
    """
    return _C_ops.view_shape(x, other.shape)


@dygraph_only
def unfold(x, axis, size, step, name=None):
    """
    View x with specified shape, stride and offset, which contains all slices of size from x in the dimension axis.

    Note that the output Tensor will share data with origin Tensor and doesn't
    have a Tensor copy in ``dygraph`` mode.

    Args:
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        axis (int): The axis along which the input is unfolded.
        size (int): The size of each slice that is unfolded.
        step (int): The step between each slice.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, A unfold Tensor with the same data type as ``x``.

    Examples:
        .. code-block:: python

            import paddle
            paddle.fluid.set_flags({"FLAGS_use_stride_kernel": True})

            x = paddle.arange(9, dtype="float64")

            out = paddle.unfold(x, 0, 2, 4)
            print(out) # [[0, 1], [4, 5]]
    """
    return _C_ops.tensor_unfold(x, axis, size, step)


5155 5156 5157 5158 5159 5160 5161
# TODO(dev): We need avoid implementing it by this way.
__METHODS = {
    'fill_': fill_,
    'zero_': zero_,
    'fill_diagonal_': fill_diagonal_,
    'fill_diagonal_tensor_': fill_diagonal_tensor_,
    "fill_diagonal_tensor": fill_diagonal_tensor,
5162
    'tolist': tolist,
5163 5164 5165
}
for name, func in __METHODS.items():
    setattr(core.eager.Tensor, name, func)