未验证 提交 13b03e7a 编写于 作者: Q Qinghe JING 提交者: GitHub

add gather split squeeze stack unsqueeze api (#24035)

* add gather split squeeze stack unsqueeze api test=develop

* add gather split squeeze stack unsqueeze api test=develop

* fix bug test=develop

* fix bug test=develop

* fix bug test=develop

* fix bug test=develop

* fix bug test=develop
上级 a164b10d
......@@ -166,7 +166,7 @@ from .tensor.linalg import cross #DEFINE_ALIAS
# from .tensor.manipulation import expand #DEFINE_ALIAS
# from .tensor.manipulation import expand_as #DEFINE_ALIAS
# from .tensor.manipulation import flatten #DEFINE_ALIAS
# from .tensor.manipulation import gather #DEFINE_ALIAS
from .tensor.manipulation import gather #DEFINE_ALIAS
# from .tensor.manipulation import gather_nd #DEFINE_ALIAS
# from .tensor.manipulation import reshape #DEFINE_ALIAS
# from .tensor.manipulation import reverse #DEFINE_ALIAS
......@@ -175,14 +175,14 @@ from .tensor.linalg import cross #DEFINE_ALIAS
# from .tensor.manipulation import scatter_nd #DEFINE_ALIAS
# from .tensor.manipulation import shard_index #DEFINE_ALIAS
# from .tensor.manipulation import slice #DEFINE_ALIAS
# from .tensor.manipulation import split #DEFINE_ALIAS
# from .tensor.manipulation import squeeze #DEFINE_ALIAS
# from .tensor.manipulation import stack #DEFINE_ALIAS
from .tensor.manipulation import split #DEFINE_ALIAS
from .tensor.manipulation import squeeze #DEFINE_ALIAS
from .tensor.manipulation import stack #DEFINE_ALIAS
# from .tensor.manipulation import strided_slice #DEFINE_ALIAS
# from .tensor.manipulation import transpose #DEFINE_ALIAS
# from .tensor.manipulation import unique #DEFINE_ALIAS
# from .tensor.manipulation import unique_with_counts #DEFINE_ALIAS
# from .tensor.manipulation import unsqueeze #DEFINE_ALIAS
from .tensor.manipulation import unsqueeze #DEFINE_ALIAS
# from .tensor.manipulation import unstack #DEFINE_ALIAS
from .tensor.manipulation import flip #DEFINE_ALIAS
# from .tensor.manipulation import unbind #DEFINE_ALIAS
......
......@@ -17,6 +17,8 @@ from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid
class TestGatherOp(OpTest):
......@@ -106,5 +108,35 @@ class TestCase6(TestGatherOp):
self.index_type = "int32"
class API_TestGather(unittest.TestCase):
def test_out(self):
with fluid.program_guard(fluid.Program(), fluid.Program()):
data1 = fluid.layers.data('data1', shape=[-1, 2], dtype='float64')
index = fluid.layers.data('index', shape=[-1, 1], dtype='float64')
out = paddle.gather(data1, index)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
input = np.array([[1, 2], [3, 4], [5, 6]])
index_1 = np.array([1, 2])
result, = exe.run(feed={"data1": input,
"index": index_1},
fetch_list=[out])
expected_output = np.array([[3, 4], [5, 6]])
self.assertTrue(np.allclose(result, expected_output))
class API_TestDygraphGather(unittest.TestCase):
def test_out(self):
with fluid.dygraph.guard():
input_1 = np.array([[1, 2], [3, 4], [5, 6]])
index_1 = np.array([1, 2])
input = fluid.dygraph.to_variable(input_1)
index = fluid.dygraph.to_variable(index_1)
output = paddle.fluid.layers.gather(input, index)
output_np = output.numpy()
expected_output = np.array([[3, 4], [5, 6]])
self.assertTrue(np.allclose(output_np, expected_output))
if __name__ == "__main__":
unittest.main()
......@@ -13,7 +13,7 @@
# limitations under the License.
from __future__ import print_function
import paddle
import unittest
import numpy as np
from op_test import OpTest
......@@ -278,6 +278,101 @@ class TestSplitOpError(unittest.TestCase):
self.assertRaises(TypeError, test_num_or_sections_type)
def test_num_or_sections_type_tensor():
x7 = fluid.layers.data(shape=[4], dtype='float16', name='x5')
paddle.split(input=x7, num_or_sections=2.1, dim=3)
self.assertRaises(TypeError, test_num_or_sections_type_tensor)
def test_axis_type_tensor():
x8 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
paddle.split(input=x8, num_or_sections=2, dim=3.2)
self.assertRaises(TypeError, test_axis_type_tensor)
class API_TestSplit(unittest.TestCase):
def test_out(self):
with fluid.program_guard(fluid.Program(), fluid.Program()):
data1 = fluid.layers.data('data1', shape=[4, 6, 6], dtype='float64')
data2 = fluid.layers.data('data2', shape=[1], dtype='int32')
x0, x1, x2 = paddle.split(data1, num_or_sections=3, dim=data2)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
input1 = np.random.random([4, 6, 6]).astype('float64')
input2 = np.array([2]).astype('int32')
r0, r1, r2, = exe.run(feed={"data1": input1,
"data2": input2},
fetch_list=[x0, x1, x2])
ex_x0, ex_x1, ex_x2 = np.split(input1, 3, axis=2)
self.assertTrue(np.allclose(ex_x0, r0))
self.assertTrue(np.allclose(ex_x1, r1))
self.assertTrue(np.allclose(ex_x2, r2))
class API_TestSplit2(unittest.TestCase):
def test_out(self):
with fluid.program_guard(fluid.Program(), fluid.Program()):
data1 = fluid.layers.data('data1', shape=[4, 6, 6], dtype='float64')
x0, x1, x2 = paddle.split(data1, num_or_sections=3, dim=2)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
input1 = np.random.random([4, 6, 6]).astype('float64')
r0, r1, r2, = exe.run(feed={"data1": input1},
fetch_list=[x0, x1, x2])
ex_x0, ex_x1, ex_x2 = np.split(input1, 3, axis=2)
self.assertTrue(np.allclose(ex_x0, r0))
self.assertTrue(np.allclose(ex_x1, r1))
self.assertTrue(np.allclose(ex_x2, r2))
class API_TestSplit3(unittest.TestCase):
def test_out(self):
with fluid.program_guard(fluid.Program(), fluid.Program()):
data = fluid.layers.data('data', shape=[-1, 10], dtype='float64')
x0, x1 = paddle.split(data, num_or_sections=(3, 7), dim=1)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
input1 = np.random.random([1, 10]).astype('float64')
r0, r1 = exe.run(feed={"data": input1}, fetch_list=[x0, x1])
ex_x0, ex_x1 = np.split(input1, (3, ), axis=1)
self.assertTrue(np.allclose(ex_x0, r0))
self.assertTrue(np.allclose(ex_x1, r1))
class API_TestSplit4(unittest.TestCase):
def test_out(self):
with fluid.program_guard(fluid.Program(), fluid.Program()):
data = fluid.layers.data('data', shape=[-1, 10], dtype='float64')
index = fluid.layers.data('index', shape=[1], dtype='int32')
x0, x1 = paddle.split(data, num_or_sections=(3, index), dim=1)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
input1 = np.random.random([1, 10]).astype('float64')
input2 = np.array([7]).astype('int32')
r0, r1 = exe.run(feed={"data": input1,
"index": input2},
fetch_list=[x0, x1])
ex_x0, ex_x1 = np.split(input1, (3, ), axis=1)
self.assertTrue(np.allclose(ex_x0, r0))
self.assertTrue(np.allclose(ex_x1, r1))
class API_TestDygraphSplit(unittest.TestCase):
def test_out(self):
with fluid.dygraph.guard():
input_1 = np.random.random([4, 6, 6]).astype("int32")
# input is a variable which shape is [4, 6, 6]
input = fluid.dygraph.to_variable(input_1)
x0, x1, x2 = paddle.split(input, num_or_sections=3, dim=1)
x0_out = x0.numpy()
x1_out = x1.numpy()
x2_out = x2.numpy()
ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
self.assertTrue(np.allclose(ex_x0, x0_out))
self.assertTrue(np.allclose(ex_x1, x1_out))
self.assertTrue(np.allclose(ex_x2, x2_out))
if __name__ == '__main__':
unittest.main()
......@@ -18,7 +18,7 @@ import unittest
import numpy as np
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
import paddle
from op_test import OpTest
......@@ -85,5 +85,31 @@ class TestSqueezeOpError(unittest.TestCase):
self.assertRaises(TypeError, fluid.layers.squeeze, x3, axes=0)
class API_TestSqueeze(unittest.TestCase):
def test_out(self):
with fluid.program_guard(fluid.Program(), fluid.Program()):
data1 = fluid.layers.data(
'data1', shape=[-1, 1, 10], dtype='float64')
result_squeeze = paddle.squeeze(data1, axes=[1])
place = fluid.CPUPlace()
exe = fluid.Executor(place)
input1 = np.random.random([5, 1, 10]).astype('float64')
result, = exe.run(feed={"data1": input1},
fetch_list=[result_squeeze])
expected_result = np.squeeze(input1, axis=1)
self.assertTrue(np.allclose(expected_result, result))
class API_TestDygraphSqueeze(unittest.TestCase):
def test_out(self):
with fluid.dygraph.guard():
input_1 = np.random.random([5, 1, 10]).astype("int32")
input = fluid.dygraph.to_variable(input_1)
output = paddle.squeeze(input, axes=[1])
out_np = output.numpy()
expected_out = np.squeeze(input_1, axis=1)
self.assertTrue(np.allclose(expected_out, out_np))
if __name__ == "__main__":
unittest.main()
......@@ -14,6 +14,7 @@
import numpy as np
import unittest
import paddle
import paddle.fluid as fluid
from op_test import OpTest
......@@ -125,5 +126,84 @@ class TestStackAPIWithLoDTensorArray(unittest.TestCase):
[self.x] * self.iter_num, axis=self.axis)))
class TestTensorStackAPIWithLoDTensorArray(unittest.TestCase):
"""
Test stack api when the input(x) is a LoDTensorArray.
"""
def setUp(self):
self.axis = 1
self.iter_num = 3
self.input_shape = [2, 3]
self.x = np.random.random(self.input_shape).astype("float32")
self.place = fluid.CUDAPlace(0) \
if fluid.is_compiled_with_cuda() else fluid.CPUPlace()
self.set_program()
def set_program(self):
self.program = fluid.Program()
with fluid.program_guard(self.program):
input = fluid.layers.assign(self.x)
tensor_array = fluid.layers.create_array(dtype='float32')
zero = fluid.layers.fill_constant(shape=[1], value=0, dtype="int64")
for i in range(self.iter_num):
fluid.layers.array_write(input, zero + i, tensor_array)
self.out_var = paddle.stack(tensor_array, axis=self.axis)
def test_case(self):
self.assertTrue(self.out_var.shape[self.axis] == -1)
exe = fluid.Executor(self.place)
res = exe.run(self.program, fetch_list=self.out_var)
self.assertTrue(
np.array_equal(
res[0], np.stack(
[self.x] * self.iter_num, axis=self.axis)))
class API_test(unittest.TestCase):
def test_out(self):
with fluid.program_guard(fluid.Program(), fluid.Program()):
data1 = fluid.layers.data('data1', shape=[1, 2], dtype='float64')
data2 = fluid.layers.data('data2', shape=[1, 2], dtype='float64')
data3 = fluid.layers.data('data3', shape=[1, 2], dtype='float64')
result_stack = paddle.stack([data1, data2, data3], axis=0)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
input1 = np.random.random([1, 2]).astype('float64')
input2 = np.random.random([1, 2]).astype('float64')
input3 = np.random.random([1, 2]).astype('float64')
result, = exe.run(
feed={"data1": input1,
"data2": input2,
"data3": input3},
fetch_list=[result_stack])
expected_result = np.stack([input1, input2, input3], axis=0)
self.assertTrue(np.allclose(expected_result, result))
class API_DygraphTest(unittest.TestCase):
def test_out(self):
data1 = np.array([[1.0, 2.0]])
data2 = np.array([[3.0, 4.0]])
data3 = np.array([[5.0, 6.0]])
with fluid.dygraph.guard():
x1 = fluid.dygraph.to_variable(data1)
x2 = fluid.dygraph.to_variable(data2)
x3 = fluid.dygraph.to_variable(data3)
result = paddle.stack([x1, x2, x3], axis=0)
result_np = result.numpy()
expected_result = np.stack([data1, data2, data3], axis=0)
self.assertTrue(np.allclose(expected_result, result_np))
with fluid.dygraph.guard():
y1 = fluid.dygraph.to_variable(data1)
result = paddle.stack(y1, axis=0)
result_np_2 = result.numpy()
expected_result_2 = np.stack(data1, axis=0)
self.assertTrue(np.allclose(expected_result_2, result_np_2))
if __name__ == '__main__':
unittest.main()
......@@ -16,7 +16,8 @@ from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
from op_test import OpTest
......@@ -76,5 +77,87 @@ class TestUnsqueezeOp4(TestUnsqueezeOp):
self.new_shape = (10, 1, 1, 2, 5, 1)
class API_TestUnsqueeze(unittest.TestCase):
def test_out(self):
with fluid.program_guard(fluid.Program(), fluid.Program()):
data1 = fluid.layers.data('data1', shape=[-1, 10], dtype='float64')
result_squeeze = paddle.unsqueeze(data1, axes=[1])
place = fluid.CPUPlace()
exe = fluid.Executor(place)
input1 = np.random.random([5, 1, 10]).astype('float64')
input = np.squeeze(input1, axis=1)
result, = exe.run(feed={"data1": input},
fetch_list=[result_squeeze])
self.assertTrue(np.allclose(input1, result))
class TestUnsqueezeOpError(unittest.TestCase):
def test_errors(self):
with fluid.program_guard(fluid.Program(), fluid.Program()):
# The type of axis in split_op should be int or Variable.
def test_axes_type():
x6 = fluid.layers.data(
shape=[-1, 10], dtype='float16', name='x3')
paddle.unsqueeze(x6, axes=3.2)
self.assertRaises(TypeError, test_axes_type)
class API_TestUnsqueeze2(unittest.TestCase):
def test_out(self):
with fluid.program_guard(fluid.Program(), fluid.Program()):
data1 = fluid.data('data1', shape=[-1, 10], dtype='float64')
data2 = fluid.data('data2', shape=[1], dtype='int32')
result_squeeze = paddle.unsqueeze(data1, axes=data2)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
input1 = np.random.random([5, 1, 10]).astype('float64')
input2 = np.array([1]).astype('int32')
input = np.squeeze(input1, axis=1)
result1, = exe.run(feed={"data1": input,
"data2": input2},
fetch_list=[result_squeeze])
self.assertTrue(np.allclose(input1, result1))
class API_TestUnsqueeze3(unittest.TestCase):
def test_out(self):
with fluid.program_guard(fluid.Program(), fluid.Program()):
data1 = fluid.data('data1', shape=[-1, 10], dtype='float64')
data2 = fluid.data('data2', shape=[1], dtype='int32')
result_squeeze = paddle.unsqueeze(data1, axes=[data2, 3])
place = fluid.CPUPlace()
exe = fluid.Executor(place)
input1 = np.random.random([5, 1, 10, 1]).astype('float64')
input2 = np.array([1]).astype('int32')
input = np.squeeze(input1)
result1, = exe.run(feed={"data1": input,
"data2": input2},
fetch_list=[result_squeeze])
self.assertTrue(np.allclose(input1, result1))
class API_TestDyUnsqueeze(unittest.TestCase):
def test_out(self):
with fluid.dygraph.guard():
input_1 = np.random.random([5, 1, 10]).astype("int32")
input1 = np.squeeze(input_1, axis=1)
input = fluid.dygraph.to_variable(input_1)
output = paddle.unsqueeze(input, axes=[1])
out_np = output.numpy()
self.assertTrue(np.allclose(input1, out_np))
class API_TestDyUnsqueeze2(unittest.TestCase):
def test_out(self):
with fluid.dygraph.guard():
input_1 = np.random.random([5, 1, 10]).astype("int32")
input1 = np.squeeze(input_1, axis=1)
input = fluid.dygraph.to_variable(input_1)
output = paddle.unsqueeze(input, axes=1)
out_np = output.numpy()
self.assertTrue(np.allclose(input1, out_np))
if __name__ == "__main__":
unittest.main()
......@@ -145,7 +145,7 @@ from .linalg import bmm #DEFINE_ALIAS
# from .manipulation import expand #DEFINE_ALIAS
# from .manipulation import expand_as #DEFINE_ALIAS
# from .manipulation import flatten #DEFINE_ALIAS
# from .manipulation import gather #DEFINE_ALIAS
from .manipulation import gather #DEFINE_ALIAS
# from .manipulation import gather_nd #DEFINE_ALIAS
# from .manipulation import reshape #DEFINE_ALIAS
# from .manipulation import reverse #DEFINE_ALIAS
......@@ -154,14 +154,14 @@ from .linalg import bmm #DEFINE_ALIAS
# from .manipulation import scatter_nd #DEFINE_ALIAS
# from .manipulation import shard_index #DEFINE_ALIAS
# from .manipulation import slice #DEFINE_ALIAS
# from .manipulation import split #DEFINE_ALIAS
# from .manipulation import squeeze #DEFINE_ALIAS
# from .manipulation import stack #DEFINE_ALIAS
from .manipulation import split #DEFINE_ALIAS
from .manipulation import squeeze #DEFINE_ALIAS
from .manipulation import stack #DEFINE_ALIAS
# from .manipulation import strided_slice #DEFINE_ALIAS
# from .manipulation import transpose #DEFINE_ALIAS
# from .manipulation import unique #DEFINE_ALIAS
# from .manipulation import unique_with_counts #DEFINE_ALIAS
# from .manipulation import unsqueeze #DEFINE_ALIAS
from .manipulation import unsqueeze #DEFINE_ALIAS
# from .manipulation import unstack #DEFINE_ALIAS
from .manipulation import flip #DEFINE_ALIAS
# from .manipulation import unbind #DEFINE_ALIAS
......
......@@ -18,7 +18,8 @@ from ..fluid.layers import core, reshape
from ..fluid.layer_helper import LayerHelper
from ..fluid.framework import Variable, OpProtoHolder, in_dygraph_mode, convert_np_dtype_to_dtype_
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
from ..fluid.layers.tensor import fill_constant
from ..fluid.layers import utils
# TODO: define functions to manipulate a tensor
__all__ = [
# 'cast',
......@@ -26,7 +27,7 @@ __all__ = [
# 'expand',
# 'expand_as',
# 'flatten',
# 'gather',
'gather',
# 'gather_nd',
# 'reshape',
# 'reverse',
......@@ -35,14 +36,14 @@ __all__ = [
# 'scatter_nd',
# 'shard_index',
# 'slice',
# 'split',
# 'squeeze',
# 'stack',
'split',
'squeeze',
'stack',
# 'strided_slice',
# 'transpose',
# 'unique',
# 'unique_with_counts',
# 'unsqueeze',
'unsqueeze',
# 'unstack',
'flip',
# 'unbind',
......@@ -169,3 +170,476 @@ def roll(input, shifts, dims=None):
'shifts': shifts})
out = reshape(out, shape=origin_shape, inplace=True)
return out
def stack(x, axis=0, out=None, name=None):
"""
This OP stacks all the inputs :code:`x` along axis.
.. code-block:: text
Case 1:
Input:
x[0].shape = [1, 2]
x[0].data = [ [1.0 , 2.0 ] ]
x[1].shape = [1, 2]
x[1].data = [ [3.0 , 4.0 ] ]
x[2].shape = [1, 2]
x[2].data = [ [5.0 , 6.0 ] ]
Attrs:
axis = 0
Output:
Out.dims = [3, 1, 2]
Out.data =[ [ [1.0, 2.0] ],
[ [3.0, 4.0] ],
[ [5.0, 6.0] ] ]
Case 2:
Input:
x[0].shape = [1, 2]
x[0].data = [ [1.0 , 2.0 ] ]
x[1].shape = [1, 2]
x[1].data = [ [3.0 , 4.0 ] ]
x[2].shape = [1, 2]
x[2].data = [ [5.0 , 6.0 ] ]
Attrs:
axis = 1 or axis = -2
Output:
Out.shape = [1, 3, 2]
Out.data =[ [ [1.0, 2.0]
[3.0, 4.0]
[5.0, 6.0] ] ]
Args:
x (Variable|list(Variable)): Input :code:`x` can be a single Tensor, a :code:`list` of Tensors.
If :code:`x` is a :code:`list`, the shapes of all these Tensors
must be the same. Supposing input is N dims
Tensors :math:`[d_0, d_1, ..., d_{n-1}]`, the output is N+1 dims
Tensor :math:`[d_0, d_1, d_{axis-1}, len(x), d_{axis}, ..., d_{n-1}]`.
Support data types: float32, float64, int32, int64.
axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is :math:`[-(R+1), R+1)`.
R is the first tensor of inputs. If ``axis`` < 0, :math:`axis=axis+rank(x[0])+1`.
The default value of axis is 0.
Returns:
Variable: The stacked Tensor, has same data type with input Tensors. Output dim is :math:`rank(x[0])+1`.
Example:
.. code-block:: python
import numpy as np
import paddle
import paddle.fluid as fluid
data1 = np.array([[1.0, 2.0]])
data2 = np.array([[3.0, 4.0]])
data3 = np.array([[5.0, 6.0]])
with fluid.dygraph.guard():
x1 = fluid.dygraph.to_variable(data1)
x2 = fluid.dygraph.to_variable(data2)
x3 = fluid.dygraph.to_variable(data3)
result = paddle.stack([x1, x2, x3], axis=0)
# result shape: [3, 1, 2]
# result value: [[[1.0, 2.0]],
# [[3.0, 4.0]],
# [[5.0, 6.0]]]
"""
helper = LayerHelper('stack', **locals())
axis = 0 if axis is None else axis
if not isinstance(x, list) and not isinstance(x, tuple):
x = [x]
out = helper.create_variable_for_type_inference(x[0].dtype)
if not in_dygraph_mode() and \
x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
assert len(x) == 1, "If the elements of 'x' in stack are Variable(LoDTensorArray), " \
"number of the elements must be 1, but received %s." % len(x)
out_index = helper.create_variable_for_type_inference(dtype="int32")
helper.append_op(
type='tensor_array_to_tensor',
inputs={'X': x[0]},
outputs={'Out': [out],
'OutIndex': [out_index]},
attrs={'axis': axis,
'use_stack': True})
else:
helper.append_op(
type='stack',
inputs={'X': x},
outputs={'Y': out},
attrs={'axis': axis})
return out
def split(input, num_or_sections, dim=-1, name=None):
"""
Split the input tensor into multiple sub-Tensors.
Args:
input (Variable): The input variable which is an N-D Tensor or LoDTensor, data type being float32, float64, int32 or int64.
num_or_sections (int|list|tuple): If :attr:`num_or_sections` is an integer,
then the integer indicates the number of equal sized sub-Tensors
that the Tensor will be divided into. If :attr:`num_or_sections`
is a list or tuple, the length of it indicates the number of
sub-Tensors and the elements in it indicate the sizes of sub-Tensors'
:attr:`dim` dimension orderly. The length of the list mustn't be larger than the Tensor's size of :attr:`dim` .
dim (int32|Varible, optional): A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. The dimension along which to split. If :math:`dim < 0`, the
dimension to split along is :math:`rank(input) + dim`. Default is -1.
name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
Returns:
list(Variable): The list of segmented Tensor variables.
Raises:
TypeError: num_or_sections is not int, list or tuple.
TypeError: dim is not int or Variable.
Example:
.. code-block:: python
import numpy as np
import paddle
import paddle.fluid as fluid
with fluid.dygraph.guard():
input_1 = np.random.random([4, 6, 6]).astype("int32")
# input is a variable which shape is [4, 6, 6]
input = fluid.dygraph.to_variable(input_1)
x0, x1, x2 = paddle.split(input, num_or_sections=3, dim=1)
# x0.shape [4, 2, 6]
# x1.shape [4, 2, 6]
# x2.shape [4, 2, 6]
"""
if in_dygraph_mode():
num = None
attrs = ()
if isinstance(dim, Variable):
dim = dim.numpy()
assert dim.shape == (1,
), "dim of type Variable should have shape [1]"
dim = dim[0]
dim = (len(input.shape) + dim) if dim < 0 else dim
attrs += ('axis', dim)
if isinstance(num_or_sections, int):
num = num_or_sections
attrs += ('num', num_or_sections)
elif isinstance(num_or_sections, (list, tuple)):
num = len(num_or_sections)
if utils._contain_var(num_or_sections):
raise TypeError(
"The type of 'num_or_sections' in split must be int or list[int] or tuple[int] in Dygraph mode, but "
"received %s, which contains Variable." %
(type(num_or_sections)))
else:
attrs += ('sections', list(num_or_sections))
else:
raise TypeError(
"The type of 'num_or_sections' in split must be int or list in Dygraph mode, but "
"received %s." % (type(num_or_sections)))
return core.ops.split(input, num, *attrs)
if not isinstance(num_or_sections, (int, list, tuple)):
raise TypeError(
"The type of 'num_or_sections' in split must be int, list or "
"tuple, but received %s." % (type(num_or_sections)))
if not isinstance(dim, (int, Variable)):
raise TypeError(
"The type of 'dim' in split must be int or Variable, but "
"received %s." % (type(dim)))
helper = LayerHelper('split', **locals())
input_shape = input.shape
inputs = {'X': input}
attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}
def _get_SectionsTensorList(one_list):
tensor_list = []
unk_dim_idx = -1
for idx, dim_size in enumerate(one_list):
if isinstance(dim_size, Variable):
dim_size.stop_gradient = True
tensor_list.append(dim_size)
else:
assert (isinstance(dim_size, int))
if dim_size == -1:
assert unk_dim_idx == -1, (
"Only one value of 'num_or_section' in split can "
"be -1. But received num_or_section[%d] is also -1." %
idx)
unk_dim_idx = idx
temp_out = helper.create_variable_for_type_inference('int32')
fill_constant(
[1], 'int32', dim_size, force_cpu=True, out=temp_out)
tensor_list.append(temp_out)
return tensor_list
if isinstance(dim, Variable):
dim.stop_gradient = True
inputs['AxisTensor'] = dim
else:
dim = (len(input_shape) + dim) if dim < 0 else dim
attrs['axis'] = dim
if isinstance(num_or_sections, int):
assert num_or_sections > 1, 'num_or_sections must be more than 1.'
if isinstance(dim, int) and input_shape[dim] > 0:
assert input_shape[dim] % num_or_sections ==0, \
"The input's size along the split dimension " \
"must be evenly divisible by Attr(num_or_sections). " \
"But %d is not evenly divisible by %d. " % (num_or_sections,input_shape[dim])
num = num_or_sections
else:
if isinstance(dim, int) and input_shape[dim] > 0:
assert len(num_or_sections) <= input_shape[
dim], 'len(num_or_sections) must not be more than input.shape[dim].'
num = len(num_or_sections)
attrs['sections'] = list(
map(lambda ele: -1 if isinstance(ele, Variable) else ele,
num_or_sections))
if utils._contain_var(num_or_sections):
inputs['SectionsTensorList'] = _get_SectionsTensorList(
num_or_sections)
outs = [
helper.create_variable_for_type_inference(dtype=helper.input_dtype())
for i in range(num)
]
helper.append_op(
type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs)
return outs
def squeeze(input, axes, out=None, name=None):
"""
This OP will squeeze single-dimensional entries of input tensor's shape. If axes is provided, will
remove the dims by axes, the dims selected by axes should be one. If not provide axes, all dims equal
to one will be deleted.
.. code-block:: text
Case1:
Input:
X.shape = (1, 3, 1, 5)
axes = [0]
Output:
Out.shape = (3, 1, 5)
Case2:
Input:
X.shape = (1, 3, 1, 5)
axes = []
Output:
Out.shape = (3, 5)
Case3:
Input:
X.shape = [1,3,1,5]
axes = [-2]
Output:
Out.shape = [1,3,5]
Args:
input (Variable): The input Tensor. Support data type: float32, float64, int8, int32, int64.
axes (list): One integer or List of integers, indicating the dimensions to be squeezed.
Axes range is :math:`[-rank(input), rank(input))`.
If axes is negative, :math:`axes=axes+rank(input)`.
name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Returns:
Variable: Output squeezed Tensor. Data type is same as input Tensor.
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.fluid as fluid
with fluid.dygraph.guard():
input_1 = np.random.random([5, 1, 10]).astype("int32")
# input is a variable which shape is [5, 1, 10]
input = fluid.dygraph.to_variable(input_1)
output = paddle.squeeze(input, axes=[1])
# output.shape [5, 10]
"""
helper = LayerHelper("squeeze", **locals())
check_variable_and_dtype(input, 'input',
['float32', 'float64', 'int8', 'int32', 'int64'],
'squeeze')
check_type(axes, 'axes', list, 'squeeze')
out = helper.create_variable_for_type_inference(dtype=input.dtype)
x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
helper.append_op(
type="squeeze2",
inputs={"X": input},
attrs={"axes": axes},
outputs={"Out": out,
"XShape": x_shape})
return out
def unsqueeze(input, axes, out=None, name=None):
"""
Insert single-dimensional entries to the shape of a Tensor. Takes one
required argument axes, a list of dimensions that will be inserted.
Dimension indices in axes are as seen in the output tensor.
For example:
.. code-block:: text
Given a tensor such that tensor with shape [3, 4, 5],
then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
Args:
input (Variable): The input Tensor to be unsqueezed. It is a N-D Tensor of data types float32, float64, int32.
axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
name (str|None): Name for this layer.
Returns:
Variable: Output unsqueezed Tensor, with data type being float32, float64, int32, int64.
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.fluid as fluid
with fluid.dygraph.guard():
input_1 = np.random.random([5, 10]).astype("int32")
# input is a variable which shape is [5, 10]
input = fluid.dygraph.to_variable(input_1)
output = paddle.unsqueeze(input, axes=[1])
# output.shape [5, 1, 10]
"""
if not isinstance(axes, (int, list, tuple, Variable)):
raise TypeError(
"The type of 'axes' in unsqueeze must be int, list, tuple or Variable, but "
"received %s." % (type(axes)))
helper = LayerHelper("unsqueeze2", **locals())
inputs = {"X": input}
attrs = {}
def _to_Variable_list(one_list):
Variable_list = []
for ele in one_list:
if isinstance(ele, Variable):
ele.stop_gradient = True
Variable_list.append(ele)
else:
assert (isinstance(ele, int))
temp_out = helper.create_variable_for_type_inference('int32')
fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
Variable_list.append(temp_out)
return Variable_list
if isinstance(axes, int):
axes = [axes]
if isinstance(axes, Variable):
axes.stop_gradient = True
inputs["AxesTensor"] = axes
elif isinstance(axes, (list, tuple)):
contain_var = not all(not isinstance(ele, Variable) for ele in axes)
if contain_var:
inputs["AxesTensorList"] = _to_Variable_list(axes)
else:
attrs["axes"] = axes
out = helper.create_variable_for_type_inference(dtype=input.dtype)
x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
helper.append_op(
type="unsqueeze2",
inputs=inputs,
attrs=attrs,
outputs={"Out": out,
"XShape": x_shape})
return out
def gather(input, index, overwrite=True):
"""
**Gather Layer**
Output is obtained by gathering entries of the outer-most dimension
of X indexed by `index` and concatenate them together.
.. math::
Out = X[Index]
.. code-block:: text
Given:
X = [[1, 2],
[3, 4],
[5, 6]]
Index = [1, 2]
Then:
Out = [[3, 4],
[5, 6]]
Args:
input (Variable): The source input tensor with rank>=1. Supported data type is
int32, int64, float32, float64 and uint8 (only for CPU),
float16 (only for GPU).
index (Variable): The index input tensor with rank=1. Data type is int32 or int64.
overwrite (bool, optional): The mode that updating the grad when has same index.
If True, use the overwrite mode to update the grad of the same index,
if False, use the accumulate mode to update the grad of the same index.
Default value is True.
Returns:
output (Variable): The output is a tensor with the same rank as input.
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.fluid as fluid
with fluid.dygraph.guard():
input_1 = np.array([[1,2],[3,4],[5,6]])
index_1 = np.array([0,1])
input = fluid.dygraph.to_variable(input_1)
index = fluid.dygraph.to_variable(index_1)
output = paddle.gather(input, index)
# expected output: [[1,2],[3,4]]
"""
helper = LayerHelper('gather', **locals())
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="gather",
inputs={"X": input,
"Index": index},
outputs={"Out": out},
attrs={'overwrite': overwrite})
return out
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册