未验证 提交 2101dfd2 编写于 作者: W wangchaochaohu 提交者: GitHub

【API2.0】add Chunk API (#26314)

上级 abfdffa0
......@@ -126,6 +126,7 @@ from .tensor.manipulation import unstack #DEFINE_ALIAS
from .tensor.manipulation import flip #DEFINE_ALIAS
from .tensor.manipulation import unbind #DEFINE_ALIAS
from .tensor.manipulation import roll #DEFINE_ALIAS
from .tensor.manipulation import chunk #DEFINE_ALIAS
from .tensor.math import abs #DEFINE_ALIAS
from .tensor.math import acos #DEFINE_ALIAS
from .tensor.math import asin #DEFINE_ALIAS
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import numpy as np
from paddle.fluid import Program, program_guard
from paddle import fluid
import paddle
class TestChunkOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
# The type of axis in chunk_op should be int or Variable.
def test_axis_type():
x1 = paddle.data(shape=[4], dtype='float16', name='x3')
paddle.chunk(x=x1, chunks=2, axis=3.2)
self.assertRaises(TypeError, test_axis_type)
# The type of axis in chunk op should be int or Variable.
def test_axis_variable_type():
x2 = paddle.data(shape=[4], dtype='float16', name='x9')
x3 = paddle.data(shape=[1], dtype='float16', name='x10')
paddle.chunk(input=x2, chunks=2, axis=x3)
self.assertRaises(TypeError, test_axis_variable_type)
# The type of num_or_sections in chunk_op should be int, tuple or list.
def test_chunks_type():
x4 = paddle.data(shape=[4], dtype='float16', name='x4')
paddle.chunk(input=x4, chunks=2.1, axis=3)
self.assertRaises(TypeError, test_chunks_type)
def test_axis_type_tensor():
x5 = paddle.data(shape=[4], dtype='float16', name='x6')
paddle.chunk(input=x5, chunks=2, axis=3.2)
self.assertRaises(TypeError, test_axis_type_tensor)
class API_TestChunk(unittest.TestCase):
def test_out(self):
with fluid.program_guard(fluid.Program(), fluid.Program()):
data1 = paddle.data('data1', shape=[4, 6, 6], dtype='float64')
data2 = paddle.data('data2', shape=[1], dtype='int32')
x0, x1, x2 = paddle.chunk(data1, chunks=3, axis=data2)
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
input1 = np.random.random([4, 6, 6]).astype('float64')
input2 = np.array([2]).astype('int32')
r0, r1, r2, = exe.run(feed={"data1": input1,
"data2": input2},
fetch_list=[x0, x1, x2])
ex_x0, ex_x1, ex_x2 = np.array_split(input1, 3, axis=2)
self.assertTrue(np.allclose(ex_x0, r0))
self.assertTrue(np.allclose(ex_x1, r1))
self.assertTrue(np.allclose(ex_x2, r2))
class API_TestChunk1(unittest.TestCase):
def test_out(self):
with fluid.program_guard(fluid.Program(), fluid.Program()):
data1 = paddle.data('data1', shape=[4, 6, 6], dtype='float64')
x0, x1, x2 = paddle.chunk(data1, chunks=3, axis=2)
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
input1 = np.random.random([4, 6, 6]).astype('float64')
r0, r1, r2, = exe.run(feed={"data1": input1},
fetch_list=[x0, x1, x2])
ex_x0, ex_x1, ex_x2 = np.array_split(input1, 3, axis=2)
self.assertTrue(np.allclose(ex_x0, r0))
self.assertTrue(np.allclose(ex_x1, r1))
self.assertTrue(np.allclose(ex_x2, r2))
class API_TestDygraphChunk(unittest.TestCase):
def test_out1(self):
with fluid.dygraph.guard():
input_1 = np.random.random([4, 6, 6]).astype("int32")
# input is a variable which shape is [4, 6, 6]
input = fluid.dygraph.to_variable(input_1)
x0, x1, x2 = paddle.chunk(input, chunks=3, axis=1)
x0_out = x0.numpy()
x1_out = x1.numpy()
x2_out = x2.numpy()
ex_x0, ex_x1, ex_x2 = np.array_split(input_1, 3, axis=1)
self.assertTrue(np.allclose(ex_x0, x0_out))
self.assertTrue(np.allclose(ex_x1, x1_out))
self.assertTrue(np.allclose(ex_x2, x2_out))
def test_out2(self):
with fluid.dygraph.guard():
input_1 = np.random.random([4, 6, 6]).astype("bool")
# input is a variable which shape is [4, 6, 6]
input = fluid.dygraph.to_variable(input_1)
x0, x1, x2 = paddle.chunk(input, chunks=3, axis=1)
x0_out = x0.numpy()
x1_out = x1.numpy()
x2_out = x2.numpy()
ex_x0, ex_x1, ex_x2 = np.array_split(input_1, 3, axis=1)
self.assertTrue(np.allclose(ex_x0, x0_out))
self.assertTrue(np.allclose(ex_x1, x1_out))
self.assertTrue(np.allclose(ex_x2, x2_out))
def test_axis_tensor_input(self):
with fluid.dygraph.guard():
input_1 = np.random.random([4, 6, 6]).astype("int32")
# input is a variable which shape is [4, 6, 6]
input = fluid.dygraph.to_variable(input_1)
num1 = paddle.full(shape=[1], fill_value=1, dtype='int32')
x0, x1, x2 = paddle.chunk(input, chunks=3, axis=num1)
x0_out = x0.numpy()
x1_out = x1.numpy()
x2_out = x2.numpy()
ex_x0, ex_x1, ex_x2 = np.array_split(input_1, 3, axis=1)
self.assertTrue(np.allclose(ex_x0, x0_out))
self.assertTrue(np.allclose(ex_x1, x1_out))
self.assertTrue(np.allclose(ex_x2, x2_out))
if __name__ == '__main__':
unittest.main()
......@@ -99,6 +99,7 @@ from .manipulation import unstack #DEFINE_ALIAS
from .manipulation import flip #DEFINE_ALIAS
from .manipulation import unbind #DEFINE_ALIAS
from .manipulation import roll #DEFINE_ALIAS
from .manipulation import chunk #DEFINE_ALIAS
from .math import abs #DEFINE_ALIAS
from .math import acos #DEFINE_ALIAS
from .math import asin #DEFINE_ALIAS
......
......@@ -56,6 +56,7 @@ __all__ = [
'shard_index',
'slice',
'split',
'chunk'
'squeeze',
'stack',
'strided_slice',
......@@ -789,6 +790,53 @@ def unbind(input, axis=0):
return outs
def chunk(x, chunks, axis=0, name=None):
"""
Split the input tensor into multiple sub-Tensors.
Args:
x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
chunks(int): The number of tensor to be split along the certain axis.
axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type
``int`` or a ``Tensor`` with shape [1] and data type ``int32`` or ``int64``.
If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
name (str, optional): The default value is None. Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name` .
Returns:
list(Tensor): The list of segmented Tensors.
Raises:
TypeError: The data type of ``x`` must be one of bool, float16, float32, float64, int32, int64.
TypeError: ``chunks`` is not int.
TypeError: ``axis`` is not int or Tensor. the data type of ``axis`` must be int32 or int64 when it's a Tensor.
Example:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
# x is a Tensor which shape is [3, 9, 5]
x_np = np.random.random([3, 9, 5]).astype("int32")
x = paddle.to_variable(x_np)
out0, out1, out22 = paddle.chunk(x, chunks=3, axis=1)
# out0.shape [3, 3, 5]
# out1.shape [3, 3, 5]
# out2.shape [3, 3, 5]
# axis is negative, the real axis is (rank(x) + axis) which real
# value is 1.
out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
# out0.shape [3, 3, 5]
# out1.shape [3, 3, 5]
# out2.shape [3, 3, 5]
"""
check_type(chunks, 'chunks', (int), 'chunk')
return paddle.fluid.layers.split(
input=x, num_or_sections=chunks, dim=axis, name=name)
def tile(x, repeat_times, name=None):
"""
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册