imperative.cc 128.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/pybind/imperative.h"
16

17
#include <Python.h>
18 19 20 21 22
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif

23 24 25 26
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
27

28
#include <algorithm>
29
#include <memory>
30
#include <set>
J
Jiabin Yang 已提交
31
#include <string>
32
#include <unordered_map>
33
#include <unordered_set>
34
#include <utility>
J
Jiabin Yang 已提交
35
#include <vector>
36

J
Jiabin Yang 已提交
37
#include "paddle/fluid/eager/api/all.h"
38
#include "paddle/fluid/framework/convert_utils.h"
39
#include "paddle/fluid/framework/scope_guard.h"
40
#include "paddle/fluid/imperative/all_reduce.h"
41
#include "paddle/fluid/imperative/amp_auto_cast.h"
42
#include "paddle/fluid/imperative/basic_engine.h"
43
#include "paddle/fluid/imperative/bkcl_context.h"
44
#include "paddle/fluid/imperative/data_loader.h"
45
#include "paddle/fluid/imperative/gloo_context.h"
K
kuizhiqing 已提交
46
#include "paddle/fluid/imperative/heter_ccl_context.h"
47
#include "paddle/fluid/imperative/hooks.h"
48
#include "paddle/fluid/imperative/layer.h"
J
Jiabin Yang 已提交
49
#include "paddle/fluid/imperative/nccl_context.h"
50
#include "paddle/fluid/imperative/partial_grad_engine.h"
51
#include "paddle/fluid/imperative/profiler.h"
52
#include "paddle/fluid/imperative/reducer.h"
53
#include "paddle/fluid/imperative/tracer.h"
M
minqiyang 已提交
54
#include "paddle/fluid/imperative/type_defs.h"
55
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
56
#include "paddle/fluid/operators/utils.h"
L
Leo Chen 已提交
57
#include "paddle/fluid/pybind/cuda_streams_py.h"
58
#include "paddle/fluid/pybind/eager_utils.h"
59
#include "paddle/fluid/pybind/pybind_variant_caster.h"
J
Jiabin Yang 已提交
60
#include "paddle/fluid/pybind/slice_utils.h"
L
Leo Chen 已提交
61
#include "paddle/fluid/pybind/tensor_py.h"
62
#include "paddle/fluid/pybind/uva_utils.h"
63
#include "paddle/phi/core/compat/arg_map_context.h"
64
#include "paddle/phi/core/type_defs.h"
65

66
PHI_DECLARE_bool(set_to_1d);
67 68 69
namespace paddle {
namespace pybind {

70
std::atomic<int> VarBaseUniqueNameID{0};
71 72
PyTypeObject *g_varbase_pytype = nullptr;

73 74
namespace py = ::pybind11;

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s", typeid(T).name()));
  }
}

class PyVariableWrapperHook : public imperative::VariableWrapperHook {
 public:
  explicit PyVariableWrapperHook(PyObject *func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyVariableWrapperHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  std::shared_ptr<imperative::VariableWrapper> operator()(
      const std::shared_ptr<imperative::VariableWrapper> &var) override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyVariableWrapperHook for var " << var->Name();

    // 1. unpack temp VarBase from VariableWrapper
    std::shared_ptr<imperative::VarBase> tmp_varbase =
        std::make_shared<imperative::VarBase>(var);

    // 2. call hook and return
    PyObject *res = nullptr;
    try {
108 109
      res = PyObject_CallFunctionObjArgs(
          py_func_, py::cast(tmp_varbase).ptr(), nullptr);
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    } catch (platform::EnforceNotMet &e) {
      throw std::move(e);
    } catch (std::exception &e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }

    PADDLE_ENFORCE_NOT_NULL(res,
                            platform::errors::Unavailable(
                                "Hook function of Tensor return a nullptr."));
    if (res == Py_None) {
      return var;
    }

C
Chen Weihang 已提交
127 128 129 130 131
    auto res_varbase = PyObjectCast<std::shared_ptr<imperative::VarBase>>(res);
    // Here the reference count of `res` is 2, so we decreases the reference
    // count manually to avoid memory leaks
    Py_DECREF(res);
    return res_varbase->SharedVar();
132 133 134 135 136 137
  }

 private:
  PyObject *py_func_;
};

L
Leo Chen 已提交
138 139 140 141 142
static const platform::Place PyObjectToPlace(const py::object &place_obj) {
  if (py::isinstance<platform::CPUPlace>(place_obj)) {
    return place_obj.cast<platform::CPUPlace>();
  } else if (py::isinstance<platform::CUDAPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPlace>();
143 144
  } else if (py::isinstance<platform::XPUPlace>(place_obj)) {
    return place_obj.cast<platform::XPUPlace>();
L
Leo Chen 已提交
145 146
  } else if (py::isinstance<platform::CUDAPinnedPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPinnedPlace>();
147 148
  } else if (py::isinstance<platform::NPUPlace>(place_obj)) {
    return place_obj.cast<platform::NPUPlace>();
149 150
  } else if (py::isinstance<platform::IPUPlace>(place_obj)) {
    return place_obj.cast<platform::IPUPlace>();
151 152
  } else if (py::isinstance<platform::Place>(place_obj)) {
    return place_obj.cast<platform::Place>();
153 154
  } else if (py::isinstance<platform::CustomPlace>(place_obj)) {
    return place_obj.cast<platform::CustomPlace>();
L
Leo Chen 已提交
155 156
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
157
        "Place should be one of "
158
        "Place/CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/IPUPlace/"
张春乔 已提交
159
        "CustomPlace"));
L
Leo Chen 已提交
160 161 162
  }
}

L
Leo Chen 已提交
163
// only initialize varbase, but not its tensor.
164 165 166 167
static void InitVarBaseOnly(imperative::VarBase *self,
                            const std::string &name,
                            bool persistable = false,
                            int stop_gradient = -1) {
168 169 170
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
L
Leo Chen 已提交
171 172 173

  VLOG(5) << "Init Tensor as: / name: " << name_
          << " / persistable: " << persistable
174
          << " / stop_gradient: " << stop_gradient;
L
Leo Chen 已提交
175 176 177 178 179 180 181 182 183
  new (self) imperative::VarBase(name_);
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
  self->SetPersistable(persistable);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
}

// initialize varbase and its tensor.
184 185 186 187 188 189 190
static void InitVarBaseAndTensor(imperative::VarBase *self,
                                 const py::array &array,
                                 const platform::Place &place,
                                 const std::string &name,
                                 bool persistable = false,
                                 bool zero_copy = false,
                                 int stop_gradient = -1) {
L
Leo Chen 已提交
191
  InitVarBaseOnly(self, name, persistable, stop_gradient);
192
  auto *tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
L
Leo Chen 已提交
193
  VLOG(4) << "zero_copy: " << zero_copy;
L
Leo Chen 已提交
194
  if (platform::is_cpu_place(place)) {
195
    SetTensorFromPyArray<platform::CPUPlace>(tensor, array, place, zero_copy);
196
  } else if (platform::is_xpu_place(place)) {
197
    SetTensorFromPyArray<platform::XPUPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
198
  } else if (platform::is_gpu_place(place)) {
199
    SetTensorFromPyArray<platform::CUDAPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
200
  } else if (platform::is_cuda_pinned_place(place)) {
201 202
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(
        tensor, array, place, zero_copy);
203 204
  } else if (platform::is_ipu_place(place)) {
    SetTensorFromPyArray<platform::IPUPlace>(tensor, array, place, zero_copy);
205
  } else if (platform::is_custom_place(place)) {
206 207
    SetTensorFromPyArray<platform::CustomPlace>(
        tensor, array, place, zero_copy);
208
  } else {
L
Leo Chen 已提交
209
    PADDLE_THROW(platform::errors::InvalidArgument(
210
        "Place should be one of "
张春乔 已提交
211
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/IPUPlace/"));
J
Jiabin Yang 已提交
212
  }
213
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
214 215 216 217
}

static void InitVarBaseFromNumpyWithKwargs(imperative::VarBase *self,
                                           const py::kwargs &kwargs) {
218
  VLOG(4) << "Init VarBase from kwargs: ";
L
Leo Chen 已提交
219 220 221 222 223 224
  auto persistable = kwargs.contains("persistable")
                         ? kwargs["persistable"].cast<bool>()
                         : false;
  auto zero_copy =
      kwargs.contains("zero_copy") ? kwargs["zero_copy"].cast<bool>() : false;
  auto name = kwargs.contains("name") ? kwargs["name"].cast<std::string>() : "";
225 226 227
  auto stop_gradient = kwargs.contains("stop_gradient")
                           ? kwargs["stop_gradient"].cast<int>()
                           : -1;
L
Leo Chen 已提交
228
  auto default_place = imperative::GetCurrentTracer()->ExpectedPlace();
L
Leo Chen 已提交
229 230 231 232 233 234 235

  if (kwargs.contains("value")) {
    auto array = kwargs["value"].cast<py::array>();
    // place is only used when array is given, otherwise, it is meaningless and
    // ignored
    auto place = kwargs.contains("place") ? PyObjectToPlace(kwargs["place"])
                                          : default_place;
236 237
    InitVarBaseAndTensor(
        self, array, place, name, persistable, zero_copy, stop_gradient);
L
Leo Chen 已提交
238 239 240
  } else {
    InitVarBaseOnly(self, name, persistable, stop_gradient);
  }
241
}
242

243 244
template <typename P>
static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self,
245 246
                                        const py::array &array,
                                        const P &place,
L
Leo Chen 已提交
247 248
                                        bool persistable = false,
                                        bool zero_copy = false,
249 250 251 252 253
                                        std::string name = "",
                                        int stop_gradient = -1) {
  VLOG(4) << "Init VarBase from Arg: ";
  // 0: self, 1: value, 2: place, 3: persistable, 4: zero_copy, 5: name , 6:
  // stop_gradient
L
Leo Chen 已提交
254
  if (name == "") {
255 256
    name =
        imperative::GetCurrentTracer()->GenerateUniqueName("generated_tensor");
L
Leo Chen 已提交
257
  }
258 259
  VLOG(5) << "Init Tensor as: / name: " << name
          << " / persistable: " << persistable << " / zero_copy: " << zero_copy
260
          << " / stop_gradient: " << stop_gradient << " / at " << place;
L
Leo Chen 已提交
261
  new (self) imperative::VarBase(name);
262
  self->SetPersistable(persistable);
263
  auto *tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
264 265 266
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
267 268
  SetTensorFromPyArray<P>(tensor, array, place, zero_copy);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
269
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
270 271 272
}

static void InitVarBaseFromNumpyWithArgDefault(imperative::VarBase *self,
L
Leo Chen 已提交
273 274
                                               const py::array &array) {
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
275
  VLOG(4) << "Init VarBase from numpy at " << place;
L
Leo Chen 已提交
276
  InitVarBaseAndTensor(self, array, place, "");
277
}
278

B
Baibaifan 已提交
279
static void InitVarBaseFromTensorWithArgDefault(imperative::VarBase *self,
280
                                                const phi::DenseTensor &tensor,
B
Baibaifan 已提交
281
                                                const std::string &name) {
282 283
  VLOG(4) << "Init VarBase";
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
284 285 286
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
B
Baibaifan 已提交
287
  new (self) imperative::VarBase(name_);
288 289
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
290
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
291
  auto *new_tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
292 293 294 295 296 297 298 299 300 301
  // Same place,share data directly
  if (place == tensor.place()) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

302 303
template <typename P>
static void InitVarBaseFromTensorWithArg(imperative::VarBase *self,
304
                                         const phi::DenseTensor &tensor,
B
Baibaifan 已提交
305 306
                                         const P &place,
                                         const std::string &name) {
307
  VLOG(4) << "Init VarBase";
308 309 310
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
B
Baibaifan 已提交
311
  new (self) imperative::VarBase(name_);
312 313
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
314
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
315
  auto *new_tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
316 317 318 319 320 321 322 323 324 325
  // Same place,share data directly
  if (platform::is_same_place(place, tensor.place())) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

326 327 328 329 330
static std::string GetTypeName(const imperative::VarBase &var) {
  if (var.Type() == framework::proto::VarType::RAW) {
    return "RAW";
  } else if (!var.Var().IsInitialized()) {
    return "nullptr";
331
  } else {
332
    return framework::ToTypeName(var.Var().Type());
333 334
  }
}
L
Leo Chen 已提交
335

J
Jiabin Yang 已提交
336 337 338 339 340 341
Py_ssize_t GetSliceIndexFromPyObject(PyObject *obj) {
  if (py::isinstance<imperative::VarBase>(obj)) {
    VLOG(6) << "Call GetSliceIndexFromTensor in Imperative";
    return GetSliceIndexFromTensor(
        py::cast<std::shared_ptr<imperative::VarBase>>(obj)
            ->Var()
342
            .Get<phi::DenseTensor>());
J
Jiabin Yang 已提交
343 344
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
345
        "We should only get paddle::Tensor or VarBase in this "
J
Jiabin Yang 已提交
346 347 348 349
        "method, when you reach this means we got another type index."));
  }
}

350
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
351 352 353 354 355 356 357 358 359 360 361 362 363

// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
  PyObject *py_obj = handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    return {};
  }

  std::vector<std::shared_ptr<imperative::VarBase>> result;

364
  if (PyList_Check(py_obj)) {  // List of VarBase
365 366 367
    size_t len = PyList_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
368 369 370
      PyObject *py_ivar = PyList_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
371 372 373
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
374
  } else if (PyTuple_Check(py_obj)) {  // Tuple of VarBase
375 376 377
    size_t len = PyTuple_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
378 379 380
      PyObject *py_ivar = PyTuple_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
381 382 383
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
384 385 386
  } else {  // VarBase
    result.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
387 388 389 390
  }

  return result;
}
391

J
Jiabin Yang 已提交
392 393 394
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
    const PyNameVarBaseMap &map) {
  imperative::NameVarBaseMap result;
395 396 397 398 399 400
  for (auto &pair : map) {
    auto var_vec = GetVarBaseListFromPyHandle(pair.second);
    if (!var_vec.empty()) {
      result.emplace(pair.first, std::move(var_vec));
    }
  }
J
Jiabin Yang 已提交
401

402
  PADDLE_ENFORCE_EQ(
403 404
      PyErr_Occurred(),
      nullptr,
405
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
406 407 408
  return result;
}

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
paddle::imperative::NameTensorMap ConvertToNameTensorMap(
    const PyNameVarBaseMap &map) {
  paddle::imperative::NameTensorMap result;
  for (auto &pair : map) {
    auto var_vec = CastPyArg2VectorOfTensor(pair.second.ptr(), 0);
    if (!var_vec.empty()) {
      // change vector<Tensor> -> vector<shared_ptr<Tensor>>
      std::vector<std::shared_ptr<egr::EagerVariable>> dst_var_vec;
      for (auto &v : var_vec) {
        dst_var_vec.emplace_back(
            std::make_shared<egr::EagerVariable>(std::move(v)));
      }
      result.emplace(pair.first, std::move(dst_var_vec));
    }
  }

  PADDLE_ENFORCE_EQ(
426 427
      PyErr_Occurred(),
      nullptr,
428 429 430 431
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
  return result;
}

432
template <typename P>
433 434
static void VarBaseCopy(std::shared_ptr<imperative::VarBase> &src,  // NOLINT
                        imperative::VarBase &dst,                   // NOLINT
435 436
                        const P &dst_device,
                        const bool blocking) {
437 438 439 440 441 442 443 444
  if (dst.SharedVar()->IsEmpty()) {
    VLOG(3) << "deep copy Variable from " << src->Name() << " to "
            << dst.Name();
    dst.SetPersistable(src->Persistable());
    dst.SetDataType(src->DataType());
    dst.SetType(src->Type());
    dst.SetOverridedStopGradient(src->OverridedStopGradient());
    if (!src->SharedVar()->IsEmpty()) {
445 446 447
      if (src->Var().IsType<phi::DenseTensor>()) {
        auto &src_tensor = src->Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
448 449 450 451 452 453 454 455 456
        dst_tensor->set_lod(src_tensor.lod());
        framework::TensorCopy(src_tensor, dst_device, dst_tensor);
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_tensor.place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
457 458
      } else if (src->Var().IsType<phi::SelectedRows>()) {
        auto &src_selected_rows = src->Var().Get<phi::SelectedRows>();
459
        auto *dst_selected_rows =
460
            dst.MutableVar()->GetMutable<phi::SelectedRows>();
461 462
        dst_selected_rows->set_height(src_selected_rows.height());
        dst_selected_rows->set_rows(src_selected_rows.rows());
463 464
        framework::TensorCopy(src_selected_rows.value(),
                              dst_device,
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
                              dst_selected_rows->mutable_value());
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_selected_rows.value().place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
      }

      if (!blocking) {
        IncreaseVarbaseReferenceCountUntilCopyComplete(src, dst_device);
      }

    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The source Tensor(%s) can not copy when it is empty.", src->Name()));
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The destion Tensor(%s) can not copy when it is not empty.",
        dst.Name()));
  }
}

490
// Bind Methods
J
Jiabin Yang 已提交
491
void BindImperative(py::module *m_ptr) {
492 493
  auto &m = *m_ptr;

494 495
#ifndef _WIN32
  // Dygraph DataLoader signal handler
496 497
  m.def("_set_process_pids", [](int64_t key, py::object &obj) {
    PADDLE_ENFORCE_EQ(
498 499
        py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
        true,
500 501 502 503 504 505 506 507 508 509
        platform::errors::InvalidArgument(
            "The subprocess ids set in DataLoader is illegal."
            "Expected data type is tuple or list, but received %s",
            obj.get_type()));
    py::list pids = py::cast<py::list>(obj);
    std::set<pid_t> pids_set = {};
    for (size_t i = 0; i < pids.size(); i++) {
      pids_set.insert(pids[i].cast<pid_t>());
    }
    imperative::SetLoadProcessPIDs(key, pids_set);
510
  });
511 512
  m.def("_erase_process_pids",
        [](int64_t key) { imperative::EraseLoadProcessPIDs(key); });
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
  m.def("_set_process_signal_handler",
        []() { imperative::SetLoadProcessSignalHandler(); });
  m.def("_throw_error_if_process_failed",
        []() { imperative::ThrowErrorIfLoadProcessFailed(); });
  // Dygraph DataLoader reader process & thread related functions
  m.def(
      "_convert_to_tensor_list",
      [](py::object &obj) -> py::list {
        // 0. input data check
        PADDLE_ENFORCE(
            py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
            platform::errors::InvalidArgument(
                "The batch data read into DataLoader is illegal."
                "Expected data type is tuple or list, but received %s",
                obj.get_type()));
        py::list batch = py::cast<py::list>(obj);
        py::list tensors;
        for (size_t i = 0; i < batch.size(); ++i) {
          // 1. cast to python array
          auto array = batch[i].cast<py::array>();
          PADDLE_ENFORCE_NE(
534 535
              string::Sprintf("%s", array.dtype()).compare("object"),
              0,
536
              platform::errors::InvalidArgument(
537
                  "Failed to convert input data to a regular ndarray.\n  * "
538 539 540 541 542
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
          // 2. construcct LoDTensor
543
          phi::DenseTensor t;
544 545
          SetTensorFromPyArray<platform::CPUPlace>(
              &t, array, platform::CPUPlace(), true);
546
          // 3. allocate shared memory
547
          void *data_ptr = t.data();
548
          size_t data_size = t.numel() * phi::SizeOf(t.dtype());
549 550 551 552 553 554
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
555 556 557 558 559
          memory::Copy(platform::CPUPlace(),
                       shared_writer_holder->ptr(),
                       platform::CPUPlace(),
                       data_ptr,
                       data_size);
560 561 562 563 564 565 566 567
          t.ResetHolder(shared_writer_holder);
          // 6. append to result list
          tensors.append(t);
        }
        return tensors;
      },
      py::return_value_policy::take_ownership);

568 569 570 571 572 573
  m.def(
      "_array_to_share_memory_tensor",
      [](py::object &obj) {
        // 1. cast to python array
        auto array = obj.cast<py::array>();
        PADDLE_ENFORCE_NE(
574 575
            string::Sprintf("%s", array.dtype()).compare("object"),
            0,
576
            platform::errors::InvalidArgument(
577
                "Failed to convert input data to a regular ndarray.\n  * "
578 579 580 581 582
                "Usually this means the input data contains nested "
                "lists with different lengths.\n  * Check the reader "
                "function passed to 'set_(sample/sample_list/batch)"
                "_generator' to locate the data causes this issue."));
        // 2. construcct LoDTensor
583
        phi::DenseTensor t;
584 585
        SetTensorFromPyArray<platform::CPUPlace>(
            &t, array, platform::CPUPlace(), true);
586 587
        // 3. allocate shared memory
        void *data_ptr = t.data();
588
        size_t data_size = t.numel() * phi::SizeOf(t.dtype());
589 590 591 592 593 594
        auto shared_writer_holder =
            memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
        // 4. maintain mmap fd set & backup ipc_name
        const std::string &ipc_name = shared_writer_holder->ipc_name();
        memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
        // 5. copy data & reset holder
595 596 597 598 599
        memory::Copy(platform::CPUPlace(),
                     shared_writer_holder->ptr(),
                     platform::CPUPlace(),
                     data_ptr,
                     data_size);
600 601 602 603 604
        t.ResetHolder(shared_writer_holder);

        return t;
      },
      py::return_value_policy::take_ownership);
K
Kaipeng Deng 已提交
605

606 607
  m.def("_remove_tensor_list_mmap_fds", [](py::list &tensor_list) {
    for (size_t i = 0; i < tensor_list.size(); ++i) {
608
      auto t = tensor_list[i].cast<phi::DenseTensor>();
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
      auto *mmap_writer_allocation =
          dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
              t.Holder().get());
      PADDLE_ENFORCE_NOT_NULL(
          mmap_writer_allocation,
          platform::errors::NotFound("The shared memory of LoDTensor in "
                                     "DataLoader's child process has been "
                                     "released."));
      memory::allocation::MemoryMapFdSet::Instance().Remove(
          mmap_writer_allocation->ipc_name());
    }
  });

  m.def("_cleanup_mmap_fds",
        []() { memory::allocation::MemoryMapFdSet::Instance().Clear(); });
624 625 626 627 628

  m.def("_set_max_memory_map_allocation_pool_size", [](int32_t size) {
    memory::allocation::MemoryMapAllocationPool::Instance().SetMaxPoolSize(
        size);
  });
629 630
#endif

631 632
  m.def("start_imperative_gperf_profiler",
        []() { imperative::StartProfile(); });
633 634 635 636
  m.def("_set_eager_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
          egr::Controller::Instance().SetCurrentTracer(tracer);
        });
637 638
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });

Z
Zeng Jinle 已提交
639 640 641
  m.def("_is_dygraph_debug_enabled",
        []() { return imperative::IsDebugEnabled(); });
  m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });
642 643
  m.def("_switch_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
J
Jiabin Yang 已提交
644
          egr::Controller::Instance().SetCurrentTracer(tracer);
645
          imperative::SetCurrentTracer(tracer);
646
        });
647 648 649 650
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>> varbase(
      m, "VarBase", R"DOC()DOC");
  g_varbase_pytype = (PyTypeObject *)varbase.ptr();  // NOLINT
  varbase.def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
651 652 653 654 655 656 657
      .def("__init__",
           [](imperative::VarBase &self) {
             std::string name =
                 imperative::GetCurrentTracer()->GenerateUniqueName(
                     "generated_tensor");
             new (&self) imperative::VarBase(name);
           })
J
Jiabin Yang 已提交
658
      .def("__init__",
659 660
           [](imperative::VarBase &self,
              framework::proto::VarType::Type dtype,
661
              const std::vector<int64_t> &dims,
662 663 664
              const py::handle &name,
              framework::proto::VarType::Type type,
              bool persistable) {
665
             VLOG(4) << "Init VarBase";
666 667 668
             std::string act_name = "";
             if (!name.ptr() || name.ptr() == Py_None) {
               act_name = imperative::GetCurrentTracer()->GenerateUniqueName(
669
                   "generated_tensor");
670 671 672 673
             } else {
               act_name = name.cast<std::string>();
             }
             new (&self) imperative::VarBase(act_name);
J
Jiabin Yang 已提交
674 675 676 677
             self.SetPersistable(persistable);
             self.SetType(type);
             self.SetDataType(dtype);
             if (type == framework::proto::VarType::LOD_TENSOR) {
678
               auto *tensor = self.MutableVar()->GetMutable<phi::DenseTensor>();
679
               tensor->Resize(phi::make_ddim(dims));
J
Jiabin Yang 已提交
680 681
             }
           })
682 683 684 685 686 687 688
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
689
           py::arg("stop_gradient") = -1)
690 691 692 693 694 695 696
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::XPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
697
           py::arg("stop_gradient") = -1)
698 699 700 701 702 703 704
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
705
           py::arg("stop_gradient") = -1)
706 707 708 709 710 711 712
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPinnedPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
713
           py::arg("stop_gradient") = -1)
714 715 716 717 718 719 720
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::NPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
721
           py::arg("stop_gradient") = -1)
722 723 724 725 726 727 728
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CustomPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
729
           py::arg("stop_gradient") = -1)
L
Leo Chen 已提交
730
      .def("__init__", &InitVarBaseFromNumpyWithArgDefault, py::arg("value"))
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
      .def("__init__",
           &InitVarBaseFromTensorWithArgDefault,
           py::arg("tensor"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::XPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPinnedPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::NPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CustomPlace>,
           py::arg("tensor"),
           py::arg("place"),
B
Baibaifan 已提交
764
           py::arg("name") = "")
765
      .def("__init__", &InitVarBaseFromNumpyWithKwargs)
766 767
      .def(
          "__setitem_varbase__",
768 769
          [](std::shared_ptr<imperative::VarBase> &self,
             py::handle _index,
770 771 772 773
             py::object &value_obj) {
            VLOG(4) << "Call __setitem_varbase__";

            auto self_tensor =
774
                self->MutableVar()->GetMutable<phi::DenseTensor>();
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
            // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
            // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
            PyObject *index_ptr = !PyTuple_Check(_index.ptr())
                                      ? PyTuple_Pack(1, _index.ptr())
                                      : _index.ptr();
            DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
              if (!PyTuple_Check(_index.ptr())) {
                Py_DECREF(index_ptr);
                VLOG(4) << "Call Py_DECREF";
              }
            });

            auto is_tensor = [](py::handle var) {
              if (!var.ptr() || var.ptr() == Py_None) {
                return false;
              }
              try {
                py::cast<std::shared_ptr<imperative::VarBase>>(var);
                return true;
              } catch (py::cast_error &) {
                return false;
              }
            };

799 800 801 802 803
            // NOTE(liym27):
            // Increase the version of VarBase self because __setitem__ is an
            // inplace operator for the VarBase self.
            self->BumpInplaceVersion();

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
            // 1. Check argumnets
            bool parse_index = true;

            // Check whether _index can be parsed.
            const int size = PyTuple_GET_SIZE(index_ptr);
            for (int dim = 0; dim < size; ++dim) {
              PyObject *slice_item = PyTuple_GetItem(index_ptr, dim);
              if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
                    slice_item == Py_Ellipsis || slice_item == Py_None)) {
                parse_index = false;
                break;
              }
            }

            // 2. Call op set_value to speed up if the condition is met,
            // otherwise call TensorToPyArray.
            // TODO(liym27): Try not to call TensorToPyArray because it always
            // copys data to cpu place, which reduces performance.
            if (parse_index) {
              std::vector<int> axes, starts, ends, steps, decrease_axes,
                  none_axes, infer_flags, list_select_idxs;
              // if index is a list, list_select_flag will be true
              bool list_select_flag = false;
827 828 829 830 831 832 833 834 835 836
              ParseIndexingSlice(self_tensor,
                                 index_ptr,
                                 &axes,
                                 &starts,
                                 &ends,
                                 &steps,
                                 &decrease_axes,
                                 &none_axes,
                                 &infer_flags,
                                 &list_select_idxs,
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
                                 &list_select_flag);

              framework::AttributeMap attrs = {{"axes", axes},
                                               {"starts", starts},
                                               {"ends", ends},
                                               {"steps", steps},
                                               {"decrease_axes", decrease_axes},
                                               {"none_axes", none_axes}};

              imperative::NameVarBaseMap ins = {{"Input", {self}}};
              imperative::NameVarBaseMap outs = {{"Out", {self}}};

              const auto &tracer = imperative::GetCurrentTracer();

              if (tracer->HasGrad()) {
                PADDLE_ENFORCE_EQ(
853 854
                    self->IsLeaf() && !self->OverridedStopGradient(),
                    false,
855 856 857 858 859 860
                    platform::errors::InvalidArgument(
                        "Leaf Tensor (%s) that doesn't stop gradient can't use "
                        "inplace strategy.",
                        self->Name()));
              }

861
              if (py::isinstance<imperative::VarBase>(value_obj.ptr())) {
862 863 864
                auto value_tensor =
                    value_obj.cast<std::shared_ptr<imperative::VarBase>>();
                ins.insert({"ValueTensor", {value_tensor}});
865 866 867 868 869 870

                // pass the stop_gradient from value to tensor
                if (!value_tensor->OverridedStopGradient() &&
                    self->OverridedStopGradient()) {
                  self->SetOverridedStopGradient(false);
                }
871 872 873 874 875 876 877
              } else if (py::isinstance<py::array>(value_obj)) {
                auto value_tensor = std::shared_ptr<imperative::VarBase>(
                    new imperative::VarBase(false,
                                            tracer->GenerateUniqueName()));
                py::object value = value_obj;
                if (self->DataType() == framework::proto::VarType::FP32) {
                  if (!py::isinstance<py::array_t<float>>(value_obj)) {
W
wanghuancoder 已提交
878
                    value = pybind11::detail::CastNumpyArray<float>(value_obj);
879 880 881 882
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::FP64) {
                  if (!py::isinstance<py::array_t<double>>(value_obj)) {
W
wanghuancoder 已提交
883
                    value = pybind11::detail::CastNumpyArray<double>(value_obj);
884 885 886 887
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT32) {
                  if (!py::isinstance<py::array_t<int32_t>>(value_obj)) {
W
wanghuancoder 已提交
888 889
                    value =
                        pybind11::detail::CastNumpyArray<int32_t>(value_obj);
890 891 892 893
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT64) {
                  if (!py::isinstance<py::array_t<int64_t>>(value_obj)) {
W
wanghuancoder 已提交
894 895
                    value =
                        pybind11::detail::CastNumpyArray<int64_t>(value_obj);
896 897 898 899
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::BOOL) {
                  if (!py::isinstance<py::array_t<bool>>(value_obj)) {
W
wanghuancoder 已提交
900
                    value = pybind11::detail::CastNumpyArray<bool>(value_obj);
901
                  }
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
                } else if (self->DataType() ==
                           framework::proto::VarType::COMPLEX64) {
                  if (!py::isinstance<py::array_t<std::complex<float>>>(
                          value_obj)) {
                    value =
                        pybind11::detail::CastNumpyArray<std::complex<float>>(
                            value_obj);
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::COMPLEX128) {
                  if (!py::isinstance<py::array_t<std::complex<double>>>(
                          value_obj)) {
                    value =
                        pybind11::detail::CastNumpyArray<std::complex<double>>(
                            value_obj);
                  }
918 919 920 921
                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "When assign a numpy.np value to a paddle.Tensor, "
                      "the data type of the paddle.Tensor must be bool, "
922 923
                      "float32, float64, complex64, complex128, int32 or "
                      "int64, "
924 925 926
                      "please check the type of tensor."));
                }

927 928 929 930 931
                SetTensorFromPyArray(
                    value_tensor->MutableVar()->GetMutable<phi::DenseTensor>(),
                    value,
                    self->Place(),
                    false);
932 933 934 935 936 937
                ins.insert({"ValueTensor", {value_tensor}});

              } else {
                // convert the value to self data type
                if (py::isinstance<py::float_>(value_obj) ||
                    py::isinstance<py::int_>(value_obj) ||
938 939
                    py::isinstance<py::bool_>(value_obj) ||
                    PyComplex_Check(value_obj.ptr())) {
940
                  if (self->DataType() == framework::proto::VarType::FP32) {
941 942
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<float>()};
943 944
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP64) {
945 946
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<double>()};
947 948
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT32) {
949 950
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<int32_t>()};
951 952
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT64) {
953 954
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<int64_t>()};
955 956
                  } else if (self->DataType() ==
                             framework::proto::VarType::BOOL) {
957 958
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<bool>()};
959 960
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP16) {
961 962 963 964 965 966 967 968 969 970
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<float>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::COMPLEX64) {
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<std::complex<float>>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::COMPLEX128) {
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<std::complex<double>>()};
971 972 973 974
                  } else {
                    PADDLE_THROW(platform::errors::InvalidArgument(
                        "When assign a value to a paddle.Tensor, "
                        "the data type of the paddle.Tensor must be bool, "
975 976
                        "float32, float64, complex64, complex128, int32, int64 "
                        "or float16, "
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
                        "please check the type of tensor."));
                  }
                  attrs["shape"] = std::vector<int64_t>{1};

                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "Value type error. The assign value allows "
                      "numpy.ndarray, integer, float or bool, "
                      "but received %s.",
                      Py_TYPE(value_obj.ptr())));
                }
              }

              {
                // Release gil and do tracing
                py::gil_scoped_release release;
993 994 995 996
                tracer->TraceOp("set_value",
                                ins,
                                outs,
                                std::move(attrs),
997 998 999 1000 1001 1002 1003 1004 1005 1006
                                {{"Input", "Out"}});
              }
            } else {
              auto self_numpy = TensorToPyArray(*self_tensor);
              VLOG(4) << "parse_index is false";
              if (is_tensor(_index)) {
                VLOG(4) << "index is tensor";
                auto index_var =
                    py::cast<std::shared_ptr<imperative::VarBase>>(_index);
                auto index_tensor =
1007
                    index_var->MutableVar()->GetMutable<phi::DenseTensor>();
1008 1009 1010 1011 1012 1013
                auto index_numpy = TensorToPyArray(*index_tensor);
                self_numpy[index_numpy] = value_obj;
              } else {
                VLOG(4) << "index is not tensor";
                self_numpy[_index] = value_obj;
              }
1014 1015
              SetTensorFromPyArray(
                  self_tensor, self_numpy, self_tensor->place(), false);
1016 1017
            }
          })
1018
      .def("_getitem_index_not_tensor",
S
songyouwei 已提交
1019
           [](std::shared_ptr<imperative::VarBase> &self, py::handle _index) {
1020
             VLOG(4) << "Call _getitem_index_not_tensor";
1021
             std::vector<int> slice_axes, slice_starts, slice_ends,
Z
zyfncg 已提交
1022 1023 1024 1025
                 slice_strides, decrease_axis, none_axes, infer_flags,
                 list_select_idxs;
             // if index is a list, list_select_flag will be true
             bool list_select_flag = false;
1026
             auto tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
             ParseIndexingSlice(tensor,
                                _index.ptr(),
                                &slice_axes,
                                &slice_starts,
                                &slice_ends,
                                &slice_strides,
                                &decrease_axis,
                                &none_axes,
                                &infer_flags,
                                &list_select_idxs,
                                &list_select_flag);
1038 1039 1040
             // release gil and do tracing
             py::gil_scoped_release release;
             const auto &tracer = imperative::GetCurrentTracer();
1041

Z
zyfncg 已提交
1042
             auto out = slice_axes.empty() && !list_select_flag
1043 1044 1045 1046
                            ? self
                            : std::shared_ptr<imperative::VarBase>(
                                  new imperative::VarBase(
                                      tracer->GenerateUniqueName()));
Z
zyfncg 已提交
1047

1048
             if (!slice_axes.empty()) {
S
songyouwei 已提交
1049
               imperative::NameVarBaseMap ins = {{"Input", {self}}};
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
               framework::AttributeMap attrs = {
                   {"axes", slice_axes},
                   {"starts", slice_starts},
                   {"ends", slice_ends},
                   {"infer_flags", infer_flags},
                   {"decrease_axis", decrease_axis}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               std::string op_type = "slice";
               for (auto stride : slice_strides) {
                 if (stride != 1) {
                   op_type = "strided_slice";
                   attrs.insert({"strides", slice_strides});
                   attrs.erase("decrease_axis");
                   break;
                 }
               }
               tracer->TraceOp(op_type, ins, outs, std::move(attrs));
             }
1068 1069

             bool set_to_1d = FLAGS_set_to_1d;
1070
             if (!none_axes.empty()) {
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
               if (set_to_1d) {
                 // NOTE(zoooo0820): When all axes are decreased, the output
                 // will be 1-D with FLAGS_set_to_1d=True. In this case, one
                 // `None` should be pop out, otherwise the output shape will be
                 // not correct.
                 if (static_cast<int>(decrease_axis.size()) ==
                     tensor->dims().size()) {
                   none_axes.pop_back();
                 }
               }
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
               if (!none_axes.empty()) {
                 // Deal with cases that decrease_axes is not empty
                 // For example:
                 // # x.shape: (2,3,4)
                 // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
                 for (auto &axis : none_axes) {
                   int len = 0;
                   for (int da : decrease_axis) {
                     if (da < axis) {
                       len++;
                     }
                   }
                   axis -= len;
                 }

                 imperative::NameVarBaseMap ins = {{"X", {out}}};
                 framework::AttributeMap attrs = {{"axes", none_axes}};
                 auto new_out = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 auto out_xshape = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 imperative::NameVarBaseMap outs = {{"Out", {new_out}},
                                                    {"XShape", {out_xshape}}};
                 tracer->TraceOp("unsqueeze2", ins, outs, std::move(attrs));

                 return new_out;
               }
             }

Z
zyfncg 已提交
1110 1111 1112 1113
             // the index is a list
             if (list_select_flag) {
               auto select_index = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
1114 1115
               auto *idx_tensor =
                   select_index->MutableVar()->GetMutable<phi::DenseTensor>();
Z
zyfncg 已提交
1116 1117
               auto *dev_ctx = platform::DeviceContextPool::Instance().Get(
                   tracer->ExpectedPlace());
1118 1119
               paddle::framework::TensorFromVector(
                   list_select_idxs, *dev_ctx, idx_tensor);
Z
zyfncg 已提交
1120 1121 1122 1123 1124 1125 1126

               imperative::NameVarBaseMap ins = {{"X", {self}},
                                                 {"Index", {select_index}}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               tracer->TraceOp("index_select", ins, outs, {{"dim", 0}});
             }

1127
             return out;
1128
           })
1129 1130 1131
      .def(
          "_getitem_from_offset",
          [](std::shared_ptr<imperative::VarBase> &self, const py::args &args) {
1132
            const auto &tensor = self->Var().Get<phi::DenseTensor>();
1133
            PADDLE_ENFORCE_EQ(
1134 1135
                tensor.IsInitialized(),
                true,
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self->Name()));

            const auto &tensor_dims = tensor.dims();

            std::vector<size_t> dims(tensor_dims.size());
            std::vector<size_t> strides(tensor_dims.size());

            size_t numel = 1;
            for (int i = tensor_dims.size() - 1; i >= 0; --i) {
              strides[i] = numel;
              dims[i] = static_cast<size_t>(tensor_dims[i]);
              numel *= dims[i];
            }
            size_t offset = 0;
            if (args.empty()) {
              PADDLE_ENFORCE_EQ(
1154 1155
                  numel,
                  1,
1156 1157 1158 1159 1160 1161
                  platform::errors::InvalidArgument(
                      "only one element tensors can be converted to Python "
                      "scalars when no input coordinates"));
            } else if (args.size() == 1) {
              offset = args[0].cast<size_t>();
              PADDLE_ENFORCE_LT(
1162 1163
                  offset,
                  numel,
1164 1165 1166
                  platform::errors::InvalidArgument(
                      "index %d is out of bounds for size %d", offset, numel));
            } else {
1167 1168
              PADDLE_ENFORCE_EQ(args.size(),
                                dims.size(),
1169 1170 1171 1172 1173 1174
                                platform::errors::InvalidArgument(
                                    "incorrect number of indices for Tensor"));

              for (size_t i = 0; i < args.size(); ++i) {
                size_t index = args[i].cast<size_t>();
                PADDLE_ENFORCE_LT(
1175 1176
                    index,
                    dims[i],
1177 1178
                    platform::errors::InvalidArgument(
                        "index %d is out fo bounds for axis %d with size %d",
1179 1180 1181
                        index,
                        i,
                        dims[i]));
1182 1183 1184 1185
                offset += index * strides[i];
              }
            }
#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
1186
  if (framework::TransToProtoVarType(tensor.dtype()) == proto_type) {        \
1187 1188
    std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(proto_type); \
    T b = TensorGetElement<T>(tensor, offset);                               \
1189 1190
    return py::array(                                                        \
        py::dtype(py_dtype_str.c_str()), {}, {}, static_cast<void *>(&b));   \
1191 1192 1193 1194 1195
  }

            _ForEachDataType_(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
            PADDLE_THROW(platform::errors::Unimplemented(
1196
                "Unsupported tensor data type: %s", tensor.dtype()));
1197 1198
          },
          py::return_value_policy::copy)
1199 1200 1201 1202
      .def("_inplace_version",
           [](imperative::VarBase &self) -> uint32_t {
             const auto &var = self.MutableVar();
             PADDLE_ENFORCE_EQ(
1203 1204
                 var->IsInitialized(),
                 true,
1205 1206 1207 1208 1209
                 platform::errors::InvalidArgument(
                     "Tensor of %s is Empty, please check if it has no data.",
                     self.Name()));
             return var->CurrentInplaceVersion();
           })
1210 1211 1212 1213 1214 1215 1216 1217
      .def(
          "_bump_inplace_version",
          [](std::shared_ptr<imperative::VarBase> &self) {
            // NOTE(liym27): _bump_inplace_version is only used for inplace
            // operation
            self->BumpInplaceVersion();
          },
          R"DOC(
1218 1219 1220 1221 1222
        **Notes**:
            **This API is ONLY available in Dygraph mode.**
            **This is a very low level API. Users should not use it directly. **
         Bump the version whenever the Tensor is modified through an inplace operation.
            )DOC")
1223 1224
      .def(
          "numpy",
1225

1226
          [](imperative::VarBase &self) -> py::array {
1227
            const auto &tensor = self.MutableVar()->Get<phi::DenseTensor>();
1228
            PADDLE_ENFORCE_EQ(
1229 1230
                tensor.IsInitialized(),
                true,
1231 1232 1233 1234 1235 1236
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self.Name()));
            return TensorToPyArray(tensor, true);
          },
          R"DOC(
Z
Zhou Wei 已提交
1237
        Returns a numpy array shows the value of current Tensor.
1238

1239
        Returns:
Z
Zhou Wei 已提交
1240
            ndarray: The numpy value of current Tensor.
1241 1242

        Returns type:
Z
Zhou Wei 已提交
1243
            ndarray: dtype is same as current Tensor
1244 1245 1246 1247

        Examples:
            .. code-block:: python

Z
Zhou Wei 已提交
1248
                import paddle
1249 1250
                import numpy as np
                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
Z
Zhou Wei 已提交
1251 1252 1253 1254
                linear = paddle.nn.Linear(32, 64)
                data = paddle.to_tensor(data)
                x = linear(data)
                print(x.numpy())
1255
       )DOC")
1256 1257 1258 1259 1260
      .def(
          "detach",
          [](const imperative::VarBase &self)
              -> std::shared_ptr<imperative::VarBase> {
            PADDLE_ENFORCE_EQ(
1261 1262
                self.Var().IsInitialized(),
                true,
1263 1264
                platform::errors::InvalidArgument(
                    "Tensor %s has not been initialized!", self.Name()));
1265

1266
            PADDLE_ENFORCE_EQ(
1267
                self.Var().IsType<phi::DenseTensor>() ||
1268 1269 1270 1271 1272
                    self.Var().IsType<phi::SelectedRows>(),
                true,
                platform::errors::InvalidArgument(
                    "Type of Tensor[%s] must be LoDTensor or SelectedRows!",
                    self.Name()));
1273

1274 1275
            auto detach_var = std::make_shared<imperative::VarBase>(
                true, "detach_" + self.Name());
1276

1277 1278 1279
            detach_var->SetPersistable(self.Persistable());
            detach_var->SetType(self.Type());
            detach_var->SetDataType(self.DataType());
1280

1281 1282
            if (self.Var().IsType<phi::DenseTensor>()) {
              const auto &origin_tensor = self.Var().Get<phi::DenseTensor>();
1283
              PADDLE_ENFORCE_EQ(
1284 1285
                  origin_tensor.IsInitialized(),
                  true,
1286 1287 1288 1289
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_tensor =
1290
                  detach_var->MutableVar()->GetMutable<phi::DenseTensor>();
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
              detach_tensor->ShareDataWith(origin_tensor);
              // NOTE(liym27): Call ShareInplaceVersionCounterWith to share the
              // same TensorInplaceVersion, which is used to check whether
              // inplace
              // operations are correct.
              detach_tensor->ShareInplaceVersionCounterWith(origin_tensor);
            } else {
              const auto &origin_selected_rows =
                  self.Var().Get<phi::SelectedRows>();
              PADDLE_ENFORCE_EQ(
1301 1302
                  origin_selected_rows.value().IsInitialized(),
                  true,
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_selected_rows =
                  detach_var->MutableVar()->GetMutable<phi::SelectedRows>();
              detach_selected_rows->set_height(origin_selected_rows.height());
              detach_selected_rows->set_rows(origin_selected_rows.rows());
              detach_selected_rows->mutable_value()->ShareDataWith(
                  origin_selected_rows.value());
              detach_selected_rows->mutable_value()
                  ->ShareInplaceVersionCounterWith(
                      origin_selected_rows.value());
            }
            VLOG(3) << "The detached Tensor(" << detach_var->Name()
                    << ") share data with " << self.Name();
            return detach_var;
          },
1320 1321
          py::return_value_policy::take_ownership,
          R"DOC(
1322

1323
        Returns a new Tensor, detached from the current graph.
Z
Zhou Wei 已提交
1324 1325
        It will share data with origin Tensor and always doesn't have a Tensor copy.
        In addition, the detached Tensor doesn't provide gradient propagation.
1326

1327
        Returns: The detached Tensor.
1328 1329 1330 1331

        Examples:
            .. code-block:: python

1332
                import paddle
Z
Zhou Wei 已提交
1333

1334
                x = paddle.to_tensor([1.0], stop_gradient=False)
Z
Zhou Wei 已提交
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
                detach_x = x.detach()
                detach_x[:] = 10.0
                print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                          #        [10.])
                y = x**2
                y.backward()
                print(x.grad)         # [20.0]
                print(detach_x.grad)  # None, 'stop_gradient=True' by default

                detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
                z = detach_x**3
                z.backward()

                print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
                print(detach_x.grad)  # [300.0], detach_x has its own graph

                # Due to sharing of data with origin Tensor, There are some unsafe operations:
                y = 2 * x
                detach_x[:] = 5.0
1354
                y.backward()
Z
Zhou Wei 已提交
1355 1356
                # It will raise Error:
                #   one of the variables needed for gradient computation has been modified by an inplace operation.
1357

1358
       )DOC")
1359 1360 1361 1362
      .def("clear_gradient",
           &imperative::VarBase::ClearGradient,
           py::arg("set_to_zero") = true,
           R"DOC(
1363

1364
        Only for Tensor that has gradient, normally we use this for Parameters since other temporary Tensor doesen't has gradient.
1365

1366
        The Gradient of current Tensor will be set to ``0`` .
1367 1368 1369 1370 1371 1372

        Returns:  None

        Examples:
             .. code-block:: python

1373
                import paddle
Z
Zhou Wei 已提交
1374 1375 1376 1377 1378 1379 1380
                input = paddle.uniform([10, 2])
                linear = paddle.nn.Linear(2, 3)
                out = linear(input)
                out.backward()
                print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
                linear.weight.clear_gradient()
                print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
1381
      )DOC")
1382 1383
      .def("_gradient_set_empty",
           &imperative::VarBase::_GradientSetEmpty,
1384 1385
           py::arg("set_is_empty") = true)
      .def("_is_gradient_set_empty", &imperative::VarBase::_IsGradientSetEmpty)
1386 1387 1388
      .def(
          "clone",
          [](std::shared_ptr<imperative::VarBase> &self) {
1389
            const auto &tensor = self->Var().Get<phi::DenseTensor>();
1390 1391
            PADDLE_ENFORCE_EQ(tensor.IsInitialized(),
                              true,
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
                              platform::errors::InvalidArgument(
                                  "%s has not been initialized", self->Name()));
            auto tracer = imperative::GetCurrentTracer();
            auto new_var = std::make_shared<imperative::VarBase>(
                true, tracer->GenerateUniqueName(self->Name() + "_clone"));
            framework::AttributeMap attrs;
            imperative::NameVarBaseMap ins = {{"X", {self}}};
            imperative::NameVarBaseMap outs = {{"Out", {new_var}}};
            tracer->TraceOp("assign", ins, outs, attrs);
            return new_var;
          },
1403 1404
          py::return_value_policy::copy,
          R"DOC(
Z
Zhou Wei 已提交
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435

        Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
        It will always have a Tensor copy.
        Tn addition, the cloned Tensor provides gradient propagation.

        Returns: The cloned Tensor.

        Examples:
            .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.0, stop_gradient=False)
              clone_x = x.clone()
              y = clone_x**2
              y.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [2.0], support gradient propagation
              print(x.stop_gradient)       # False
              print(x.grad)                # [2.0], clone_x support gradient propagation for x

              x = paddle.to_tensor(1.0)
              clone_x = x.clone()
              clone_x.stop_gradient = False
              z = clone_x**3
              z.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [3.0], support gradient propagation
              print(x.stop_gradient) # True
              print(x.grad)          # None
       )DOC")
L
Leo Chen 已提交
1436
      .def("_grad_name", &imperative::VarBase::GradVarName)
1437 1438 1439
      .def(
          "_grad_value",
          [](imperative::VarBase &self) {
1440
            return self.MutableGradVar()->Get<phi::DenseTensor>();
1441 1442
          },
          py::return_value_policy::reference)
1443 1444 1445 1446
      .def("_set_grad_type",
           [](imperative::VarBase &self, framework::proto::VarType::Type type) {
             self.MutableGradVarBase()->SetType(type);
           })
1447
      .def("_reset_grad_inplace_version",
1448
           [](imperative::VarBase &self, bool set_to_zero) {
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
             /*
             *** This interfaceis a complete hack ***
             reset_grad_inplace_version removes all inplace related records to
             Grad VarBase/VariableWrapper,
             the essential purpose of which is to let you use inplace operations
             as if using its non-inplaced version,
             which of course will cause unexpected consequences if not used with
             care.
             Make sure you fully understand what you're doing before make use of
             this interface, and prepare for the worst.
             */
1460 1461
             py::gil_scoped_release release;

1462 1463 1464
             if (self.HasGradVar()) {
               auto grad_var = self.GradVarBase();
               auto var_wrapper = grad_var->SharedVar();
1465 1466 1467
               if (var_wrapper) {
                 var_wrapper->ResetInplaceVersion(set_to_zero);
               }
1468 1469
             }
           })
1470 1471 1472 1473 1474 1475 1476
      .def(
          "_grad_ivar",
          [](const imperative::VarBase &self) {
            auto &grad_var = self.GradVarBase();

            if (grad_var && grad_var->Var().IsInitialized()) {
              auto *tensor =
1477 1478
                  grad_var->MutableVar()->IsType<phi::DenseTensor>()
                      ? grad_var->MutableVar()->GetMutable<phi::DenseTensor>()
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
                      : grad_var->MutableVar()
                            ->GetMutable<phi::SelectedRows>()
                            ->mutable_value();

              if (tensor->IsInitialized()) {
                return grad_var;
              }
            }
            return std::shared_ptr<imperative::VarBase>(nullptr);
          },
          py::return_value_policy::copy)
C
chentianyu03 已提交
1490 1491 1492 1493
      .def("_set_grad_ivar",
           [](imperative::VarBase &self, imperative::VarBase &grad) {
             self.SetGradVarBase(grad);
           })
1494 1495
      .def("_is_sparse",
           [](imperative::VarBase &self) {
1496
             return self.Var().IsType<phi::SelectedRows>();
1497
           })
1498 1499 1500 1501 1502
      .def(
          "_allreduce",
          [](imperative::VarBase &self,
             const imperative::ParallelStrategy &strategy) {
            if (strategy.nranks_ > 1) {
1503
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1504
#if NCCL_VERSION_CODE >= 2212
1505
              imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
1506
#else
1507
               if (!self.Var().IsType<phi::SelectedRows>()) {
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
                 imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
               } else {
                 PADDLE_THROW(platform::errors::Unimplemented(
                     "Imperative SelectedRows allreduce is not supported when "
                     "paddle is compiled with NCCL verison lower than v2.2.12. "
                     "You can set is_sparse=False for the Layer containing "
                     "this argument, such as Embedding(is_sparse=False)."));
               }
#endif  // NCCL_VERSION_CODE
#else
               PADDLE_THROW(platform::errors::Unimplemented(
                   "Imperative allreduce is not supported when paddle is "
                   "not compiled with NCCL."));
1521
#endif  // PADDLE_WITH_NCCL or PADDLE_WITH_RCCL
1522 1523 1524
            }
          },
          py::call_guard<py::gil_scoped_release>())
1525 1526 1527
      .def("_register_grad_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1528 1529
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1530
                 platform::errors::InvalidArgument(
1531 1532 1533
                     "Cannot register gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->AddVariableWrapperHook(
1534 1535 1536 1537 1538
                 std::make_shared<PyVariableWrapperHook>(hook.ptr()));
           })
      .def("_remove_grad_hook",
           [](imperative::VarBase &self, int64_t hook_id) {
             PADDLE_ENFORCE_EQ(
1539 1540
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1541
                 platform::errors::InvalidArgument(
1542 1543 1544
                     "Cannot remove gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->RemoveVariableWrapperHook(hook_id);
1545
           })
1546 1547 1548
      .def("_register_void_function_post_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1549 1550
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
                 platform::errors::InvalidArgument(
                     "Cannot register void function post hook on a Tensor that "
                     "stop "
                     "gradient or without gradient."));
             auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
             auto grad_node = self.MutableGradVarBase()->GradNode();
             for (auto &cur_op : *grad_node) {
               cur_op.AddVoidFunctionPostHook(
                   std::make_shared<std::function<void()>>(py_func));
             }
           })
1562 1563 1564 1565
      .def(
          "_register_backward_hook",
          [](imperative::VarBase &self, const py::handle &hook) {
            PADDLE_ENFORCE_EQ(
1566 1567
                self.IsLeaf(),
                true,
1568 1569 1570
                platform::errors::InvalidArgument(
                    "Only can register backward hook for leaf Tensor."));
            PADDLE_ENFORCE_EQ(
1571 1572
                !self.OverridedStopGradient() && self.HasGradVar(),
                true,
1573 1574 1575 1576 1577 1578 1579 1580
                platform::errors::InvalidArgument(
                    "Cannot register backward hook on a Tensor that stop "
                    "gradient or without gradient."));
            auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
            self.GradVarBase()->AddVoidHook(
                std::make_shared<std::function<void()>>(py_func));
          },
          R"DOC(
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
             Registers a backward hook for current Tensor.

             This hook will be called every time the gradient of current Tensor has been fully calculated.

             There are two differences with `_register_grad_hook`:
             1. This backward hook will be executed after the gradient accumulation completed across batchs,
                but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
                completed in current batch.
             2. This backward hook function should have the following signature:

                  hook() -> None

                It requires no input and no return value.

             Args:
                 hook(function): A backward hook to be registered for Tensor.gradient

             Returns:
                 None
           )DOC")
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
      .def(
          "cpu",
          [](const std::shared_ptr<imperative::VarBase> &self) {
            if (platform::is_cpu_place(self->Place())) {
              return self;
            } else {
              auto new_var = self->NewVarBase(platform::CPUPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
        Returns a copy of this Tensor in CPU memory.

        If this Tensor is already in CPU memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)    # CUDAPlace(0)
1623

1624 1625 1626 1627
              y = x.cpu()
              print(y.place)    # CPUPlace

              )DOC")
1628 1629 1630
      .def(
          "pin_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
1631
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1632 1633 1634 1635
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to pinned memory in CPU version "
                "Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1636
#endif
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
            if (platform::is_cuda_pinned_place(self->Place())) {
              return self;
            } else {
              auto new_var =
                  self->NewVarBase(platform::CUDAPinnedPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
        Returns a copy of this Tensor in pin memory.

        If this Tensor is already in pin memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)      # CUDAPlace(0)

              y = x.pin_memory()
              print(y.place)      # CUDAPinnedPlace

      )DOC")
1662 1663 1664
      .def(
          "cuda",
          [](const std::shared_ptr<imperative::VarBase> &self,
1665 1666
             py::handle &handle,
             bool blocking) {
1667
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1668 1669 1670
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to GPU in CPU version Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1671
#else
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
            int device_count = platform::GetGPUDeviceCount();
            int device_id = 0;
            if (handle == py::none()) {
              auto default_place =
                  imperative::GetCurrentTracer()->ExpectedPlace();
              device_id = default_place.GetDeviceId();
            } else {
              PyObject *py_obj = handle.ptr();
              PADDLE_ENFORCE_EQ(
                  PyCheckInteger(py_obj), true,
                  platform::errors::InvalidArgument(
                      " 'device_id' must be a positive integer"));
              device_id = py::cast<int>(handle);
            }
            PADDLE_ENFORCE_GE(
                device_id, 0,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            PADDLE_ENFORCE_LT(
                device_id, device_count,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            platform::CUDAPlace place = platform::CUDAPlace(device_id);
            if (platform::is_same_place(self->Place(), place)) {
              return self;
            } else {
              auto new_var = self->NewVarBase(place, blocking);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
1706
#endif
1707
          },
1708 1709 1710
          py::arg("device_id") = py::none(),
          py::arg("blocking") = true,
          R"DOC(
1711 1712
        Returns a copy of this Tensor in GPU memory.

1713
        If this Tensor is already in GPU memory and device_id is default,
1714
        then no copy is performed and the original Tensor is returned.
1715

1716
        Args:
1717
            device_id(int, optional): The destination GPU device id. Default: None, means current device.
1718
            blocking(bool, optional): If False and the source is in pinned memory, the copy will be
1719 1720 1721 1722 1723
              asynchronous with respect to the host. Otherwise, the argument has no effect. Default: False.

        Examples:
            .. code-block:: python

1724
              # required: gpu
1725 1726
              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CPUPlace())
1727
              print(x.place)        # Place(cpu)
1728 1729

              y = x.cuda()
1730
              print(y.place)        # Place(gpu:0)
1731

1732
              y = x.cuda(None)
1733
              print(y.place)        # Place(gpu:0)
1734

1735 1736 1737
              paddle.device.set_device("gpu:1")
              y = x.cuda(None)
              print(y.place)        # Place(gpu:1)
1738
       )DOC")
1739 1740 1741
      .def(
          "_share_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
K
Kaipeng Deng 已提交
1742
#ifndef _WIN32
1743
            PADDLE_ENFORCE_EQ(
1744 1745
                platform::is_cpu_place(self->Place()),
                true,
1746 1747 1748
                platform::errors::InvalidArgument(
                    "Sharing memory only support CPU Tensor currently"));
            // 1. get LoDTensor
1749
            auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
            // 2. allocate shared memory
            void *data_ptr = t->data();
            size_t data_size =
                t->numel() * framework::SizeOfType(
                                 framework::TransToProtoVarType(t->dtype()));
            auto shared_writer_holder =
                memory::allocation::AllocateMemoryMapWriterAllocation(
                    data_size);
            // 3. maintain mmap fd set & backup ipc_name
            const std::string &ipc_name = shared_writer_holder->ipc_name();
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
            // 4. copy data & reset holder
1762 1763 1764 1765 1766
            memory::Copy(platform::CPUPlace(),
                         shared_writer_holder->ptr(),
                         platform::CPUPlace(),
                         data_ptr,
                         data_size);
1767 1768
            t->ResetHolder(shared_writer_holder);
            return *t;
K
Kaipeng Deng 已提交
1769 1770 1771 1772
#else
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Sharing memory in Windows OS is not supported currently"));
#endif
1773 1774
          },
          py::return_value_policy::reference)
1775
#if defined(PADDLE_WITH_CUDA)
1776 1777 1778
      .def(
          "_uva",
          [](const std::shared_ptr<imperative::VarBase> &self, int device_id) {
1779 1780
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->Place()),
                              true,
1781 1782 1783 1784
                              platform::errors::InvalidArgument(
                                  "Unified virtual addressing only support "
                                  "CPU Tensor currently."));
            auto *self_tensor =
1785
                self->MutableVar()->GetMutable<phi::DenseTensor>();
1786 1787
            tensor_uva(self_tensor, device_id);
          },
1788 1789 1790
          py::arg("device_id") = 0,
          py::return_value_policy::reference,
          R"DOC(
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
        Returns self tensor with the UVA(unified virtual addressing).

        Args:
            device_id(int, optional): The destination GPU device id. Default: None, means current device.

        Examples:
            .. code-block:: python

              # required: gpu
              import paddle
              x = paddle.to_tensor([1, 2, 3], place=paddle.CPUPlace())
              x._uva()
              print(x)
       )DOC")
#endif
1806
      .def("copy_", &imperative::VarBase::CopyFrom)
1807 1808 1809
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1810 1811
             const platform::CPUPlace &place,
             bool blocking) {
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
            auto new_var = self->NewVarBase(place, blocking);
            // Note(zhiqiu): Since NewVarBase may use GpuCopyAsync to
            // copy data from the tensor of self to the tensor of new varbase,
            // we need to ensure that the varbase self is not destructed until
            // the GpuCopyAsync is completed. Otherwise, the memory may be
            // freed
            // when varbase self is destructed.
            // To do that, we increase the reference count of self by 1 and
            // add a cuda event to wait the GpuCopyAsync's completion.
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1830 1831
             const platform::CUDAPinnedPlace &place,
             bool blocking) {
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1842 1843
             const platform::XPUPlace &place,
             bool blocking) {
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1854 1855
             const platform::CUDAPlace &place,
             bool blocking) {
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1866 1867
             const platform::NPUPlace &place,
             bool blocking) {
1868 1869 1870 1871 1872 1873 1874
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
             const platform::IPUPlace &place,
             bool blocking) {
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1887 1888 1889
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1890 1891
             const platform::CustomPlace &place,
             bool blocking) {
1892 1893 1894 1895 1896 1897 1898
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1899 1900 1901
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1902 1903
             const platform::Place &place,
             bool blocking) {
1904 1905 1906 1907 1908 1909 1910 1911
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
1912 1913
          "value",
          [](imperative::VarBase &self) { return self.MutableVar(); },
1914
          py::return_value_policy::reference)
1915 1916
      .def("_clear",
           [](const std::shared_ptr<imperative::VarBase> &self) {
1917
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1918
             PADDLE_ENFORCE_EQ(
1919 1920
                 t->IsInitialized(),
                 true,
1921 1922
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1923 1924 1925 1926
             t->clear();
           })
      .def("_offset",
           [](const std::shared_ptr<imperative::VarBase> &self) {
1927
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1928
             PADDLE_ENFORCE_EQ(
1929 1930
                 t->IsInitialized(),
                 true,
1931 1932
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1933 1934
             return t->offset();
           })
1935
      .def("_share_buffer_to",
1936
           [](const std::shared_ptr<imperative::VarBase> &self,
1937
              std::shared_ptr<imperative::VarBase> &dst) {
1938 1939
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1940
             PADDLE_ENFORCE_EQ(
1941 1942
                 src->IsInitialized(),
                 true,
1943 1944 1945
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
B
Baibaifan 已提交
1946
             dst_->ShareDataTypeWith(*src);
1947 1948 1949
           })
      .def("_is_shared_buffer_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
1950
              std::shared_ptr<imperative::VarBase> &dst) {
1951 1952
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1953 1954 1955 1956
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
1957
           })
1958 1959 1960
      .def("_share_underline_tensor_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
1961 1962
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1963
             PADDLE_ENFORCE_EQ(
1964 1965
                 src->IsInitialized(),
                 true,
1966 1967 1968 1969 1970 1971 1972 1973 1974
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
             dst_->ShareDataTypeWith(*src);
             dst_->Resize(src->dims());
           })
      .def("_is_shared_underline_tensor_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
1975 1976
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1977 1978 1979 1980 1981
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
           })
1982 1983
      .def("_slice",
           [](const std::shared_ptr<imperative::VarBase> &self,
1984 1985
              int64_t begin_idx,
              int64_t end_idx) {
1986
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1987
             PADDLE_ENFORCE_EQ(
1988 1989
                 t->IsInitialized(),
                 true,
1990 1991
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1992 1993 1994 1995 1996 1997 1998
             return t->Slice(begin_idx, end_idx);
           })
      .def("_copy_gradient_from",
           [](std::shared_ptr<imperative::VarBase> &self,
              const imperative::VarBase &src) { self->_CopyGradientFrom(src); })
      .def("_numel",
           [](std::shared_ptr<imperative::VarBase> &self) {
1999
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
2000 2001
             return t->numel();
           })
2002 2003
      .def("element_size", &imperative::VarBase::ElementSize, R"DOC(
        Returns the size in bytes of an element in the Tensor.
2004

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
        Examples:
          .. code-block:: python

            import paddle

            x = paddle.to_tensor(1, dtype='bool')
            x.element_size() # 1

            x = paddle.to_tensor(1, dtype='float16')
            x.element_size() # 2

            x = paddle.to_tensor(1, dtype='float32')
            x.element_size() # 4

            x = paddle.to_tensor(1, dtype='float64')
            x.element_size() # 8

            x = paddle.to_tensor(1, dtype='complex128')
            x.element_size() # 16
       )DOC")
2025 2026
      .def_property(
          "name", &imperative::VarBase::Name, &imperative::VarBase::SetName)
L
Leo Chen 已提交
2027 2028 2029
      .def_property("stop_gradient",
                    &imperative::VarBase::OverridedStopGradient,
                    &imperative::VarBase::SetOverridedStopGradient)
2030 2031
      .def_property("persistable",
                    &imperative::VarBase::Persistable,
L
Leo Chen 已提交
2032
                    &imperative::VarBase::SetPersistable)
2033 2034 2035
      .def_property_readonly(
          "shape",
          [](imperative::VarBase &self) {
2036
            if (self.Var().IsType<phi::DenseTensor>()) {
2037
              auto value = phi::vectorize<int>(
2038 2039
                  self.Var().Get<phi::DenseTensor>().dims());
              auto tensor = self.Var().Get<phi::DenseTensor>();
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
              auto tmp_value = value;
              auto desired_layout =
                  paddle::imperative::LayoutAutoTune::Instance()
                      .GetDesiredLayout();
              auto default_layout =
                  paddle::imperative::LayoutAutoTune::Instance()
                      .GetDefaultLayout();
              bool change_dim =
                  (desired_layout != default_layout &&
                   tensor.layout() == desired_layout && value.size() == 4);
              VLOG(6) << "'Shape' method, layout autotune,"
                      << " desired_layout: " << desired_layout
                      << " default_layout: " << default_layout
                      << " tensor layout: " << tensor.layout()
                      << " tensor's shape size is : " << value.size();

2056 2057
              if (change_dim &&
                  phi::DataLayoutToString(desired_layout) == "NCHW") {
2058 2059 2060 2061 2062 2063 2064 2065 2066
                VLOG(6) << "layout autotune get Shape from NHWC -> NCHW "
                        << value[0] << " " << value[1] << " " << value[2] << " "
                        << value[3] << " to " << tmp_value[3] << " "
                        << tmp_value[1] << " " << tmp_value[2] << " "
                        << tmp_value[1];
                // NCHW -> NHWC
                value[1] = tmp_value[2];
                value[2] = tmp_value[3];
                value[3] = tmp_value[1];
2067 2068
              } else if (change_dim &&
                         phi::DataLayoutToString(desired_layout) == "NHWC") {
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
                VLOG(6) << "layout autotune get Shape from NHWC -> NCHW "
                        << value[0] << " " << value[1] << " " << value[2] << " "
                        << value[3] << " to " << tmp_value[0] << " "
                        << tmp_value[3] << " " << tmp_value[1] << " "
                        << tmp_value[2];
                // NHWC -> NCHW
                value[1] = tmp_value[3];
                value[2] = tmp_value[1];
                value[3] = tmp_value[2];
              }
              return value;
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
            } else if (self.Var().IsType<phi::SelectedRows>()) {
              return phi::vectorize<int>(
                  self.Var().Get<phi::SelectedRows>().value().dims());
            } else if (self.Var().IsType<framework::Strings>()) {
              return std::vector<int>{static_cast<int>(
                  self.Var().Get<framework::Strings>().size())};
            } else if (self.Var().IsType<framework::Vocab>()) {
              return std::vector<int>{
                  static_cast<int>(self.Var().Get<framework::Vocab>().size())};
            } else {
              VLOG(2) << "It is meaningless to get shape of "
                         "variable type "
                      << GetTypeName(self);
              return std::vector<int>();
            }
          })
2096 2097 2098
      .def_property_readonly(
          "layout",
          [](imperative::VarBase &self) {
2099 2100
            if (self.Var().IsType<phi::DenseTensor>()) {
              auto layout = self.Var().Get<phi::DenseTensor>().layout();
2101
              return phi::DataLayoutToString(layout);
2102 2103 2104
            }
            return std::string("");
          })
2105 2106
      .def_property_readonly("is_leaf",
                             &imperative::VarBase::IsLeaf,
2107 2108 2109
                             R"DOC(
      Whether a Tensor is leaf Tensor.

2110 2111
      For the Tensor whose stop_gradient is ``True`` , it will be leaf Tensor.

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
      For the Tensor whose stop_gradient is ``False`` , it will be leaf Tensor too if it is created by user.

      Returns:
          bool: Whether a Tensor is leaf Tensor.

      Examples:
          .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.)
              print(x.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=True)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=False)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # False
       )DOC")
2135
      .def_property_readonly(
2136 2137
          "place",
          [](imperative::VarBase &self) { return self.Place(); },
2138
          py::return_value_policy::copy)
2139 2140 2141 2142 2143 2144
      .def_property_readonly("_place_str",
                             [](imperative::VarBase &self) {
                               std::stringstream ostr;
                               ostr << self.Place();
                               return ostr.str();
                             })
J
Jiabin Yang 已提交
2145
      .def_property_readonly("type", &imperative::VarBase::Type)
L
Leo Chen 已提交
2146
      .def_property_readonly("dtype", &imperative::VarBase::DataType);
2147

2148 2149 2150 2151 2152
  py::class_<imperative::jit::ProgramDescTracer>(m, "ProgramDescTracer", "")
      .def("create_program_desc",
           &imperative::jit::ProgramDescTracer::CreateProgramDesc)
      .def("reset", &imperative::jit::ProgramDescTracer::Reset);

L
Leo Chen 已提交
2153 2154 2155 2156 2157 2158 2159
  py::enum_<paddle::imperative::AmpLevel>(m, "AmpLevel", py::arithmetic())
      .value("O0", paddle::imperative::AmpLevel::O0)
      .value("O1", paddle::imperative::AmpLevel::O1)
      .value("O2", paddle::imperative::AmpLevel::O2)
      .value("O3", paddle::imperative::AmpLevel::O3)
      .export_values();

2160
  py::class_<imperative::Tracer, std::shared_ptr<imperative::Tracer>>(
2161
      m, "Tracer", R"DOC()DOC")
2162
      .def("__init__",
J
Jiabin Yang 已提交
2163
           [](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
2164 2165 2166
      .def_property("_enable_program_desc_tracing",
                    &imperative::Tracer::IsProgramDescTracingEnabled,
                    &imperative::Tracer::SetEnableProgramDescTracing)
2167 2168
      .def_property("_amp_level",
                    &imperative::Tracer::GetAmpLevel,
L
Leo Chen 已提交
2169
                    &imperative::Tracer::SetAmpLevel)
2170 2171
      .def_property("_amp_dtype",
                    &imperative::Tracer::GetAmpDtype,
2172
                    &imperative::Tracer::SetAmpDtype)
2173 2174
      .def_property("_has_grad",
                    &imperative::Tracer::HasGrad,
2175
                    &imperative::Tracer::SetHasGrad)
2176 2177 2178 2179 2180 2181 2182 2183
      .def_property(
          "_expected_place",
          [](const imperative::Tracer &self) -> py::object {
            return py::cast(self.ExpectedPlace());
          },
          [](imperative::Tracer &self, const py::object &obj) {
            if (py::isinstance<platform::CUDAPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPlace *>();
L
Leo Chen 已提交
2184
              self.SetExpectedPlace(*p);
2185 2186
              // TODO(jiabin): Support eager here when we need to make all
              // dygraph in eager mode
2187 2188
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2189 2190 2191
            } else if (py::isinstance<platform::XPUPlace>(obj)) {
              auto p = obj.cast<platform::XPUPlace *>();
              self.SetExpectedPlace(*p);
2192 2193
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2194 2195
            } else if (py::isinstance<platform::CPUPlace>(obj)) {
              auto p = obj.cast<platform::CPUPlace *>();
L
Leo Chen 已提交
2196
              self.SetExpectedPlace(*p);
2197 2198
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2199 2200
            } else if (py::isinstance<platform::CUDAPinnedPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPinnedPlace *>();
L
Leo Chen 已提交
2201
              self.SetExpectedPlace(*p);
2202 2203
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2204 2205 2206 2207 2208
            } else if (py::isinstance<platform::NPUPlace>(obj)) {
              auto p = obj.cast<platform::NPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2209 2210 2211 2212 2213
            } else if (py::isinstance<platform::IPUPlace>(obj)) {
              auto p = obj.cast<platform::IPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2214 2215 2216 2217 2218
            } else if (py::isinstance<platform::CustomPlace>(obj)) {
              auto p = obj.cast<platform::CustomPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2219 2220 2221 2222 2223
            } else if (py::isinstance<platform::Place>(obj)) {
              auto p = obj.cast<platform::Place *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2224
            } else {
L
Leo Chen 已提交
2225
              PADDLE_THROW(platform::errors::InvalidArgument(
2226
                  "Incompatible Place Type: supports XPUPlace, CUDAPlace, "
张春乔 已提交
2227
                  "CPUPlace, NPUPlace, IPUPlace"
L
Leo Chen 已提交
2228 2229
                  "and CUDAPinnedPlace, "
                  "but got Unknown Type!"));
2230 2231
            }
          })
2232 2233 2234
      .def("_get_program_desc_tracer",
           &imperative::Tracer::GetProgramDescTracer,
           py::return_value_policy::reference)
2235 2236
      .def("_generate_unique_name",
           &imperative::Tracer::GenerateUniqueName,
2237
           py::arg("key") = "dygraph_tmp")
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
      .def("_set_amp_op_list",
           [](imperative::Tracer &self,
              std::unordered_set<std::string> &allow_ops,
              std::unordered_set<std::string> &block_ops) {
             // NOTE(zhiqiu): The automatic conversion in pybind11 between
             // c++
             // STL and python set/list/dict involve a copy operation that
             // prevents pass-by-reference semantics, so it is ok to swap.
             // The reaseon why not directly pass
             // std::shared_ptr<std::unordered_set<std::string>>
             // is that pybind11 forbid shared_ptr<T> where T is not custom
             // type.
             imperative::AmpOperators::Instance().GetMutableAllowOps()->swap(
                 allow_ops);
             imperative::AmpOperators::Instance().GetMutableBlockOps()->swap(
                 block_ops);
2254
             VLOG(5) << "AMP operators changed, "
2255 2256
                     << imperative::AmpOperators::Instance();
           })
2257 2258 2259
      .def("_get_amp_op_list",
           [](imperative::Tracer &self) {
             return std::make_tuple(
2260 2261
                 *(imperative::AmpOperators::Instance().GetMutableAllowOps()),
                 *(imperative::AmpOperators::Instance().GetMutableBlockOps()));
2262
           })
C
Chen Weihang 已提交
2263
      .def("_get_kernel_signature",
2264 2265 2266 2267
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
C
Chen Weihang 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
              framework::AttributeMap attrs) {
             // TODO(xiongkun): move this function outside of tracer.
             auto ins_map = ConvertToNameTensorMap(ins);
             auto outs_map = ConvertToNameTensorMap(outs);
             {
               auto input_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto output_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto attr_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
2285 2286
               auto ret = self.GetExpectedKernelSignature(
                   type, ins_map, outs_map, attrs);
C
Chen Weihang 已提交
2287 2288 2289
               auto kernelsig_ins = input_to_vector(ret.input_names);
               auto kernelsig_attrs = attr_to_vector(ret.attr_names);
               auto kernelsig_outs = output_to_vector(ret.output_names);
2290 2291
               return std::make_tuple(
                   kernelsig_ins, kernelsig_attrs, kernelsig_outs);
C
Chen Weihang 已提交
2292 2293
             }
           })
2294
      .def("trace",
2295 2296 2297 2298 2299 2300
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CustomPlace &place,
2301 2302 2303 2304 2305 2306
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2307 2308 2309 2310 2311 2312 2313
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2314 2315
             }
           })
2316
      .def("trace",
2317 2318 2319 2320 2321 2322
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::XPUPlace &place,
Z
zyfncg 已提交
2323 2324
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2325 2326 2327 2328
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2329 2330 2331 2332 2333 2334 2335
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2336 2337
             }
           })
M
minqiyang 已提交
2338
      .def("trace",
2339 2340 2341 2342 2343 2344
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CUDAPlace &place,
Z
zyfncg 已提交
2345 2346
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2347 2348
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
2349 2350
             {
               py::gil_scoped_release release;
2351 2352 2353 2354 2355 2356 2357
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2358
             }
M
minqiyang 已提交
2359
           })
2360
      .def("trace",
2361 2362 2363 2364 2365 2366
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::NPUPlace &place,
Z
zyfncg 已提交
2367 2368
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2369
             auto ins_map = ConvertToNameVarBaseMap(ins);
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
             }
           })
      .def("trace",
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::IPUPlace &place,
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
2392 2393 2394
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2395 2396 2397 2398 2399 2400 2401
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2402 2403
             }
           })
J
Jiabin Yang 已提交
2404
      .def("trace",
2405 2406 2407 2408 2409 2410
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CPUPlace &place,
Z
zyfncg 已提交
2411 2412
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2413 2414 2415 2416
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2417 2418 2419 2420 2421 2422 2423
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
J
Jiabin Yang 已提交
2424 2425
             }
           });
2426 2427

  // define parallel context
2428 2429 2430
  py::class_<imperative::ParallelStrategy> parallel_strategy(
      m, "ParallelStrategy", "");
  parallel_strategy.def(py::init())
2431 2432
      .def_property(
          "nranks",
2433 2434
          [](const imperative::ParallelStrategy &self) { return self.nranks_; },
          [](imperative::ParallelStrategy &self, int nranks) {
2435 2436
            self.nranks_ = nranks;
          })
2437 2438 2439 2440 2441 2442 2443 2444
      .def_property(
          "local_rank",
          [](const imperative::ParallelStrategy &self) {
            return self.local_rank_;
          },
          [](imperative::ParallelStrategy &self, int local_rank) {
            self.local_rank_ = local_rank;
          })
2445 2446
      .def_property(
          "trainer_endpoints",
2447
          [](const imperative::ParallelStrategy &self) {
2448 2449
            return self.trainer_endpoints_;
          },
2450
          [](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
2451 2452
            self.trainer_endpoints_ = eps;
          })
2453 2454 2455 2456 2457 2458 2459 2460
      .def_property(
          "current_endpoint",
          [](const imperative::ParallelStrategy &self) {
            return self.current_endpoint_;
          },
          [](imperative::ParallelStrategy &self, const std::string &ep) {
            self.current_endpoint_ = ep;
          })
2461 2462 2463 2464 2465 2466
      .def_property(
          "nrings",
          [](const imperative::ParallelStrategy &self) { return self.nrings_; },
          [](imperative::ParallelStrategy &self, int nrings) {
            self.nrings_ = nrings;
          });
2467

2468 2469 2470 2471
  m.def("varbase_copy", &VarBaseCopy<platform::Place>);
  m.def("varbase_copy", &VarBaseCopy<platform::CPUPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::XPUPlace>);
2472
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPinnedPlace>);
2473
  m.def("varbase_copy", &VarBaseCopy<platform::NPUPlace>);
R
ronnywang 已提交
2474
  m.def("varbase_copy", &VarBaseCopy<platform::CustomPlace>);
2475

2476 2477 2478 2479 2480 2481 2482
  m.def(
      "dygraph_partial_grad",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &input_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>>
             &output_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>> &output_grads,
         const std::vector<std::shared_ptr<imperative::VarBase>> &no_grad_vars,
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
         const platform::Place &place,
         bool create_graph,
         bool retain_graph,
         bool allow_unused,
         bool only_inputs) {
        imperative::PartialGradEngine engine(input_targets,
                                             output_targets,
                                             output_grads,
                                             no_grad_vars,
                                             place,
                                             create_graph,
                                             retain_graph,
                                             allow_unused,
                                             only_inputs);
2497 2498 2499 2500 2501
        engine.Execute();
        return engine.GetResult();
      },
      py::call_guard<py::gil_scoped_release>());

2502 2503 2504 2505
  m.def(
      "dygraph_run_backward",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &tensors,
         const std::vector<std::shared_ptr<imperative::VarBase>> &grad_tensors,
2506 2507
         bool retain_graph,
         const imperative::Tracer &tracer) {
2508 2509 2510 2511 2512 2513 2514 2515
        auto *engine = tracer.GetEngine();
        engine->Init(tensors, grad_tensors, retain_graph);
        VLOG(3) << "Start backward";
        engine->Execute();
        VLOG(3) << "Finish backward";
      },
      py::call_guard<py::gil_scoped_release>());

K
Kim Yann 已提交
2516 2517
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_GLOO)
2518 2519 2520 2521 2522 2523
  py::class_<imperative::ParallelContext,
             std::shared_ptr<imperative::ParallelContext>>(m,
                                                           "ParallelContext");

  py::class_<imperative::Reducer, std::shared_ptr<imperative::Reducer>>(
      m, "Reducer", R"DOC()DOC")
S
ShenLiang 已提交
2524 2525 2526 2527
      .def(py::init<const std::vector<std::shared_ptr<imperative::VarBase>> &,
                    const std::vector<std::vector<size_t>> &,
                    const std::vector<bool> &,
                    std::shared_ptr<imperative::ParallelContext>,
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
                    const std::vector<size_t> &,
                    bool>())
      .def("prepare_for_backward",
           &imperative::Reducer::PrepareForBackward,
           py::arg("vars"),
           py::call_guard<py::gil_scoped_release>());

  m.def("assign_group_by_size",
        &imperative::AssignGroupBySize,
        py::arg("vars"),
2538 2539
        py::arg("is_sparse_gradient"),
        py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
2540
        py::arg("tensor_indices") = std::vector<int64_t>{},
2541
        py::call_guard<py::gil_scoped_release>());
2542
#endif
2543

2544
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
2545 2546
  py::class_<imperative::NCCLParallelContext,
             imperative::ParallelContext,
2547 2548 2549 2550
             std::shared_ptr<imperative::NCCLParallelContext>>(
      m, "NCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CUDAPlace &>())
K
kuizhiqing 已提交
2551 2552 2553 2554
      .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::NCCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2555 2556 2557
#endif

#if defined(PADDLE_WITH_XPU_BKCL)
2558 2559
  py::class_<imperative::BKCLParallelContext,
             imperative::ParallelContext,
2560 2561 2562 2563
             std::shared_ptr<imperative::BKCLParallelContext>>(
      m, "BKCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::XPUPlace &>())
K
kuizhiqing 已提交
2564 2565 2566 2567
      .def("init", [](imperative::BKCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::BKCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2568
#endif
2569 2570 2571

#if defined(PADDLE_WITH_GLOO)
  // xiongkun
2572 2573
  py::class_<imperative::GLOOParallelContext,
             imperative::ParallelContext,
2574 2575 2576 2577 2578 2579 2580
             std::shared_ptr<imperative::GLOOParallelContext>>(
      m, "GLOOParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CPUPlace &>())
      .def("init", [](imperative::GLOOParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::GLOOParallelContext::InitWithRingID,
2581 2582 2583
           py::arg("ring_id"));
#endif

K
kuizhiqing 已提交
2584
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
张春乔 已提交
2585
    defined(PADDLE_WITH_XPU_BKCL)
2586 2587
  py::class_<imperative::HeterParallelContext,
             imperative::ParallelContext,
K
kuizhiqing 已提交
2588 2589 2590 2591 2592 2593
             std::shared_ptr<imperative::HeterParallelContext>>(
      m, "HeterParallelContext")
      .def(py::init<const imperative::ParallelStrategy &, const int &>())
      .def("init", [](imperative::HeterParallelContext &self) { self.Init(); });
#endif

S
Siming Dai 已提交
2594
#if defined(PADDLE_WITH_CUDA)
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
  m.def(
      "to_uva_tensor",
      [](const py::object &obj, int device_id) {
        const auto &tracer = imperative::GetCurrentTracer();
        auto new_tensor = std::shared_ptr<imperative::VarBase>(
            new imperative::VarBase(tracer->GenerateUniqueName()));
        auto array = obj.cast<py::array>();
        if (py::isinstance<py::array_t<int32_t>>(array)) {
          SetUVATensorFromPyArray<int32_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int64_t>>(array)) {
          SetUVATensorFromPyArray<int64_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<float>>(array)) {
          SetUVATensorFromPyArray<float>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<double>>(array)) {
          SetUVATensorFromPyArray<double>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int8_t>>(array)) {
          SetUVATensorFromPyArray<int8_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int16_t>>(array)) {
          SetUVATensorFromPyArray<int16_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<paddle::platform::float16>>(
                       array)) {
2616 2617
          SetUVATensorFromPyArray<paddle::platform::float16>(
              new_tensor, array, device_id);
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
        } else if (py::isinstance<py::array_t<bool>>(array)) {
          SetUVATensorFromPyArray<bool>(new_tensor, array, device_id);
        } else {
          // obj may be any type, obj.cast<py::array>() may be failed,
          // then the array.dtype will be string of unknown meaning.
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Input object type error or incompatible array data type. "
              "tensor.set() supports array with bool, float16, float32, "
              "float64, int8, int16, int32, int64,"
              "please check your input or input array data type."));
        }
        return new_tensor;
      },
2631 2632 2633 2634
      py::arg("obj"),
      py::arg("device_id") = 0,
      py::return_value_policy::reference,
      R"DOC(
S
Siming Dai 已提交
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
  Returns tensor with the UVA(unified virtual addressing) created from numpy array.

  Args:
      obj(numpy.ndarray): The input numpy array, supporting bool, float16, float32,
                          float64, int8, int16, int32, int64 dtype currently.

      device_id(int, optional): The destination GPU device id.
                                Default: 0, means current device.

  Returns:

2646
      new_tensor(paddle.Tensor): Return the UVA Tensor with the sample dtype and
S
Siming Dai 已提交
2647 2648 2649 2650 2651 2652 2653 2654
                                 shape with the input numpy array.

  Examples:
      .. code-block:: python

        # required: gpu
        import numpy as np
        import paddle
2655

S
Siming Dai 已提交
2656 2657 2658 2659 2660 2661 2662
        data = np.random.randint(10, size=(3, 4))
        tensor = paddle.fluid.core.to_uva_tensor(data)
        print(tensor)
)DOC");

#endif

2663 2664 2665
#if defined(PADDLE_WITH_CUDA)
  m.def(
      "async_write",
2666 2667 2668 2669
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
2670
        PADDLE_ENFORCE_EQ(
2671 2672
            platform::is_gpu_place(src.Place()),
            true,
2673 2674 2675 2676
            platform::errors::InvalidArgument(
                "Required `src` device should be CUDAPlace, but received %d. ",
                src.Place()));
        PADDLE_ENFORCE_EQ(
2677 2678
            platform::is_cuda_pinned_place(dst.Place()),
            true,
2679 2680 2681 2682 2683
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPinnedPlace, "
                "but received %d. ",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2684 2685
            platform::is_cpu_place(offset.Place()),
            true,
2686 2687 2688 2689
            platform::errors::InvalidArgument("Required `offset` device should "
                                              "be CPUPlace, but received %d. ",
                                              offset.Place()));
        PADDLE_ENFORCE_EQ(
2690 2691
            platform::is_cpu_place(count.Place()),
            true,
2692 2693 2694 2695 2696 2697
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d. ",
                count.Place()));

        // TODO(daisiming): In future, add index as arguments following
        // async_read.
2698 2699 2700 2701
        auto &src_tensor = src.Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &offset_tensor = offset.Var().Get<phi::DenseTensor>();
        auto &count_tensor = count.Var().Get<phi::DenseTensor>();
2702 2703
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2704 2705
        PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                          1,
2706 2707
                          platform::errors::InvalidArgument(
                              "`offset` tensor should be one-dimensional."));
2708 2709
        PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                          1,
2710 2711
                          platform::errors::InvalidArgument(
                              "`count` tensor should be one-dimensional."));
2712 2713
        PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                          count_tensor.numel(),
2714 2715 2716
                          platform::errors::InvalidArgument(
                              "`offset` and `count` tensor size dismatch."));
        PADDLE_ENFORCE_EQ(
2717 2718
            src_tensor.dims().size(),
            dst_tensor->dims().size(),
2719 2720 2721 2722 2723
            platform::errors::InvalidArgument(
                "`src` and `dst` should have the same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2724 2725
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2726 2727 2728 2729 2730
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
        }

L
Leo Chen 已提交
2731 2732
        auto stream =
            paddle::platform::get_current_stream(deviceId)->raw_stream();
2733 2734 2735 2736 2737 2738 2739 2740 2741

        int64_t size = src_tensor.numel() / src_tensor.dims()[0];
        auto *src_data = src_tensor.data<float>();
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const int64_t *offset_data = offset_tensor.data<int64_t>();
        const int64_t *count_data = count_tensor.data<int64_t>();
        int64_t src_offset = 0, dst_offset, c;
        for (int64_t i = 0; i < offset_tensor.numel(); i++) {
          dst_offset = offset_data[i], c = count_data[i];
2742 2743
          PADDLE_ENFORCE_LE(src_offset + c,
                            src_tensor.dims()[0],
2744 2745
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2746 2747
          PADDLE_ENFORCE_LE(dst_offset + c,
                            dst_tensor->dims()[0],
2748 2749
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2750 2751 2752 2753 2754
          cudaMemcpyAsync(dst_data + (dst_offset * size),
                          src_data + (src_offset * size),
                          c * size * sizeof(float),
                          cudaMemcpyDeviceToHost,
                          stream);
2755 2756 2757 2758
          src_offset += c;
        }
      },
      R"DOC(
2759 2760 2761 2762 2763
  This api provides a way to write pieces of source tensor to destination tensor
  inplacely and asynchronously. In which, we use `offset` and `count` to determine
  where to copy. `offset` means the begin points of the copy pieces of `src`, and
  `count` means the lengths of the copy pieces of `src`. To be noted, the copy process
  will run asynchronously from cuda to pin memory. We can simply remember this as
2764
  "gpu async_write to pin_memory".
2765

2766
  Arguments:
2767 2768

    src (Tensor): The source tensor, and the data type should be `float32` currently.
2769 2770
                  Besides, `src` should be placed on CUDAPlace.

2771 2772 2773
    dst (Tensor): The destination tensor, and the data type should be `float32` currently.
                  Besides, `dst` should be placed on CUDAPinnedPlace. The shape of `dst`
                  should be the same with `src` except for the first dimension.
2774

2775 2776 2777 2778 2779 2780 2781
    offset (Tensor): The offset tensor, and the data type should be `int64` currently.
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset`
                     should be one-dimensional.

    count (Tensor): The count tensor, and the data type should be `int64` currently.
                    Besides, `count` should be placed on CPUPlace. The shape of `count`
                    should be one-dimensinal.
2782 2783 2784 2785 2786 2787

  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
2788
          from paddle.fluid import core
2789
          from paddle.device import cuda
2790

2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50])
              dst = paddle.emtpy(shape=[200, 50, 50]).pin_memory()
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())

              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_write(src, dst, offset, count)

              offset_a = paddle.gather(dst, paddle.to_tensor(np.arange(0, 40)))
              offset_b = paddle.gather(dst, paddle.to_tensor(np.arange(60, 120)))
              offset_array = paddle.concat([offset_a, offset_b], axis=0)
              print(np.allclose(src.numpy(), offset_array.numpy())) # True
)DOC");

  m.def(
      "async_read",
2811 2812 2813 2814 2815 2816 2817 2818
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &index,
         imperative::VarBase &buffer,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
        PADDLE_ENFORCE_EQ(platform::is_cuda_pinned_place(src.Place()),
                          true,
2819 2820 2821 2822 2823
                          platform::errors::InvalidArgument(
                              "Required `src` device should be "
                              "CUDAPinnedPlace, but received %d.",
                              src.Place()));
        PADDLE_ENFORCE_EQ(
2824 2825
            platform::is_gpu_place(dst.Place()),
            true,
2826 2827 2828 2829
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPlace, but received %d.",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2830 2831
            platform::is_cpu_place(index.Place()),
            true,
2832 2833 2834 2835
            platform::errors::InvalidArgument(
                "Required `index` device should be CPUPlace, but received %d.",
                index.Place()));
        PADDLE_ENFORCE_EQ(
2836 2837
            platform::is_cuda_pinned_place(buffer.Place()),
            true,
2838 2839 2840 2841 2842
            platform::errors::InvalidArgument(
                "Required `buffer` device should be CUDAPinnedPlace, "
                "but received %d.",
                buffer.Place()));
        PADDLE_ENFORCE_EQ(
2843 2844
            platform::is_cpu_place(offset.Place()),
            true,
2845 2846 2847 2848
            platform::errors::InvalidArgument(
                "Required `offset` device should be CPUPlace, but received %d.",
                offset.Place()));
        PADDLE_ENFORCE_EQ(
2849 2850
            platform::is_cpu_place(count.Place()),
            true,
2851 2852 2853 2854
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d.",
                count.Place()));

2855 2856 2857
        auto &src_tensor = src.Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &index_tensor = index.Var().Get<phi::DenseTensor>();
2858
        auto *buffer_tensor =
2859 2860 2861
            buffer.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &offset_tensor = offset.Var().Get<phi::DenseTensor>();
        auto &count_tensor = count.Var().Get<phi::DenseTensor>();
2862 2863 2864
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2865 2866
        PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                          dst_tensor->dims().size(),
2867 2868 2869 2870
                          platform::errors::InvalidArgument(
                              "`src` and `dst` should have same tensor shape, "
                              "except for the first dimension."));
        PADDLE_ENFORCE_EQ(
2871 2872
            src_tensor.dims().size(),
            buffer_tensor->dims().size(),
2873 2874 2875 2876 2877
            platform::errors::InvalidArgument(
                "`src` and `buffer` should have same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2878 2879
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2880 2881 2882 2883
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
          PADDLE_ENFORCE_EQ(
2884 2885
              src_tensor.dims()[i],
              buffer_tensor->dims()[i],
2886 2887 2888 2889
              platform::errors::InvalidArgument(
                  "`src` and `buffer` should have the same tensor shape, "
                  "except for the first dimension."));
        }
2890 2891
        PADDLE_ENFORCE_EQ(index_tensor.dims().size(),
                          1,
2892 2893 2894
                          platform::errors::InvalidArgument(
                              "`index` tensor should be one-dimensional."));

L
Leo Chen 已提交
2895 2896
        auto stream =
            paddle::platform::get_current_stream(deviceId)->raw_stream();
2897 2898 2899 2900 2901 2902

        int64_t numel = 0;  // total copy length
        int64_t copy_flag = offset_tensor.dims()[0];
        int64_t size = src_tensor.numel() / src_tensor.dims()[0];

        if (copy_flag != 0) {
2903 2904
          PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                            1,
2905 2906
                            platform::errors::InvalidArgument(
                                "`offset` tensor should be one-dimensional."));
2907 2908
          PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                            1,
2909 2910
                            platform::errors::InvalidArgument(
                                "`count` tensor should be one-dimensional."));
2911 2912
          PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                            count_tensor.numel(),
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
                            platform::errors::InvalidArgument(
                                "`offset` and `count` tensor size dismatch."));
          auto *offset_data = offset_tensor.data<int64_t>();
          auto *count_data = count_tensor.data<int64_t>();
          for (int64_t i = 0; i < count_tensor.numel(); i++) {
            numel += count_data[i];
          }
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            buffer_tensor->dims()[0],
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
2924 2925
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            dst_tensor->dims()[0],
2926 2927 2928 2929 2930 2931 2932
                            platform::errors::InvalidArgument(
                                "Target tensor size is too small."));

          int64_t src_offset, dst_offset = 0, c;
          auto *src_data = src_tensor.data<float>();
          for (int64_t i = 0; i < offset_tensor.numel(); i++) {
            src_offset = offset_data[i], c = count_data[i];
2933 2934
            PADDLE_ENFORCE_LE(src_offset + c,
                              src_tensor.dims()[0],
2935 2936
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
2937 2938
            PADDLE_ENFORCE_LE(dst_offset + c,
                              dst_tensor->dims()[0],
2939 2940
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
2941 2942 2943 2944 2945
            cudaMemcpyAsync(dst_data + (dst_offset * size),
                            src_data + (src_offset * size),
                            c * size * sizeof(float),
                            cudaMemcpyHostToDevice,
                            stream);
2946 2947 2948
            dst_offset += c;
          }
        } else {
2949 2950
          PADDLE_ENFORCE_LE(index_tensor.numel(),
                            buffer_tensor->dims()[0],
2951 2952 2953 2954 2955
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
        }

        // Select the index data to the buffer
2956 2957 2958
        auto index_select = [](const phi::DenseTensor &src_tensor,
                               const phi::DenseTensor &index_tensor,
                               phi::DenseTensor *buffer_tensor) {
2959 2960 2961 2962 2963 2964 2965 2966 2967
          auto *src_data = src_tensor.data<float>();
          auto *index_data = index_tensor.data<int64_t>();
          auto *buffer_data =
              buffer_tensor->mutable_data<float>(buffer_tensor->place());
          const int &slice_size = src_tensor.numel() / src_tensor.dims()[0];
          const int &copy_bytes = slice_size * sizeof(float);
          int64_t c = 0;
          for (int64_t i = 0; i < index_tensor.numel(); i++) {
            std::memcpy(buffer_data + c * slice_size,
2968 2969
                        src_data + index_data[i] * slice_size,
                        copy_bytes);
2970 2971 2972 2973 2974 2975
            c += 1;
          }
        };
        index_select(src_tensor, index_tensor, buffer_tensor);

        // Copy the data to device memory
2976 2977
        cudaMemcpyAsync(dst_data + (numel * size),
                        buffer_tensor->data<float>(),
2978
                        index_tensor.numel() * size * sizeof(float),
2979 2980
                        cudaMemcpyHostToDevice,
                        stream);
2981 2982
      },
      R"DOC(
2983 2984 2985 2986 2987
  This api provides a way to read from pieces of source tensor to destination tensor
  asynchronously. In which, we use `index`, `offset` and `count` to determine where
  to read. `index` means the index position of src tensor we want to read. `offset`
  and count means the begin points and length of pieces of src tensor we want to read.
  To be noted, the copy process will run asynchronously from pin memory to cuda place.
2988 2989 2990
  We can simply remember this as "cuda async_read from pin_memory".

  Arguments:
2991 2992

    src (Tensor): The source tensor, and the data type should be `float32` currently.
2993
                  Besides, `src` should be placed on CUDAPinnedPlace.
2994 2995 2996

    dst (Tensor): The destination tensor, and the data type should be `float32` currently.
                  Besides, `dst` should be placed on CUDAPlace. The shape of `dst` should
2997 2998
                  be the same with `src` except for the first dimension.

2999 3000
    index (Tensor): The index tensor, and the data type should be `int64` currently.
                    Besides, `index` should be on CPUplace. The shape of `index` should
3001 3002
                    be one-dimensional.

3003 3004
    buffer (Tensor): The buffer tensor, used to buffer index copy tensor temporarily.
                     The data type should be `float32` currently, and should be placed
3005 3006
                     on CUDAPinnedPlace. The shape of `buffer` should be the same with `src` except for the first dimension.

3007 3008
    offset (Tensor): The offset tensor, and the data type should be `int64` currently.
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset`
3009 3010
                     should be one-dimensional.

3011 3012
    count (Tensor): The count tensor, and the data type should be `int64` currently.
                    Besides, `count` should be placed on CPUPlace. The shape of `count`
3013
                    should be one-dimensinal.
3014

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
          from paddle.fluid import core
          from paddle.device import cuda

          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50], dtype="float32").pin_memory()
              dst = paddle.empty(shape=[100, 50, 50], dtype="float32")
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())
              buffer = paddle.empty(shape=[50, 50, 50], dtype="float32").pin_memory()
              index = paddle.to_tensor(
                  np.array([1, 3, 5, 7, 9], dtype="int64")).cpu()
3033

3034 3035 3036
              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_read(src, dst, index, buffer, offset, count)
3037

3038 3039
)DOC");
#endif
3040 3041 3042 3043
}

}  // namespace pybind
}  // namespace paddle