random.py 42.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define random functions
S
silingtong123 已提交
16

Z
zhiboniu 已提交
17 18
from ..framework import core
from ..framework import convert_np_dtype_to_dtype_, dygraph_only
19
from ..framework import LayerHelper
20
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, check_shape
21 22
from ..fluid.layers import utils
import paddle
23
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
24
from paddle.static import Variable
F
From00 已提交
25
from paddle.fluid.framework import in_dygraph_mode, _in_legacy_dygraph, _current_expected_place
S
silingtong123 已提交
26

27 28
__all__ = []

S
silingtong123 已提交
29

L
Leo Chen 已提交
30 31 32
def bernoulli(x, name=None):
    """

33
    For each element :math:`x_i` in input ``x``, take a sample from the Bernoulli distribution, also called two-point distribution, with success probability :math:`x_i`. The Bernoulli distribution with success probability :math:`x_i` is a discrete probability distribution with probability mass function
L
Leo Chen 已提交
34

35 36 37 38 39
    .. math::
        p(y)=\\begin{cases}
            x_i,&y=1\\\\
            1-x_i,&y=0
        \end{cases}.
L
Leo Chen 已提交
40 41

    Args:
42 43 44
        x (Tensor): The input Tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

L
Leo Chen 已提交
45
    Returns: 
46
        Tensor: A Tensor filled samples from Bernoulli distribution, whose shape and dtype are same as ``x``.
L
Leo Chen 已提交
47 48 49 50

    Examples:
        .. code-block:: python

51
            import paddle
L
Leo Chen 已提交
52

L
Leo Chen 已提交
53 54 55
            paddle.set_device('cpu')  # on CPU device
            paddle.seed(100) 

56
            x = paddle.rand([2,3])
L
Leo Chen 已提交
57 58 59
            print(x)
            # [[0.55355281, 0.20714243, 0.01162981],
            #  [0.51577556, 0.36369765, 0.26091650]]
L
Leo Chen 已提交
60

61
            out = paddle.bernoulli(x)
L
Leo Chen 已提交
62 63 64
            print(out)
            # [[1., 0., 1.],
            #  [0., 1., 0.]]
L
Leo Chen 已提交
65 66 67

    """

H
hong 已提交
68
    if in_dygraph_mode():
69
        return _C_ops.bernoulli(x)
H
hong 已提交
70 71

    if _in_legacy_dygraph():
72
        return _legacy_C_ops.bernoulli(x)
L
Leo Chen 已提交
73 74 75 76 77

    check_variable_and_dtype(x, "x", ["float32", "float64"], "bernoulli")

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(
78 79 80 81 82
        dtype=x.dtype)  # maybe set out to int32 ?
    helper.append_op(type='bernoulli',
                     inputs={"X": x},
                     outputs={'Out': out},
                     attrs={})
83
    out.stop_gradient = True
L
Leo Chen 已提交
84 85 86
    return out


87
def poisson(x, name=None):
88
    r"""
89
    Returns a tensor filled with random number from a Poisson Distribution.
90 91 92

    .. math::

93
        out_i \sim Poisson (lambda = x_i)
94 95 96 97 98 99 100 101 102 103 104 105 106 107

    Args:
        x(Tensor):  A tensor with rate parameter of poisson Distribution. The data type 
            should be float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns: 
        Tensor: A Tensor filled with random number with the same shape and dtype as ``x``.

    Examples:
        .. code-block:: python

            import paddle
108
            paddle.set_device('cpu')
109
            paddle.seed(100)
110 111 112

            x = paddle.uniform([2,3], min=1.0, max=5.0)
            out = paddle.poisson(x)
113 114
            #[[2., 5., 0.],
            # [5., 1., 3.]]
115 116

    """
H
hong 已提交
117
    if in_dygraph_mode():
118
        return _C_ops.poisson(x)
119

Z
zhiboniu 已提交
120
    if paddle.in_dynamic_mode():
121
        return _legacy_C_ops.poisson(x)
122 123 124 125 126

    check_variable_and_dtype(x, "x", ["float32", "float64"], "poisson")

    helper = LayerHelper("poisson", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
127 128 129 130
    helper.append_op(type='poisson',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={})
131 132 133
    return out


P
pangyoki 已提交
134 135
def multinomial(x, num_samples=1, replacement=False, name=None):
    """
136
    Returns a Tensor filled with random values sampled from a Multinomical
P
pangyoki 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    distribution. The input ``x`` is a tensor with probabilities for generating the
    random number. Each element in ``x`` should be larger or equal to 0, but not all
    0. ``replacement`` indicates whether it is a replaceable sample. If ``replacement``
    is True, a category can be sampled more than once.

    Args:
        x(Tensor):  A tensor with probabilities for generating the random number. The data type
            should be float32, float64.
        num_samples(int, optional): Number of samples, default is 1.
        replacement(bool, optional): Whether it is a replaceable sample, default is False.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: A Tensor filled with sampled category index after ``num_samples`` times samples.

    Examples:
        .. code-block:: python

156 157
            import paddle

C
cnn 已提交
158
            paddle.seed(100) # on CPU device
159
            x = paddle.rand([2,4])
160
            print(x)
161 162 163
            # [[0.5535528  0.20714243 0.01162981 0.51577556]
            # [0.36369765 0.2609165  0.18905126 0.5621971 ]]

C
cnn 已提交
164
            paddle.seed(200) # on CPU device
165
            out1 = paddle.multinomial(x, num_samples=5, replacement=True)
166
            print(out1)
167 168 169 170 171 172 173
            # [[3 3 0 0 0]
            # [3 3 3 1 0]]

            # out2 = paddle.multinomial(x, num_samples=5)
            # InvalidArgumentError: When replacement is False, number of samples
            #  should be less than non-zero categories

C
cnn 已提交
174
            paddle.seed(300) # on CPU device
175
            out3 = paddle.multinomial(x, num_samples=3)
176
            print(out3)
177 178
            # [[3 0 1]
            # [3 1 0]]
P
pangyoki 已提交
179 180 181

    """

182 183 184
    assert core.is_compiled_with_rocm() == False, (
        "multinomial op is not supported on ROCM yet.")

H
hong 已提交
185
    if in_dygraph_mode():
186
        return _C_ops.multinomial(x, num_samples, replacement)
H
hong 已提交
187 188

    if _in_legacy_dygraph():
189 190
        return _legacy_C_ops.multinomial(x, 'num_samples', num_samples,
                                         'replacement', replacement)
P
pangyoki 已提交
191 192 193 194 195 196

    check_variable_and_dtype(x, "x", ["float32", "float64"], "multinomial")

    helper = LayerHelper("multinomial", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=convert_np_dtype_to_dtype_('int64'))
197 198 199 200 201 202 203
    helper.append_op(type='multinomial',
                     inputs={"X": x},
                     outputs={'Out': out},
                     attrs={
                         'num_samples': num_samples,
                         'replacement': replacement
                     })
204
    out.stop_gradient = True
P
pangyoki 已提交
205 206 207
    return out


208
def gaussian(shape, mean=0.0, std=1.0, dtype=None, name=None):
209
    """
210
    Returns a Tensor filled with random values sampled from a Gaussian
211 212 213
    distribution, with ``shape`` and ``dtype``.

    Args:
214
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
215 216 217 218
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
219 220
        mean (float|int, optional): Mean of the output tensor, default is 0.0.
        std (float|int, optional): Standard deviation of the output tensor, default
221
            is 1.0.
222 223
        seed (int, optional): Random seed of generator.
        dtype (str|np.dtype, optional): The data type of the output Tensor.
224 225 226
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
227
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
228 229 230 231 232

    Returns:
        Tensor: A Tensor filled with random values sampled from a Gaussian
        distribution, with ``shape`` and ``dtype``. 
    """
233 234 235
    op_type_for_check = 'gaussian/standard_normal/randn/normal'
    seed = 0

236 237 238 239
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
240 241
                "{} only supports [float32, float64], but the default dtype is {}"
                .format(op_type_for_check, dtype))
242 243 244
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

245 246 247
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        place = _current_expected_place()
248 249
        return _C_ops.gaussian_random(shape, float(mean), float(std), seed,
                                      dtype, place)
250 251

    if _in_legacy_dygraph():
252
        shape = utils.convert_shape_to_list(shape)
253 254 255 256
        return _legacy_C_ops.gaussian_random('shape', shape,
                                             'mean', float(mean), 'std',
                                             float(std), 'seed', seed, 'dtype',
                                             dtype)
257

258
    check_shape(shape, op_type_for_check)
259 260 261 262 263 264 265 266 267 268
    check_dtype(dtype, 'dtype', ['float32', 'float64'], op_type_for_check)

    inputs = {}
    attrs = {
        'mean': mean,
        'std': std,
        'seed': seed,
        'dtype': dtype,
        'use_mkldnn': False
    }
269 270 271 272
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type=op_type_for_check)
273

274
    helper = LayerHelper('gaussian', **locals())
275
    out = helper.create_variable_for_type_inference(dtype)
276 277 278 279
    helper.append_op(type='gaussian_random',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
280 281 282 283 284 285
    out.stop_gradient = True
    return out


def standard_normal(shape, dtype=None, name=None):
    """
286
    Returns a Tensor filled with random values sampled from a standard
287 288 289 290
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
291
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
292 293 294 295
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
296
        dtype (str|np.dtype, optional): The data type of the output Tensor.
297 298 299
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
300 301 302 303 304 305 306 307 308 309 310 311 312 313
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
314
            out1 = paddle.standard_normal(shape=[2, 3])
315 316 317 318
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
319 320
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
321
            out2 = paddle.standard_normal(shape=[dim1, dim2, 2])
322 323 324 325 326 327 328 329
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
330
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
331
            out3 = paddle.standard_normal(shape_tensor)
332 333 334 335
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random

    """
336
    return gaussian(shape=shape, mean=0.0, std=1.0, dtype=dtype, name=name)
337 338


Z
zhupengyang 已提交
339 340
def randn(shape, dtype=None, name=None):
    """
341
    Returns a Tensor filled with random values sampled from a standard
Z
zhupengyang 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        dtype (str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
            out1 = paddle.randn(shape=[2, 3])
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.randn(shape=[dim1, dim2, 2])
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
            shape_tensor = paddle.to_tensor([2, 3])
            out3 = paddle.randn(shape_tensor)
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random
    """
    return standard_normal(shape, dtype, name)
391 392 393 394


def normal(mean=0.0, std=1.0, shape=None, name=None):
    """
395
    Returns a Tensor filled with random values sampled from a normal
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
    distribution with ``mean`` and ``std`` (standard deviation) .

    If ``mean`` is a Tensor, the output Tensor has the same shape and data type as ``mean``.
    If ``mean`` is not a Tensor and ``std`` is a Tensor, the output Tensor has the same shape and data type as ``std``.
    If ``mean`` and ``std`` are not a Tensor, the output Tensor has the same shape as ``shape``, with data type float32.

    If ``mean`` and ``std`` are Tensor, the num of elements of ``mean`` and ``std`` should be the same.

    Args:
        mean (float|Tensor, optional): The mean of the output Tensor's normal distribution.
            If ``mean`` is float, all elements of the output Tensor shared the same mean.
            If ``mean`` is a Tensor(data type supports float32, float64), it has per-element means.
            Default is 0.0
        std (float|Tensor, optional): The  standard deviation of the output Tensor's normal distribution.
            If ``std`` is float, all elements of the output Tensor shared the same standard deviation.
            If ``std`` is a Tensor(data type supports float32, float64), it has per-element standard deviations.
            Defaule is 1.0
        shape (list|tuple|Tensor, optional): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). If ``mean`` or ``std`` is a Tensor, the shape of the output
            Tensor is the same as ``mean`` or ``std`` , attr ``shape`` is ignored.
            Default is None
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor filled with random values sampled from a normal distribution with ``mean`` and ``std`` .

    Examples:
        .. code-block:: python

            import paddle

            out1 = paddle.normal(shape=[2, 3])
            # [[ 0.17501129  0.32364586  1.561118  ]  # random
            #  [-1.7232178   1.1545963  -0.76156676]]  # random

435
            mean_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
436 437 438
            out2 = paddle.normal(mean=mean_tensor)
            # [ 0.18644847 -1.19434458  3.93694787]  # random

439
            std_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
440 441 442 443
            out3 = paddle.normal(mean=mean_tensor, std=std_tensor)
            # [1.00780561 3.78457445 5.81058198]  # random

    """
Z
zhiboniu 已提交
444
    if not paddle.in_dynamic_mode():
445 446 447 448 449 450 451 452 453 454 455 456 457
        check_type(mean, 'mean', (int, float, Variable), 'normal')
        check_type(std, 'std', (int, float, Variable), 'normal')
        if isinstance(mean, Variable):
            check_dtype(
                mean.dtype, 'mean', ['float32', 'float64'], 'normal',
                "If mean is Tensor, it's data type only support float32, float64."
            )
        if isinstance(std, Variable):
            check_dtype(
                std.dtype, 'std', ['float32', 'float64'], 'normal',
                "If std is Tensor, it's data type only support float32, float64."
            )
        if shape is not None:
458
            check_shape(shape, 'normal')
459 460 461 462 463 464 465 466 467 468 469 470 471 472

    if isinstance(mean, Variable):
        if isinstance(std, Variable):
            if std.dtype != mean.dtype:
                std = paddle.cast(std, mean.dtype)
            mean_shape = paddle.shape(mean)
            std = paddle.reshape(std, mean_shape)
        else:
            std = float(std)
        out = standard_normal(paddle.shape(mean), mean.dtype, name)
    elif isinstance(std, Variable):
        mean = float(mean)
        out = standard_normal(paddle.shape(std), std.dtype, name)
    else:
473
        return gaussian(shape=shape, mean=mean, std=std, name=name)
474 475

    out = out * std + mean
Z
zhiboniu 已提交
476
    if not paddle.in_dynamic_mode():
477 478 479 480
        out.stop_grediant = True
    return out


481
def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
P
pangyoki 已提交
482
    """
483
    Returns a Tensor filled with random values sampled from a uniform
P
pangyoki 已提交
484 485 486
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
李灿 已提交
487

Z
zhupengyang 已提交
488
    .. code-block:: text
李灿 已提交
489

P
pangyoki 已提交
490 491 492 493 494 495 496 497 498 499 500
        Input:
          shape = [1, 2]
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
501 502 503 504
        dtype(str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
P
pangyoki 已提交
505 506 507 508
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
J
JYChen 已提交
509 510 511
        seed(int, optional): Random seed used for generating samples. If seed is 0,
            it will use the seed of the global default generator (which can be set by paddle.seed). 
            Note that if seed is not 0, this operator will always generate the same random numbers every
P
pangyoki 已提交
512
            time. Default is 0.
513 514
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
P
pangyoki 已提交
515 516 517 518 519 520 521

    Returns:
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python
522
          :name: code-example1
P
pangyoki 已提交
523 524 525 526 527
            
            import paddle

            # example 1:
            # attr shape is a list which doesn't contain Tensor.
Z
zhupengyang 已提交
528 529 530 531
            out1 = paddle.uniform(shape=[3, 4])
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
P
pangyoki 已提交
532 533 534

            # example 2:
            # attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
535 536 537 538 539
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.uniform(shape=[dim1, dim2])
            # [[-0.9951253,   0.30757582, 0.9899647 ], # random
            #  [ 0.5864527,   0.6607096,  -0.8886161]] # random
P
pangyoki 已提交
540 541 542

            # example 3:
            # attr shape is a Tensor, the data type must be int64 or int32.
543
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
544 545 546
            out3 = paddle.uniform(shape_tensor)
            # [[-0.8517412,  -0.4006908,   0.2551912 ], # random
            #  [ 0.3364414,   0.36278176, -0.16085452]] # random
P
pangyoki 已提交
547
    """
548 549 550 551
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
552 553
                "uniform/rand only supports [float32, float64], but the default dtype is {}"
                .format(dtype))
554

P
pangyoki 已提交
555 556 557
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

558 559
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
560 561
        return _C_ops.uniform_random(shape, dtype, float(min), float(max), seed,
                                     _current_expected_place())
562 563

    if _in_legacy_dygraph():
564
        shape = utils.convert_shape_to_list(shape)
565 566 567 568
        return _legacy_C_ops.uniform_random('shape',
                                            shape, 'min', float(min), 'max',
                                            float(max), 'seed', seed, 'dtype',
                                            dtype)
P
pangyoki 已提交
569

570 571
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform/rand')
    check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform/rand')
572 573
    check_type(min, 'min', (float, int, Variable), 'uniform/rand')
    check_type(max, 'max', (float, int, Variable), 'uniform/rand')
P
pangyoki 已提交
574 575 576

    inputs = dict()
    attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
577 578 579 580
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='uniform/rand')
P
pangyoki 已提交
581

582
    helper = LayerHelper("uniform", **locals())
P
pangyoki 已提交
583
    out = helper.create_variable_for_type_inference(dtype)
584 585 586 587
    helper.append_op(type="uniform_random",
                     inputs=inputs,
                     attrs=attrs,
                     outputs={"Out": out})
588
    out.stop_gradient = True
P
pangyoki 已提交
589 590 591
    return out


J
JYChen 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
@dygraph_only
def uniform_(x, min=-1.0, max=1.0, seed=0, name=None):
    """
    This is the inplace version of OP ``uniform``, which returns a Tensor filled 
    with random values sampled from a uniform distribution. The output Tensor will
    be inplaced with input ``x``. Please refer to :ref:`api_tensor_uniform`.
    
    Args:
        x(Tensor): The input tensor to be filled with random values.
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
        seed(int, optional): Random seed used for generating samples. If seed is 0, 
            it will use the seed of the global default generator (which can be set by paddle.seed). 
            Note that if seed is not 0, this operator will always generate the same random numbers every
            time. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: The input tensor x filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``).
    Examples:
        .. code-block:: python
            
            import paddle
            # example:
            x = paddle.ones(shape=[3, 4])
            x.uniform_()
            print(x)
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
    """
627
    if in_dygraph_mode():
628
        return _C_ops.uniform_random_inplace_(x, min, max, seed, 0, 0, 1.0)
629
    else:
630 631
        return _legacy_C_ops.uniform_random_inplace_(x, 'min', min, 'max', max,
                                                     'seed', seed)
J
JYChen 已提交
632 633


634
def randint(low=0, high=None, shape=[1], dtype=None, name=None):
S
silingtong123 已提交
635
    """
636
    Returns a Tensor filled with random integers from a discrete uniform
637 638
    distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
    If ``high`` is None (the default), the range is [0, ``low``).
S
silingtong123 已提交
639 640

    Args:
641
        low (int, optional): The lower bound on the range of random values to generate.
642 643
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
644
        high (int, optional): The upper bound on the range of random values to
645 646
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
647
        shape (list|tuple|Tensor, optional): The shape of the output Tensor. If ``shape``
648 649 650 651
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). Default is [1].
652
        dtype (str|np.dtype, optional): The data type of the
653 654
            output tensor. Supported data types: int32, int64. If ``dytpe``
            is None, the data type is int64. Default is None.
655
        name (str, optional): The default value is None.  Normally there is no
656 657
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.
S
silingtong123 已提交
658 659

    Returns: 
660 661
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
S
silingtong123 已提交
662 663 664

    Examples:
        .. code-block:: python
665

666
            import paddle
667

668 669
            # example 1:
            # attr shape is a list which doesn't contain Tensor.
670
            out1 = paddle.randint(low=-5, high=5, shape=[3])
671 672 673 674
            # [0, -3, 2]  # random

            # example 2:
            # attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
675 676 677
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.randint(low=-5, high=5, shape=[dim1, dim2])
678 679 680 681 682
            # [[0, -1, -3],  # random
            #  [4, -2,  0]]  # random

            # example 3:
            # attr shape is a Tensor
683
            shape_tensor = paddle.to_tensor(3)
Z
zhupengyang 已提交
684
            out3 = paddle.randint(low=-5, high=5, shape=shape_tensor)
685 686 687 688
            # [-2, 2, 3]  # random

            # example 4:
            # data type is int32
689
            out4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
690 691 692 693 694
            # [-5, 4, -4]  # random

            # example 5:
            # Input only one parameter
            # low=0, high=10, shape=[1], dtype='int64'
695
            out5 = paddle.randint(10)
696
            # [7]  # random
S
silingtong123 已提交
697

698 699
    """
    if high is None:
700 701
        if low <= 0:
            raise ValueError(
702 703
                "If high is None, low must be greater than 0, but received low = {0}."
                .format(low))
704 705
        high = low
        low = 0
S
silingtong123 已提交
706 707
    if dtype is None:
        dtype = 'int64'
708 709
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
S
silingtong123 已提交
710

F
From00 已提交
711 712 713
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        place = _current_expected_place()
714
        return _C_ops.randint(low, high, shape, dtype, place)
F
From00 已提交
715
    if _in_legacy_dygraph():
716
        shape = utils.convert_shape_to_list(shape)
717 718
        return _legacy_C_ops.randint('shape', shape, 'low', low, 'high', high,
                                     'seed', 0, 'dtype', dtype)
S
silingtong123 已提交
719

720
    check_shape(shape, 'randint')
721 722
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')
    if low >= high:
S
silingtong123 已提交
723 724 725 726
        raise ValueError(
            "randint's low must less then high, but received low = {0}, "
            "high = {1}".format(low, high))

727 728
    inputs = dict()
    attrs = {'low': low, 'high': high, 'seed': 0, 'dtype': dtype}
729 730 731 732
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='randint')
733 734 735

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(dtype=dtype)
736 737 738 739
    helper.append_op(type='randint',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
740
    out.stop_gradient = True
S
silingtong123 已提交
741
    return out
C
cc 已提交
742 743


744 745
def randint_like(x, low=0, high=None, dtype=None, name=None):
    """
746
    Returns a Tensor filled with random integers from a discrete uniform
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
    distribution in the range [``low``, ``high``), with the same shape as ``x``.
    (use ``dtype`` if ``dtype`` is not None) 
    If ``high`` is None (the default), the range is [0, ``low``).

    Args:
        x (Tensor): The input tensor which specifies shape. The dtype of ``x`` 
            can be bool, int32, int64, float16, float32, float64.
        low (int): The lower bound on the range of random values to generate.
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
        high (int, optional): The upper bound on the range of random values to
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
        dtype (str|np.dtype, optional): The data type of the
            output tensor. Supported data types: bool, int32, int64, float16, 
            float32, float64. If ``dytpe`` is None, the data type is the
            same as x's data type. Default is None.
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1:
            # dtype is None and the dtype of x is float16
            x = paddle.zeros((1,2)).astype("float16")
            out1 = paddle.randint_like(x, low=-5, high=5)
            print(out1)
            print(out1.dtype)
            # [[0, -3]]  # random
            # paddle.float16

            # example 2:
            # dtype is None and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out2 = paddle.randint_like(x, low=-5, high=5)
            print(out2)
            print(out2.dtype)
            # [[0, -3]]  # random
            # paddle.float32

            # example 3:
            # dtype is None and the dtype of x is float64
            x = paddle.zeros((1,2)).astype("float64")
            out3 = paddle.randint_like(x, low=-5, high=5)
            print(out3)
            print(out3.dtype)
            # [[0, -3]]  # random
            # paddle.float64

            # example 4:
            # dtype is None and the dtype of x is int32
            x = paddle.zeros((1,2)).astype("int32")
            out4 = paddle.randint_like(x, low=-5, high=5)
            print(out4)
            print(out4.dtype)
            # [[0, -3]]  # random
            # paddle.int32

            # example 5:
            # dtype is None and the dtype of x is int64
            x = paddle.zeros((1,2)).astype("int64")
            out5 = paddle.randint_like(x, low=-5, high=5)
            print(out5)
            print(out5.dtype)
            # [[0, -3]]  # random
            # paddle.int64

            # example 6:
            # dtype is float64 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out6 = paddle.randint_like(x, low=-5, high=5, dtype="float64")
            print(out6)
            print(out6.dtype)
            # [[0, -1]]  # random
            # paddle.float64

            # example 7:
            # dtype is bool and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out7 = paddle.randint_like(x, low=-5, high=5, dtype="bool")
            print(out7)
            print(out7.dtype)
            # [[0, -1]]  # random
            # paddle.bool

            # example 8:
            # dtype is int32 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out8 = paddle.randint_like(x, low=-5, high=5, dtype="int32")
            print(out8)
            print(out8.dtype)
            # [[0, -1]]  # random
            # paddle.int32

            # example 9:
            # dtype is int64 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out9 = paddle.randint_like(x, low=-5, high=5, dtype="int64")
            print(out9)
            print(out9.dtype)
            # [[0, -1]]  # random
            # paddle.int64

            # example 10:
            # dtype is int64 and the dtype of x is bool
            x = paddle.zeros((1,2)).astype("bool")
            out10 = paddle.randint_like(x, low=-5, high=5, dtype="int64")
            print(out10)
            print(out10.dtype)
            # [[0, -1]]  # random
            # paddle.int64

    """
    if high is None:
        if low <= 0:
            raise ValueError(
871 872
                "If high is None, low must be greater than 0, but received low = {0}."
                .format(low))
873 874 875 876 877 878
        high = low
        low = 0
    if dtype is None:
        dtype = x.dtype
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
879
    shape = paddle.shape(x)
880 881 882 883 884 885

    if low >= high:
        raise ValueError(
            "randint_like's low must less then high, but received low = {0}, "
            "high = {1}".format(low, high))

Z
zhiboniu 已提交
886
    if paddle.in_dynamic_mode():
887
        shape = utils.convert_shape_to_list(shape)
888 889 890
        out = _legacy_C_ops.randint('shape', shape, 'low', low, 'high', high,
                                    'seed', 0, 'dtype',
                                    core.VarDesc.VarType.INT64)
891 892 893 894 895
        out = paddle.cast(out, dtype)
        return out

    check_shape(shape, 'randint_like')
    check_dtype(dtype, 'dtype',
896 897
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'randint_like')
898

899
    inputs = {"ShapeTensor": shape}
900 901 902 903 904 905 906 907 908 909
    attrs = {
        'low': low,
        'high': high,
        'seed': 0,
        'dtype': core.VarDesc.VarType.INT64
    }

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)
910 911 912 913
    helper.append_op(type='randint',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
914 915 916 917 918
    out.stop_gradient = True
    out = paddle.cast(out, dtype)
    return out


919
def randperm(n, dtype="int64", name=None):
C
cc 已提交
920
    """
921
    Returns a 1-D Tensor filled with random permutation values from 0
922
    to n-1, with ``dtype``.
C
cc 已提交
923 924

    Args:
925 926
        n (int): The upper bound (exclusive), and it should be greater than 0.
        dtype (str|np.dtype, optional): The data type of
927 928
            the output Tensor. Supported data types: int32, int64, float32,
            float64. Default is int64.
929
        name (str, optional): The default value is None. Normally there is no
930 931
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
C
cc 已提交
932 933

    Returns:
934 935
        Tensor: A 1-D Tensor filled with random permutation values from 0
        to n-1, with ``dtype``.
C
cc 已提交
936 937 938 939

    Examples:
        .. code-block:: python

940
            import paddle
C
cc 已提交
941

942
            out1 = paddle.randperm(5)
943
            # [4, 1, 2, 3, 0]  # random
C
cc 已提交
944

945
            out2 = paddle.randperm(7, 'int32')
946
            # [1, 6, 2, 0, 4, 3, 5]  # random
C
cc 已提交
947 948
 
    """
949 950 951
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

Z
zyfncg 已提交
952
    if in_dygraph_mode():
953
        return _C_ops.randperm(n, dtype, _current_expected_place())
Z
zyfncg 已提交
954
    if _in_legacy_dygraph():
955
        return _legacy_C_ops.randperm('n', n, 'seed', 0, 'dtype', dtype)
C
cc 已提交
956 957 958

    if n < 1:
        raise ValueError("The input n should be greater than 0 in randperm op.")
959 960
    check_dtype(dtype, 'dtype', ['int64', 'int32', 'float32', 'float64'],
                'randperm')
C
cc 已提交
961 962

    helper = LayerHelper("randperm", **locals())
963 964
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {'n': n, 'dtype': dtype, 'seed': 0}
965 966 967 968
    helper.append_op(type='randperm',
                     inputs={},
                     outputs={'Out': out},
                     attrs=attrs)
969
    out.stop_gradient = True
C
cc 已提交
970
    return out
X
Xing Wu 已提交
971 972


973
def rand(shape, dtype=None, name=None):
X
Xing Wu 已提交
974
    """
975
    Returns a Tensor filled with random values sampled from a uniform
976
    distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
977 978

    Args:
979
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
980 981 982 983
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
984
        dtype (str|np.dtype, optional): The data type of the output Tensor.
985 986 987
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
988
        name (str, optional): The default value is None. Normally there is no
989 990
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
991

X
Xing Wu 已提交
992
    Returns:
993 994
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
995 996 997 998

    Examples:
        .. code-block:: python

999
            import paddle
1000

1001
            # example 1: attr shape is a list which doesn't contain Tensor.
1002
            out1 = paddle.rand(shape=[2, 3])
1003 1004 1005 1006
            # [[0.451152  , 0.55825245, 0.403311  ],  # random
            #  [0.22550228, 0.22106001, 0.7877319 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
1007 1008
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
1009
            out2 = paddle.rand(shape=[dim1, dim2, 2])
1010 1011 1012 1013 1014 1015 1016 1017
            # [[[0.8879919 , 0.25788337],  # random
            #   [0.28826773, 0.9712097 ],  # random
            #   [0.26438272, 0.01796806]],  # random
            #  [[0.33633623, 0.28654453],  # random
            #   [0.79109055, 0.7305809 ],  # random
            #   [0.870881  , 0.2984597 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
1018
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
1019
            out3 = paddle.rand(shape_tensor)
1020 1021
            # [[0.22920267, 0.841956  , 0.05981819],  # random
            #  [0.4836288 , 0.24573246, 0.7516129 ]]  # random
X
Xing Wu 已提交
1022 1023

    """
1024
    return uniform(shape, dtype, min=0.0, max=1.0, name=name)
1025 1026 1027


def exponential_(x, lam=1.0, name=None):
1028
    r"""
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
    This inplace OP fill input Tensor ``x`` with random number from a Exponential Distribution.

    ``lam`` is :math:`\lambda` parameter of Exponential Distribution. 
    
    .. math::

        f(x) = \lambda e^{-\lambda x}

    Args:
        x(Tensor):  Input tensor. The data type should be float32, float64.
1039
        lam(float, optional): :math:`\lambda` parameter of Exponential Distribution. Default, 1.0.
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns: 
        Tensor: Input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle
            paddle.set_device('cpu')
            paddle.seed(100)

            x = paddle.empty([2,3])
            x.exponential_()
            # [[0.80643415, 0.23211166, 0.01169797],
            #  [0.72520673, 0.45208144, 0.30234432]]

    """
1059
    if in_dygraph_mode():
1060
        return _C_ops.exponential_(x, lam)
1061
    elif paddle.in_dynamic_mode():
1062
        return _legacy_C_ops.exponential_(x, "lambda", lam)
1063 1064 1065 1066

    check_variable_and_dtype(x, "x", ["float32", "float64"], "exponential")

    helper = LayerHelper("exponential", **locals())
1067 1068 1069 1070
    helper.append_op(type='exponential',
                     inputs={"X": x},
                     outputs={'Out': x},
                     attrs={"lambda": lam})
1071
    return x