未验证 提交 aa2a9b5d 编写于 作者: L Leo Chen 提交者: GitHub

add bernoulli op (#26511)

* add bernoulli op

* fix cuda kernel and add unit test

* refine doc

* fix uniform
上级 f3909020
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/bernoulli_op.h"
#include <algorithm>
#include <string>
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/common_infer_shape_functions.h"
namespace paddle {
namespace operators {
class BernoulliOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"A tensor with probabilities for generating the random binary "
"number");
AddOutput("Out", "A Tensor filled with random binary number");
AddComment(R"DOC(
This OP returns a Tensor filled with random binary(0 or 1) number from a Bernoulli distribution.
Out ~ Bernoulli(X)
)DOC");
}
};
class BernoulliOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
return UnaryOpUnchangedInferShape(ctx);
}
};
// It seems that Eigen::Tensor::random in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
template <typename T>
class BernoulliOpKernel<platform::CPUDeviceContext, T>
: public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
const auto x = ctx.Input<framework::Tensor>("X");
auto out = ctx.Output<framework::Tensor>("Out");
auto *in_data = x->data<T>();
auto *out_data = out->mutable_data<T>(ctx.GetPlace());
int64_t size = x->numel();
std::uniform_real_distribution<T> dist(0.0, 1.0);
auto gen_ptr = framework::Generator::GetInstance();
std::mt19937_64 &gen_engine = gen_ptr->GetCPUEngine();
for (int64_t i = 0; i < size; ++i) {
out_data[i] = BernoulliFunctor(in_data[i], dist(gen_engine));
}
}
}; // namespace operators
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OPERATOR(
bernoulli, ops::BernoulliOp, ops::BernoulliOpMaker,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OP_CPU_KERNEL(bernoulli,
ops::BernoulliOpKernel<plat::CPUDeviceContext, float>,
ops::BernoulliOpKernel<plat::CPUDeviceContext, double>);
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <thrust/execution_policy.h>
#include <thrust/random.h>
#include <thrust/transform.h>
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/bernoulli_op.h"
#include "paddle/fluid/platform/transform.h"
namespace paddle {
namespace operators {
// it can be consistent with cpu when CUDAGenerator is provided.
template <typename T>
struct BernoulliCudaFunctor {
unsigned int seed_;
__host__ __device__ BernoulliCudaFunctor(int seed) : seed_(seed) {}
__host__ __device__ T operator()(const unsigned int n, const T p) const {
thrust::minstd_rand rng;
rng.seed(seed_);
thrust::uniform_real_distribution<T> dist(0.0, 1.0);
rng.discard(n);
return static_cast<T>(dist(rng) < p);
}
};
template <typename T>
class BernoulliOpKernel<platform::CUDADeviceContext, T>
: public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
std::random_device rd;
auto seed = rd();
const auto x = ctx.Input<framework::Tensor>("X");
auto out = ctx.Output<framework::Tensor>("Out");
auto* in_data = x->data<T>();
auto* out_data = out->mutable_data<T>(ctx.GetPlace());
int64_t size = x->numel();
thrust::counting_iterator<unsigned int> index_sequence_begin(0);
platform::Transform<platform::CUDADeviceContext> trans;
auto* context =
static_cast<const platform::CUDADeviceContext*>(&ctx.device_context());
trans(*context, index_sequence_begin, index_sequence_begin + size, in_data,
out_data, BernoulliCudaFunctor<T>(seed));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(
bernoulli, ops::BernoulliOpKernel<plat::CUDADeviceContext, float>,
ops::BernoulliOpKernel<plat::CUDADeviceContext, double>);
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/hostdevice.h"
namespace paddle {
namespace operators {
/**
* Samples a bernoulli distribution given a probability input
*/
template <typename T>
inline HOSTDEVICE T BernoulliFunctor(T p, T rand) {
PADDLE_ENFORCE_LE(p, 1, platform::errors::OutOfRange(
"The probability should be <= 1, but got %f", p));
PADDLE_ENFORCE_GE(p, 0, platform::errors::OutOfRange(
"The probability should be >= 1, but got %f", p));
return static_cast<T>(rand < p);
}
template <typename DeviceContext, typename T>
class BernoulliOpKernel;
} // namespace operators
} // namespace paddle
......@@ -53,6 +53,7 @@ import paddle.incubate.complex as complex
# TODO: define alias in tensor and framework directory
from .tensor.random import randperm
from .tensor.random import bernoulli
from .tensor.attribute import rank #DEFINE_ALIAS
from .tensor.attribute import shape #DEFINE_ALIAS
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import paddle
from op_test import OpTest
import numpy as np
def output_hist(out):
hist, _ = np.histogram(out, bins=2)
hist = hist.astype("float32")
hist /= float(out.size)
prob = 0.5 * np.ones((2))
return hist, prob
class TestBernoulliOp(OpTest):
def setUp(self):
self.op_type = "bernoulli"
self.inputs = {"X": np.random.uniform(size=(1000, 784))}
self.init_attrs()
self.outputs = {"Out": np.zeros((1000, 784)).astype("float32")}
def init_attrs(self):
self.attrs = {}
self.output_hist = output_hist
def test_check_output(self):
self.check_output_customized(self.verify_output)
def verify_output(self, outs):
hist, prob = self.output_hist(np.array(outs[0]))
self.assertTrue(
np.allclose(
hist, prob, rtol=0, atol=0.01), "hist: " + str(hist))
class TestBernoulliApi(unittest.TestCase):
def test_dygraph(self):
paddle.disable_static()
x = paddle.rand([1024, 1024])
out = paddle.bernoulli(x)
paddle.enable_static()
hist, prob = output_hist(out.numpy())
self.assertTrue(
np.allclose(
hist, prob, rtol=0, atol=0.01), "hist: " + str(hist))
def test_static(self):
x = paddle.rand([1024, 1024])
out = paddle.bernoulli(x)
exe = paddle.static.Executor(paddle.CPUPlace())
out = exe.run(paddle.static.default_main_program(),
fetch_list=[out.name])
hist, prob = output_hist(out[0])
self.assertTrue(
np.allclose(
hist, prob, rtol=0, atol=0.01), "hist: " + str(hist))
if __name__ == "__main__":
unittest.main()
......@@ -27,6 +27,7 @@ from ..fluid.layers.tensor import fill_constant
from ..fluid.io import shuffle #DEFINE_ALIAS
__all__ = [
'bernoulli',
# 'gaussin',
'uniform',
'shuffle',
......@@ -37,6 +38,59 @@ __all__ = [
]
def bernoulli(x, name=None):
"""
This OP returns a Tensor filled with random binary(0 or 1) number from a Bernoulli distribution.
The input ``x`` is a tensor with probabilities for generating the random binary number.
Each element in ``x`` should be in [0, 1], and the out is generated by:
.. math::
out_i ~ Bernoulli (x_i)
Args:
x(Tensor): A tensor with probabilities for generating the random binary number. The data type
should be float32, float64.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
Tensor: A Tensor filled with random binary number with the same shape and dtype as ``x``.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x = paddle.rand([2, 3])
print(x.numpy())
# [[0.11272584 0.3890902 0.7730957 ]
# [0.10351662 0.8510418 0.63806665]]
out = paddle.bernoulli(x)
print(out.numpy())
# [[0. 0. 1.]
# [0. 0. 1.]]
"""
if in_dygraph_mode():
return core.ops.bernoulli(x)
check_variable_and_dtype(x, "x", ["float32", "float64"], "bernoulli")
helper = LayerHelper("randint", **locals())
out = helper.create_variable_for_type_inference(
dtype=x.dtype) # maybe set out to int32 ?
helper.append_op(
type='bernoulli', inputs={"X": x}, outputs={'Out': out}, attrs={})
return out
def uniform(shape, dtype='float32', min=-1.0, max=1.0, seed=0, name=None):
"""
This OP returns a Tensor filled with random values sampled from a uniform
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册