Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
25029254
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
25029254
编写于
7月 14, 2020
作者:
Z
zhupengyang
提交者:
GitHub
7月 14, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
randn API: remove out, devive, stop_gradient; add name (#25409)
上级
41d22472
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
127 addition
and
166 deletion
+127
-166
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+33
-17
python/paddle/fluid/tests/unittests/test_randn_op.py
python/paddle/fluid/tests/unittests/test_randn_op.py
+50
-71
python/paddle/tensor/random.py
python/paddle/tensor/random.py
+44
-78
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
25029254
...
...
@@ -10416,20 +10416,28 @@ def uniform_random_batch_size_like(input,
@templatedoc()
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
def gaussian_random(shape,
mean=0.0,
std=1.0,
seed=0,
dtype='float32',
name=None):
"""
Generate a random tensor whose data is drawn from a Gaussian distribution.
Args:
shape (tuple[int] | list[int] | Variable | list[Variable]): Shape of the generated random tensor.
mean (float): Mean of the random tensor, defaults to 0.0.
std (float): Standard deviation of the random tensor, defaults to 1.0.
seed (int): ${seed_comment}
dtype(np.dtype | core.VarDesc.VarType | str): Output data type, float32 or float64.
shape(list|tuple|Variable): Shape of the Tensor to be created. The data
type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
the elements of it should be integers or Tensors with shape [1]. If
``shape`` is a Variable, it should be an 1-D Tensor .
mean(float): Mean of the random tensor, defaults to 0.0.
std(float): Standard deviation of the random tensor, defaults to 1.0.
seed(int): ${seed_comment}
dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output
tensor, which can be float32, float64. Default is float32.
name(str, optional): Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name` .
Default is None.
Returns:
Variable: Random tensor whose data is drawn from a Gaussian distribution, dtype: flaot32 or float64 as specified.
...
...
@@ -10492,11 +10500,16 @@ def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
# array([[2.3060477 , 2.676496 , 3.9911983 , 0.9990833 ],
# [2.8675377 , 2.2279181 , 0.79029655, 2.8447366 ]], dtype=float32)
"""
check_type(shape, 'shape', (list, tuple, Variable), 'gaussian_random')
if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype)
check_dtype(dtype, 'dtype', ['float32', 'float64'], 'gaussian_random')
if in_dygraph_mode():
shape = utils._convert_shape_to_list(shape)
return core.ops.gaussian_random('shape', shape, 'mean', mean, 'std',
std, 'seed', seed, 'dtype', dtype)
check_type(shape, 'shape', (list, tuple, Variable), 'gaussian_random/randn')
check_dtype(dtype, 'dtype', ['float32', 'float64'], 'gaussian_random/randn')
inputs = {}
attrs = {
...
...
@@ -10507,7 +10520,10 @@ def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
'use_mkldnn': False
}
utils._get_shape_tensor_inputs(
inputs=inputs, attrs=attrs, shape=shape, op_type='gaussian_random')
inputs=inputs,
attrs=attrs,
shape=shape,
op_type='gaussian_random/randn')
helper = LayerHelper('gaussian_random', **locals())
out = helper.create_variable_for_type_inference(dtype)
...
...
@@ -15011,13 +15027,13 @@ def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0,
float(min), 'max',
float(max), 'seed', seed, 'dtype', dtype)
check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random')
check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform_random')
check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random
/rand
')
check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform_random
/rand
')
inputs = dict()
attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
utils._get_shape_tensor_inputs(
inputs=inputs, attrs=attrs, shape=shape, op_type='uniform_random')
inputs=inputs, attrs=attrs, shape=shape, op_type='uniform_random
/rand
')
helper = LayerHelper("uniform_random", **locals())
out = helper.create_variable_for_type_inference(dtype)
...
...
python/paddle/fluid/tests/unittests/test_randn_op.py
浏览文件 @
25029254
...
...
@@ -17,92 +17,71 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle
.fluid
import
Program
,
program_guard
from
paddle
import
Program
,
program_guard
class
TestRandnOp
(
unittest
.
TestCase
):
def
test_api
(
self
):
x1
=
paddle
.
randn
(
shape
=
[
1000
,
784
],
dtype
=
'float32'
)
x2
=
paddle
.
randn
(
shape
=
[
1000
,
784
],
dtype
=
'float64'
)
x3
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1000
,
784
],
dtype
=
'float32'
,
value
=
0
)
paddle
.
randn
(
shape
=
[
1000
,
784
],
out
=
x3
,
dtype
=
'float32'
)
x4
=
paddle
.
randn
(
shape
=
[
1000
,
784
],
dtype
=
'float32'
,
device
=
'cpu'
)
x5
=
paddle
.
randn
(
shape
=
[
1000
,
784
],
dtype
=
'float32'
,
device
=
'gpu'
)
x6
=
paddle
.
randn
(
shape
=
[
1000
,
784
],
dtype
=
'float32'
,
device
=
'gpu'
,
stop_gradient
=
False
)
place
=
fluid
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
res
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{},
fetch_list
=
[
x1
,
x2
,
x3
,
x4
,
x5
,
x6
])
self
.
assertAlmostEqual
(
np
.
mean
(
res
[
0
]),
.
0
,
delta
=
0.1
)
self
.
assertAlmostEqual
(
np
.
std
(
res
[
0
]),
1.
,
delta
=
0.1
)
self
.
assertAlmostEqual
(
np
.
mean
(
res
[
1
]),
.
0
,
delta
=
0.1
)
self
.
assertAlmostEqual
(
np
.
std
(
res
[
1
]),
1.
,
delta
=
0.1
)
self
.
assertAlmostEqual
(
np
.
mean
(
res
[
2
]),
.
0
,
delta
=
0.1
)
self
.
assertAlmostEqual
(
np
.
std
(
res
[
2
]),
1.
,
delta
=
0.1
)
self
.
assertAlmostEqual
(
np
.
mean
(
res
[
3
]),
.
0
,
delta
=
0.1
)
self
.
assertAlmostEqual
(
np
.
std
(
res
[
3
]),
1.
,
delta
=
0.1
)
self
.
assertAlmostEqual
(
np
.
mean
(
res
[
4
]),
.
0
,
delta
=
0.1
)
self
.
assertAlmostEqual
(
np
.
std
(
res
[
4
]),
1.
,
delta
=
0.1
)
self
.
assertAlmostEqual
(
np
.
mean
(
res
[
5
]),
.
0
,
delta
=
0.1
)
self
.
assertAlmostEqual
(
np
.
std
(
res
[
5
]),
1.
,
delta
=
0.1
)
shape
=
[
1000
,
784
]
train_program
=
Program
()
startup_program
=
Program
()
with
program_guard
(
train_program
,
startup_program
):
x1
=
paddle
.
randn
(
shape
,
'float32'
)
x2
=
paddle
.
randn
(
shape
,
'float64'
)
dim_1
=
paddle
.
fill_constant
([
1
],
"int64"
,
20
)
dim_2
=
paddle
.
fill_constant
([
1
],
"int32"
,
50
)
x3
=
paddle
.
randn
([
dim_1
,
dim_2
,
784
])
var_shape
=
paddle
.
nn
.
data
(
'X'
,
[
2
],
'int32'
)
x4
=
paddle
.
randn
(
var_shape
)
place
=
paddle
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
paddle
.
CPUPlace
()
exe
=
paddle
.
Executor
(
place
)
res
=
exe
.
run
(
train_program
,
feed
=
{
'X'
:
np
.
array
(
shape
,
dtype
=
'int32'
)},
fetch_list
=
[
x1
,
x2
,
x3
,
x4
])
for
out
in
res
:
self
.
assertAlmostEqual
(
np
.
mean
(
out
),
.
0
,
delta
=
0.1
)
self
.
assertAlmostEqual
(
np
.
std
(
out
),
1.
,
delta
=
0.1
)
class
TestRandnOpForDygraph
(
unittest
.
TestCase
):
def
test_api
(
self
):
shape
=
[
1000
,
784
]
place
=
paddle
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
paddle
.
CPUPlace
()
with
paddle
.
imperative
.
guard
(
place
):
x1
=
paddle
.
randn
(
shape
,
'float32'
)
x2
=
paddle
.
randn
(
shape
,
'float64'
)
dim_1
=
paddle
.
fill_constant
([
1
],
"int64"
,
20
)
dim_2
=
paddle
.
fill_constant
([
1
],
"int32"
,
50
)
x3
=
paddle
.
randn
(
shape
=
[
dim_1
,
dim_2
,
784
])
var_shape
=
paddle
.
imperative
.
to_variable
(
np
.
array
(
shape
))
x4
=
paddle
.
randn
(
var_shape
)
for
out
in
[
x1
,
x2
,
x3
,
x4
]:
self
.
assertAlmostEqual
(
np
.
mean
(
out
.
numpy
()),
.
0
,
delta
=
0.1
)
self
.
assertAlmostEqual
(
np
.
std
(
out
.
numpy
()),
1.
,
delta
=
0.1
)
class
TestRandnOpError
(
unittest
.
TestCase
):
def
test_error
(
self
):
with
program_guard
(
Program
(),
Program
()):
# The argument shape's size of randn_op should not be 0.
def
test_shape_size
():
out
=
paddle
.
randn
(
shape
=
[])
self
.
assertRaises
(
AssertionError
,
test_shape_size
)
self
.
assertRaises
(
AssertionError
,
paddle
.
randn
,
[])
# The argument shape's type of randn_op should be list or tuple.
def
test_shape_type
():
out
=
paddle
.
randn
(
shape
=
1
)
self
.
assertRaises
(
TypeError
,
test_shape_type
)
# The argument dtype of randn_op should be float32 or float64.
def
test_dtype_float16
():
out
=
paddle
.
randn
(
shape
=
[
1
,
2
],
dtype
=
'float16'
)
self
.
assertRaises
(
TypeError
,
test_dtype_float16
)
self
.
assertRaises
(
TypeError
,
paddle
.
randn
,
1
)
# The argument dtype of randn_op should be float32 or float64.
def
test_dtype_int32
():
out
=
paddle
.
randn
(
shape
=
[
1
,
2
],
dtype
=
'int32'
)
self
.
assertRaises
(
TypeError
,
test_dtype_int32
)
# The argument dtype of randn_op should be float32 or float64.
def
test_dtype_int64
():
out
=
paddle
.
randn
(
shape
=
[
1
,
2
],
dtype
=
'int64'
)
self
.
assertRaises
(
TypeError
,
test_dtype_int64
)
# The argument dtype of randn_op should be float32 or float64.
def
test_dtype_uint8
():
out
=
paddle
.
randn
(
shape
=
[
1
,
2
],
dtype
=
'uint8'
)
self
.
assertRaises
(
TypeError
,
test_dtype_uint8
)
# The argument dtype of randn_op should be float32 or float64.
def
test_dtype_bool
():
out
=
paddle
.
randn
(
shape
=
[
1
,
2
],
dtype
=
'bool'
)
self
.
assertRaises
(
TypeError
,
test_dtype_bool
)
self
.
assertRaises
(
TypeError
,
paddle
.
randn
,
[
1
,
2
],
'int32'
)
if
__name__
==
"__main__"
:
...
...
python/paddle/tensor/random.py
浏览文件 @
25029254
...
...
@@ -21,7 +21,7 @@ from ..fluid.framework import device_guard, in_dygraph_mode, _varbase_creator, V
from
..fluid.layers.layer_function_generator
import
templatedoc
from
..fluid.layer_helper
import
LayerHelper
from
..fluid.data_feeder
import
convert_dtype
,
check_variable_and_dtype
,
check_type
,
check_dtype
from
..fluid.layers
import
u
niform_random
,
utils
from
..fluid.layers
import
u
tils
,
uniform_random
,
gaussian_random
from
..fluid.layers.tensor
import
fill_constant
from
..fluid.io
import
shuffle
#DEFINE_ALIAS
...
...
@@ -206,36 +206,23 @@ def randint(low,
return
out
def
randn
(
shape
,
out
=
None
,
dtype
=
None
,
device
=
None
,
stop_gradient
=
True
,
name
=
None
):
def
randn
(
shape
,
dtype
=
None
,
name
=
None
):
"""
:alias_main: paddle.randn
:alias: paddle.randn,paddle.tensor.randn,paddle.tensor.random.randn
This function returns a tensor filled with random numbers from a normal
distribution with mean 0 and
variance
1 (also called the standard normal
distribution with mean 0 and
standard deviation
1 (also called the standard normal
distribution).
Args:
shape(list|tuple): Shape of the generated random tensor.
out(Variable, optional): Optional output which can be any created Variable
that meets the requirements to store the result of operation. If the
out is `None`, a new Variable will be returned to store the result.
Default is None.
dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output
tensor, which can be float32, float64. if dtype is `None` , the data
type of output tensor is `float32` .
Default is None.
device(str, optional): Specific the output variable to be saved in cpu
or gpu memory. Supported None, 'cpu', 'gpu'. If it is None, the output
variable will be automatically assigned devices.
Default: None.
stop_gradient(bool, optional): Indicating if we stop gradient from current(out)
Variable. Default is True.
shape(list|tuple|Variable): Shape of the Tensor to be created. The data
type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
the elements of it should be integers or Tensors with shape [1]. If
``shape`` is a Variable, it should be an 1-D Tensor .
dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output
tensor, which can be float32, float64. If dtype is `None` , the data
type of output tensor is `float32` . Default is None.
name(str, optional): Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name` .
Default is None.
...
...
@@ -244,75 +231,50 @@ def randn(shape,
Random tensor whose data is drawn from a standard normal distribution,
dtype: flaot32 or float64 as specified.
Return type:
Variable
Return type: Variable
Raises:
TypeError: If the type of `shape` is not list or tuple.
TypeError: If the type of `shape` is not
Variable,
list or tuple.
TypeError: If the data type of `dtype` is not float32 or float64.
ValueError: If the length of `shape` is not bigger than 0.
Examples:
.. code-block:: python
# declarative mode
import paddle
import paddle.fluid as fluid
import paddle
import numpy as np
data = paddle.randn([2, 4])
place = fluid.CPUPlace()
exe = fluid.Executor(place)
res, = exe.run(fluid.default_main_program(), feed={}, fetch_list=[data])
print(res)
# [[-1.4187592 0.7368311 -0.53748125 -0.0146909 ]
# [-0.66294265 -1.3090698 0.1898754 -0.14065823]]
paddle.enable_imperative()
.. code-block:: python
# example 1: attr shape is a list which doesn't contain tensor Variable.
result_1 = paddle.randn(shape=[2, 3])
# [[-2.923464 0.11934398 -0.51249987]
# [ 0.39632758 0.08177969 0.2692008 ]]
# imperative mode
import paddle
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg
place = fluid.CPUPlace()
with dg.guard(place) as g:
x = paddle.randn([2, 4])
x_np = x.numpy()
print(x_np)
# [[ 1.5149173 -0.26234224 -0.592486 1.4523455 ]
# [ 0.04581212 -0.85345626 1.1687907 -0.02512913]]
"""
helper
=
LayerHelper
(
"randn"
,
**
locals
()
)
check_type
(
shape
,
'shape'
,
(
list
,
tuple
),
'randn'
)
assert
len
(
shape
)
>
0
,
(
"The size of argument(shape) can't be zero."
)
# example 2: attr shape is a list which contains tensor Variable.
dim_1 = paddle.fill_constant([1], "int64", 2)
dim_2 = paddle.fill_constant([1], "int32", 3)
result_2 = paddle.randn(shape=[dim_1, dim_2, 2])
# [[[-2.8852394 -0.25898588]
# [-0.47420555 0.17683524]
# [-0.7989969 0.00754541]]
# [[ 0.85201347 0.32320443]
# [ 1.1399018 0.48336947]
# [ 0.8086993 0.6868893 ]]]
# example 3: attr shape is a Variable, the data type must be int64 or int32.
var_shape = paddle.imperative.to_variable(np.array([2, 3]))
result_3 = paddle.randn(var_shape
)
# [[-2.878077 0.17099959 0.05111201]
# [-0.3761474 -1.044801 1.1870178 ]]
"""
if
dtype
is
None
:
dtype
=
'float32'
check_dtype
(
dtype
,
'create data type'
,
[
'float32'
,
'float64'
],
'randn'
)
if
out
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
else
:
check_variable_and_dtype
(
out
,
'out'
,
[
dtype
],
'randn'
)
out
.
stop_gradient
=
stop_gradient
dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
seed
=
np
.
random
.
randint
(
0
,
100
)
with
device_guard
(
device
):
helper
.
append_op
(
type
=
'gaussian_random'
,
outputs
=
{
'Out'
:
out
},
attrs
=
{
'shape'
:
shape
,
'mean'
:
0.0
,
'std'
:
1.0
,
'seed'
:
seed
,
'dtype'
:
dtype
,
'use_mkldnn'
:
False
})
out
=
gaussian_random
(
shape
=
shape
,
mean
=
0.0
,
std
=
1.0
,
seed
=
0
,
dtype
=
dtype
,
name
=
name
)
out
.
stop_gradient
=
True
return
out
...
...
@@ -369,6 +331,7 @@ def randperm(n, dtype="int64", name=None):
attrs
=
{
'n'
:
n
,
'dtype'
:
dtype
,
'seed'
:
0
}
helper
.
append_op
(
type
=
'randperm'
,
inputs
=
{},
outputs
=
{
'Out'
:
out
},
attrs
=
attrs
)
out
.
stop_gradient
=
True
return
out
...
...
@@ -439,4 +402,7 @@ def rand(shape, dtype=None, name=None):
"""
if
dtype
is
None
:
dtype
=
'float32'
return
uniform_random
(
shape
,
dtype
,
min
=
0.0
,
max
=
1.0
,
name
=
name
)
out
=
uniform_random
(
shape
,
dtype
,
min
=
0.0
,
max
=
1.0
,
name
=
name
)
out
.
stop_gradient
=
True
return
out
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录