Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5b573c58
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5b573c58
编写于
7月 10, 2020
作者:
Z
zhupengyang
提交者:
GitHub
7月 10, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
randperm API: remove out, devive, stop_gradient; add name (#25410)
上级
ccb98cde
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
66 addition
and
141 deletion
+66
-141
paddle/fluid/operators/randperm_op.cc
paddle/fluid/operators/randperm_op.cc
+2
-1
paddle/fluid/operators/randperm_op.cu
paddle/fluid/operators/randperm_op.cu
+2
-1
python/paddle/fluid/tests/unittests/test_randperm_op.py
python/paddle/fluid/tests/unittests/test_randperm_op.py
+37
-80
python/paddle/tensor/random.py
python/paddle/tensor/random.py
+25
-59
未找到文件。
paddle/fluid/operators/randperm_op.cc
浏览文件 @
5b573c58
...
...
@@ -92,4 +92,5 @@ template <typename T>
using
kernel
=
paddle
::
operators
::
RandpermKernel
<
paddle
::
platform
::
CPUDeviceContext
,
T
>
;
REGISTER_OP_CPU_KERNEL
(
randperm
,
kernel
<
int64_t
>
,
kernel
<
int
>
);
REGISTER_OP_CPU_KERNEL
(
randperm
,
kernel
<
int64_t
>
,
kernel
<
int
>
,
kernel
<
float
>
,
kernel
<
double
>
);
paddle/fluid/operators/randperm_op.cu
浏览文件 @
5b573c58
...
...
@@ -20,4 +20,5 @@ template <typename T>
using
kernel
=
paddle
::
operators
::
RandpermKernel
<
paddle
::
platform
::
CUDADeviceContext
,
T
>
;
REGISTER_OP_CUDA_KERNEL
(
randperm
,
kernel
<
int64_t
>
,
kernel
<
int
>
);
REGISTER_OP_CUDA_KERNEL
(
randperm
,
kernel
<
int64_t
>
,
kernel
<
int
>
,
kernel
<
float
>
,
kernel
<
double
>
);
python/paddle/fluid/tests/unittests/test_randperm_op.py
浏览文件 @
5b573c58
...
...
@@ -16,10 +16,8 @@ import unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
from
paddle.fluid
import
Program
,
program_guard
from
paddle
import
Program
,
program_guard
def
check_randperm_out
(
n
,
data_np
):
...
...
@@ -36,8 +34,11 @@ def error_msg(data_np):
def
convert_dtype
(
dtype_str
):
dtype_str_list
=
[
"int32"
,
"int64"
]
dtype_num_list
=
[
2
,
3
]
dtype_str_list
=
[
"int32"
,
"int64"
,
"float32"
,
"float64"
]
dtype_num_list
=
[
core
.
VarDesc
.
VarType
.
INT32
,
core
.
VarDesc
.
VarType
.
INT64
,
core
.
VarDesc
.
VarType
.
FP32
,
core
.
VarDesc
.
VarType
.
FP64
]
assert
dtype_str
in
dtype_str_list
,
dtype_str
+
\
" should in "
+
str
(
dtype_str_list
)
return
dtype_num_list
[
dtype_str_list
.
index
(
dtype_str
)]
...
...
@@ -50,8 +51,6 @@ class TestRandpermOp(OpTest):
self
.
op_type
=
"randperm"
self
.
n
=
200
self
.
dtype
=
"int64"
self
.
device
=
None
self
.
seed
=
0
self
.
inputs
=
{}
self
.
outputs
=
{
"Out"
:
np
.
zeros
((
self
.
n
)).
astype
(
self
.
dtype
)}
...
...
@@ -59,8 +58,6 @@ class TestRandpermOp(OpTest):
self
.
attrs
=
{
"n"
:
self
.
n
,
"dtype"
:
convert_dtype
(
self
.
dtype
),
"device"
:
self
.
device
,
"seed"
:
self
.
seed
,
}
def
init_attrs
(
self
):
...
...
@@ -75,100 +72,60 @@ class TestRandpermOp(OpTest):
check_randperm_out
(
self
.
n
,
out_np
),
msg
=
error_msg
(
out_np
))
class
TestRandpermOp_attr_n
(
TestRandpermOp
):
""" Test randperm op for attr n. """
class
TestRandpermOpN
(
TestRandpermOp
):
def
init_attrs
(
self
):
self
.
n
=
10000
class
TestRandpermOp_attr_int32
(
TestRandpermOp
):
""" Test randperm op for attr int32 dtype. """
class
TestRandpermOpInt32
(
TestRandpermOp
):
def
init_attrs
(
self
):
self
.
dtype
=
"int32"
class
TestRandpermOp_attr_device_cpu
(
TestRandpermOp
):
""" Test randperm op for cpu device. """
class
TestRandpermOpFloat32
(
TestRandpermOp
):
def
init_attrs
(
self
):
self
.
d
evice
=
"cpu
"
self
.
d
type
=
"float32
"
class
TestRandpermOp_attr_device_gpu
(
TestRandpermOp
):
""" Test randperm op for gpu device. """
class
TestRandpermOpFloat64
(
TestRandpermOp
):
def
init_attrs
(
self
):
self
.
device
=
"gpu"
class
TestRandpermOp_attr_seed
(
TestRandpermOp
):
""" Test randperm op for attr seed. """
def
init_attrs
(
self
):
self
.
seed
=
10
self
.
dtype
=
"float64"
class
TestRandpermOpError
(
unittest
.
TestCase
):
""" Test randperm op for raise error. """
def
test_errors
(
self
):
main_prog
=
Program
()
start_prog
=
Program
(
)
with
program_guard
(
main_prog
,
start_prog
):
with
program_guard
(
Program
(),
Program
()):
self
.
assertRaises
(
ValueError
,
paddle
.
randperm
,
-
3
)
self
.
assertRaises
(
TypeError
,
paddle
.
randperm
,
10
,
'int8'
)
def
test_Variable
():
out
=
np
.
arange
(
10
)
paddle
.
randperm
(
n
=
10
,
out
=
out
)
self
.
assertRaises
(
TypeError
,
test_Variable
)
class
TestRandpermAPI
(
unittest
.
TestCase
):
def
test_out
(
self
):
n
=
10
place
=
paddle
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
paddle
.
CPUPlace
()
with
program_guard
(
Program
(),
Program
()):
x1
=
paddle
.
randperm
(
n
)
x2
=
paddle
.
randperm
(
n
,
'float32'
)
def
test_value
():
paddle
.
randperm
(
n
=-
3
)
exe
=
paddle
.
Executor
(
place
)
res
=
exe
.
run
(
fetch_list
=
[
x1
,
x2
]
)
self
.
assertRaises
(
ValueError
,
test_value
)
self
.
assertEqual
(
res
[
0
].
dtype
,
np
.
int64
)
self
.
assertEqual
(
res
[
1
].
dtype
,
np
.
float32
)
self
.
assertTrue
(
check_randperm_out
(
n
,
res
[
0
]))
self
.
assertTrue
(
check_randperm_out
(
n
,
res
[
1
]))
class
TestRandpermOp_attr_out
(
unittest
.
TestCase
):
""" Test randperm op for attr out. """
def
test_attr_tensor_API
(
self
):
startup_program
=
fluid
.
Program
()
train_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
train_program
,
startup_program
):
n
=
10
data_1
=
fluid
.
layers
.
fill_constant
([
n
],
"int64"
,
3
)
paddle
.
randperm
(
n
=
n
,
out
=
data_1
)
data_2
=
paddle
.
randperm
(
n
=
n
,
dtype
=
"int32"
,
device
=
"cpu"
)
place
=
fluid
.
CPUPlace
()
if
fluid
.
core
.
is_compiled_with_cuda
():
place
=
fluid
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_program
)
outs
=
exe
.
run
(
train_program
,
fetch_list
=
[
data_1
,
data_2
])
out_np
=
np
.
array
(
outs
[
0
])
self
.
assertTrue
(
check_randperm_out
(
n
,
out_np
),
msg
=
error_msg
(
out_np
))
class
TestRandpermDygraphMode
(
unittest
.
TestCase
):
def
test_check_output
(
self
):
with
fluid
.
dygraph
.
guard
():
class
TestRandpermImperative
(
unittest
.
TestCase
):
def
test_out
(
self
):
with
paddle
.
imperative
.
guard
():
n
=
10
data_1
=
paddle
.
randperm
(
n
,
dtype
=
"int64"
)
data_1_np
=
data_1
.
numpy
()
self
.
assertTrue
(
check_randperm_out
(
n
,
data_1_np
),
msg
=
error_msg
(
data_1_np
))
data_2
=
paddle
.
randperm
(
n
,
dtype
=
"int32"
,
device
=
"cpu"
)
data_2_np
=
data_2
.
numpy
()
self
.
assertTrue
(
check_randperm_out
(
n
,
data_2_np
),
msg
=
error_msg
(
data_2_np
))
for
dtype
in
[
'int32'
,
np
.
int64
,
'float32'
,
'float64'
]:
data_p
=
paddle
.
randperm
(
n
,
dtype
)
data_np
=
data_p
.
numpy
()
self
.
assertTrue
(
check_randperm_out
(
n
,
data_np
),
msg
=
error_msg
(
data_np
))
if
__name__
==
"__main__"
:
...
...
python/paddle/tensor/random.py
浏览文件 @
5b573c58
...
...
@@ -317,12 +317,7 @@ def randn(shape,
@
templatedoc
()
def
randperm
(
n
,
out
=
None
,
dtype
=
"int64"
,
device
=
None
,
stop_gradient
=
True
,
seed
=
0
):
def
randperm
(
n
,
dtype
=
"int64"
,
name
=
None
):
"""
:alias_main: paddle.randperm
:alias: paddle.randperm,paddle.tensor.randperm,paddle.tensor.random.randperm
...
...
@@ -330,23 +325,13 @@ def randperm(n,
${comment}
Args:
n (int): The upper bound (exclusive), and it should be greater than 0.
out (Variable, optional): Optional output which can be any created
Variable that meets the requirements to store the result of operation.
If out is None, a new Varibale will be create to store the result.
Default: None.
dtype (np.dtype|core.VarDesc.VarType|str, optional): The type of the
output Tensor. Supported data types: int64, int32. Default: int32.
device (str, optional): Specific the output variable to be saved in cpu
or gpu memory. Supported None, 'cpu', 'gpu'. If it is None, the output
variable will be automatically assigned devices.
Default: None.
stop_gradient (bool, optional): Whether grad should record operations
on the returned tensor. Default: True.
seed (int, optional): Random seed used for permute samples. If seed is
equal to 0, it means use a seed generated by the system. Note that
if seed is not 0, this operator will always generate the same random
permutation every time. Default: 0.
n(int): The upper bound (exclusive), and it should be greater than 0.
dtype(np.dtype|core.VarDesc.VarType|str, optional): The type of the
output Tensor. Supported data types: int32, int64, float32, float64.
Default: int32.
name(str, optional): Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name` .
Default is None.
Returns:
${out_comment}.
...
...
@@ -357,52 +342,33 @@ def randperm(n,
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
num = 6
is_use_gpu = False
data_1 = paddle.randperm(num)
fluid.layers.Print(data_1)
data_2 = paddle.randperm(num, dtype="int32", seed=1)
fluid.layers.Print(data_2)
import paddle
data_3 = paddle.randperm(num, stop_gradient=False, device="cpu")
fluid.layers.Print(data_3)
paddle.enable_imperative()
paddle.randperm(num, out=data_3
)
fluid.layers.Print(data_3)
result_1 = paddle.randperm(5
)
# [4 1 2 3 0]
place = fluid.CUDAPlace(0) if is_use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
exe.run()
result_2 = paddle.randperm(7, 'int32')
# [1 6 2 0 4 3 5]
"""
if
not
isinstance
(
dtype
,
core
.
VarDesc
.
VarType
):
dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
if
in_dygraph_mode
():
return
core
.
ops
.
randperm
(
'n'
,
n
,
'seed'
,
0
,
'dtype'
,
dtype
)
if
n
<
1
:
raise
ValueError
(
"The input n should be greater than 0 in randperm op."
)
check_dtype
(
dtype
,
'dtype'
,
[
'int64'
,
'int32'
],
'randperm'
)
dtype
=
convert_dtype
(
dtype
)
if
device
not
in
[
None
,
'cpu'
,
'gpu'
]:
raise
ValueError
(
"The input device should in [None, 'cpu', 'gpu']."
)
check_type
(
stop_gradient
,
'stop_gradient'
,
bool
,
'randperm'
)
check_dtype
(
dtype
,
'dtype'
,
[
'int64'
,
'int32'
,
'float32'
,
'float64'
],
'randperm'
)
helper
=
LayerHelper
(
"randperm"
,
**
locals
())
if
out
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
else
:
check_variable_and_dtype
(
out
,
'out'
,
[
dtype
],
'randperm'
)
if
stop_gradient
:
out
.
stop_gradient
=
True
inputs
=
dict
()
outputs
=
{
'Out'
:
[
out
]}
attrs
=
{
'n'
:
n
,
'dtype'
:
out
.
dtype
,
'seed'
:
seed
}
with
device_guard
(
device
):
helper
.
append_op
(
type
=
'randperm'
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
)
attrs
=
{
'n'
:
n
,
'dtype'
:
dtype
,
'seed'
:
0
}
helper
.
append_op
(
type
=
'randperm'
,
inputs
=
{},
outputs
=
{
'Out'
:
out
},
attrs
=
attrs
)
return
out
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录