未验证 提交 e6675f4f 编写于 作者: Z zhupengyang 提交者: GitHub

normal: support mean and std tensor; randn = standard_normal (#26367)

上级 3a9417f4
......@@ -194,7 +194,8 @@ from .tensor.math import clip #DEFINE_ALIAS
from .tensor.math import trace #DEFINE_ALIAS
from .tensor.math import kron #DEFINE_ALIAS
from .tensor.math import prod #DEFINE_ALIAS
# from .tensor.random import gaussin #DEFINE_ALIAS
from .tensor.random import standard_normal
from .tensor.random import normal
from .tensor.random import uniform #DEFINE_ALIAS
from .tensor.random import shuffle #DEFINE_ALIAS
from .tensor.random import randn #DEFINE_ALIAS
......
......@@ -10466,6 +10466,7 @@ def uniform_random_batch_size_like(input,
return out
@deprecated(since="2.0.0", update_to="paddle.normal")
@templatedoc()
def gaussian_random(shape,
mean=0.0,
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
import copy
np.random.seed(10)
class TestNormalAPI(unittest.TestCase):
def setUp(self):
self.mean = 1.0
self.std = 0.0
self.shape = None
self.repeat_num = 1000
self.set_attrs()
self.dtype = self.get_dtype()
self.place=paddle.CUDAPlace(0) \
if paddle.fluid.core.is_compiled_with_cuda() \
else paddle.CPUPlace()
def set_attrs(self):
self.shape = [8, 12]
def get_shape(self):
if isinstance(self.mean, np.ndarray):
shape = self.mean.shape
elif isinstance(self.std, np.ndarray):
shape = self.std.shape
else:
shape = self.shape
return list(shape)
def get_dtype(self):
if isinstance(self.mean, np.ndarray):
return self.mean.dtype
elif isinstance(self.std, np.ndarray):
return self.std.dtype
else:
return 'float32'
def static_api(self):
shape = self.get_shape()
ret_all_shape = copy.deepcopy(shape)
ret_all_shape.insert(0, self.repeat_num)
ret_all = np.zeros(ret_all_shape, self.dtype)
if isinstance(self.mean, np.ndarray) \
and isinstance(self.std, np.ndarray):
with paddle.static.program_guard(paddle.static.Program()):
mean = paddle.data('Mean', self.mean.shape, self.mean.dtype)
std = paddle.data('Std', self.std.shape, self.std.dtype)
out = paddle.normal(mean, std, self.shape)
exe = paddle.static.Executor(self.place)
for i in range(self.repeat_num):
ret = exe.run(feed={
'Mean': self.mean,
'Std': self.std.reshape(shape)
},
fetch_list=[out])
ret_all[i] = ret[0]
return ret_all
elif isinstance(self.mean, np.ndarray):
with paddle.static.program_guard(paddle.static.Program()):
mean = paddle.data('Mean', self.mean.shape, self.mean.dtype)
out = paddle.normal(mean, self.std, self.shape)
exe = paddle.static.Executor(self.place)
for i in range(self.repeat_num):
ret = exe.run(feed={'Mean': self.mean}, fetch_list=[out])
ret_all[i] = ret[0]
return ret_all
elif isinstance(self.std, np.ndarray):
with paddle.static.program_guard(paddle.static.Program()):
std = paddle.data('Std', self.std.shape, self.std.dtype)
out = paddle.normal(self.mean, std, self.shape)
exe = paddle.static.Executor(self.place)
for i in range(self.repeat_num):
ret = exe.run(feed={'Std': self.std}, fetch_list=[out])
ret_all[i] = ret[0]
return ret_all
else:
with paddle.static.program_guard(paddle.static.Program()):
out = paddle.normal(self.mean, self.std, self.shape)
exe = paddle.static.Executor(self.place)
for i in range(self.repeat_num):
ret = exe.run(fetch_list=[out])
ret_all[i] = ret[0]
return ret_all
def dygraph_api(self):
paddle.disable_static(self.place)
shape = self.get_shape()
ret_all_shape = copy.deepcopy(shape)
ret_all_shape.insert(0, self.repeat_num)
ret_all = np.zeros(ret_all_shape, self.dtype)
mean = paddle.to_tensor(self.mean) \
if isinstance(self.mean, np.ndarray) else self.mean
std = paddle.to_tensor(self.std) \
if isinstance(self.std, np.ndarray) else self.std
for i in range(self.repeat_num):
out = paddle.normal(mean, std, self.shape)
ret_all[i] = out.numpy()
paddle.enable_static()
return ret_all
def test_api(self):
ret_static = self.static_api()
ret_dygraph = self.dygraph_api()
for ret in [ret_static, ret_dygraph]:
shape_ref = self.get_shape()
self.assertEqual(shape_ref, list(ret[0].shape))
ret = ret.flatten().reshape([self.repeat_num, -1])
mean = np.mean(ret, axis=0)
std = np.std(ret, axis=0)
mean_ref=self.mean.reshape([1, -1]) \
if isinstance(self.mean, np.ndarray) else self.mean
std_ref=self.std.reshape([1, -1]) \
if isinstance(self.std, np.ndarray) else self.std
self.assertTrue(np.allclose(mean_ref, mean, 0.1, 0.1))
self.assertTrue(np.allclose(std_ref, std, 0.1, 0.1))
class TestNormalAPI_mean_is_tensor(TestNormalAPI):
def set_attrs(self):
self.mean = np.random.uniform(-2, -1, [2, 3, 4, 5]).astype('float64')
class TestNormalAPI_std_is_tensor(TestNormalAPI):
def set_attrs(self):
self.std = np.random.uniform(0.7, 1, [2, 3, 17]).astype('float64')
class TestNormalAPI_mean_std_are_tensor(TestNormalAPI):
def set_attrs(self):
self.mean = np.random.uniform(1, 2, [1, 100]).astype('float64')
self.std = np.random.uniform(0.5, 1, [1, 100]).astype('float64')
class TestNormalAPI_mean_std_are_tensor_with_different_dtype(TestNormalAPI):
def set_attrs(self):
self.mean = np.random.uniform(1, 2, [100]).astype('float64')
self.std = np.random.uniform(1, 2, [100]).astype('float32')
class TestNormalAlias(unittest.TestCase):
def test_alias(self):
paddle.disable_static()
shape = [1, 2, 3]
out1 = paddle.normal(shape=shape)
out2 = paddle.tensor.normal(shape=shape)
out3 = paddle.tensor.random.normal(shape=shape)
paddle.enable_static()
class TestNormalErrors(unittest.TestCase):
def test_errors(self):
with paddle.static.program_guard(paddle.static.Program()):
mean = [1, 2, 3]
self.assertRaises(TypeError, paddle.normal, mean)
std = [1, 2, 3]
self.assertRaises(TypeError, paddle.normal, std=std)
mean = paddle.data('Mean', [100], 'int32')
self.assertRaises(TypeError, paddle.normal, mean)
std = paddle.data('Std', [100], 'int32')
self.assertRaises(TypeError, paddle.normal, mean=1.0, std=std)
self.assertRaises(TypeError, paddle.normal, shape=1)
self.assertRaises(TypeError, paddle.normal, shape=[1.0])
shape = paddle.data('Shape', [100], 'float32')
self.assertRaises(TypeError, paddle.normal, shape=shape)
if __name__ == "__main__":
unittest.main()
......@@ -162,7 +162,8 @@ from .math import clip #DEFINE_ALIAS
from .math import trace #DEFINE_ALIAS
from .math import kron #DEFINE_ALIAS
from .math import prod #DEFINE_ALIAS
# from .random import gaussin #DEFINE_ALIAS
from .random import standard_normal
from .random import normal
from .random import uniform #DEFINE_ALIAS
from .random import shuffle #DEFINE_ALIAS
from .random import randn #DEFINE_ALIAS
......
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册