未验证 提交 46057dd2 编写于 作者: P pangyoki 提交者: GitHub

change uniform_random to uniform and optimize function names in unittest for random ops (#26951)

* fix unittest format and extract common function

* change function name
上级 7f3e6ca5
......@@ -239,24 +239,24 @@ class TestGaussianRandomAPI(unittest.TestCase):
def test_default_dtype(self):
paddle.disable_static()
def test_default_fp_16():
def test_default_fp16():
paddle.framework.set_default_dtype('float16')
paddle.tensor.random.gaussian([2, 3])
self.assertRaises(TypeError, test_default_fp_16)
self.assertRaises(TypeError, test_default_fp16)
def test_default_fp_32():
def test_default_fp32():
paddle.framework.set_default_dtype('float32')
out = paddle.tensor.random.gaussian([2, 3])
self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP32)
def test_default_fp_64():
def test_default_fp64():
paddle.framework.set_default_dtype('float64')
out = paddle.tensor.random.gaussian([2, 3])
self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP64)
test_default_fp_64()
test_default_fp_32()
test_default_fp64()
test_default_fp32()
paddle.enable_static()
......@@ -265,24 +265,24 @@ class TestStandardNormalDtype(unittest.TestCase):
def test_default_dtype(self):
paddle.disable_static()
def test_default_fp_16():
def test_default_fp16():
paddle.framework.set_default_dtype('float16')
paddle.tensor.random.standard_normal([2, 3])
self.assertRaises(TypeError, test_default_fp_16)
self.assertRaises(TypeError, test_default_fp16)
def test_default_fp_32():
def test_default_fp32():
paddle.framework.set_default_dtype('float32')
out = paddle.tensor.random.standard_normal([2, 3])
self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP32)
def test_default_fp_64():
def test_default_fp64():
paddle.framework.set_default_dtype('float64')
out = paddle.tensor.random.standard_normal([2, 3])
self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP64)
test_default_fp_64()
test_default_fp_32()
test_default_fp64()
test_default_fp32()
paddle.enable_static()
......
......@@ -120,24 +120,24 @@ class TestRandDtype(unittest.TestCase):
def test_default_dtype(self):
paddle.disable_static()
def test_default_fp_16():
def test_default_fp16():
paddle.framework.set_default_dtype('float16')
paddle.tensor.random.rand([2, 3])
self.assertRaises(TypeError, test_default_fp_16)
self.assertRaises(TypeError, test_default_fp16)
def test_default_fp_32():
def test_default_fp32():
paddle.framework.set_default_dtype('float32')
out = paddle.tensor.random.rand([2, 3])
self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP32)
def test_default_fp_64():
def test_default_fp64():
paddle.framework.set_default_dtype('float64')
out = paddle.tensor.random.rand([2, 3])
self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP64)
test_default_fp_64()
test_default_fp_32()
test_default_fp64()
test_default_fp32()
paddle.enable_static()
......
......@@ -540,24 +540,24 @@ class TestUniformDtype(unittest.TestCase):
def test_default_dtype(self):
paddle.disable_static()
def test_default_fp_16():
def test_default_fp16():
paddle.framework.set_default_dtype('float16')
paddle.tensor.random.uniform([2, 3])
self.assertRaises(TypeError, test_default_fp_16)
self.assertRaises(TypeError, test_default_fp16)
def test_default_fp_32():
def test_default_fp32():
paddle.framework.set_default_dtype('float32')
out = paddle.tensor.random.uniform([2, 3])
self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP32)
def test_default_fp_64():
def test_default_fp64():
paddle.framework.set_default_dtype('float64')
out = paddle.tensor.random.uniform([2, 3])
self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP64)
test_default_fp_64()
test_default_fp_32()
test_default_fp64()
test_default_fp32()
paddle.enable_static()
......
......@@ -393,8 +393,8 @@ def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
dtype = paddle.framework.get_default_dtype()
if dtype not in ['float32', 'float64']:
raise TypeError(
"uniform only supports [float32, float64], but the default dtype is %s"
% dtype)
"uniform/rand only supports [float32, float64], but the default dtype is {}".
format(dtype))
if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype)
......@@ -405,15 +405,15 @@ def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
float(min), 'max',
float(max), 'seed', seed, 'dtype', dtype)
check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random/rand')
check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform_random/rand')
check_type(shape, 'shape', (list, tuple, Variable), 'uniform/rand')
check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform/rand')
inputs = dict()
attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
utils.get_shape_tensor_inputs(
inputs=inputs, attrs=attrs, shape=shape, op_type='uniform_random/rand')
inputs=inputs, attrs=attrs, shape=shape, op_type='uniform/rand')
helper = LayerHelper("uniform_random", **locals())
helper = LayerHelper("uniform", **locals())
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="uniform_random", inputs=inputs, attrs=attrs,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册