Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
009c049e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
009c049e
编写于
4月 07, 2020
作者:
S
silingtong123
提交者:
GitHub
4月 07, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add randint op API (#23337)
* add randint op
上级
ea6a251c
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
585 addition
and
4 deletion
+585
-4
paddle/fluid/operators/randint_op.cc
paddle/fluid/operators/randint_op.cc
+170
-0
paddle/fluid/operators/randint_op.cu
paddle/fluid/operators/randint_op.cu
+76
-0
python/paddle/__init__.py
python/paddle/__init__.py
+1
-1
python/paddle/fluid/tests/unittests/test_randint_op.py
python/paddle/fluid/tests/unittests/test_randint_op.py
+173
-0
python/paddle/tensor/__init__.py
python/paddle/tensor/__init__.py
+1
-1
python/paddle/tensor/random.py
python/paddle/tensor/random.py
+164
-2
未找到文件。
paddle/fluid/operators/randint_op.cc
0 → 100644
浏览文件 @
009c049e
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/uniform_random_op.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
CPURandintKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
std
::
vector
<
int64_t
>
new_shape
;
auto
list_new_shape_tensor
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"ShapeTensorList"
);
if
(
list_new_shape_tensor
.
size
()
>
0
||
ctx
.
HasInput
(
"ShapeTensor"
))
{
if
(
ctx
.
HasInput
(
"ShapeTensor"
))
{
auto
*
shape_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"ShapeTensor"
);
new_shape
=
GetNewDataFromShapeTensor
(
shape_tensor
);
}
else
if
(
list_new_shape_tensor
.
size
()
>
0
)
{
new_shape
=
GetNewDataFromShapeTensorList
(
list_new_shape_tensor
);
}
}
auto
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
if
(
!
new_shape
.
empty
())
out
->
Resize
(
framework
::
make_ddim
(
new_shape
));
T
*
data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int64_t
size
=
out
->
numel
();
std
::
random_device
rd
;
std
::
mt19937
gen
(
rd
());
std
::
uniform_int_distribution
<>
dist
(
ctx
.
Attr
<
int
>
(
"low"
),
ctx
.
Attr
<
int
>
(
"high"
)
-
1
);
for
(
int64_t
i
=
0
;
i
<
size
;
++
i
)
data
[
i
]
=
dist
(
gen
);
}
};
class
RandintOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Out"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Output(Out) of RandintOp is null."
));
PADDLE_ENFORCE_LT
(
ctx
->
Attrs
().
Get
<
int
>
(
"low"
),
ctx
->
Attrs
().
Get
<
int
>
(
"high"
),
platform
::
errors
::
InvalidArgument
(
"randint's low must less then high, "
"but received: low = %d, high = %d."
,
ctx
->
Attrs
().
Get
<
int
>
(
"low"
),
ctx
->
Attrs
().
Get
<
int
>
(
"high"
)));
if
(
ctx
->
HasInputs
(
"ShapeTensorList"
))
{
// top prority shape
auto
inputs_name
=
ctx
->
Inputs
(
"ShapeTensorList"
);
PADDLE_ENFORCE_GT
(
inputs_name
.
size
(),
0
,
platform
::
errors
::
InvalidArgument
(
"Input(ShapeTensorList)'size of Op(randint) can't be zero."
"Please check the Attr(shape)'s size of"
"Op(fluid.layers.randint).)"
));
auto
out_dims
=
std
::
vector
<
int
>
(
inputs_name
.
size
(),
-
1
);
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
out_dims
));
return
;
}
auto
&
shape
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int64_t
>>
(
"shape"
);
if
(
ctx
->
HasInput
(
"ShapeTensor"
)
&&
shape
.
empty
())
{
auto
shape_dims
=
ctx
->
GetInputDim
(
"ShapeTensor"
);
PADDLE_ENFORCE_EQ
(
shape_dims
.
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"ShapeError: Input(ShapeTensor)' dimension size of "
"Op(randint) must be 1."
"But received ShapeTensor's dimensions = %d."
,
shape_dims
.
size
()));
int
num_ele
=
1
;
for
(
int
i
=
0
;
i
<
shape_dims
.
size
();
++
i
)
{
num_ele
*=
shape_dims
[
i
];
}
auto
vec_dims
=
std
::
vector
<
int64_t
>
(
num_ele
,
-
1
);
auto
out_dims
=
framework
::
make_ddim
(
vec_dims
);
ctx
->
SetOutputDim
(
"Out"
,
out_dims
);
return
;
}
PADDLE_ENFORCE_EQ
(
shape
.
empty
(),
false
,
platform
::
errors
::
InvalidArgument
(
"if there is no Input(ShapeTensorList) and no "
"Input(ShapeTensor),the "
"attr(shape) information must "
"be set by Attr(shape)."
));
std
::
vector
<
int64_t
>
tensor_shape
;
tensor_shape
.
reserve
(
shape
.
size
());
for
(
auto
dim
:
shape
)
{
tensor_shape
.
push_back
(
static_cast
<
int64_t
>
(
dim
));
}
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
tensor_shape
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
ctx
.
Attr
<
int
>
(
"dtype"
)),
ctx
.
GetPlace
());
}
};
class
RandintOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"ShapeTensor"
,
"(Tensor<int64_t> or Tensor<int32_t>, optional) . If provided, "
"randint"
"according to "
"this given shape. It means that it has a higher priority than "
"Attr(shape) but a lower priority than Input(ShapeTensor)."
)
.
AsDispensable
();
AddInput
(
"ShapeTensorList"
,
"(vector<Tensor<int64_t>> or vector<Tensor<int32_t>>, optional). "
"If provided, randint use this. The shape of the tensor "
"must be [1], it has the highest priority comparing with "
"Input(ShapeTensor) and attr(shape)."
)
.
AsDuplicable
()
.
AsDispensable
();
AddOutput
(
"Out"
,
"The output tensor of randint op"
);
AddComment
(
R"DOC(
This operator initializes a tensor with random integers sampled from a
uniform distribution. The random result is in set [low, high).
)DOC"
);
AddAttr
<
std
::
vector
<
int64_t
>>
(
"shape"
,
"The shape of the output tensor."
)
.
SetDefault
({});
AddAttr
<
int
>
(
"low"
,
"The lower bound on the range of random values to generate."
);
AddAttr
<
int
>
(
"high"
,
"The upper bound on the range of random values to generate."
);
AddAttr
<
int
>
(
"dtype"
,
"Output tensor data type. [Default INT64]."
)
.
SetDefault
(
framework
::
proto
::
VarType
::
INT64
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
randint
,
ops
::
RandintOp
,
ops
::
RandintOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
)
REGISTER_OP_CPU_KERNEL
(
randint
,
ops
::
CPURandintKernel
<
int
>
,
ops
::
CPURandintKernel
<
int64_t
>
)
paddle/fluid/operators/randint_op.cu
0 → 100644
浏览文件 @
009c049e
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <thrust/random.h>
#include <thrust/transform.h>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/uniform_random_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
struct
UniformIntGenerator
{
T
low_
,
high_
;
__host__
__device__
UniformIntGenerator
(
T
low
,
T
high
)
:
low_
(
low
),
high_
(
high
)
{}
__host__
__device__
T
operator
()(
const
unsigned
int
n
)
const
{
thrust
::
minstd_rand
rng
;
rng
.
seed
(
0
);
thrust
::
uniform_int_distribution
<
T
>
dist
(
low_
,
high_
);
rng
.
discard
(
n
);
T
out
=
dist
(
rng
);
return
out
;
}
};
// Use std::uniform_int_distribution and thrust::uniform_int_distribution(thrust
// is a std library in CUDA) to
// implement randint.
template
<
typename
T
>
class
GPURandintKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
std
::
vector
<
int64_t
>
new_shape
;
auto
list_new_shape_tensor
=
context
.
MultiInput
<
framework
::
Tensor
>
(
"ShapeTensorList"
);
if
(
list_new_shape_tensor
.
size
()
>
0
||
context
.
HasInput
(
"ShapeTensor"
))
{
if
(
context
.
HasInput
(
"ShapeTensor"
))
{
auto
*
shape_tensor
=
context
.
Input
<
framework
::
Tensor
>
(
"ShapeTensor"
);
new_shape
=
GetNewDataFromShapeTensor
(
shape_tensor
);
}
else
if
(
list_new_shape_tensor
.
size
()
>
0
)
{
new_shape
=
GetNewDataFromShapeTensorList
(
list_new_shape_tensor
);
}
}
auto
*
out
=
context
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
if
(
!
new_shape
.
empty
())
out
->
Resize
(
framework
::
make_ddim
(
new_shape
));
T
*
data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
low
=
static_cast
<
T
>
(
context
.
Attr
<
int
>
(
"low"
));
T
high
=
static_cast
<
T
>
(
context
.
Attr
<
int
>
(
"high"
))
-
1
;
thrust
::
counting_iterator
<
unsigned
int
>
index_sequence_begin
(
0
);
int64_t
size
=
out
->
numel
();
thrust
::
transform
(
index_sequence_begin
,
index_sequence_begin
+
size
,
thrust
::
device_ptr
<
T
>
(
data
),
UniformIntGenerator
<
T
>
(
low
,
high
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
randint
,
ops
::
GPURandintKernel
<
int
>
,
ops
::
GPURandintKernel
<
int64_t
>
)
python/paddle/__init__.py
浏览文件 @
009c049e
...
...
@@ -90,7 +90,7 @@ from .tensor.logic import elementwise_equal #DEFINE_ALIAS
# from .tensor.random import randn #DEFINE_ALIAS
from
.tensor.random
import
randperm
# from .tensor.random import rand #DEFINE_ALIAS
# from .tensor.random import randint
#DEFINE_ALIAS
from
.tensor.random
import
randint
#DEFINE_ALIAS
# from .tensor.math import abs #DEFINE_ALIAS
# from .tensor.math import acos #DEFINE_ALIAS
# from .tensor.math import asin #DEFINE_ALIAS
...
...
python/paddle/fluid/tests/unittests/test_randint_op.py
0 → 100644
浏览文件 @
009c049e
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
import
paddle
def
output_hist
(
out
):
hist
,
_
=
np
.
histogram
(
out
,
range
=
(
-
5
,
10
))
hist
=
hist
.
astype
(
"float32"
)
hist
/=
float
(
out
.
size
)
prob
=
0.1
*
np
.
ones
((
10
))
return
hist
,
prob
class
TestRandintOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"randint"
self
.
inputs
=
{}
self
.
init_attrs
()
self
.
outputs
=
{
"Out"
:
np
.
zeros
((
10000
,
784
)).
astype
(
"float32"
)}
def
init_attrs
(
self
):
self
.
attrs
=
{
"shape"
:
[
10000
,
784
],
"low"
:
-
5
,
"high"
:
10
}
self
.
output_hist
=
output_hist
def
test_check_output
(
self
):
self
.
check_output_customized
(
self
.
verify_output
)
def
verify_output
(
self
,
outs
):
hist
,
prob
=
self
.
output_hist
(
np
.
array
(
outs
[
0
]))
self
.
assertTrue
(
np
.
allclose
(
hist
,
prob
,
rtol
=
0
,
atol
=
0.1
),
"hist: "
+
str
(
hist
))
class
TestRandintOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
main_prog
=
Program
()
start_prog
=
Program
()
with
program_guard
(
main_prog
,
start_prog
):
def
test_shape
():
shape
=
np
.
array
([
2
,
3
])
paddle
.
randint
(
5
,
shape
=
shape
,
dtype
=
'int32'
)
self
.
assertRaises
(
TypeError
,
test_shape
)
def
test_dtype
():
paddle
.
randint
(
5
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
self
.
assertRaises
(
TypeError
,
test_dtype
)
def
test_low_high
():
paddle
.
randint
(
low
=
5
,
high
=
5
,
shape
=
[
32
,
32
],
dtype
=
'int32'
)
self
.
assertRaises
(
ValueError
,
test_low_high
)
class
TestRandintOp_attr_tensorlist
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"randint"
self
.
new_shape
=
(
10000
,
784
)
shape_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
new_shape
):
shape_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
"int64"
)
*
ele
))
self
.
inputs
=
{
'ShapeTensorList'
:
shape_tensor
}
self
.
init_attrs
()
self
.
outputs
=
{
"Out"
:
np
.
zeros
((
10000
,
784
)).
astype
(
"int32"
)}
def
init_attrs
(
self
):
self
.
attrs
=
{
"low"
:
-
5
,
"high"
:
10
}
self
.
output_hist
=
output_hist
def
test_check_output
(
self
):
self
.
check_output_customized
(
self
.
verify_output
)
def
verify_output
(
self
,
outs
):
hist
,
prob
=
self
.
output_hist
(
np
.
array
(
outs
[
0
]))
self
.
assertTrue
(
np
.
allclose
(
hist
,
prob
,
rtol
=
0
,
atol
=
0.1
),
"hist: "
+
str
(
hist
))
class
TestRandint_attr_tensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"randint"
self
.
inputs
=
{
"ShapeTensor"
:
np
.
array
([
10000
,
784
]).
astype
(
"int64"
)}
self
.
init_attrs
()
self
.
outputs
=
{
"Out"
:
np
.
zeros
((
10000
,
784
)).
astype
(
"int64"
)}
def
init_attrs
(
self
):
self
.
attrs
=
{
"low"
:
-
5
,
"high"
:
10
}
self
.
output_hist
=
output_hist
def
test_check_output
(
self
):
self
.
check_output_customized
(
self
.
verify_output
)
def
verify_output
(
self
,
outs
):
hist
,
prob
=
self
.
output_hist
(
np
.
array
(
outs
[
0
]))
self
.
assertTrue
(
np
.
allclose
(
hist
,
prob
,
rtol
=
0
,
atol
=
0.1
),
"hist: "
+
str
(
hist
))
# Test python API
class
TestRandintAPI
(
unittest
.
TestCase
):
def
test_api
(
self
):
startup_program
=
fluid
.
Program
()
train_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
train_program
,
startup_program
):
# results are from [0, 5).
output1
=
paddle
.
randint
(
5
)
# shape is a list and dtype is 'int32'
output2
=
paddle
.
randint
(
low
=-
100
,
high
=
100
,
shape
=
[
64
,
64
],
dtype
=
'int32'
)
# shape is a tuple and dtype is 'int64'
output3
=
paddle
.
randint
(
low
=-
100
,
high
=
100
,
shape
=
(
32
,
32
,
3
),
dtype
=
'int64'
)
# shape is a tensorlist and dtype is 'float32'
dim_1
=
fluid
.
layers
.
fill_constant
([
1
],
"int64"
,
32
)
dim_2
=
fluid
.
layers
.
fill_constant
([
1
],
"int32"
,
50
)
output4
=
paddle
.
randint
(
low
=-
100
,
high
=
100
,
shape
=
[
dim_1
,
5
],
dtype
=
'int32'
)
# shape is a tensor and dtype is 'float64'
var_shape
=
fluid
.
data
(
name
=
'var_shape'
,
shape
=
[
2
],
dtype
=
"int64"
)
output5
=
paddle
.
randint
(
low
=
1
,
high
=
1000
,
shape
=
var_shape
,
dtype
=
'int64'
)
place
=
fluid
.
CPUPlace
()
if
fluid
.
core
.
is_compiled_with_cuda
():
place
=
fluid
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_program
)
outs
=
exe
.
run
(
train_program
,
feed
=
{
'var_shape'
:
np
.
array
([
100
,
100
]).
astype
(
'int64'
)},
fetch_list
=
[
output1
,
output2
,
output3
,
output4
,
output5
])
class
TestRandintDygraphMode
(
unittest
.
TestCase
):
def
test_check_output
(
self
):
with
fluid
.
dygraph
.
guard
():
x
=
paddle
.
randint
(
10
,
shape
=
[
10
],
dtype
=
"int32"
)
x_np
=
x
.
numpy
()
for
i
in
range
(
10
):
self
.
assertTrue
((
x_np
[
i
]
>=
0
and
x_np
[
i
]
<
10
))
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/tensor/__init__.py
浏览文件 @
009c049e
...
...
@@ -64,7 +64,7 @@ from .logic import elementwise_equal #DEFINE_ALIAS
# from .random import shuffle #DEFINE_ALIAS
# from .random import randn #DEFINE_ALIAS
# from .random import rand #DEFINE_ALIAS
# from .random import randint
#DEFINE_ALIAS
from
.random
import
randint
#DEFINE_ALIAS
from
.random
import
randperm
# from .math import abs #DEFINE_ALIAS
# from .math import acos #DEFINE_ALIAS
...
...
python/paddle/tensor/random.py
浏览文件 @
009c049e
...
...
@@ -13,6 +13,7 @@
# limitations under the License.
# TODO: define random functions
# __all__ = ['gaussin',
# 'uniform',
# 'shuffle',
...
...
@@ -21,12 +22,173 @@
# 'randint']
from
..fluid
import
core
from
..fluid.framework
import
device_guard
,
in_dygraph_mode
,
_varbase_creator
from
..fluid.framework
import
device_guard
,
in_dygraph_mode
,
_varbase_creator
,
Variable
from
..fluid.layers.layer_function_generator
import
templatedoc
from
..fluid.layer_helper
import
LayerHelper
from
..fluid.data_feeder
import
convert_dtype
,
check_variable_and_dtype
,
check_type
,
check_dtype
from
..fluid.layers
import
utils
from
..fluid.layers.tensor
import
fill_constant
__all__
=
[
'randperm'
,
'randint'
]
def
randint
(
low
,
high
=
None
,
shape
=
None
,
out
=
None
,
dtype
=
None
,
device
=
None
,
stop_gradient
=
False
,
name
=
None
):
"""
This function returns a Tensor filled with random integers from the "discrete uniform" distribution of the
specified data type in the interval [low, high). If high is None (the default), then results are from [0, low).
Args:
low (int): The lower bound on the range of random values to generate, the low is included in the range.
(unless high=None, in which case this parameter is one above the highest such integer).
high (int, optional): The upper bound on the range of random values to generate, the high is excluded
in the range. Default None(see above for behavior if high=None).
shape (list|tuple|Variable, optional): The shape of the output Tensor, if the shape is a list or tuple,
its elements can be an integer
or a Tensor with the shape [1], and the type of the Tensor must be int32 or int64.
If the shape is a Variable, it is a 1-D Tensor, and the type of the Tensor must be
int32 or int64. Default is None, in which case the shape is [1].
out(Variable, optional): Optional output which can be any created
Variable that meets the requirements to store the result of operation.
if out is None, a new Varibale will be create to store the result.
dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output Tensor
which can be int32, int64, if dytpe is `None`, the data
type of created Tensor is `int64`
device(str, optional): This parameter specifies that the Tensor is created
on the GPU or CPU.
stop_gradient(bool, optional): Indicating if we stop gradient from current(out) Variable,
default value is False.
name(str, optional): The default value is None. Normally there is no need for user to set this
property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Variable: A Tensor of the specified shape filled with random integers.
Raises:
TypeError: Randint's low must less then high.
Examples:
.. code-block:: python
import paddle
import paddle.tensor as tensor
# example 1:
# attr shape is a list which doesn't contain tensor Variable.
result_1 = paddle.randint(low=-5, high=5, shape=[3, 4], dtype="int64")
# example 2:
# attr shape is a list which contains tensor Variable.
dim_1 = fluid.layers.fill_constant([1],"int64",3)
dim_2 = fluid.layers.fill_constant([1],"int32",5)
result_2 = paddle.randint(low=-5, high=5, shape=[dim_1, dim_2], dtype="int32")
# example 3:
# attr shape is a Variable, the data type must be int64 or int32.
var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
result_3 = padddle.randint(low=-5, high=5, shape=var_shape, dtype="int32")
var_shape_int32 = fluid.data(name='var_shape_int32', shape=[2], dtype="int32")
result_4 = paddle.randint(low=-5, high=5, shape=var_shape_int32, dtype="int64")
# example 4:
# Input only one parameter
# low=0, high=10, shape=[1], dtype='int64'
result_4 = paddle.randint(10)
"""
__all__
=
[
'randperm'
]
def
get_new_shape_tensor
(
list_shape
):
new_shape_tensor
=
[]
for
dim
in
list_shape
:
if
isinstance
(
dim
,
Variable
):
dim
.
stop_gradient
=
True
new_shape_tensor
.
append
(
dim
)
else
:
assert
isinstance
(
dim
,
int
)
or
isinstance
(
dim
,
long
)
temp_out
=
helper
.
create_variable_for_type_inference
(
'int64'
)
fill_constant
([
1
],
'int64'
,
dim
,
force_cpu
=
True
,
out
=
temp_out
)
new_shape_tensor
.
append
(
temp_out
)
return
new_shape_tensor
def
get_attr_shape
(
list_shape
):
unk_dim_idx
=
-
1
attrs_shape
=
[]
for
dim_idx
,
dim_size
in
enumerate
(
list_shape
):
if
isinstance
(
dim_size
,
Variable
):
attrs_shape
.
append
(
-
1
)
else
:
attrs_shape
.
append
(
dim_size
)
assert
dim_size
>
0
,
(
"Each dimension size given in shape must not be negative "
"except one unknown dimension."
)
return
attrs_shape
if
dtype
is
None
:
dtype
=
'int64'
check_dtype
(
dtype
,
'dtype'
,
[
'int32'
,
'int64'
],
'randint'
)
inputs
=
dict
()
attrs
=
dict
()
if
shape
is
None
:
shape
=
[
1
]
assert
len
(
shape
)
>
0
,
(
"The size of argument(shape) can't be zero."
)
helper
=
LayerHelper
(
"randint"
,
**
locals
())
if
in_dygraph_mode
():
attrs
[
'shape'
]
=
shape
else
:
if
isinstance
(
shape
,
Variable
):
shape
.
stop_gradient
=
True
inputs
[
"ShapeTensor"
]
=
shape
elif
isinstance
(
shape
,
(
list
,
tuple
)):
assert
len
(
shape
)
>
0
,
(
"The size of argument(shape) can't be zero."
)
if
utils
.
_contain_var
(
shape
):
inputs
[
'ShapeTensorList'
]
=
get_new_shape_tensor
(
shape
)
else
:
attrs
[
"shape"
]
=
get_attr_shape
(
shape
)
check_type
(
shape
,
'shape'
,
(
list
,
tuple
,
Variable
),
'randint'
)
if
high
is
None
:
high
=
low
low
=
0
attrs
[
'low'
]
=
low
attrs
[
'high'
]
=
high
if
(
low
>=
high
):
raise
ValueError
(
"randint's low must less then high, but received low = {0}, "
"high = {1}"
.
format
(
low
,
high
))
if
out
is
None
:
if
name
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
dtype
,
persistable
=
False
)
else
:
check_dtype
(
dtype
,
'dtype'
,
convert_dtype
(
out
.
dtype
),
'randint'
,
"(The dtype in randint must be the same with out's dtype.)"
)
attrs
[
'dtype'
]
=
out
.
dtype
out
.
stop_gradient
=
stop_gradient
if
device
is
None
:
helper
.
append_op
(
type
=
'randint'
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
out
},
attrs
=
attrs
)
else
:
with
device_guard
(
device
):
helper
.
append_op
(
type
=
'randint'
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
out
},
attrs
=
attrs
)
return
out
@
templatedoc
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录