random.py 41.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define random functions
S
silingtong123 已提交
16

Z
zhiboniu 已提交
17 18
from ..framework import core
from ..framework import convert_np_dtype_to_dtype_, dygraph_only
19
from ..framework import LayerHelper
20
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, check_shape
21 22
from ..fluid.layers import utils
import paddle
W
wanghuancoder 已提交
23
from paddle import _C_ops
Z
zhiboniu 已提交
24
from paddle.static import Variable
F
From00 已提交
25
from paddle.fluid.framework import in_dygraph_mode, _in_legacy_dygraph, _current_expected_place
S
silingtong123 已提交
26

27 28
__all__ = []

S
silingtong123 已提交
29

L
Leo Chen 已提交
30 31 32
def bernoulli(x, name=None):
    """

33
    For each element :math:`x_i` in input ``x``, take a sample from the Bernoulli distribution, also called two-point distribution, with success probability :math:`x_i`. The Bernoulli distribution with success probability :math:`x_i` is a discrete probability distribution with probability mass function
L
Leo Chen 已提交
34

35 36 37 38 39
    .. math::
        p(y)=\\begin{cases}
            x_i,&y=1\\\\
            1-x_i,&y=0
        \end{cases}.
L
Leo Chen 已提交
40 41

    Args:
42 43 44
        x (Tensor): The input Tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

L
Leo Chen 已提交
45
    Returns: 
46
        Tensor: A Tensor filled samples from Bernoulli distribution, whose shape and dtype are same as ``x``.
L
Leo Chen 已提交
47 48 49

    Examples:
        .. code-block:: python
50
            :name: bernoulli-example
L
Leo Chen 已提交
51

52
            import paddle
L
Leo Chen 已提交
53

L
Leo Chen 已提交
54 55 56
            paddle.set_device('cpu')  # on CPU device
            paddle.seed(100) 

57
            x = paddle.rand([2,3])
L
Leo Chen 已提交
58 59 60
            print(x)
            # [[0.55355281, 0.20714243, 0.01162981],
            #  [0.51577556, 0.36369765, 0.26091650]]
L
Leo Chen 已提交
61

62
            out = paddle.bernoulli(x)
L
Leo Chen 已提交
63 64 65
            print(out)
            # [[1., 0., 1.],
            #  [0., 1., 0.]]
L
Leo Chen 已提交
66 67 68

    """

H
hong 已提交
69 70 71 72
    if in_dygraph_mode():
        return _C_ops.final_state_bernoulli(x)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
73
        return _C_ops.bernoulli(x)
L
Leo Chen 已提交
74 75 76 77 78

    check_variable_and_dtype(x, "x", ["float32", "float64"], "bernoulli")

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(
79 80 81 82 83
        dtype=x.dtype)  # maybe set out to int32 ?
    helper.append_op(type='bernoulli',
                     inputs={"X": x},
                     outputs={'Out': out},
                     attrs={})
84
    out.stop_gradient = True
L
Leo Chen 已提交
85 86 87
    return out


88
def poisson(x, name=None):
89
    r"""
90
    Returns a tensor filled with random number from a Poisson Distribution.
91 92 93

    .. math::

94
        out_i \sim Poisson (lambda = x_i)
95 96 97 98 99 100 101 102 103 104 105 106 107 108

    Args:
        x(Tensor):  A tensor with rate parameter of poisson Distribution. The data type 
            should be float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns: 
        Tensor: A Tensor filled with random number with the same shape and dtype as ``x``.

    Examples:
        .. code-block:: python

            import paddle
109
            paddle.set_device('cpu')
110
            paddle.seed(100)
111 112 113

            x = paddle.uniform([2,3], min=1.0, max=5.0)
            out = paddle.poisson(x)
114 115
            #[[2., 5., 0.],
            # [5., 1., 3.]]
116 117 118

    """

Z
zhiboniu 已提交
119
    if paddle.in_dynamic_mode():
120 121 122 123 124 125
        return _C_ops.poisson(x)

    check_variable_and_dtype(x, "x", ["float32", "float64"], "poisson")

    helper = LayerHelper("poisson", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
126 127 128 129
    helper.append_op(type='poisson',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={})
130 131 132
    return out


P
pangyoki 已提交
133 134
def multinomial(x, num_samples=1, replacement=False, name=None):
    """
135
    Returns a Tensor filled with random values sampled from a Multinomical
P
pangyoki 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    distribution. The input ``x`` is a tensor with probabilities for generating the
    random number. Each element in ``x`` should be larger or equal to 0, but not all
    0. ``replacement`` indicates whether it is a replaceable sample. If ``replacement``
    is True, a category can be sampled more than once.

    Args:
        x(Tensor):  A tensor with probabilities for generating the random number. The data type
            should be float32, float64.
        num_samples(int, optional): Number of samples, default is 1.
        replacement(bool, optional): Whether it is a replaceable sample, default is False.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: A Tensor filled with sampled category index after ``num_samples`` times samples.

    Examples:
        .. code-block:: python

155 156
            import paddle

C
cnn 已提交
157
            paddle.seed(100) # on CPU device
158
            x = paddle.rand([2,4])
159
            print(x)
160 161 162
            # [[0.5535528  0.20714243 0.01162981 0.51577556]
            # [0.36369765 0.2609165  0.18905126 0.5621971 ]]

C
cnn 已提交
163
            paddle.seed(200) # on CPU device
164
            out1 = paddle.multinomial(x, num_samples=5, replacement=True)
165
            print(out1)
166 167 168 169 170 171 172
            # [[3 3 0 0 0]
            # [3 3 3 1 0]]

            # out2 = paddle.multinomial(x, num_samples=5)
            # InvalidArgumentError: When replacement is False, number of samples
            #  should be less than non-zero categories

C
cnn 已提交
173
            paddle.seed(300) # on CPU device
174
            out3 = paddle.multinomial(x, num_samples=3)
175
            print(out3)
176 177
            # [[3 0 1]
            # [3 1 0]]
P
pangyoki 已提交
178 179 180

    """

181 182 183
    assert core.is_compiled_with_rocm() == False, (
        "multinomial op is not supported on ROCM yet.")

H
hong 已提交
184 185 186 187
    if in_dygraph_mode():
        return _C_ops.final_state_multinomial(x, num_samples, replacement)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
188 189
        return _C_ops.multinomial(x, 'num_samples', num_samples, 'replacement',
                                  replacement)
P
pangyoki 已提交
190 191 192 193 194 195

    check_variable_and_dtype(x, "x", ["float32", "float64"], "multinomial")

    helper = LayerHelper("multinomial", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=convert_np_dtype_to_dtype_('int64'))
196 197 198 199 200 201 202
    helper.append_op(type='multinomial',
                     inputs={"X": x},
                     outputs={'Out': out},
                     attrs={
                         'num_samples': num_samples,
                         'replacement': replacement
                     })
203
    out.stop_gradient = True
P
pangyoki 已提交
204 205 206
    return out


207
def gaussian(shape, mean=0.0, std=1.0, dtype=None, name=None):
208
    """
209
    Returns a Tensor filled with random values sampled from a Gaussian
210 211 212
    distribution, with ``shape`` and ``dtype``.

    Args:
213
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
214 215 216 217
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
218 219
        mean (float|int, optional): Mean of the output tensor, default is 0.0.
        std (float|int, optional): Standard deviation of the output tensor, default
220
            is 1.0.
221 222
        seed (int, optional): Random seed of generator.
        dtype (str|np.dtype, optional): The data type of the output Tensor.
223 224 225
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
226
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
227 228 229 230 231

    Returns:
        Tensor: A Tensor filled with random values sampled from a Gaussian
        distribution, with ``shape`` and ``dtype``. 
    """
232 233 234
    op_type_for_check = 'gaussian/standard_normal/randn/normal'
    seed = 0

235 236 237 238
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
239 240
                "{} only supports [float32, float64], but the default dtype is {}"
                .format(op_type_for_check, dtype))
241 242 243
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

244 245 246
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        place = _current_expected_place()
247
        return _C_ops.final_state_gaussian_random(shape, float(mean),
248 249 250 251
                                                  float(std), seed, dtype,
                                                  place)

    if _in_legacy_dygraph():
252
        shape = utils.convert_shape_to_list(shape)
253 254
        return _C_ops.gaussian_random('shape',
                                      shape, 'mean', float(mean), 'std',
W
wanghuancoder 已提交
255
                                      float(std), 'seed', seed, 'dtype', dtype)
256

257
    check_shape(shape, op_type_for_check)
258 259 260 261 262 263 264 265 266 267
    check_dtype(dtype, 'dtype', ['float32', 'float64'], op_type_for_check)

    inputs = {}
    attrs = {
        'mean': mean,
        'std': std,
        'seed': seed,
        'dtype': dtype,
        'use_mkldnn': False
    }
268 269 270 271
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type=op_type_for_check)
272

273
    helper = LayerHelper('gaussian', **locals())
274
    out = helper.create_variable_for_type_inference(dtype)
275 276 277 278
    helper.append_op(type='gaussian_random',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
279 280 281 282 283 284
    out.stop_gradient = True
    return out


def standard_normal(shape, dtype=None, name=None):
    """
285
    Returns a Tensor filled with random values sampled from a standard
286 287 288 289
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
290
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
291 292 293 294
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
295
        dtype (str|np.dtype, optional): The data type of the output Tensor.
296 297 298
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
299 300 301 302 303 304 305 306 307 308 309 310 311 312
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
313
            out1 = paddle.standard_normal(shape=[2, 3])
314 315 316 317
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
318 319
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
320
            out2 = paddle.standard_normal(shape=[dim1, dim2, 2])
321 322 323 324 325 326 327 328
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
329
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
330
            out3 = paddle.standard_normal(shape_tensor)
331 332 333 334
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random

    """
335
    return gaussian(shape=shape, mean=0.0, std=1.0, dtype=dtype, name=name)
336 337


Z
zhupengyang 已提交
338 339
def randn(shape, dtype=None, name=None):
    """
340
    Returns a Tensor filled with random values sampled from a standard
Z
zhupengyang 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        dtype (str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
            out1 = paddle.randn(shape=[2, 3])
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.randn(shape=[dim1, dim2, 2])
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
            shape_tensor = paddle.to_tensor([2, 3])
            out3 = paddle.randn(shape_tensor)
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random
    """
    return standard_normal(shape, dtype, name)
390 391 392 393


def normal(mean=0.0, std=1.0, shape=None, name=None):
    """
394
    Returns a Tensor filled with random values sampled from a normal
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
    distribution with ``mean`` and ``std`` (standard deviation) .

    If ``mean`` is a Tensor, the output Tensor has the same shape and data type as ``mean``.
    If ``mean`` is not a Tensor and ``std`` is a Tensor, the output Tensor has the same shape and data type as ``std``.
    If ``mean`` and ``std`` are not a Tensor, the output Tensor has the same shape as ``shape``, with data type float32.

    If ``mean`` and ``std`` are Tensor, the num of elements of ``mean`` and ``std`` should be the same.

    Args:
        mean (float|Tensor, optional): The mean of the output Tensor's normal distribution.
            If ``mean`` is float, all elements of the output Tensor shared the same mean.
            If ``mean`` is a Tensor(data type supports float32, float64), it has per-element means.
            Default is 0.0
        std (float|Tensor, optional): The  standard deviation of the output Tensor's normal distribution.
            If ``std`` is float, all elements of the output Tensor shared the same standard deviation.
            If ``std`` is a Tensor(data type supports float32, float64), it has per-element standard deviations.
            Defaule is 1.0
        shape (list|tuple|Tensor, optional): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). If ``mean`` or ``std`` is a Tensor, the shape of the output
            Tensor is the same as ``mean`` or ``std`` , attr ``shape`` is ignored.
            Default is None
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor filled with random values sampled from a normal distribution with ``mean`` and ``std`` .

    Examples:
        .. code-block:: python

            import paddle

            out1 = paddle.normal(shape=[2, 3])
            # [[ 0.17501129  0.32364586  1.561118  ]  # random
            #  [-1.7232178   1.1545963  -0.76156676]]  # random

434
            mean_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
435 436 437
            out2 = paddle.normal(mean=mean_tensor)
            # [ 0.18644847 -1.19434458  3.93694787]  # random

438
            std_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
439 440 441 442
            out3 = paddle.normal(mean=mean_tensor, std=std_tensor)
            # [1.00780561 3.78457445 5.81058198]  # random

    """
Z
zhiboniu 已提交
443
    if not paddle.in_dynamic_mode():
444 445 446 447 448 449 450 451 452 453 454 455 456
        check_type(mean, 'mean', (int, float, Variable), 'normal')
        check_type(std, 'std', (int, float, Variable), 'normal')
        if isinstance(mean, Variable):
            check_dtype(
                mean.dtype, 'mean', ['float32', 'float64'], 'normal',
                "If mean is Tensor, it's data type only support float32, float64."
            )
        if isinstance(std, Variable):
            check_dtype(
                std.dtype, 'std', ['float32', 'float64'], 'normal',
                "If std is Tensor, it's data type only support float32, float64."
            )
        if shape is not None:
457
            check_shape(shape, 'normal')
458 459 460 461 462 463 464 465 466 467 468 469 470 471

    if isinstance(mean, Variable):
        if isinstance(std, Variable):
            if std.dtype != mean.dtype:
                std = paddle.cast(std, mean.dtype)
            mean_shape = paddle.shape(mean)
            std = paddle.reshape(std, mean_shape)
        else:
            std = float(std)
        out = standard_normal(paddle.shape(mean), mean.dtype, name)
    elif isinstance(std, Variable):
        mean = float(mean)
        out = standard_normal(paddle.shape(std), std.dtype, name)
    else:
472
        return gaussian(shape=shape, mean=mean, std=std, name=name)
473 474

    out = out * std + mean
Z
zhiboniu 已提交
475
    if not paddle.in_dynamic_mode():
476 477 478 479
        out.stop_grediant = True
    return out


480
def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
P
pangyoki 已提交
481
    """
482
    Returns a Tensor filled with random values sampled from a uniform
P
pangyoki 已提交
483 484 485
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
李灿 已提交
486

Z
zhupengyang 已提交
487
    .. code-block:: text
李灿 已提交
488

P
pangyoki 已提交
489 490 491 492 493 494 495 496 497 498 499
        Input:
          shape = [1, 2]
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
500 501 502 503
        dtype(str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
P
pangyoki 已提交
504 505 506 507
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
J
JYChen 已提交
508 509 510
        seed(int, optional): Random seed used for generating samples. If seed is 0,
            it will use the seed of the global default generator (which can be set by paddle.seed). 
            Note that if seed is not 0, this operator will always generate the same random numbers every
P
pangyoki 已提交
511
            time. Default is 0.
512 513
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
P
pangyoki 已提交
514 515 516 517 518 519 520

    Returns:
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python
521
          :name: code-example1
P
pangyoki 已提交
522 523 524 525 526
            
            import paddle

            # example 1:
            # attr shape is a list which doesn't contain Tensor.
Z
zhupengyang 已提交
527 528 529 530
            out1 = paddle.uniform(shape=[3, 4])
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
P
pangyoki 已提交
531 532 533

            # example 2:
            # attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
534 535 536 537 538
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.uniform(shape=[dim1, dim2])
            # [[-0.9951253,   0.30757582, 0.9899647 ], # random
            #  [ 0.5864527,   0.6607096,  -0.8886161]] # random
P
pangyoki 已提交
539 540 541

            # example 3:
            # attr shape is a Tensor, the data type must be int64 or int32.
542
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
543 544 545
            out3 = paddle.uniform(shape_tensor)
            # [[-0.8517412,  -0.4006908,   0.2551912 ], # random
            #  [ 0.3364414,   0.36278176, -0.16085452]] # random
P
pangyoki 已提交
546
    """
547 548 549 550
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
551 552
                "uniform/rand only supports [float32, float64], but the default dtype is {}"
                .format(dtype))
553

P
pangyoki 已提交
554 555 556
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

557 558
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
559
        return _C_ops.final_state_uniform_random(shape, dtype, float(min),
560 561 562 563
                                                 float(max), seed,
                                                 _current_expected_place())

    if _in_legacy_dygraph():
564
        shape = utils.convert_shape_to_list(shape)
565
        return _C_ops.uniform_random('shape', shape, 'min', float(min), 'max',
W
wanghuancoder 已提交
566
                                     float(max), 'seed', seed, 'dtype', dtype)
P
pangyoki 已提交
567

568 569
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform/rand')
    check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform/rand')
P
pangyoki 已提交
570 571 572

    inputs = dict()
    attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
573 574 575 576
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='uniform/rand')
P
pangyoki 已提交
577

578
    helper = LayerHelper("uniform", **locals())
P
pangyoki 已提交
579
    out = helper.create_variable_for_type_inference(dtype)
580 581 582 583
    helper.append_op(type="uniform_random",
                     inputs=inputs,
                     attrs=attrs,
                     outputs={"Out": out})
584
    out.stop_gradient = True
P
pangyoki 已提交
585 586 587
    return out


J
JYChen 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
@dygraph_only
def uniform_(x, min=-1.0, max=1.0, seed=0, name=None):
    """
    This is the inplace version of OP ``uniform``, which returns a Tensor filled 
    with random values sampled from a uniform distribution. The output Tensor will
    be inplaced with input ``x``. Please refer to :ref:`api_tensor_uniform`.
    
    Args:
        x(Tensor): The input tensor to be filled with random values.
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
        seed(int, optional): Random seed used for generating samples. If seed is 0, 
            it will use the seed of the global default generator (which can be set by paddle.seed). 
            Note that if seed is not 0, this operator will always generate the same random numbers every
            time. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: The input tensor x filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``).
    Examples:
        .. code-block:: python
            
            import paddle
            # example:
            x = paddle.ones(shape=[3, 4])
            x.uniform_()
            print(x)
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
    """
623 624
    return _C_ops.uniform_random_inplace_(x, 'min', min, 'max', max, 'seed',
                                          seed)
J
JYChen 已提交
625 626


627
def randint(low=0, high=None, shape=[1], dtype=None, name=None):
S
silingtong123 已提交
628
    """
629
    Returns a Tensor filled with random integers from a discrete uniform
630 631
    distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
    If ``high`` is None (the default), the range is [0, ``low``).
S
silingtong123 已提交
632 633

    Args:
634
        low (int, optional): The lower bound on the range of random values to generate.
635 636
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
637
        high (int, optional): The upper bound on the range of random values to
638 639
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
640
        shape (list|tuple|Tensor, optional): The shape of the output Tensor. If ``shape``
641 642 643 644
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). Default is [1].
645
        dtype (str|np.dtype, optional): The data type of the
646 647
            output tensor. Supported data types: int32, int64. If ``dytpe``
            is None, the data type is int64. Default is None.
648
        name (str, optional): The default value is None.  Normally there is no
649 650
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.
S
silingtong123 已提交
651 652

    Returns: 
653 654
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
S
silingtong123 已提交
655 656 657

    Examples:
        .. code-block:: python
658

659
            import paddle
660

661 662
            # example 1:
            # attr shape is a list which doesn't contain Tensor.
663
            out1 = paddle.randint(low=-5, high=5, shape=[3])
664 665 666 667
            # [0, -3, 2]  # random

            # example 2:
            # attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
668 669 670
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.randint(low=-5, high=5, shape=[dim1, dim2])
671 672 673 674 675
            # [[0, -1, -3],  # random
            #  [4, -2,  0]]  # random

            # example 3:
            # attr shape is a Tensor
676
            shape_tensor = paddle.to_tensor(3)
Z
zhupengyang 已提交
677
            out3 = paddle.randint(low=-5, high=5, shape=shape_tensor)
678 679 680 681
            # [-2, 2, 3]  # random

            # example 4:
            # data type is int32
682
            out4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
683 684 685 686 687
            # [-5, 4, -4]  # random

            # example 5:
            # Input only one parameter
            # low=0, high=10, shape=[1], dtype='int64'
688
            out5 = paddle.randint(10)
689
            # [7]  # random
S
silingtong123 已提交
690

691 692
    """
    if high is None:
693 694
        if low <= 0:
            raise ValueError(
695 696
                "If high is None, low must be greater than 0, but received low = {0}."
                .format(low))
697 698
        high = low
        low = 0
S
silingtong123 已提交
699 700
    if dtype is None:
        dtype = 'int64'
701 702
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
S
silingtong123 已提交
703

F
From00 已提交
704 705 706 707 708
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        place = _current_expected_place()
        return _C_ops.final_state_randint(low, high, shape, dtype, place)
    if _in_legacy_dygraph():
709
        shape = utils.convert_shape_to_list(shape)
W
wanghuancoder 已提交
710 711
        return _C_ops.randint('shape', shape, 'low', low, 'high', high, 'seed',
                              0, 'dtype', dtype)
S
silingtong123 已提交
712

713
    check_shape(shape, 'randint')
714 715
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')
    if low >= high:
S
silingtong123 已提交
716 717 718 719
        raise ValueError(
            "randint's low must less then high, but received low = {0}, "
            "high = {1}".format(low, high))

720 721
    inputs = dict()
    attrs = {'low': low, 'high': high, 'seed': 0, 'dtype': dtype}
722 723 724 725
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='randint')
726 727 728

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(dtype=dtype)
729 730 731 732
    helper.append_op(type='randint',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
733
    out.stop_gradient = True
S
silingtong123 已提交
734
    return out
C
cc 已提交
735 736


737 738
def randint_like(x, low=0, high=None, dtype=None, name=None):
    """
739
    Returns a Tensor filled with random integers from a discrete uniform
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
    distribution in the range [``low``, ``high``), with the same shape as ``x``.
    (use ``dtype`` if ``dtype`` is not None) 
    If ``high`` is None (the default), the range is [0, ``low``).

    Args:
        x (Tensor): The input tensor which specifies shape. The dtype of ``x`` 
            can be bool, int32, int64, float16, float32, float64.
        low (int): The lower bound on the range of random values to generate.
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
        high (int, optional): The upper bound on the range of random values to
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
        dtype (str|np.dtype, optional): The data type of the
            output tensor. Supported data types: bool, int32, int64, float16, 
            float32, float64. If ``dytpe`` is None, the data type is the
            same as x's data type. Default is None.
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1:
            # dtype is None and the dtype of x is float16
            x = paddle.zeros((1,2)).astype("float16")
            out1 = paddle.randint_like(x, low=-5, high=5)
            print(out1)
            print(out1.dtype)
            # [[0, -3]]  # random
            # paddle.float16

            # example 2:
            # dtype is None and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out2 = paddle.randint_like(x, low=-5, high=5)
            print(out2)
            print(out2.dtype)
            # [[0, -3]]  # random
            # paddle.float32

            # example 3:
            # dtype is None and the dtype of x is float64
            x = paddle.zeros((1,2)).astype("float64")
            out3 = paddle.randint_like(x, low=-5, high=5)
            print(out3)
            print(out3.dtype)
            # [[0, -3]]  # random
            # paddle.float64

            # example 4:
            # dtype is None and the dtype of x is int32
            x = paddle.zeros((1,2)).astype("int32")
            out4 = paddle.randint_like(x, low=-5, high=5)
            print(out4)
            print(out4.dtype)
            # [[0, -3]]  # random
            # paddle.int32

            # example 5:
            # dtype is None and the dtype of x is int64
            x = paddle.zeros((1,2)).astype("int64")
            out5 = paddle.randint_like(x, low=-5, high=5)
            print(out5)
            print(out5.dtype)
            # [[0, -3]]  # random
            # paddle.int64

            # example 6:
            # dtype is float64 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out6 = paddle.randint_like(x, low=-5, high=5, dtype="float64")
            print(out6)
            print(out6.dtype)
            # [[0, -1]]  # random
            # paddle.float64

            # example 7:
            # dtype is bool and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out7 = paddle.randint_like(x, low=-5, high=5, dtype="bool")
            print(out7)
            print(out7.dtype)
            # [[0, -1]]  # random
            # paddle.bool

            # example 8:
            # dtype is int32 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out8 = paddle.randint_like(x, low=-5, high=5, dtype="int32")
            print(out8)
            print(out8.dtype)
            # [[0, -1]]  # random
            # paddle.int32

            # example 9:
            # dtype is int64 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out9 = paddle.randint_like(x, low=-5, high=5, dtype="int64")
            print(out9)
            print(out9.dtype)
            # [[0, -1]]  # random
            # paddle.int64

            # example 10:
            # dtype is int64 and the dtype of x is bool
            x = paddle.zeros((1,2)).astype("bool")
            out10 = paddle.randint_like(x, low=-5, high=5, dtype="int64")
            print(out10)
            print(out10.dtype)
            # [[0, -1]]  # random
            # paddle.int64

    """
    if high is None:
        if low <= 0:
            raise ValueError(
864 865
                "If high is None, low must be greater than 0, but received low = {0}."
                .format(low))
866 867 868 869 870 871 872 873 874 875 876 877 878
        high = low
        low = 0
    if dtype is None:
        dtype = x.dtype
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    shape = x.shape

    if low >= high:
        raise ValueError(
            "randint_like's low must less then high, but received low = {0}, "
            "high = {1}".format(low, high))

Z
zhiboniu 已提交
879
    if paddle.in_dynamic_mode():
880 881 882 883 884 885 886 887
        shape = utils.convert_shape_to_list(shape)
        out = _C_ops.randint('shape', shape, 'low', low, 'high', high, 'seed',
                             0, 'dtype', core.VarDesc.VarType.INT64)
        out = paddle.cast(out, dtype)
        return out

    check_shape(shape, 'randint_like')
    check_dtype(dtype, 'dtype',
888 889
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'randint_like')
890 891 892 893 894 895 896 897

    inputs = dict()
    attrs = {
        'low': low,
        'high': high,
        'seed': 0,
        'dtype': core.VarDesc.VarType.INT64
    }
898 899 900 901
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='randint_like')
902 903 904 905

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)
906 907 908 909
    helper.append_op(type='randint',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
910 911 912 913 914
    out.stop_gradient = True
    out = paddle.cast(out, dtype)
    return out


915
def randperm(n, dtype="int64", name=None):
C
cc 已提交
916
    """
917
    Returns a 1-D Tensor filled with random permutation values from 0
918
    to n-1, with ``dtype``.
C
cc 已提交
919 920

    Args:
921 922
        n (int): The upper bound (exclusive), and it should be greater than 0.
        dtype (str|np.dtype, optional): The data type of
923 924
            the output Tensor. Supported data types: int32, int64, float32,
            float64. Default is int64.
925
        name (str, optional): The default value is None. Normally there is no
926 927
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
C
cc 已提交
928 929

    Returns:
930 931
        Tensor: A 1-D Tensor filled with random permutation values from 0
        to n-1, with ``dtype``.
C
cc 已提交
932 933 934 935

    Examples:
        .. code-block:: python

936
            import paddle
C
cc 已提交
937

938
            out1 = paddle.randperm(5)
939
            # [4, 1, 2, 3, 0]  # random
C
cc 已提交
940

941
            out2 = paddle.randperm(7, 'int32')
942
            # [1, 6, 2, 0, 4, 3, 5]  # random
C
cc 已提交
943 944
 
    """
945 946 947
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

Z
zyfncg 已提交
948
    if in_dygraph_mode():
F
From00 已提交
949
        return _C_ops.final_state_randperm(n, dtype, _current_expected_place())
Z
zyfncg 已提交
950
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
951
        return _C_ops.randperm('n', n, 'seed', 0, 'dtype', dtype)
C
cc 已提交
952 953 954

    if n < 1:
        raise ValueError("The input n should be greater than 0 in randperm op.")
955 956
    check_dtype(dtype, 'dtype', ['int64', 'int32', 'float32', 'float64'],
                'randperm')
C
cc 已提交
957 958

    helper = LayerHelper("randperm", **locals())
959 960
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {'n': n, 'dtype': dtype, 'seed': 0}
961 962 963 964
    helper.append_op(type='randperm',
                     inputs={},
                     outputs={'Out': out},
                     attrs=attrs)
965
    out.stop_gradient = True
C
cc 已提交
966
    return out
X
Xing Wu 已提交
967 968


969
def rand(shape, dtype=None, name=None):
X
Xing Wu 已提交
970
    """
971
    Returns a Tensor filled with random values sampled from a uniform
972
    distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
973 974

    Args:
975
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
976 977 978 979
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
980
        dtype (str|np.dtype, optional): The data type of the output Tensor.
981 982 983
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
984
        name (str, optional): The default value is None. Normally there is no
985 986
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
987

X
Xing Wu 已提交
988
    Returns:
989 990
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
991 992 993 994

    Examples:
        .. code-block:: python

995
            import paddle
996

997
            # example 1: attr shape is a list which doesn't contain Tensor.
998
            out1 = paddle.rand(shape=[2, 3])
999 1000 1001 1002
            # [[0.451152  , 0.55825245, 0.403311  ],  # random
            #  [0.22550228, 0.22106001, 0.7877319 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
1003 1004
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
1005
            out2 = paddle.rand(shape=[dim1, dim2, 2])
1006 1007 1008 1009 1010 1011 1012 1013
            # [[[0.8879919 , 0.25788337],  # random
            #   [0.28826773, 0.9712097 ],  # random
            #   [0.26438272, 0.01796806]],  # random
            #  [[0.33633623, 0.28654453],  # random
            #   [0.79109055, 0.7305809 ],  # random
            #   [0.870881  , 0.2984597 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
1014
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
1015
            out3 = paddle.rand(shape_tensor)
1016 1017
            # [[0.22920267, 0.841956  , 0.05981819],  # random
            #  [0.4836288 , 0.24573246, 0.7516129 ]]  # random
X
Xing Wu 已提交
1018 1019

    """
1020
    return uniform(shape, dtype, min=0.0, max=1.0, name=name)
1021 1022 1023


def exponential_(x, lam=1.0, name=None):
1024
    r"""
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
    This inplace OP fill input Tensor ``x`` with random number from a Exponential Distribution.

    ``lam`` is :math:`\lambda` parameter of Exponential Distribution. 
    
    .. math::

        f(x) = \lambda e^{-\lambda x}

    Args:
        x(Tensor):  Input tensor. The data type should be float32, float64.
1035
        lam(float, optional): :math:`\lambda` parameter of Exponential Distribution. Default, 1.0.
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns: 
        Tensor: Input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle
            paddle.set_device('cpu')
            paddle.seed(100)

            x = paddle.empty([2,3])
            x.exponential_()
            # [[0.80643415, 0.23211166, 0.01169797],
            #  [0.72520673, 0.45208144, 0.30234432]]

    """
Z
zhiboniu 已提交
1055
    if paddle.in_dynamic_mode():
1056 1057 1058 1059 1060
        return _C_ops.exponential_(x, "lambda", lam)

    check_variable_and_dtype(x, "x", ["float32", "float64"], "exponential")

    helper = LayerHelper("exponential", **locals())
1061 1062 1063 1064
    helper.append_op(type='exponential',
                     inputs={"X": x},
                     outputs={'Out': x},
                     attrs={"lambda": lam})
1065
    return x