random.py 41.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define random functions  
S
silingtong123 已提交
16

Z
zhiboniu 已提交
17 18
from ..framework import core
from ..framework import convert_np_dtype_to_dtype_, dygraph_only
C
cc 已提交
19
from ..fluid.layer_helper import LayerHelper
20
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, check_shape
21 22
from ..fluid.layers import utils
import paddle
W
wanghuancoder 已提交
23
from paddle import _C_ops
Z
zhiboniu 已提交
24
from paddle.static import Variable
F
From00 已提交
25
from paddle.fluid.framework import in_dygraph_mode, _in_legacy_dygraph, _current_expected_place
S
silingtong123 已提交
26

27 28
__all__ = []

S
silingtong123 已提交
29

L
Leo Chen 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
def bernoulli(x, name=None):
    """

    This OP returns a Tensor filled with random binary(0 or 1) number from a Bernoulli distribution.
    The input ``x`` is a tensor with probabilities for generating the random binary number.
    Each element in ``x`` should be in [0, 1], and the out is generated by:
    
    .. math::

        out_i ~ Bernoulli (x_i)

    Args:
        x(Tensor):  A tensor with probabilities for generating the random binary number. The data type 
            should be float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns: 
        Tensor: A Tensor filled with random binary number with the same shape and dtype as ``x``.

    Examples:
        .. code-block:: python

53
            import paddle
L
Leo Chen 已提交
54

L
Leo Chen 已提交
55 56 57
            paddle.set_device('cpu')  # on CPU device
            paddle.seed(100) 

58
            x = paddle.rand([2,3])
L
Leo Chen 已提交
59 60 61
            print(x)
            # [[0.55355281, 0.20714243, 0.01162981],
            #  [0.51577556, 0.36369765, 0.26091650]]
L
Leo Chen 已提交
62

63
            out = paddle.bernoulli(x)
L
Leo Chen 已提交
64 65 66
            print(out)
            # [[1., 0., 1.],
            #  [0., 1., 0.]]
L
Leo Chen 已提交
67 68 69

    """

H
hong 已提交
70 71 72 73
    if in_dygraph_mode():
        return _C_ops.final_state_bernoulli(x)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
74
        return _C_ops.bernoulli(x)
L
Leo Chen 已提交
75 76 77 78 79 80 81 82

    check_variable_and_dtype(x, "x", ["float32", "float64"], "bernoulli")

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype)  # maybe set out to int32 ? 
    helper.append_op(
        type='bernoulli', inputs={"X": x}, outputs={'Out': out}, attrs={})
83
    out.stop_gradient = True
L
Leo Chen 已提交
84 85 86
    return out


87
def poisson(x, name=None):
88
    r"""
89 90 91 92
    This OP returns a tensor filled with random number from a Poisson Distribution.

    .. math::

93
        out_i \sim Poisson (lambda = x_i)
94 95 96 97 98 99 100 101 102 103 104 105 106 107

    Args:
        x(Tensor):  A tensor with rate parameter of poisson Distribution. The data type 
            should be float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns: 
        Tensor: A Tensor filled with random number with the same shape and dtype as ``x``.

    Examples:
        .. code-block:: python

            import paddle
108
            paddle.set_device('cpu')
109
            paddle.seed(100)
110 111 112

            x = paddle.uniform([2,3], min=1.0, max=5.0)
            out = paddle.poisson(x)
113 114
            #[[2., 5., 0.],
            # [5., 1., 3.]]
115 116 117

    """

Z
zhiboniu 已提交
118
    if paddle.in_dynamic_mode():
119 120 121 122 123 124 125 126 127 128 129
        return _C_ops.poisson(x)

    check_variable_and_dtype(x, "x", ["float32", "float64"], "poisson")

    helper = LayerHelper("poisson", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='poisson', inputs={'X': x}, outputs={'Out': out}, attrs={})
    return out


P
pangyoki 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
def multinomial(x, num_samples=1, replacement=False, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a Multinomical
    distribution. The input ``x`` is a tensor with probabilities for generating the
    random number. Each element in ``x`` should be larger or equal to 0, but not all
    0. ``replacement`` indicates whether it is a replaceable sample. If ``replacement``
    is True, a category can be sampled more than once.

    Args:
        x(Tensor):  A tensor with probabilities for generating the random number. The data type
            should be float32, float64.
        num_samples(int, optional): Number of samples, default is 1.
        replacement(bool, optional): Whether it is a replaceable sample, default is False.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: A Tensor filled with sampled category index after ``num_samples`` times samples.

    Examples:
        .. code-block:: python

152 153
            import paddle

C
cnn 已提交
154
            paddle.seed(100) # on CPU device
155
            x = paddle.rand([2,4])
156
            print(x)
157 158 159
            # [[0.5535528  0.20714243 0.01162981 0.51577556]
            # [0.36369765 0.2609165  0.18905126 0.5621971 ]]

C
cnn 已提交
160
            paddle.seed(200) # on CPU device
161
            out1 = paddle.multinomial(x, num_samples=5, replacement=True)
162
            print(out1)
163 164 165 166 167 168 169
            # [[3 3 0 0 0]
            # [3 3 3 1 0]]

            # out2 = paddle.multinomial(x, num_samples=5)
            # InvalidArgumentError: When replacement is False, number of samples
            #  should be less than non-zero categories

C
cnn 已提交
170
            paddle.seed(300) # on CPU device
171
            out3 = paddle.multinomial(x, num_samples=3)
172
            print(out3)
173 174
            # [[3 0 1]
            # [3 1 0]]
P
pangyoki 已提交
175 176 177

    """

178 179 180
    assert core.is_compiled_with_rocm() == False, (
        "multinomial op is not supported on ROCM yet.")

H
hong 已提交
181 182 183 184
    if in_dygraph_mode():
        return _C_ops.final_state_multinomial(x, num_samples, replacement)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
185 186
        return _C_ops.multinomial(x, 'num_samples', num_samples, 'replacement',
                                  replacement)
P
pangyoki 已提交
187 188 189 190 191 192 193 194 195 196 197 198

    check_variable_and_dtype(x, "x", ["float32", "float64"], "multinomial")

    helper = LayerHelper("multinomial", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=convert_np_dtype_to_dtype_('int64'))
    helper.append_op(
        type='multinomial',
        inputs={"X": x},
        outputs={'Out': out},
        attrs={'num_samples': num_samples,
               'replacement': replacement})
199
    out.stop_gradient = True
P
pangyoki 已提交
200 201 202
    return out


203
def gaussian(shape, mean=0.0, std=1.0, dtype=None, name=None):
204 205 206 207 208
    """
    This OP returns a Tensor filled with random values sampled from a Gaussian
    distribution, with ``shape`` and ``dtype``.

    Args:
209
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
210 211 212 213
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
214 215
        mean (float|int, optional): Mean of the output tensor, default is 0.0.
        std (float|int, optional): Standard deviation of the output tensor, default
216
            is 1.0.
217 218
        seed (int, optional): Random seed of generator.
        dtype (str|np.dtype, optional): The data type of the output Tensor.
219 220 221
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
222
        name (str, optional): The default value is None. Normally there is no
223 224 225 226 227 228 229
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a Gaussian
        distribution, with ``shape`` and ``dtype``. 
    """
230 231 232
    op_type_for_check = 'gaussian/standard_normal/randn/normal'
    seed = 0

233 234 235 236
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
237 238
                "{} only supports [float32, float64], but the default dtype is {}"
                .format(op_type_for_check, dtype))
239 240 241
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

242 243 244 245 246 247 248 249 250
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        place = _current_expected_place()
        return _C_ops.final_state_gaussian_random(shape,
                                                  float(mean),
                                                  float(std), seed, dtype,
                                                  place)

    if _in_legacy_dygraph():
251
        shape = utils.convert_shape_to_list(shape)
W
wanghuancoder 已提交
252 253 254
        return _C_ops.gaussian_random('shape', shape, 'mean',
                                      float(mean), 'std',
                                      float(std), 'seed', seed, 'dtype', dtype)
255

256
    check_shape(shape, op_type_for_check)
257 258 259 260 261 262 263 264 265 266
    check_dtype(dtype, 'dtype', ['float32', 'float64'], op_type_for_check)

    inputs = {}
    attrs = {
        'mean': mean,
        'std': std,
        'seed': seed,
        'dtype': dtype,
        'use_mkldnn': False
    }
267
    utils.get_shape_tensor_inputs(
268 269
        inputs=inputs, attrs=attrs, shape=shape, op_type=op_type_for_check)

270
    helper = LayerHelper('gaussian', **locals())
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='gaussian_random',
        inputs=inputs,
        outputs={'Out': out},
        attrs=attrs)
    out.stop_gradient = True
    return out


def standard_normal(shape, dtype=None, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a standard
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
288
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
289 290 291 292
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
293
        dtype (str|np.dtype, optional): The data type of the output Tensor.
294 295 296
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
297 298 299 300 301 302 303 304 305 306 307 308 309 310
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
311
            out1 = paddle.standard_normal(shape=[2, 3])
312 313 314 315
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
316 317
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
318
            out2 = paddle.standard_normal(shape=[dim1, dim2, 2])
319 320 321 322 323 324 325 326
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
327
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
328
            out3 = paddle.standard_normal(shape_tensor)
329 330 331 332
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random

    """
333
    return gaussian(shape=shape, mean=0.0, std=1.0, dtype=dtype, name=name)
334 335


Z
zhupengyang 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
def randn(shape, dtype=None, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a standard
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        dtype (str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
            out1 = paddle.randn(shape=[2, 3])
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.randn(shape=[dim1, dim2, 2])
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
            shape_tensor = paddle.to_tensor([2, 3])
            out3 = paddle.randn(shape_tensor)
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random
    """
    return standard_normal(shape, dtype, name)
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431


def normal(mean=0.0, std=1.0, shape=None, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a normal
    distribution with ``mean`` and ``std`` (standard deviation) .

    If ``mean`` is a Tensor, the output Tensor has the same shape and data type as ``mean``.
    If ``mean`` is not a Tensor and ``std`` is a Tensor, the output Tensor has the same shape and data type as ``std``.
    If ``mean`` and ``std`` are not a Tensor, the output Tensor has the same shape as ``shape``, with data type float32.

    If ``mean`` and ``std`` are Tensor, the num of elements of ``mean`` and ``std`` should be the same.

    Args:
        mean (float|Tensor, optional): The mean of the output Tensor's normal distribution.
            If ``mean`` is float, all elements of the output Tensor shared the same mean.
            If ``mean`` is a Tensor(data type supports float32, float64), it has per-element means.
            Default is 0.0
        std (float|Tensor, optional): The  standard deviation of the output Tensor's normal distribution.
            If ``std`` is float, all elements of the output Tensor shared the same standard deviation.
            If ``std`` is a Tensor(data type supports float32, float64), it has per-element standard deviations.
            Defaule is 1.0
        shape (list|tuple|Tensor, optional): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). If ``mean`` or ``std`` is a Tensor, the shape of the output
            Tensor is the same as ``mean`` or ``std`` , attr ``shape`` is ignored.
            Default is None
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor filled with random values sampled from a normal distribution with ``mean`` and ``std`` .

    Examples:
        .. code-block:: python

            import paddle

            out1 = paddle.normal(shape=[2, 3])
            # [[ 0.17501129  0.32364586  1.561118  ]  # random
            #  [-1.7232178   1.1545963  -0.76156676]]  # random

432
            mean_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
433 434 435
            out2 = paddle.normal(mean=mean_tensor)
            # [ 0.18644847 -1.19434458  3.93694787]  # random

436
            std_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
437 438 439 440
            out3 = paddle.normal(mean=mean_tensor, std=std_tensor)
            # [1.00780561 3.78457445 5.81058198]  # random

    """
Z
zhiboniu 已提交
441
    if not paddle.in_dynamic_mode():
442 443 444 445 446 447 448 449 450 451 452 453 454
        check_type(mean, 'mean', (int, float, Variable), 'normal')
        check_type(std, 'std', (int, float, Variable), 'normal')
        if isinstance(mean, Variable):
            check_dtype(
                mean.dtype, 'mean', ['float32', 'float64'], 'normal',
                "If mean is Tensor, it's data type only support float32, float64."
            )
        if isinstance(std, Variable):
            check_dtype(
                std.dtype, 'std', ['float32', 'float64'], 'normal',
                "If std is Tensor, it's data type only support float32, float64."
            )
        if shape is not None:
455
            check_shape(shape, 'normal')
456 457 458 459 460 461 462 463 464 465 466 467 468 469

    if isinstance(mean, Variable):
        if isinstance(std, Variable):
            if std.dtype != mean.dtype:
                std = paddle.cast(std, mean.dtype)
            mean_shape = paddle.shape(mean)
            std = paddle.reshape(std, mean_shape)
        else:
            std = float(std)
        out = standard_normal(paddle.shape(mean), mean.dtype, name)
    elif isinstance(std, Variable):
        mean = float(mean)
        out = standard_normal(paddle.shape(std), std.dtype, name)
    else:
470
        return gaussian(shape=shape, mean=mean, std=std, name=name)
471 472

    out = out * std + mean
Z
zhiboniu 已提交
473
    if not paddle.in_dynamic_mode():
474 475 476 477
        out.stop_grediant = True
    return out


478
def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
P
pangyoki 已提交
479 480 481 482 483
    """
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
李灿 已提交
484

Z
zhupengyang 已提交
485
    .. code-block:: text
李灿 已提交
486

P
pangyoki 已提交
487 488 489 490 491 492 493 494 495 496 497
        Input:
          shape = [1, 2]
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
498 499 500 501
        dtype(str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
P
pangyoki 已提交
502 503 504 505
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
J
JYChen 已提交
506 507 508
        seed(int, optional): Random seed used for generating samples. If seed is 0,
            it will use the seed of the global default generator (which can be set by paddle.seed). 
            Note that if seed is not 0, this operator will always generate the same random numbers every
P
pangyoki 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
            time. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Raises:
        TypeError: If ``shape`` is not list, tuple, Tensor.
        TypeError: If ``dtype`` is not float32, float64.

    Examples:
        .. code-block:: python
            
            import paddle

            # example 1:
            # attr shape is a list which doesn't contain Tensor.
Z
zhupengyang 已提交
529 530 531 532
            out1 = paddle.uniform(shape=[3, 4])
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
P
pangyoki 已提交
533 534 535

            # example 2:
            # attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
536 537 538 539 540
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.uniform(shape=[dim1, dim2])
            # [[-0.9951253,   0.30757582, 0.9899647 ], # random
            #  [ 0.5864527,   0.6607096,  -0.8886161]] # random
P
pangyoki 已提交
541 542 543

            # example 3:
            # attr shape is a Tensor, the data type must be int64 or int32.
544
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
545 546 547
            out3 = paddle.uniform(shape_tensor)
            # [[-0.8517412,  -0.4006908,   0.2551912 ], # random
            #  [ 0.3364414,   0.36278176, -0.16085452]] # random
P
pangyoki 已提交
548
    """
549 550 551 552
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
553 554
                "uniform/rand only supports [float32, float64], but the default dtype is {}".
                format(dtype))
555

P
pangyoki 已提交
556 557 558
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

559 560 561 562 563 564 565 566
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        return _C_ops.final_state_uniform_random(shape, dtype,
                                                 float(min),
                                                 float(max), seed,
                                                 _current_expected_place())

    if _in_legacy_dygraph():
567
        shape = utils.convert_shape_to_list(shape)
W
wanghuancoder 已提交
568 569 570
        return _C_ops.uniform_random('shape', shape, 'min',
                                     float(min), 'max',
                                     float(max), 'seed', seed, 'dtype', dtype)
P
pangyoki 已提交
571

572 573
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform/rand')
    check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform/rand')
P
pangyoki 已提交
574 575 576

    inputs = dict()
    attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
577
    utils.get_shape_tensor_inputs(
578
        inputs=inputs, attrs=attrs, shape=shape, op_type='uniform/rand')
P
pangyoki 已提交
579

580
    helper = LayerHelper("uniform", **locals())
P
pangyoki 已提交
581 582 583 584
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs,
        outputs={"Out": out})
585
    out.stop_gradient = True
P
pangyoki 已提交
586 587 588
    return out


J
JYChen 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
@dygraph_only
def uniform_(x, min=-1.0, max=1.0, seed=0, name=None):
    """
    This is the inplace version of OP ``uniform``, which returns a Tensor filled 
    with random values sampled from a uniform distribution. The output Tensor will
    be inplaced with input ``x``. Please refer to :ref:`api_tensor_uniform`.
    
    Args:
        x(Tensor): The input tensor to be filled with random values.
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
        seed(int, optional): Random seed used for generating samples. If seed is 0, 
            it will use the seed of the global default generator (which can be set by paddle.seed). 
            Note that if seed is not 0, this operator will always generate the same random numbers every
            time. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: The input tensor x filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``).
    Examples:
        .. code-block:: python
            
            import paddle
            # example:
            x = paddle.ones(shape=[3, 4])
            x.uniform_()
            print(x)
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
    """
624 625
    return _C_ops.uniform_random_inplace_(x, 'min', min, 'max', max, 'seed',
                                          seed)
J
JYChen 已提交
626 627


628
def randint(low=0, high=None, shape=[1], dtype=None, name=None):
S
silingtong123 已提交
629
    """
630 631 632
    This OP returns a Tensor filled with random integers from a discrete uniform
    distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
    If ``high`` is None (the default), the range is [0, ``low``).
S
silingtong123 已提交
633 634

    Args:
635
        low (int): The lower bound on the range of random values to generate.
636 637
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
638
        high (int, optional): The upper bound on the range of random values to
639 640
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
641
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
642 643 644 645
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). Default is [1].
646
        dtype (str|np.dtype, optional): The data type of the
647 648
            output tensor. Supported data types: int32, int64. If ``dytpe``
            is None, the data type is int64. Default is None.
649
        name (str, optional): The default value is None.  Normally there is no
650 651
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.
S
silingtong123 已提交
652 653

    Returns: 
654 655
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
S
silingtong123 已提交
656 657 658

    Examples:
        .. code-block:: python
659

660
            import paddle
661

662 663
            # example 1:
            # attr shape is a list which doesn't contain Tensor.
664
            out1 = paddle.randint(low=-5, high=5, shape=[3])
665 666 667 668
            # [0, -3, 2]  # random

            # example 2:
            # attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
669 670 671
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.randint(low=-5, high=5, shape=[dim1, dim2])
672 673 674 675 676
            # [[0, -1, -3],  # random
            #  [4, -2,  0]]  # random

            # example 3:
            # attr shape is a Tensor
677
            shape_tensor = paddle.to_tensor(3)
Z
zhupengyang 已提交
678
            out3 = paddle.randint(low=-5, high=5, shape=shape_tensor)
679 680 681 682
            # [-2, 2, 3]  # random

            # example 4:
            # data type is int32
683
            out4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
684 685 686 687 688
            # [-5, 4, -4]  # random

            # example 5:
            # Input only one parameter
            # low=0, high=10, shape=[1], dtype='int64'
689
            out5 = paddle.randint(10)
690
            # [7]  # random
S
silingtong123 已提交
691

692 693
    """
    if high is None:
694 695 696 697
        if low <= 0:
            raise ValueError(
                "If high is None, low must be greater than 0, but received low = {0}.".
                format(low))
698 699
        high = low
        low = 0
S
silingtong123 已提交
700 701
    if dtype is None:
        dtype = 'int64'
702 703
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
S
silingtong123 已提交
704

F
From00 已提交
705 706 707 708 709
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        place = _current_expected_place()
        return _C_ops.final_state_randint(low, high, shape, dtype, place)
    if _in_legacy_dygraph():
710
        shape = utils.convert_shape_to_list(shape)
W
wanghuancoder 已提交
711 712
        return _C_ops.randint('shape', shape, 'low', low, 'high', high, 'seed',
                              0, 'dtype', dtype)
S
silingtong123 已提交
713

714
    check_shape(shape, 'randint')
715 716
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')
    if low >= high:
S
silingtong123 已提交
717 718 719 720
        raise ValueError(
            "randint's low must less then high, but received low = {0}, "
            "high = {1}".format(low, high))

721 722
    inputs = dict()
    attrs = {'low': low, 'high': high, 'seed': 0, 'dtype': dtype}
723
    utils.get_shape_tensor_inputs(
724 725 726 727 728 729
        inputs=inputs, attrs=attrs, shape=shape, op_type='randint')

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(dtype=dtype)
    helper.append_op(
        type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs)
730
    out.stop_gradient = True
S
silingtong123 已提交
731
    return out
C
cc 已提交
732 733


734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
def randint_like(x, low=0, high=None, dtype=None, name=None):
    """
    This OP returns a Tensor filled with random integers from a discrete uniform
    distribution in the range [``low``, ``high``), with the same shape as ``x``.
    (use ``dtype`` if ``dtype`` is not None) 
    If ``high`` is None (the default), the range is [0, ``low``).

    Args:
        x (Tensor): The input tensor which specifies shape. The dtype of ``x`` 
            can be bool, int32, int64, float16, float32, float64.
        low (int): The lower bound on the range of random values to generate.
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
        high (int, optional): The upper bound on the range of random values to
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
        dtype (str|np.dtype, optional): The data type of the
            output tensor. Supported data types: bool, int32, int64, float16, 
            float32, float64. If ``dytpe`` is None, the data type is the
            same as x's data type. Default is None.
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1:
            # dtype is None and the dtype of x is float16
            x = paddle.zeros((1,2)).astype("float16")
            out1 = paddle.randint_like(x, low=-5, high=5)
            print(out1)
            print(out1.dtype)
            # [[0, -3]]  # random
            # paddle.float16

            # example 2:
            # dtype is None and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out2 = paddle.randint_like(x, low=-5, high=5)
            print(out2)
            print(out2.dtype)
            # [[0, -3]]  # random
            # paddle.float32

            # example 3:
            # dtype is None and the dtype of x is float64
            x = paddle.zeros((1,2)).astype("float64")
            out3 = paddle.randint_like(x, low=-5, high=5)
            print(out3)
            print(out3.dtype)
            # [[0, -3]]  # random
            # paddle.float64

            # example 4:
            # dtype is None and the dtype of x is int32
            x = paddle.zeros((1,2)).astype("int32")
            out4 = paddle.randint_like(x, low=-5, high=5)
            print(out4)
            print(out4.dtype)
            # [[0, -3]]  # random
            # paddle.int32

            # example 5:
            # dtype is None and the dtype of x is int64
            x = paddle.zeros((1,2)).astype("int64")
            out5 = paddle.randint_like(x, low=-5, high=5)
            print(out5)
            print(out5.dtype)
            # [[0, -3]]  # random
            # paddle.int64

            # example 6:
            # dtype is float64 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out6 = paddle.randint_like(x, low=-5, high=5, dtype="float64")
            print(out6)
            print(out6.dtype)
            # [[0, -1]]  # random
            # paddle.float64

            # example 7:
            # dtype is bool and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out7 = paddle.randint_like(x, low=-5, high=5, dtype="bool")
            print(out7)
            print(out7.dtype)
            # [[0, -1]]  # random
            # paddle.bool

            # example 8:
            # dtype is int32 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out8 = paddle.randint_like(x, low=-5, high=5, dtype="int32")
            print(out8)
            print(out8.dtype)
            # [[0, -1]]  # random
            # paddle.int32

            # example 9:
            # dtype is int64 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out9 = paddle.randint_like(x, low=-5, high=5, dtype="int64")
            print(out9)
            print(out9.dtype)
            # [[0, -1]]  # random
            # paddle.int64

            # example 10:
            # dtype is int64 and the dtype of x is bool
            x = paddle.zeros((1,2)).astype("bool")
            out10 = paddle.randint_like(x, low=-5, high=5, dtype="int64")
            print(out10)
            print(out10.dtype)
            # [[0, -1]]  # random
            # paddle.int64

    """
    if high is None:
        if low <= 0:
            raise ValueError(
                "If high is None, low must be greater than 0, but received low = {0}.".
                format(low))
        high = low
        low = 0
    if dtype is None:
        dtype = x.dtype
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    shape = x.shape

    if low >= high:
        raise ValueError(
            "randint_like's low must less then high, but received low = {0}, "
            "high = {1}".format(low, high))

Z
zhiboniu 已提交
876
    if paddle.in_dynamic_mode():
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
        shape = utils.convert_shape_to_list(shape)
        out = _C_ops.randint('shape', shape, 'low', low, 'high', high, 'seed',
                             0, 'dtype', core.VarDesc.VarType.INT64)
        out = paddle.cast(out, dtype)
        return out

    check_shape(shape, 'randint_like')
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32',
                 'int64'], 'randint_like')

    inputs = dict()
    attrs = {
        'low': low,
        'high': high,
        'seed': 0,
        'dtype': core.VarDesc.VarType.INT64
    }
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='randint_like')

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)
    helper.append_op(
        type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    out.stop_gradient = True
    out = paddle.cast(out, dtype)
    return out


908
def randperm(n, dtype="int64", name=None):
C
cc 已提交
909
    """
910 911
    This OP returns a 1-D Tensor filled with random permutation values from 0
    to n-1, with ``dtype``.
C
cc 已提交
912 913

    Args:
914 915
        n (int): The upper bound (exclusive), and it should be greater than 0.
        dtype (str|np.dtype, optional): The data type of
916 917
            the output Tensor. Supported data types: int32, int64, float32,
            float64. Default is int64.
918
        name (str, optional): The default value is None. Normally there is no
919 920
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
C
cc 已提交
921 922

    Returns:
923 924
        Tensor: A 1-D Tensor filled with random permutation values from 0
        to n-1, with ``dtype``.
C
cc 已提交
925 926 927 928

    Examples:
        .. code-block:: python

929
            import paddle
C
cc 已提交
930

931
            out1 = paddle.randperm(5)
932
            # [4, 1, 2, 3, 0]  # random
C
cc 已提交
933

934
            out2 = paddle.randperm(7, 'int32')
935
            # [1, 6, 2, 0, 4, 3, 5]  # random
C
cc 已提交
936 937
 
    """
938 939 940
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

Z
zyfncg 已提交
941
    if in_dygraph_mode():
F
From00 已提交
942
        return _C_ops.final_state_randperm(n, dtype, _current_expected_place())
Z
zyfncg 已提交
943
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
944
        return _C_ops.randperm('n', n, 'seed', 0, 'dtype', dtype)
C
cc 已提交
945 946 947

    if n < 1:
        raise ValueError("The input n should be greater than 0 in randperm op.")
948 949
    check_dtype(dtype, 'dtype', ['int64', 'int32', 'float32', 'float64'],
                'randperm')
C
cc 已提交
950 951

    helper = LayerHelper("randperm", **locals())
952 953 954 955
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {'n': n, 'dtype': dtype, 'seed': 0}
    helper.append_op(
        type='randperm', inputs={}, outputs={'Out': out}, attrs=attrs)
956
    out.stop_gradient = True
C
cc 已提交
957
    return out
X
Xing Wu 已提交
958 959


960
def rand(shape, dtype=None, name=None):
X
Xing Wu 已提交
961
    """
962 963
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
964 965

    Args:
966
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
967 968 969 970
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
971
        dtype (str|np.dtype, optional): The data type of the output Tensor.
972 973 974
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
975
        name (str, optional): The default value is None. Normally there is no
976 977
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
978

X
Xing Wu 已提交
979
    Returns:
980 981
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
982 983 984 985

    Examples:
        .. code-block:: python

986
            import paddle
987

988
            # example 1: attr shape is a list which doesn't contain Tensor.
989
            out1 = paddle.rand(shape=[2, 3])
990 991 992 993
            # [[0.451152  , 0.55825245, 0.403311  ],  # random
            #  [0.22550228, 0.22106001, 0.7877319 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
994 995
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
996
            out2 = paddle.rand(shape=[dim1, dim2, 2])
997 998 999 1000 1001 1002 1003 1004
            # [[[0.8879919 , 0.25788337],  # random
            #   [0.28826773, 0.9712097 ],  # random
            #   [0.26438272, 0.01796806]],  # random
            #  [[0.33633623, 0.28654453],  # random
            #   [0.79109055, 0.7305809 ],  # random
            #   [0.870881  , 0.2984597 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
1005
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
1006
            out3 = paddle.rand(shape_tensor)
1007 1008
            # [[0.22920267, 0.841956  , 0.05981819],  # random
            #  [0.4836288 , 0.24573246, 0.7516129 ]]  # random
X
Xing Wu 已提交
1009 1010

    """
1011
    return uniform(shape, dtype, min=0.0, max=1.0, name=name)
1012 1013 1014


def exponential_(x, lam=1.0, name=None):
1015
    r"""
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
    This inplace OP fill input Tensor ``x`` with random number from a Exponential Distribution.

    ``lam`` is :math:`\lambda` parameter of Exponential Distribution. 
    
    .. math::

        f(x) = \lambda e^{-\lambda x}

    Args:
        x(Tensor):  Input tensor. The data type should be float32, float64.
1026
        lam(float, optional): :math:`\lambda` parameter of Exponential Distribution. Default, 1.0.
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns: 
        Tensor: Input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle
            paddle.set_device('cpu')
            paddle.seed(100)

            x = paddle.empty([2,3])
            x.exponential_()
            # [[0.80643415, 0.23211166, 0.01169797],
            #  [0.72520673, 0.45208144, 0.30234432]]

    """
Z
zhiboniu 已提交
1046
    if paddle.in_dynamic_mode():
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
        return _C_ops.exponential_(x, "lambda", lam)

    check_variable_and_dtype(x, "x", ["float32", "float64"], "exponential")

    helper = LayerHelper("exponential", **locals())
    helper.append_op(
        type='exponential',
        inputs={"X": x},
        outputs={'Out': x},
        attrs={"lambda": lam})
    return x