未验证 提交 4819ab4d 编写于 作者: C chentianyu03 提交者: GitHub

[Yaml]add gaussian_random yaml and test case (#41312)

* add guassian random yaml

* add gaussian_random yaml and test case

* fix error modify of full yaml

* import in_dygraph_mode

* import _in_legacy_dygraph

* add place arg in api

* import __current_expected_place

* fix test_egr_python_api failed case

* add test case

* add cast for NormalInitializer

* fix test error

* fix test error

* rm unsed check code

* fix test error in test_initializer_nn

* modify by review
上级 18f569c3
......@@ -331,22 +331,56 @@ class NormalInitializer(Initializer):
["uint16", "float16", "float32", "float64"],
"guassian_random")
# to be compatible of fp16 initalizers
if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
out_dtype = VarDesc.VarType.FP32
out_var = block.create_var(
name=unique_name.generate(".".join(
['normal_init', var.name, 'tmp'])),
shape=var.shape,
dtype=out_dtype,
type=VarDesc.VarType.LOD_TENSOR,
persistable=False)
else:
out_dtype = var.dtype
out_var = var
if self._seed == 0:
self._seed = block.program.random_seed
if framework._non_static_mode():
if in_dygraph_mode():
place = _current_expected_place()
out_var = _C_ops.final_state_gaussian_random(
var.shape, self._mean, self._std_dev, self._seed, out_dtype,
place)
out_var._share_underline_tensor_to(var)
if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
var_tmp = _C_ops.final_state_cast(out_var, var.dtype)
var_tmp._share_underline_tensor_to(var)
else:
out_var._share_underline_tensor_to(var)
return None
if _in_legacy_dygraph():
out_var = _C_ops.gaussian_random(
'shape', var.shape, 'dtype', var.dtype, 'mean', self._mean,
'shape', var.shape, 'dtype', out_dtype, 'mean', self._mean,
'std', self._std_dev, 'seed', self._seed, 'use_mkldnn', False)
out_var._share_underline_tensor_to(var)
if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
'out_dtype', var.dtype)
var_tmp._share_underline_tensor_to(var)
else:
out_var._share_underline_tensor_to(var)
return None
else:
op = block.append_op(
type="gaussian_random",
outputs={"Out": var},
outputs={"Out": out_var},
attrs={
"shape": var.shape,
"dtype": var.dtype,
"dtype": out_dtype,
"mean": self._mean,
"std": self._std_dev,
"seed": self._seed,
......@@ -354,6 +388,13 @@ class NormalInitializer(Initializer):
},
stop_gradient=True)
if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
block.append_op(
type="cast",
inputs={"X": out_var},
outputs={"Out": var},
attrs={"in_dtype": out_var.dtype,
"out_dtype": var.dtype})
var.op = op
return op
......@@ -567,9 +608,15 @@ class XavierInitializer(Initializer):
self._seed, 'dtype', out_dtype)
else:
std = math.sqrt(2.0 / float(fan_in + fan_out))
out_var = _C_ops.gaussian_random(
'shape', out_var.shape, 'dtype', out_dtype, 'mean', 0.0,
'std', std, 'seed', self._seed)
if in_dygraph_mode():
place = _current_expected_place()
out_var = _C_ops.final_state_gaussian_random(
out_var.shape, 0.0, std, self._seed, out_dtype, place)
else:
out_var = _C_ops.gaussian_random(
'shape', out_var.shape, 'dtype', out_dtype, 'mean', 0.0,
'std', std, 'seed', self._seed)
if var.dtype == VarDesc.VarType.FP16 or (
var.dtype == VarDesc.VarType.BF16 and not self._uniform):
......@@ -720,9 +767,15 @@ class MSRAInitializer(Initializer):
int(out_dtype))
else:
std = math.sqrt(2.0 / float(fan_in))
out_var = _C_ops.gaussian_random(
'shape', out_var.shape, 'dtype',
int(out_dtype), 'mean', 0.0, 'std', std, 'seed', self._seed)
if in_dygraph_mode():
place = _current_expected_place()
out_var = _C_ops.final_state_gaussian_random(
out_var.shape, 0.0, std, self._seed, out_dtype, place)
else:
out_var = _C_ops.gaussian_random(
'shape', out_var.shape, 'dtype',
int(out_dtype), 'mean', 0.0, 'std', std, 'seed',
self._seed)
if var.dtype == VarDesc.VarType.FP16 or (
var.dtype == VarDesc.VarType.BF16 and not self._uniform):
......
......@@ -28,6 +28,7 @@ from ..layer_helper import LayerHelper
from paddle.fluid.framework import _in_legacy_dygraph
from ..initializer import Normal, Constant, NumpyArrayInitializer
from ..framework import Variable, OpProtoHolder, _non_static_mode, dygraph_only, _dygraph_tracer, default_main_program, _varbase_creator, static_only, _global_flags, _in_legacy_dygraph, in_dygraph_mode
from ..framework import _current_expected_place
from .. import dygraph_utils
from ..param_attr import ParamAttr
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
......@@ -10970,7 +10971,15 @@ def gaussian_random(shape,
if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype)
if _non_static_mode():
if in_dygraph_mode():
shape = utils.convert_shape_to_list(shape)
place = _current_expected_place()
return _C_ops.final_state_gaussian_random(shape,
float(mean),
float(std), seed, dtype,
place)
if _in_legacy_dygraph():
shape = utils.convert_shape_to_list(shape)
return _C_ops.gaussian_random('shape', shape, 'mean',
float(mean), 'std',
......
......@@ -251,9 +251,6 @@ class EagerVariablePropertiesAndMethodsTestCase(unittest.TestCase):
self.assertTrue(egr_tensor12.place._equals(paddle.fluid.CPUPlace()))
self.assertTrue(np.array_equal(egr_tensor12.numpy(), x))
egr_tensor13 = paddle.randn([2, 2])
self.assertTrue("eager_tmp" in egr_tensor13.name)
with self.assertRaisesRegexp(
ValueError, "The shape of Parameter should not be None"):
eager_param = EagerParamBase(shape=None, dtype="float32")
......
......@@ -23,12 +23,14 @@ import paddle.fluid.core as core
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
from paddle.fluid.tests.unittests.op_test import OpTest, convert_uint16_to_float
from paddle.fluid.framework import _test_eager_guard
import paddle
class TestGaussianRandomOp(OpTest):
def setUp(self):
self.op_type = "gaussian_random"
self.python_api = paddle.normal
self.set_attrs()
self.inputs = {}
self.use_mkldnn = False
......@@ -50,6 +52,10 @@ class TestGaussianRandomOp(OpTest):
def test_check_output(self):
self.check_output_customized(self.verify_output)
def test_eager(self):
with _test_eager_guard():
self.test_check_output()
def verify_output(self, outs):
self.assertEqual(outs[0].shape, (123, 92))
hist, _ = np.histogram(outs[0], range=(-3, 5))
......@@ -70,6 +76,7 @@ class TestGaussianRandomOp(OpTest):
class TestGaussianRandomBF16Op(OpTest):
def setUp(self):
self.op_type = "gaussian_random"
self.python_api = paddle.normal
self.set_attrs()
self.inputs = {}
self.use_mkldnn = False
......@@ -93,6 +100,10 @@ class TestGaussianRandomBF16Op(OpTest):
self.check_output_with_place_customized(
self.verify_output, place=core.CUDAPlace(0))
def test_eager(self):
with _test_eager_guard():
self.test_check_output()
def verify_output(self, outs):
outs = convert_uint16_to_float(outs)
self.assertEqual(outs[0].shape, (123, 92))
......
......@@ -244,7 +244,7 @@ class TestNormalInitializer(unittest.TestCase):
lod_level=0,
name="param",
initializer=initializer.NormalInitializer(2.3, 1.9, 123))
num_ops = 1
num_ops = 2 if (dtype == "float16" or dtype == "uint16") else 1
self.assertEqual(len(block.ops), num_ops)
init_op = block.ops[0]
self.assertEqual(init_op.type, 'gaussian_random')
......@@ -685,6 +685,68 @@ class TestUniformInitializerDygraph(unittest.TestCase):
self.func_uniform_initializer()
class TestXavierInitializerDygraph(unittest.TestCase):
def func_xvarier_initializer(self, dtype="float32"):
"""
In dygraph mode, we can use initializer directly to initialize a tensor.
"""
paddle.disable_static()
tensor = paddle.zeros([1024, 1024, 16])
tensor.stop_gradient = False
xavier_ = paddle.fluid.initializer.XavierInitializer(
uniform=False, fan_in=3, fan_out=5)
xavier_(tensor)
hist, _ = output_hist(tensor.numpy())
hist2, _ = output_hist(
np.random.normal(0, np.sqrt(2.0 / (3 + 5)), [1024, 1024, 16]))
self.assertTrue(
np.allclose(
hist, hist2, rtol=0, atol=0.01),
"hist: " + str(hist) + " hist2: " + str(hist2))
paddle.enable_static()
def test_xavier_initializer(self, dtype="float32"):
with framework._test_eager_guard():
self.func_xvarier_initializer()
self.func_xvarier_initializer()
class TestMSRAInitializerDygraph(unittest.TestCase):
def func_msra_initializer(self, dtype="float32"):
"""
In dygraph mode, we can use initializer directly to initialize a tensor.
"""
paddle.disable_static()
tensor = paddle.zeros([1024, 1024, 16])
tensor.stop_gradient = False
msra_ = paddle.fluid.initializer.MSRAInitializer(
uniform=False, fan_in=4)
msra_(tensor)
hist, _ = output_hist(tensor.numpy())
hist2, _ = output_hist(
np.random.normal(0, np.sqrt(2.0 / (4)), [1024, 1024, 16]))
self.assertTrue(
np.allclose(
hist, hist2, rtol=0, atol=0.01),
"hist: " + str(hist) + " hist2: " + str(hist2))
paddle.enable_static()
def test_msra_initializer(self, dtype="float32"):
with framework._test_eager_guard():
self.func_msra_initializer()
self.func_msra_initializer()
class TesetconsistencyOfDynamicAndStaticGraph(unittest.TestCase):
def func_order(self):
paddle.set_device('cpu')
......
......@@ -400,7 +400,7 @@ class TestNormal(unittest.TestCase):
lod_level=0,
name="param",
initializer=initializer.Normal(2.3, 1.9))
num_ops = 1
num_ops = 2 if dtype in ["float16", "uint16"] else 1
self.assertEqual(len(block.ops), num_ops)
init_op = block.ops[0]
self.assertEqual(init_op.type, 'gaussian_random')
......
......@@ -239,7 +239,15 @@ def gaussian(shape, mean=0.0, std=1.0, dtype=None, name=None):
if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype)
if paddle.in_dynamic_mode():
if in_dygraph_mode():
shape = utils.convert_shape_to_list(shape)
place = _current_expected_place()
return _C_ops.final_state_gaussian_random(shape,
float(mean),
float(std), seed, dtype,
place)
if _in_legacy_dygraph():
shape = utils.convert_shape_to_list(shape)
return _C_ops.gaussian_random('shape', shape, 'mean',
float(mean), 'std',
......
......@@ -782,6 +782,18 @@
kernel :
func : gather_tree
- api : gaussian_random
args : (IntArray shape, float mean, float std, int seed, DataType dtype, Place place={})
output: Tensor
infer_meta :
func : GaussianRandomInferMeta
param : [shape, mean, std, seed, dtype]
kernel :
func : gaussian_random
param : [shape, mean, std, seed, dtype]
data_type : dtype
backend : place
- api : gelu
args : (Tensor x, bool approximate)
output : Tensor(out)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册