parallel_executor.cc 72.7 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
16

D
dzhwinter 已提交
17
#include <algorithm>
Q
qingqing01 已提交
18
#include <memory>
C
chengduoZH 已提交
19
#include <string>
20
#include <tuple>
Q
Qiao Longfei 已提交
21
#include <utility>
Q
qiaolongfei 已提交
22
#include <vector>
23

24
#include "paddle/fluid/framework/convert_utils.h"
Q
Qiao Longfei 已提交
25
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
26
#include "paddle/fluid/framework/details/bind_threaded_ssa_graph_executor.h"
Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
28
#include "paddle/fluid/framework/details/multi_devices_helper.h"
29
#include "paddle/fluid/framework/details/op_handle_base.h"
Y
Yancey1989 已提交
30
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
31
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
33 34
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
35
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimization_var_info.h"
36
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
37
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/set_reader_device_info_utils.h"
38
#include "paddle/fluid/framework/variable_helper.h"
39
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
W
wangchaochaohu 已提交
40
#include "paddle/fluid/platform/event.h"
41
#include "paddle/fluid/platform/profiler.h"
42
#include "paddle/fluid/platform/profiler/event_tracing.h"
Y
Yu Yang 已提交
43

44
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
45 46
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif
47
#include "paddle/fluid/platform/flags.h"
48

49
PHI_DECLARE_double(eager_delete_tensor_gb);
50

51
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
52
PHI_DECLARE_bool(sync_nccl_allreduce);
53 54
#endif

Y
Yu Yang 已提交
55
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
56
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
57
#endif
58
PADDLE_DEFINE_EXPORTED_string(
59 60
    pe_profile_fname,
    "",
61 62
    "Profiler filename for PE, which generated by gperftools."
    "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
Y
Yu Yang 已提交
63

Y
Yang Yang 已提交
64
namespace paddle {
Y
Yu Yang 已提交
65 66
namespace framework {

Y
Yu Yang 已提交
67
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
68
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
69
static bool gProfileStarted = false;
Y
Yu Yang 已提交
70
#endif
71

72
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
73 74 75
std::once_flag p2p_init_flag;
#endif

Y
Yu Yang 已提交
76 77
class ParallelExecutorPrivate {
 public:
78 79 80
  ParallelExecutorPrivate(const std::vector<platform::Place> &places,
                          Scope *global_scope)
      : places_(places), global_scope_(global_scope) {
Y
Yu Yang 已提交
81
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
82 83
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
84
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
85 86 87
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
88
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
89 90 91 92
#endif
      });
    }
  }
Y
Yu Yang 已提交
93

94 95 96 97 98 99 100 101 102 103 104
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
105

106
  bool IsUseCUDA(DeviceType use_device);
107

108 109 110 111
  void SetHasFeed(size_t dev_idx, bool has_feed = true);

  bool AllowPartialFeed() const;

112
  ir::Graph *ApplyMemoryOptimizePass(ir::Graph *graph);
S
sneaxiy 已提交
113 114 115

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

Z
Zeng Jinle 已提交
116 117 118 119 120 121 122
  void ApplyFixOpRunOrderPass(ir::Graph *graph) {
    if (build_strategy_.fix_op_run_order_) {
      auto pass = ir::PassRegistry::Instance().Get("fix_op_run_order_pass");
      pass->Apply(graph);
    }
  }

123
  /**
T
tianshuo78520a 已提交
124 125
   * NOTE(zengjinle): the fed variables of users should not be reused,
   * because users may feed them into another network. Changing the fed
126 127 128 129 130 131
   * variables that users can visit may cause calculation wrong, which is
   * a very subtle bug when traning networks. However, these variables
   * can be garbage collected.
   *
   * ParallelExecutor provides 2 methods to feed variables:
   *
T
tianshuo78520a 已提交
132
   *  - FeedTensorsIntoLocalScopes: this method would share memory of fed
133 134
   *                                variables, so we have to skip these.
   *
T
tianshuo78520a 已提交
135
   *  - FeedAndSplitTensorIntoLocalScopes: this method would copy data of fed
136 137 138 139
   *                                       variables, so we do not need to skip
   *                                       them.
   */
  inline void SetSkipMemoryReuse(size_t scope_idx, const std::string &name) {
140
    if (mem_opt_var_infos_.empty()) {
141 142 143 144
      VLOG(4) << "The mem_opt_var_infos_ is empty, maybe no memory "
                 "optimization strategy is enabled";
      return;
    }
145 146 147 148 149 150
    auto iter = mem_opt_var_infos_[scope_idx].find(name);
    if (iter != mem_opt_var_infos_[scope_idx].end()) {
      iter->second->SetSkipMemoryReuse(true);
    }
  }

151
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
168 169
      nccl_ctxs_->InitFlatCtxs(
          places_, flat_nccl_ids, bst.num_trainers_, bst.trainer_id_);
170 171 172 173 174 175 176 177 178 179 180 181
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
182
        VLOG(10) << "find nccl_id_var:" << var_name << ", nccl_id:" << nccl_id;
183 184
      } else {
        nccl_id = new ncclUniqueId();
185
        PADDLE_ENFORCE_EQ(
186 187
            platform::dynload::ncclGetUniqueId(nccl_id),
            ncclSuccess,
188 189 190
            platform::errors::PreconditionNotMet(
                "PaddlePaddle failed to get NCCL unique ID. It may due to your "
                "system settings or NCCL library error, please debug on NCCL"));
191 192
        VLOG(10) << "can't find nccl_id_var:" << var_name
                 << ", nccl_id:" << nccl_id;
193 194 195 196
      }

      flat_nccl_ids.push_back(nccl_id);

197 198
      nccl_ctxs_->InitFlatCtxs(
          places_, flat_nccl_ids, bst.num_trainers_, bst.trainer_id_);
199 200 201 202 203 204
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
205 206
      nccl_ctxs_->InitFlatCtxs(
          places_, flat_nccl_ids, bst.num_trainers_, bst.trainer_id_);
207 208 209 210 211 212
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
213 214 215
      PADDLE_ENFORCE_NOT_NULL(
          nccl_id_var,
          platform::errors::NotFound("Can't find nccl_id_var '%s'.", var_name));
216 217 218 219
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

220 221
    nccl_ctxs_->InitFlatCtxs(
        places_, flat_nccl_ids, bst.num_trainers_, bst.trainer_id_);
222 223

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
224 225 226 227
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
228 229 230
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
G
gongweibao 已提交
231 232 233
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
234 235 236 237 238

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
239 240 241
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
242 243 244
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
245

246
      nccl_ctxs_->InitHierarchicalCtxs(
247 248 249 250 251 252
          places_,
          inter_nccl_ids,
          exter_nccl_ids,
          bst.num_trainers_,
          bst.trainer_id_,
          bst.hierarchical_allreduce_inter_nranks_,
253
          bst.hierarchical_allreduce_exter_nranks_);
254 255
    }
  }
256

257
  void InitOrGetNCCLCommunicator(framework::Scope *scope, BuildStrategy *bst) {
258 259 260
    const std::string var_name = "NCCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
261 262
      PADDLE_ENFORCE_EQ(var->IsInitialized(),
                        true,
263 264
                        platform::errors::PreconditionNotMet(
                            "if %s exists, it must be initialized", var_name));
265 266 267 268 269 270
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      nccl_ctxs_ = var->GetMutable<platform::NCCLCommunicator>();
      return;
    }

271
    if (bst->use_hierarchical_allreduce_) {
272
      PADDLE_ENFORCE_GT(
273 274
          bst->num_trainers_,
          1,
275 276 277 278
          platform::errors::PreconditionNotMet(
              "The num_trainers should be greater than 1, but received %llu.",
              bst->num_trainers_));
      PADDLE_ENFORCE_GT(
279 280
          bst->hierarchical_allreduce_inter_nranks_,
          1,
281 282 283 284
          platform::errors::PreconditionNotMet(
              "The inter_nranks should be greater than 1, but received %d.",
              bst->hierarchical_allreduce_inter_nranks_));
      PADDLE_ENFORCE_EQ(
285 286
          bst->num_trainers_ % bst->hierarchical_allreduce_inter_nranks_,
          0,
287
          platform::errors::PreconditionNotMet(
288 289
              "num_trainers:%llu mod inter_nranks:%d != 0",
              bst->num_trainers_,
290
              bst->hierarchical_allreduce_inter_nranks_));
291 292 293 294 295

      bst->hierarchical_allreduce_exter_nranks_ =
          bst->num_trainers_ / bst->hierarchical_allreduce_inter_nranks_;
    }

296 297
    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    nccl_ctxs_ = scope->Var(var_name)->GetMutable<platform::NCCLCommunicator>();
298
    InitNCCLCtxs(scope, *bst);
299
  }
300 301
#endif

302 303 304 305 306 307
#if defined(PADDLE_WITH_XPU_BKCL)
  void InitBKCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "bkcl comm num:" << bst.bkcl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

308 309
    PADDLE_ENFORCE_EQ(bst.use_hierarchical_allreduce_,
                      false,
310 311 312 313 314 315
                      platform::errors::Unimplemented(
                          "xpu doesn't support use_hierarchical_allreduce"));

    std::vector<BKCLUniqueId *> flat_bkcl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create bkclid when nranks==1
316 317
      bkcl_ctxs_->InitFlatCtxs(
          places_, flat_bkcl_ids, bst.num_trainers_, bst.trainer_id_);
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one bkclid in pg model";

      BKCLUniqueId *bkcl_id = nullptr;

      std::string var_name = platform::GetFlatBKCLVarName(0);
      auto bkcl_id_var = scope->FindVar(var_name);
      std::unique_ptr<BKCLUniqueId> id(new BKCLUniqueId());
      if (bkcl_id_var) {
        bkcl_id = bkcl_id_var->GetMutable<BKCLUniqueId>();
      } else {
        PADDLE_ENFORCE_EQ(
333 334
            bkcl_get_unique_id(id.get()),
            BKCL_SUCCESS,
335 336 337 338 339 340
            platform::errors::Unavailable("bkcl get unique id failed"));
        bkcl_id = id.get();
      }

      flat_bkcl_ids.push_back(bkcl_id);

341 342
      bkcl_ctxs_->InitFlatCtxs(
          places_, flat_bkcl_ids, bst.num_trainers_, bst.trainer_id_);
343 344 345 346 347 348
      VLOG(1) << "init bst bkcl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
349 350
      bkcl_ctxs_->InitFlatCtxs(
          places_, flat_bkcl_ids, bst.num_trainers_, bst.trainer_id_);
351 352 353 354 355 356 357 358 359 360 361 362 363
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.bkcl_comm_num_); i++) {
      std::string var_name = platform::GetFlatBKCLVarName(i);
      auto bkcl_id_var = scope->FindVar(var_name);
      PADDLE_ENFORCE_NOT_NULL(
          bkcl_id_var,
          platform::errors::NotFound("can't find %s bkcl_id_var", var_name));
      auto bkcl_id = bkcl_id_var->GetMutable<BKCLUniqueId>();
      flat_bkcl_ids.push_back(bkcl_id);
    }

364 365
    bkcl_ctxs_->InitFlatCtxs(
        places_, flat_bkcl_ids, bst.num_trainers_, bst.trainer_id_);
366 367 368 369 370 371 372
  }

  void InitOrGetBKCLCommunicator(framework::Scope *scope,
                                 const BuildStrategy &bst) {
    const std::string var_name = "BKCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
373 374
      PADDLE_ENFORCE_EQ(var->IsInitialized(),
                        true,
375 376 377 378 379 380 381 382 383 384 385 386 387 388
                        platform::errors::PreconditionNotMet(
                            "if %s exists, it must be initialized", var_name));
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      bkcl_ctxs_ = var->GetMutable<platform::BKCLCommunicator>();
      return;
    }

    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    bkcl_ctxs_ = scope->Var(var_name)->GetMutable<platform::BKCLCommunicator>();
    InitBKCLCtxs(scope, bst);
  }
#endif

389 390 391 392 393
  inline bool IsPersistable(const std::string &name) const {
    auto iter = is_persistable_.find(name);
    return iter != is_persistable_.end() && iter->second;
  }

D
dzhwinter 已提交
394
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
395 396
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
397
  std::vector<Scope *> local_exec_scopes_;
398
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
399
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
400

401 402
  std::unordered_map<std::string, bool> is_persistable_;

403
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
404
  platform::NCCLCommunicator *nccl_ctxs_{nullptr};
405 406
#elif defined(PADDLE_WITH_XPU_BKCL)
  platform::BKCLCommunicator *bkcl_ctxs_{nullptr};
Y
Yu Yang 已提交
407
#endif
C
chengduoZH 已提交
408
  bool own_local_scope_;
409
  DeviceType use_device_;
410
  bool use_all_reduce_;
411
  size_t nranks_;
S
sneaxiy 已提交
412

413
  ir::MemOptVarInfoMapList mem_opt_var_infos_;
414
  ir::GarbageCollectorMap gcs_;
415 416

  details::ParallelSSAGraphExecutor *inference_executor_{nullptr};
Y
Yu Yang 已提交
417 418
};

419 420
bool ParallelExecutorPrivate::IsUseCUDA(DeviceType use_device) {
  return use_device == p::kCUDA;
421 422
}

423 424 425 426 427 428 429 430 431 432
void ParallelExecutorPrivate::SetHasFeed(size_t dev_idx, bool has_feed) {
  if (inference_executor_) {
    inference_executor_->SetHasFeed(dev_idx, has_feed);
  }
}

bool ParallelExecutorPrivate::AllowPartialFeed() const {
  return inference_executor_ && inference_executor_->SupportPartialFeed();
}

433
ir::Graph *ParallelExecutorPrivate::ApplyMemoryOptimizePass(ir::Graph *graph) {
Z
Zeng Jinle 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
  /**
   * NOTE(zengjinle): If BuildStrategy.memory_optimize = None in Python,
   * set BuildStrategy.memory_optimize according to whether gc is enabled.
   * If gc is enabled, BuildStrategy.memory_optimize = False.
   * If gc is disabled, BuildStrategy.memory_optimize = True.
   * This is because gc+memory_optimize is worse than gc only.
   *
   * As an option, users can enable BuildStrategy.memory_optimize forcely
   * by setting True, and disable it forcely by setting False.
   */
  bool is_gc_enabled = (GetEagerDeletionThreshold() >= 0);
  if (!build_strategy_.memory_optimize_) {
    build_strategy_.memory_optimize_ = !is_gc_enabled;
  }

  bool need_mem_opt = build_strategy_.enable_inplace_ ||
450
                      build_strategy_.enable_addto_ ||
Z
Zeng Jinle 已提交
451 452 453 454
                      build_strategy_.memory_optimize_.get() || is_gc_enabled;

  if (!need_mem_opt) return graph;

455 456 457 458 459 460 461 462
  std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;

  auto ref_cnt_pass = ir::PassRegistry::Instance().Get("reference_count_pass");
  ref_cnt_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
  ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
  graph = ref_cnt_pass->Apply(graph);
  VLOG(10) << "ReferenceCountPass Applied";

463 464 465 466
  if (build_strategy_.enable_addto_) {
    auto addto_pass = ir::PassRegistry::Instance().Get("inplace_addto_op_pass");
    addto_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    addto_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
467
    addto_pass->Set(ir::kUseCuda, new bool(use_device_ == p::kCUDA));
468 469 470 471 472
    VLOG(10) << "Start to apply inplace_addto_op_pass";
    graph = addto_pass->Apply(graph);
    VLOG(10) << "inplace_addto_op_pass Applied";
  }

473 474 475 476 477
  if (build_strategy_.enable_inplace_) {
    auto inplace_pass =
        ir::PassRegistry::Instance().Get("buffer_shared_inplace_pass");
    inplace_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    inplace_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
478
    inplace_pass->Set(ir::kUseCuda, new bool(use_device_ == p::kCUDA));
479 480 481
    VLOG(10) << "Start to apply buffer_shared_inplace_pass";
    graph = inplace_pass->Apply(graph);
    VLOG(10) << "buffer_shared_inplace_pass Applied";
482 483
    VLOG(1) << "Inplace strategy is enabled, when "
               "build_strategy.enable_inplace = True";
484 485
  }

486
  if (build_strategy_.memory_optimize_.get()) {
487 488 489 490 491 492
    auto cross_op_memory_reuse_pass = ir::PassRegistry::Instance().Get(
        "buffer_shared_cross_op_memory_reuse_pass");
    cross_op_memory_reuse_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                            &mem_opt_var_infos_);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
                                            &last_live_ops_of_vars);
493
    cross_op_memory_reuse_pass->Set(ir::kUseCuda,
494
                                    new bool(use_device_ == p::kCUDA));
495 496 497
    VLOG(10) << "Start to apply buffer_shared_cross_op_memory_reuse_pass";
    graph = cross_op_memory_reuse_pass->Apply(graph);
    VLOG(10) << "buffer_shared_cross_op_memory_reuse_pass Applied";
Z
Zeng Jinle 已提交
498 499 500
    LOG(INFO) << "Cross op memory reuse strategy is enabled, when "
                 "build_strategy.memory_optimize = True or garbage collection "
                 "strategy is disabled, which is not recommended";
501
  }
502

503
  if (!is_gc_enabled) {
504 505 506 507
    return graph;
  }
  size_t max_memory_size = static_cast<size_t>(GetEagerDeletionThreshold());

S
sneaxiy 已提交
508 509 510 511 512
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
513
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
514
    if (platform::is_gpu_place(place)) {
515
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
sneaxiy 已提交
516
      if (IsFastEagerDeletionModeEnabled()) {
517 518
        gc = std::make_unique<UnsafeFastGPUGarbageCollector>(place,
                                                             max_memory_size);
S
sneaxiy 已提交
519
      } else {
520
        gc = std::make_unique<StreamGarbageCollector>(place, max_memory_size);
S
sneaxiy 已提交
521 522
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
523 524 525 526
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use CUDA device since it's not compiled with CUDA,"
          "Please recompile or reinstall Paddle with GPU support."));
S
sneaxiy 已提交
527
#endif
528 529
    } else if (platform::is_xpu_place(place)) {
#if defined(PADDLE_WITH_XPU)
530
      gc = std::make_unique<XPUGarbageCollector>(place, max_memory_size);
531 532 533 534 535
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use XPU device since it's not compiled with XPU,"
          "Please recompile or reinstall Paddle with XPU support."));
536 537 538
#endif
    } else if (platform::is_ipu_place(place)) {
#if defined(PADDLE_WITH_IPU)
539
      gc = std::make_unique<IPUGarbageCollector>(place, max_memory_size);
540 541 542 543 544
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use IPU device since it's not compiled with IPU,"
          "Please recompile or reinstall Paddle with IPU support."));
545 546 547 548
#endif
    } else if (platform::is_custom_place(place)) {
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
      if (IsFastEagerDeletionModeEnabled()) {
549 550
        gc = std::make_unique<CustomDeviceUnsafeFastGarbageCollector>(
            place, max_memory_size);
551
      } else {
552 553
        gc = std::make_unique<CustomStreamGarbageCollector>(place,
                                                            max_memory_size);
554 555 556 557 558 559 560
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use custom device since it's not compiled with "
          "CustomDevice,"
          "Please recompile or reinstall Paddle with CustomDevice support."));
S
sneaxiy 已提交
561
#endif
562
    } else if (platform::is_cpu_place(place)) {
563
      gc = std::make_unique<CPUGarbageCollector>(place, max_memory_size);
564 565 566 567 568
      VLOG(10) << "Created GarbageCollector at " << place;
    } else {
      PADDLE_THROW(platform::errors::PreconditionNotMet(
          "Unsupported place for garbage collection"));
    }
S
sneaxiy 已提交
569
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
570 571
  }

S
sneaxiy 已提交
572
  if (!gcs_.empty()) {
S
sneaxiy 已提交
573 574
    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
575 576
    eager_deletion_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                     &mem_opt_var_infos_);
577 578
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
579
                                     &last_live_ops_of_vars);
580
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
581
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
582
    VLOG(10) << "EagerDeletionPass Applied";
583 584 585
    VLOG(1) << "Garbage collection strategy is enabled, when "
            << "FLAGS_eager_delete_tensor_gb = "
            << FLAGS_eager_delete_tensor_gb;
S
sneaxiy 已提交
586 587 588 589
  }
  return graph;
}

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
class ResetHasFeedGuard {
 public:
  explicit ResetHasFeedGuard(ParallelExecutorPrivate *pe_member)
      : pe_member_(pe_member) {}

  ~ResetHasFeedGuard() {
    for (size_t i = 0; i < pe_member_->places_.size(); ++i) {
      pe_member_->SetHasFeed(i, false);
    }
  }

 private:
  ParallelExecutorPrivate *pe_member_;
};

605 606
size_t ParallelExecutor::DeviceCount() const { return member_->places_.size(); }

607 608 609 610
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

611 612 613 614 615 616 617 618 619 620 621 622 623 624
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

625
void InitP2P(const std::vector<platform::Place> &places) {
626
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
627 628 629 630 631 632
  std::call_once(p2p_init_flag, [&]() {
    int count = places.size();
    if (count <= 1) return;

    std::vector<int> devices;
    for (int i = 0; i < count; i++) {
633
      if (!platform::is_gpu_place(places[i])) return;
634

635
      platform::CUDAPlace device = places[i];
636 637 638 639 640 641 642
      devices.push_back(device.GetDeviceId());
    }

    for (int i = 0; i < count; ++i) {
      for (int j = 0; j < count; ++j) {
        if (devices[i] == devices[j]) continue;
        int can_acess = -1;
643 644 645 646 647
#ifdef PADDLE_WITH_HIP
        hipError_t ret =
            hipDeviceCanAccessPeer(&can_acess, devices[i], devices[j]);
        if (ret != hipSuccess || can_acess != 1) {
#else
648 649 650
        cudaError_t ret =
            cudaDeviceCanAccessPeer(&can_acess, devices[i], devices[j]);
        if (ret != cudaSuccess || can_acess != 1) {
651
#endif
652 653 654 655
          LOG(WARNING) << "Cannot enable P2P access from " << devices[i]
                       << " to " << devices[j];
        } else {
          platform::CUDADeviceGuard guard(devices[i]);
656 657 658
#ifdef PADDLE_WITH_HIP
          hipDeviceEnablePeerAccess(devices[j], 0);
#else
659
          cudaDeviceEnablePeerAccess(devices[j], 0);
660
#endif
661 662 663 664 665 666 667 668
        }
      }
    }
    VLOG(1) << "init p2p";
  });
#endif
}

Y
Yan Xu 已提交
669 670 671 672 673 674 675 676
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
677
    : member_(new ParallelExecutorPrivate(places, scope)) {
678
  PADDLE_ENFORCE_EQ(!places.empty(),
679 680 681
                    true,
                    platform::errors::Unavailable(
                        "NPU is not supported in ParallelExecutor."));
682
  InitP2P(places);
683 684
  ir::InitReaderQueueDeviceCount(
      graph, *(member_->global_scope_), member_->places_.size());
685
  // Initialize necessary info of member_ with strategy.
686 687
  InitExecutorPrivateMemberInfo(
      exec_strategy, build_strategy, places.size(), *graph);
Y
Yancey1989 已提交
688

689 690 691 692
  // Step 1. Create local scopes and Clone graph into multi device
  CreateLocalScopes(scope, local_scopes, /*create_new*/ true);
  std::vector<ir::Graph *> graphs = CloneGraphToMultiDevices(graph);
  PrepareNCCLCommunicator(scope);
693

Y
Yan Xu 已提交
694 695
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
C
chengduo 已提交
696
    if (member_->build_strategy_.num_trainers_ > 1) {
Y
Yan Xu 已提交
697 698 699 700 701 702 703 704 705 706
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };
  if (need_broadcast()) {
C
chengduo 已提交
707
    BCastParamsToDevices(bcast_vars, member_->build_strategy_.trainer_id_);
Y
Yu Yang 已提交
708
  }
709

Q
Qiao Longfei 已提交
710 711
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
712 713
  std::vector<ir::Graph *> async_graphs =
      CompileGraphWithBuildStrategy(graph, &graphs, loss_var_name);
714
  PrepareForCUDAGraphCapture(graph);
715
  graph = member_->ApplyMemoryOptimizePass(graph);
Q
Qiao Longfei 已提交
716 717
  async_graphs[0] = graph;

718 719
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
720
  std::vector<details::VariableInfo> var_infos;
721 722 723
  CreateVariableInfos(&var_infos, graph);
  std::unordered_map<Scope *, Scope *> scope_map =
      CreateLocalExecScopes(member_->local_scopes_, /*create_new*/ true);
724

725 726 727
  // Step 4. Create SSAGraph executor
  std::vector<ir::Graph *> final_graphs =
      CreateSSAGraphExecutor(exec_strategy, &async_graphs, graph);
728

729 730
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
  if (!member_->build_strategy_.async_mode_) {
731 732 733 734 735 736 737 738
    member_->executor_ =
        std::make_unique<details::ScopeBufferedSSAGraphExecutor>(
            exec_strategy,
            member_->local_scopes_,
            member_->local_exec_scopes_,
            std::move(var_infos),
            member_->places_,
            std::move(member_->executor_));
739 740
  }

741 742 743
  ResetOpHandleScopeMapOfGraphs(final_graphs, scope_map);
  SetReaderOpDeviceInfoOfGraphs(final_graphs);
}
744

745 746
ParallelExecutor::ParallelExecutor(const platform::Place &place,
                                   Scope *scope,
747 748 749 750 751
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
    : member_(new ParallelExecutorPrivate({place}, scope)) {
  // Initialize necessary info of member_ with strategy.
752 753 754 755
  InitExecutorPrivateMemberInfo(exec_strategy,
                                build_strategy,
                                /*device_count=*/1,
                                *graph);
756

757
  CreateLocalScopes(scope, /*local_scopes=*/{scope}, /*create_new=*/false);
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792

  // Apply BuildStrategy to compile graph.
  std::vector<ir::Graph *> graphs = {graph};
  std::vector<ir::Graph *> async_graphs =
      CompileGraphWithBuildStrategy(graph, &graphs, /*loss_var_name=*/"");

  graph = member_->ApplyMemoryOptimizePass(graph);

  // Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
  CreateVariableInfos(&var_infos_, graph);

  // Create local execution scopes
  std::unordered_map<Scope *, Scope *> scope_map =
      CreateLocalExecScopes(member_->local_scopes_, /*create_new=*/false);

  std::vector<ir::Graph *> final_graphs =
      CreateSSAGraphExecutor(exec_strategy, &async_graphs, graph);

  // Set scope_map of op from each graph
  ResetOpHandleScopeMapOfGraphs(final_graphs, scope_map);
}

void ParallelExecutor::PrepareVariables(Scope *scope) {
  for (auto &info : var_infos_) {
    auto var = scope->FindVar(info.name_);
    if (var != nullptr) {
      VLOG(2) << info.name_
              << " has been initialized beforehand in global scope, skipped.";
      continue;
    }
    framework::InitializeVariable(scope->Var(info.name_), info.type_);
  }
}

793 794 795 796 797 798
void ParallelExecutor::BCastParamsToDevices(
    const std::vector<std::string> &vars, int trainer_id) const {
  VLOG(3) << "BCastParamsToDevices";
  // the initializing bcast, all vars would be bcast from device(0).
  for (auto &var : vars) {
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
799
    if (main_var == nullptr || !main_var->IsType<phi::DenseTensor>()) {
800 801
      continue;
    }
802

803
    auto &main_tensor = main_var->Get<phi::DenseTensor>();
804 805 806 807 808 809 810 811 812 813
    if (!main_tensor.IsInitialized()) {
      VLOG(3) << "one in var not inited, return!";
      continue;
    }
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
      std::vector<void *> buffers;
      buffers.reserve(member_->places_.size());
      size_t numel = main_tensor.numel();
814 815
      auto dtype = framework::TransToProtoVarType(main_tensor.dtype());
      ncclDataType_t data_type = platform::ToNCCLDataType(dtype);
816 817 818
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
819

820
        if (i == 0 && trainer_id == 0) {
821
          buffer = const_cast<void *>(main_tensor.data());
822 823
        } else {
          auto local_scope = member_->local_scopes_[i];
824
          auto *t = local_scope->Var(var)->GetMutable<phi::DenseTensor>();
825
          t->Resize(dims);
826
          buffer = t->mutable_data(place, main_tensor.dtype());
827 828 829
        }
        buffers.push_back(buffer);
      }
830

831 832
      PADDLE_ENFORCE_EQ(member_->places_.size(),
                        buffers.size(),
833 834 835
                        platform::errors::PreconditionNotMet(
                            "variables' buffer size to bcast is %d, which is "
                            "NOT equal to places size %d",
836 837
                            buffers.size(),
                            member_->places_.size()));
838
      if (member_->nccl_ctxs_ != nullptr) {
839
        auto *nccl_ctxs = member_->nccl_ctxs_->DefaultFlatCtx();
840 841
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
842
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
843 844 845 846 847 848
          platform::dynload::ncclBcast(buffers[i],
                                       numel,
                                       data_type,
                                       0,
                                       nccl_ctx.comm_,
                                       nccl_ctx.stream());
849
        }
850
        nccl_ctxs->WaitAll();
851 852
      } else {
        auto src_place = member_->places_[0];
L
Leo Chen 已提交
853
        auto src_dev_ctx = static_cast<phi::GPUContext *>(
854 855 856 857
            platform::DeviceContextPool::Instance().Get(src_place));
        auto sizeof_dtype = framework::SizeOfType(dtype) * numel;
        for (size_t i = 1; i < member_->places_.size(); ++i) {
          auto dst_place = member_->places_[i];
L
Leo Chen 已提交
858
          auto dst_dev_ctx = static_cast<phi::GPUContext *>(
859 860 861
              platform::DeviceContextPool::Instance().Get(dst_place));
          src_dev_ctx->Wait();
          dst_dev_ctx->Wait();
862 863 864 865 866 867
          memory::Copy(dst_place,
                       buffers[i],
                       src_place,
                       buffers[0],
                       sizeof_dtype,
                       src_dev_ctx->stream());
868 869 870
          src_dev_ctx->Wait();
          dst_dev_ctx->Wait();
        }
871
      }
872 873 874 875 876 877
#endif
    } else if (paddle::platform::is_xpu_place(main_tensor.place())) {
#if defined(PADDLE_WITH_XPU_BKCL)
      std::vector<void *> buffers;
      buffers.reserve(member_->places_.size());
      size_t numel = main_tensor.numel();
878 879
      auto dtype = framework::TransToProtoVarType(main_tensor.dtype());
      BKCLDataType data_type = platform::ToBKCLDataType(dtype);
880 881 882 883 884
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;

        if (i == 0 && trainer_id == 0) {
885
          buffer = const_cast<void *>(main_tensor.data());
886 887
        } else {
          auto local_scope = member_->local_scopes_[i];
888
          auto *t = local_scope->Var(var)->GetMutable<phi::DenseTensor>();
889
          t->Resize(dims);
890
          buffer = t->mutable_data(place, main_tensor.dtype());
891 892 893 894
        }
        buffers.push_back(buffer);
      }

895 896
      PADDLE_ENFORCE_EQ(member_->places_.size(),
                        buffers.size(),
897 898 899
                        platform::errors::PreconditionNotMet(
                            "variables' buffer size to bcast is %d, which is "
                            "NOT equal to places size %d",
900 901
                            buffers.size(),
                            member_->places_.size()));
902 903
      {
        auto *bkcl_ctxs = member_->bkcl_ctxs_->DefaultFlatCtx();
904
        platform::BKCLGroupGuard guard;
905 906 907
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &bkcl_ctx = bkcl_ctxs->at(member_->places_[i]);
          PADDLE_ENFORCE_EQ(
908 909 910
              bkcl_broadcast(bkcl_ctx.comm(),
                             buffers[i],
                             buffers[i],
911
                             numel,
912 913 914
                             data_type,
                             0,
                             NULL),
915 916 917
              BKCL_SUCCESS,
              platform::errors::Unavailable("bkcl_broadcast failed"));
        }
918
        bkcl_ctxs->WaitAll();
919 920 921 922
      }
#else
      PADDLE_THROW(
          platform::errors::PreconditionNotMet("Not compiled with BKCL."));
C
chengduoZH 已提交
923
#endif
924 925
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
926
      for (size_t i = 1; i < member_->places_.size(); ++i) {
927
        auto local_scope = member_->local_scopes_[i];
928
        auto *t = local_scope->Var(var)->GetMutable<phi::DenseTensor>();
C
chengduo 已提交
929

Q
Qiao Longfei 已提交
930
        auto copy_memory = [&] {
931
          t->Resize(dims);
932
          t->mutable_data(cpu, main_tensor.dtype());
933
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
934 935
        };

Q
Qiao Longfei 已提交
936
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
937 938 939 940

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
941 942
        } else if (member_->use_all_reduce_ ||
                   member_->IsUseCUDA(member_->use_device_) ||
Q
can run  
Qiao Longfei 已提交
943 944
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
945
        } else {
Q
can run  
Qiao Longfei 已提交
946
          share_memory();
947
        }
Y
Yu Yang 已提交
948
      }
Y
Stash  
Yu Yang 已提交
949 950
    }
  }
Y
Yu Yang 已提交
951
}
Y
Yu Yang 已提交
952

953 954
FetchUnmergedList ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors) {
955
  LOG_FIRST_N(INFO, 1) << "ParallelExecutor is Running (Run).";
956 957
  PreludeToRun(fetch_tensors);
  platform::RecordBlock b(0);
958

959 960 961 962 963
  ResetHasFeedGuard reset_has_feed_guard(member_);

  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_),
                                fetch_tensors,
                                member_->HasGarbageCollectors());
Y
Yu Yang 已提交
964

965 966 967
  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
  auto fetch_data =
      member_->executor_->Run(fetch_tensors, /*return_merged=*/false);
R
Ruibiao Chen 已提交
968
  return PADDLE_GET(FetchUnmergedList, fetch_data);
969 970 971 972
}

FetchList ParallelExecutor::RunAndMerge(
    const std::vector<std::string> &fetch_tensors) {
973
  LOG_FIRST_N(INFO, 1) << "ParallelExecutor is Running (RunAndMerge).";
974
  PreludeToRun(fetch_tensors);
X
Xin Pan 已提交
975
  platform::RecordBlock b(0);
976

977 978
  ResetHasFeedGuard reset_has_feed_guard(member_);

979 980
  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_),
                                fetch_tensors,
981
                                member_->HasGarbageCollectors());
982

983 984 985
  VLOG(3) << "ParallelExecutor begin to run member_->executor_->RunAndMerge";
  auto fetch_data =
      member_->executor_->Run(fetch_tensors, /*return_merged=*/true);
R
Ruibiao Chen 已提交
986
  return PADDLE_GET(FetchList, fetch_data);
Y
Yu Yang 已提交
987
}
Y
Yu Yang 已提交
988

989 990 991 992 993 994 995 996 997 998 999 1000
void ParallelExecutor::RunWithoutFetch(
    const std::vector<std::string> &skip_eager_vars) {
  VLOG(3) << "enter ParallelExecutor RunWithoutFetch";
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
  }
#endif
  platform::RecordBlock b(0);

  ResetHasFeedGuard reset_has_feed_guard(member_);

1001 1002
  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_),
                                skip_eager_vars,
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
                                member_->HasGarbageCollectors());

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
  member_->executor_->Run(/*fetch_tensors*/ {}, /*return_merged*/ false);
}

void ParallelExecutor::SkipMemoryReuse(
    size_t scope_idx, const std::vector<std::string> &skip_vars) {
  for (auto &var_name : skip_vars) {
    bool is_persistable = member_->IsPersistable(var_name);
    if (!is_persistable) {
      VLOG(3) << "SkipMemoryReuse for var: " << var_name;
      member_->SetSkipMemoryReuse(scope_idx, var_name);
    }
  }
}

Y
Yu Yang 已提交
1020
void ParallelExecutor::FeedTensorsIntoLocalScopes(
1021 1022
    const std::vector<std::unordered_map<std::string, phi::DenseTensor>>
        &tensors) {
1023 1024 1025
  if (platform::IsCUDAGraphCapturing()) {
    for (auto &tensor : tensors) {
      PADDLE_ENFORCE_EQ(
1026 1027
          tensor.empty(),
          true,
1028 1029 1030 1031 1032 1033
          platform::errors::PermissionDenied(
              "Feeding data is not permitted when capturing CUDA Graph."));
    }
    return;
  }

1034
  if (!member_->AllowPartialFeed()) {
1035 1036
    PADDLE_ENFORCE_EQ(tensors.size(),
                      member_->local_scopes_.size(),
1037 1038 1039 1040 1041 1042 1043
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
1044 1045
                          tensors.size(),
                          member_->local_scopes_.size()));
1046
  } else {
1047 1048
    PADDLE_ENFORCE_GE(member_->local_scopes_.size(),
                      tensors.size(),
1049 1050 1051
                      platform::errors::InvalidArgument(
                          "The feed tensor number exceeds the device number"));
  }
Y
Yu Yang 已提交
1052

1053
  size_t feed_num = 0;
Y
Yu Yang 已提交
1054 1055
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
1056 1057 1058 1059 1060 1061
    if (map.empty()) {
      continue;
    }

    member_->SetHasFeed(i);
    ++feed_num;
Y
Yu Yang 已提交
1062
    for (auto &pair : map) {
1063
      bool is_persistable = member_->IsPersistable(pair.first);
1064 1065 1066
      if (!is_persistable) {
        member_->SetSkipMemoryReuse(i, pair.first);
      }
1067 1068 1069 1070
      auto *feed_scope = is_persistable ? member_->local_scopes_[i]
                                        : member_->local_exec_scopes_[i];
      auto *feed_var = feed_scope->Var(pair.first);

1071
      auto *trg = feed_var->GetMutable<phi::DenseTensor>();
Y
Yu Yang 已提交
1072 1073 1074 1075
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
1076 1077

  if (!member_->AllowPartialFeed()) {
1078 1079
    PADDLE_ENFORCE_EQ(feed_num,
                      member_->local_scopes_.size(),
1080 1081 1082 1083 1084 1085 1086
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
1087 1088
                          feed_num,
                          member_->local_scopes_.size()));
1089
  }
Y
Yu Yang 已提交
1090 1091 1092
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
1093
    const std::unordered_map<std::string, phi::DenseTensor> &tensors) {
1094 1095
  if (platform::IsCUDAGraphCapturing()) {
    PADDLE_ENFORCE_EQ(
1096 1097
        tensors.empty(),
        true,
1098 1099 1100 1101 1102
        platform::errors::PermissionDenied(
            "Feeding data is not permitted when capturing CUDA Graph."));
    return;
  }

1103
  size_t num_places = member_->places_.size();
1104 1105 1106 1107 1108
  bool allow_partial_feed = member_->AllowPartialFeed();

  size_t persistable_feed_len = -1UL;
  size_t non_persistable_feed_len = -1UL;

1109
  for (auto &pair : tensors) {
1110 1111 1112 1113
    bool is_persistable = member_->IsPersistable(pair.first);
    VLOG(3) << "Split " << (is_persistable ? "persistable" : "no persistable")
            << " data (" << pair.first << "), dim:" << pair.second.dims()
            << ", place: " << pair.second.place();
1114
    auto lod_tensors = SplitLoDTensor(pair.second, member_->places_);
1115
    bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
1116 1117
    if (!is_persistable && num_places != lod_tensors.size() &&
        !allow_partial_feed) {
C
chengduo 已提交
1118
      auto error_info = string::Sprintf(
1119 1120
          "The number(%d) of samples[%s] of current batch is less than the "
          "count(%d) of devices(%s), currently, it is not allowed. ",
1121 1122 1123
          lod_tensors.size(),
          pair.first,
          num_places,
C
chengduo 已提交
1124 1125 1126 1127 1128 1129
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
1130
      PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
1131 1132 1133 1134
    } else if (is_persistable) {
      if (lod_tensors.size() == 1) {
        lod_tensors.reserve(num_places);
        auto &tensor = lod_tensors.front();
1135
        PADDLE_ENFORCE_EQ(
1136 1137
            tensor.dims(),
            pair.second.dims(),
1138 1139
            platform::errors::PreconditionNotMet("The dim doesn't match."));
        PADDLE_ENFORCE_EQ(
1140 1141
            tensor.place(),
            member_->places_.at(0),
1142
            platform::errors::PreconditionNotMet("The place doesn't match."));
1143 1144 1145 1146 1147 1148
        for (size_t i = 1; i < num_places; ++i) {
          lod_tensors.emplace_back();
          auto &tmp = lod_tensors.back();
          framework::TensorCopy(pair.second, member_->places_.at(i), &tmp);
        }
      }
1149
      if (lod_tensors.size() != num_places && !allow_partial_feed) {
1150 1151 1152 1153 1154 1155 1156
        auto error_info = string::Sprintf(
            "The number(%d) of samples[%s] of the current batch does not match "
            "the count(%d) of devices(%s). Because that %s is a persistable "
            "variable, you can feed just one sample, in that case, the input "
            "sample will be copied in %d copies and be sent to different "
            "places separately. If you need that different place has different "
            "value, you should feed %d samples.",
1157 1158 1159 1160 1161 1162 1163
            lod_tensors.size(),
            pair.first,
            num_places,
            (is_cpu_place ? "CPU" : "GPU"),
            pair.first,
            num_places,
            num_places);
1164
        PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
1165
      }
C
chengduo 已提交
1166
    }
1167

1168 1169 1170 1171 1172 1173
    if (allow_partial_feed) {
      if (is_persistable) {
        if (persistable_feed_len == -1UL) {
          persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
1174 1175
              persistable_feed_len,
              lod_tensors.size(),
1176 1177 1178 1179 1180 1181 1182 1183 1184
              platform::errors::InvalidArgument(
                  "The feeded number of different persistable variables "
                  "should be the same"));
        }
      } else {
        if (non_persistable_feed_len == -1UL) {
          non_persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
1185 1186
              non_persistable_feed_len,
              lod_tensors.size(),
1187 1188 1189 1190 1191 1192 1193 1194
              platform::errors::InvalidArgument(
                  "The feeded number of different non-persistable variables "
                  "should be the same"));
        }
      }
    }

    for (size_t j = 0; j < lod_tensors.size(); ++j) {
1195 1196 1197 1198
      auto *feed_scope = is_persistable ? member_->local_scopes_[j]
                                        : member_->local_exec_scopes_[j];
      auto *feed_var = feed_scope->Var(pair.first);

1199
      auto t = feed_var->GetMutable<phi::DenseTensor>();
1200 1201
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
1202 1203
    }
  }
1204 1205 1206 1207 1208

  if (allow_partial_feed && persistable_feed_len != -1UL &&
      non_persistable_feed_len != -1UL) {
    VLOG(10) << "Persistable len " << persistable_feed_len;
    VLOG(10) << "Non persistable len " << non_persistable_feed_len;
1209 1210
    PADDLE_ENFORCE_GE(persistable_feed_len,
                      non_persistable_feed_len,
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
                      platform::errors::InvalidArgument(
                          "The feeded number of persistable variables should "
                          "not be less than non-persistable variables"));
  }

  if (non_persistable_feed_len != -1UL) {
    for (size_t i = 0; i < non_persistable_feed_len; ++i) {
      member_->SetHasFeed(i);
    }
  }
X
Xin Pan 已提交
1221 1222
}

X
Xin Pan 已提交
1223 1224 1225 1226 1227 1228 1229
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

1230
bool ParallelExecutor::EnableParallelGraphExecution(
1231 1232
    const ir::Graph &graph,
    const ExecutionStrategy &exec_strategy,
1233
    const BuildStrategy &build_strategy) const {
1234
  return false;
1235

Y
Yancey1989 已提交
1236
  bool enable_parallel_graph = true;
1237

X
Xin Pan 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
1251 1252 1253
    }
  }

1254
  if (!member_->use_all_reduce_ || !member_->IsUseCUDA(member_->use_device_)) {
Y
Yancey1989 已提交
1255
    if (build_strategy.enable_sequential_execution_ ||
1256
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
1257
      enable_parallel_graph = false;
1258 1259 1260 1261 1262 1263 1264 1265 1266
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
1267
  return enable_parallel_graph;
1268 1269
}

1270
void ParallelExecutor::InitExecutorPrivateMemberInfo(
1271 1272 1273 1274
    const ExecutionStrategy &exec_strategy,
    const BuildStrategy &build_strategy,
    size_t device_count,
    const ir::Graph &graph) {
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
  member_->use_device_ = exec_strategy.use_device_;
  member_->build_strategy_ = build_strategy;
  member_->use_all_reduce_ = member_->build_strategy_.reduce_ ==
                             BuildStrategy::ReduceStrategy::kAllReduce;
  member_->nranks_ = build_strategy.num_trainers_ * device_count;
  if (!member_->use_all_reduce_ && member_->nranks_ == 1) {
    LOG(INFO) << "If you set build_strategy.reduce with 'Reduce',"
                 "the number of places should be greater than 1.";
    member_->build_strategy_.reduce_ =
        BuildStrategy::ReduceStrategy::kAllReduce;
    member_->use_all_reduce_ = true;
  }
#if (defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)) && defined(_WIN32)
  if (member_->IsUseCUDA(member_->use_device_)) {
    PADDLE_ENFORCE_EQ(
1290 1291
        device_count,
        1,
1292 1293 1294 1295 1296 1297 1298 1299
        platform::errors::Unavailable("Windows can support Single GPU only."));
  }
#endif

#if (defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)) && \
    (!defined(PADDLE_WITH_NCCL) && !defined(PADDLE_WITH_RCCL))
  if (member_->IsUseCUDA(member_->use_device_)) {
    PADDLE_ENFORCE_EQ(
1300 1301
        device_count,
        1,
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
        platform::errors::PermissionDenied(
            "Your machine has multiple cards, "
            "but the WITH_NCCL option is not turned on during compilation, "
            "and you cannot use multi-card training or prediction. "
            "Please recompile and turn on the WITH_NCCL option."));
  }
#endif

  std::string device_name;
  if (member_->use_device_ == p::kCPU) {
    device_name = "CPU";
  } else if (member_->use_device_ == p::kCUDA) {
    device_name = "CUDA";
1315
  } else if (member_->use_device_ == p::kXPU) {
1316
    device_name = "XPU";
1317 1318
  } else {
    PADDLE_THROW(
1319 1320
        platform::errors::Unavailable("Only CPU/CUDA/XPU is supportted. "
                                      "please use CPU/CUDA/XPU backend."));
1321 1322 1323 1324 1325
  }

  VLOG(1) << string::Sprintf(
      "The Program will be executed on %s using ParallelExecutor, %lu "
      "cards are used, so %lu programs are executed in parallel.",
1326 1327 1328
      device_name,
      device_count,
      device_count);
1329 1330 1331 1332 1333

  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
  member_->build_strategy_.enable_parallel_graph_ =
1334 1335
      EnableParallelGraphExecution(
          graph, exec_strategy, member_->build_strategy_);
1336 1337 1338 1339 1340 1341 1342 1343
  if (member_->build_strategy_.enable_parallel_graph_) {
    LOG(INFO) << "The Executor would execute the graph by ParallelGraph "
                 "Execution which can get better performance,"
              << "you can force it off by env FLAGS_enable_parallel_graph=0";
  }
}

void ParallelExecutor::CreateLocalScopes(
1344 1345
    Scope *global_scope,
    const std::vector<Scope *> &local_scopes,
1346 1347 1348 1349 1350 1351 1352 1353 1354
    bool create_new) {
  if (local_scopes.empty()) {
    member_->own_local_scope_ = true;
    member_->local_scopes_.emplace_back(global_scope);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
      member_->local_scopes_.emplace_back(&global_scope->NewScope());
    }
  } else {
    member_->own_local_scope_ = false;
1355 1356
    PADDLE_ENFORCE_EQ(member_->places_.size(),
                      local_scopes.size(),
1357 1358 1359
                      platform::errors::PreconditionNotMet(
                          "member_->places_.size() = %d is not equal to "
                          "local_scopes.size() = %d",
1360 1361
                          member_->places_.size(),
                          local_scopes.size()));
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
    for (size_t i = 0; i < member_->places_.size(); ++i) {
      if (create_new) {
        member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
      } else {
        // Use local scopes directly
        member_->local_scopes_.emplace_back(local_scopes[i]);
      }
    }
  }
}

std::unordered_map<Scope *, Scope *> ParallelExecutor::CreateLocalExecScopes(
    const std::vector<Scope *> &local_scopes, bool create_new) {
  std::unordered_map<Scope *, Scope *> scope_map;

  for (auto *scope : local_scopes) {
    Scope *local_exec_scope = scope;
    if (create_new) {
      local_exec_scope = &scope->NewScope();
    }
    member_->local_exec_scopes_.emplace_back(local_exec_scope);
    scope_map.emplace(scope, local_exec_scope);
  }

1386 1387 1388 1389 1390 1391 1392
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(),
                    member_->local_exec_scopes_.size(),
                    platform::errors::PreconditionNotMet(
                        "member_->local_scopes_.size() = %d is not equal to "
                        "member_->local_exec_scopes_.size() = %d",
                        member_->local_scopes_.size(),
                        member_->local_exec_scopes_.size()));
1393 1394 1395 1396 1397 1398 1399 1400

  return scope_map;
}

std::vector<ir::Graph *> ParallelExecutor::CloneGraphToMultiDevices(
    ir::Graph *graph) {
  std::vector<ir::Graph *> graphs;
  if (member_->build_strategy_.async_mode_) {
1401 1402
    PADDLE_ENFORCE_EQ(member_->IsUseCUDA(member_->use_device_),
                      false,
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
                      platform::errors::Unavailable(
                          "gpu mode does not support async_mode_ now!"));
    graphs.push_back(graph);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
  }

  return graphs;
}

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
void ParallelExecutor::PreludeToRun(
    const std::vector<std::string> &fetch_tensors) {
  platform::RecordEvent record_run(
      "ParallelExecutor::Run", platform::TracerEventType::UserDefined, 1);
  VLOG(3) << "enter ParallelExecutor Run";
#ifdef PADDLE_WITH_CUDA
  if (platform::IsCUDAGraphCapturing()) {
    PADDLE_ENFORCE_EQ(fetch_tensors.empty(),
                      true,
                      platform::errors::InvalidArgument(
                          "Cannot fetch data when using CUDA Graph."));
    PADDLE_ENFORCE_EQ(
        member_->build_strategy_.allow_cuda_graph_capture_,
        true,
        platform::errors::InvalidArgument(
            "You must turn on build_strategy.allow_cuda_graph_capture = True "
            "to enable CUDA Graph capturing."));
    PADDLE_ENFORCE_EQ(
        member_->places_[0],
        platform::CUDAGraphCapturingPlace(),
        platform::errors::InvalidArgument("The place to capture CUDAGraph is "
                                          "not the same as the place to run."));
  }
#endif

#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
  }
#endif
}

1448
void ParallelExecutor::PrepareNCCLCommunicator(Scope *global_scope) {
1449 1450 1451 1452 1453
  if (member_->build_strategy_.reduce_ ==
      BuildStrategy::ReduceStrategy::kNoReduce) {
    return;
  }

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
  if (member_->IsUseCUDA(member_->use_device_) && member_->nranks_ > 1) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
    member_->InitOrGetNCCLCommunicator(global_scope, &member_->build_strategy_);

    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
    // be rewrite and there will be some problem.
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
    auto *nccl_ctxs = member_->nccl_ctxs_->GetSyncBatchNormCtx(
        global_scope, member_->places_);
    auto &pool = platform::DeviceContextPool::Instance();
1468 1469 1470
    for (auto &place : member_->places_) {
      auto *dev_ctx = static_cast<phi::GPUContext *>(pool.Get(place));
      auto &nccl_ctx = nccl_ctxs->at(place);
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
    }
#else
    PADDLE_THROW(
        platform::errors::PreconditionNotMet("Not compiled with CUDA."));
#endif
  }
  if (member_->use_device_ == p::kXPU && member_->nranks_ > 1) {
#if defined(PADDLE_WITH_XPU_BKCL)
    member_->InitOrGetBKCLCommunicator(global_scope, member_->build_strategy_);

    auto *bkcl_ctxs = member_->bkcl_ctxs_->GetSyncBatchNormCtx(
        global_scope, member_->places_);
    auto &pool = platform::DeviceContextPool::Instance();
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::XPUDeviceContext *>(
          pool.Get(member_->places_[dev_id]));
      auto &bkcl_ctx = bkcl_ctxs->at(member_->places_[dev_id]);
W
Wilber 已提交
1489
      dev_ctx->SetBkclContext(bkcl_ctx.comm());
1490 1491 1492 1493 1494 1495 1496 1497 1498
    }
#else
    PADDLE_THROW(
        platform::errors::PreconditionNotMet("Not compiled with XPU."));
#endif
  }
}

std::vector<ir::Graph *> ParallelExecutor::CompileGraphWithBuildStrategy(
1499 1500
    ir::Graph *graph,
    std::vector<ir::Graph *> *device_graphs,
1501 1502 1503 1504 1505 1506 1507
    const std::string &loss_var_name) {
  auto device_count = member_->places_.size();
  std::vector<ir::Graph *> async_graphs(device_count);

  auto &graphs = *device_graphs;
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
  if (member_->build_strategy_.async_mode_) {
1508 1509
    PADDLE_ENFORCE_EQ(graphs.size(),
                      device_count,
1510 1511
                      platform::errors::PreconditionNotMet(
                          "graphs.size() shoule be %d, but received %d",
1512 1513
                          device_count,
                          graphs.size()));
1514
    VLOG(3) << "use local async mode";
1515 1516 1517 1518 1519 1520 1521
    graph = member_->build_strategy_.Apply(graph,
                                           {member_->places_[0]},
                                           loss_var_name,
                                           {member_->local_scopes_[0]},
                                           1,
                                           member_->use_device_,
                                           member_->nccl_ctxs_);
1522
    for (size_t i = 1; i < device_count; ++i) {
1523 1524 1525 1526 1527 1528 1529
      graphs[i] = member_->build_strategy_.Apply(graphs[i],
                                                 {member_->places_[i]},
                                                 loss_var_name,
                                                 {member_->local_scopes_[i]},
                                                 1,
                                                 member_->use_device_,
                                                 member_->nccl_ctxs_);
1530 1531 1532
      async_graphs[i] = graphs[i];
    }
  } else {
1533 1534 1535 1536 1537 1538 1539
    graph = member_->build_strategy_.Apply(graph,
                                           member_->places_,
                                           loss_var_name,
                                           member_->local_scopes_,
                                           member_->nranks_,
                                           member_->use_device_,
                                           member_->nccl_ctxs_);
1540 1541 1542
  }
#elif defined(PADDLE_WITH_XPU_BKCL)
  if (member_->build_strategy_.async_mode_) {
1543 1544
    PADDLE_ENFORCE_EQ(graphs.size(),
                      device_count,
1545 1546
                      platform::errors::PreconditionNotMet(
                          "graphs.size() shoule be %d, but received %d",
1547 1548
                          device_count,
                          graphs.size()));
1549
    VLOG(3) << "use local async mode";
1550 1551 1552 1553 1554 1555 1556
    graph = member_->build_strategy_.Apply(graph,
                                           {member_->places_[0]},
                                           loss_var_name,
                                           {member_->local_scopes_[0]},
                                           1,
                                           member_->use_device_,
                                           member_->bkcl_ctxs_);
1557
    for (size_t i = 1; i < device_count; ++i) {
1558 1559 1560 1561 1562 1563 1564
      graphs[i] = member_->build_strategy_.Apply(graphs[i],
                                                 {member_->places_[i]},
                                                 loss_var_name,
                                                 {member_->local_scopes_[i]},
                                                 1,
                                                 member_->use_device_,
                                                 member_->bkcl_ctxs_);
1565 1566 1567
      async_graphs[i] = graphs[i];
    }
  } else {
1568 1569 1570 1571 1572 1573 1574
    graph = member_->build_strategy_.Apply(graph,
                                           member_->places_,
                                           loss_var_name,
                                           member_->local_scopes_,
                                           member_->nranks_,
                                           member_->use_device_,
                                           member_->bkcl_ctxs_);
1575 1576 1577 1578
  }
#else
  if (member_->build_strategy_.async_mode_) {
    VLOG(3) << "use local async mode";
1579 1580 1581 1582 1583 1584
    graph = member_->build_strategy_.Apply(graph,
                                           {member_->places_[0]},
                                           loss_var_name,
                                           {member_->local_scopes_[0]},
                                           1,
                                           member_->use_device_);
1585
    for (size_t i = 1; i < device_count; ++i) {
1586 1587 1588 1589 1590 1591
      graphs[i] = member_->build_strategy_.Apply(graphs[i],
                                                 {member_->places_[i]},
                                                 loss_var_name,
                                                 {member_->local_scopes_[i]},
                                                 1,
                                                 member_->use_device_);
1592 1593 1594
      async_graphs[i] = graphs[i];
    }
  } else {
1595 1596 1597 1598 1599 1600
    graph = member_->build_strategy_.Apply(graph,
                                           member_->places_,
                                           loss_var_name,
                                           member_->local_scopes_,
                                           member_->nranks_,
                                           member_->use_device_);
1601 1602 1603 1604 1605 1606 1607 1608 1609
  }
#endif

  return async_graphs;
}

void ParallelExecutor::CreateVariableInfos(
    std::vector<details::VariableInfo> *var_infos, ir::Graph *graph) {
  PADDLE_ENFORCE_EQ(
1610 1611
      var_infos->size(),
      0,
1612 1613 1614
      platform::errors::PreconditionNotMet(
          "var_infos->size() shoule be 0, but received %d", var_infos->size()));
  PADDLE_ENFORCE_EQ(
1615 1616
      member_->is_persistable_.size(),
      0,
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
      platform::errors::PreconditionNotMet(
          "member_->is_persistable_.size() shoule be 0, but received %d",
          member_->is_persistable_.size()));
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos->emplace_back();
      var_infos->back().name_ = node->Var()->Name();
      var_infos->back().type_ = node->Var()->GetType();
      var_infos->back().persistable_ = node->Var()->Persistable();

      member_->is_persistable_.emplace(node->Var()->Name(),
                                       node->Var()->Persistable());
    }
  }

  if (graph->Has(details::kFusedVars)) {
    auto &fused_vars = graph->Get<details::FusedVars>(details::kFusedVars);
    for (auto &fused_var : fused_vars) {
      var_infos->emplace_back();
      var_infos->back() = fused_var.second;

      member_->is_persistable_.emplace(fused_var.first,
                                       fused_var.second.persistable_);
    }
  }
}

std::vector<ir::Graph *> ParallelExecutor::CreateSSAGraphExecutor(
    const ExecutionStrategy &exec_strategy,
1646 1647
    std::vector<ir::Graph *> *async_graphs,
    ir::Graph *graph) {
1648 1649 1650 1651
  std::vector<ir::Graph *> final_graphs;

  if (member_->build_strategy_.async_mode_) {
    VLOG(3) << "use AsyncSSAGraphExecutor";
1652 1653 1654 1655 1656 1657
    member_->executor_ = std::make_unique<details::AsyncSSAGraphExecutor>(
        exec_strategy,
        member_->local_scopes_,
        member_->local_exec_scopes_,
        member_->places_,
        *async_graphs);
1658 1659 1660 1661 1662 1663 1664 1665 1666
    final_graphs = *async_graphs;
  } else if (member_->build_strategy_.enable_parallel_graph_) {
    VLOG(3) << "use ParallelSSAGraphExecutor";
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
    bool is_inference = details::IsDataParallelInferenceGraph(*graph);
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);

1667 1668 1669 1670 1671 1672
    auto *pg_exe =
        new details::ParallelSSAGraphExecutor(exec_strategy,
                                              member_->local_scopes_,
                                              member_->local_exec_scopes_,
                                              member_->places_,
                                              graph);
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
    final_graphs = pg_exe->Graphs();
    member_->executor_.reset(pg_exe);

    if (is_inference && member_->places_.size() > 1) {
      member_->inference_executor_ = pg_exe;
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
    }
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Paddle should be compiled with CUDA for ParallelGraph Execution."));
#endif
  } else {
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);
    auto possible_inference_graphs =
        details::TrySeparateToMultipleSingleDeviceGraphs(graph);
    if (!possible_inference_graphs.empty()) {
Z
Zeng Jinle 已提交
1692 1693 1694 1695
      for (auto &g : possible_inference_graphs) {
        member_->ApplyFixOpRunOrderPass(g.get());
      }

1696 1697
      VLOG(5) << "Use ParallelSSAGraphExecutor in inference phase";
      auto *pg_exe = new details::ParallelSSAGraphExecutor(
1698 1699 1700 1701 1702
          exec_strategy,
          member_->local_scopes_,
          member_->local_exec_scopes_,
          member_->places_,
          std::move(possible_inference_graphs));
1703 1704 1705 1706 1707 1708 1709 1710
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
      final_graphs = pg_exe->Graphs();
      member_->executor_.reset(pg_exe);
      member_->inference_executor_ = pg_exe;
    } else {
Z
Zeng Jinle 已提交
1711 1712 1713
      if (member_->places_.size() == 1) {
        member_->ApplyFixOpRunOrderPass(graph);
      }
1714 1715 1716 1717 1718
      LOG_IF(WARNING, details::HasKeepLastReadOp(*graph))
          << "drop_last=False for DataLoader is not supported in training "
             "network. It is automatically turned to drop_last=True.";
      if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
        VLOG(3) << "use ThreadedSSAGraphExecutor";
1719 1720 1721 1722 1723 1724 1725
        member_->executor_ =
            std::make_unique<details::ThreadedSSAGraphExecutor>(
                exec_strategy,
                member_->local_scopes_,
                member_->local_exec_scopes_,
                member_->places_,
                graph);
1726
      } else {
1727 1728 1729
        if (member_->use_device_ == p::kXPU) {
#if defined(PADDLE_WITH_XPU)
          VLOG(3) << "use BindThreadedSSAGraphExecutor";
1730 1731 1732 1733 1734 1735 1736
          member_->executor_ =
              std::make_unique<details::BindThreadedSSAGraphExecutor>(
                  exec_strategy,
                  member_->local_scopes_,
                  member_->local_exec_scopes_,
                  member_->places_,
                  graph);
1737 1738 1739 1740 1741 1742 1743
#else
          PADDLE_THROW(platform::errors::PermissionDenied(
              "Paddle can't use XPU device since it's not compiled with XPU,"
              "Please recompile or reinstall Paddle with XPU support."));
#endif
        } else {
          VLOG(3) << "use FastThreadedSSAGraphExecutor";
1744 1745 1746 1747 1748 1749 1750
          member_->executor_ =
              std::make_unique<details::FastThreadedSSAGraphExecutor>(
                  exec_strategy,
                  member_->local_scopes_,
                  member_->local_exec_scopes_,
                  member_->places_,
                  graph);
1751
        }
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
      }
      final_graphs.emplace_back(graph);
    }
  }
  return final_graphs;
}

void ParallelExecutor::ResetOpHandleScopeMapOfGraphs(
    const std::vector<ir::Graph *> &final_graphs,
    const std::unordered_map<Scope *, Scope *> &scope_map) {
  PADDLE_ENFORCE_GE(
1763 1764
      final_graphs.size(),
      1,
1765 1766 1767 1768
      platform::errors::PreconditionNotMet(
          "final_graphs shoule contain at least one graph, but received %d",
          final_graphs.size()));

1769 1770
  PADDLE_ENFORCE_GT(scope_map.size(),
                    0,
1771 1772 1773 1774 1775 1776 1777 1778
                    platform::errors::PreconditionNotMet(
                        "scope_map shoule contain at least one "
                        "element, but received %d",
                        scope_map.size()));
  for (auto *g : final_graphs) {
    auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*g);
    for (auto *op : ops) {
      op->SetLocalExecScopes(scope_map);
1779
      op->SetIsVariantScope(true);
1780 1781 1782 1783
    }
  }
}

1784 1785 1786 1787 1788 1789 1790
void ParallelExecutor::ResetOpHandleScopeMapOfGraphs(
    const std::unordered_map<Scope *, Scope *> &scope_map) {
  auto inner_graph = const_cast<ir::Graph *>(&Graph());
  std::vector<ir::Graph *> graphs = {inner_graph};
  ResetOpHandleScopeMapOfGraphs(graphs, scope_map);
}

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
void ParallelExecutor::SetReaderOpDeviceInfoOfGraphs(
    const std::vector<ir::Graph *> &final_graphs) {
  if (final_graphs.size() == 1) {
    ir::SetReaderOpDeviceInfo(final_graphs[0], member_->places_.size());
  } else {
    for (size_t i = 0; i < final_graphs.size(); ++i) {
      ir::SetReaderOpDeviceInfo(final_graphs[i], member_->places_.size(), i);
    }
  }
}

1802 1803 1804 1805
const ir::Graph &ParallelExecutor::Graph() const {
  return member_->executor_->Graph();
}

1806 1807 1808 1809 1810
void ParallelExecutor::PrepareForCUDAGraphCapture(ir::Graph *graph) {
  const auto &build_strategy = member_->build_strategy_;
  if (!build_strategy.allow_cuda_graph_capture_) return;
#ifdef PADDLE_WITH_CUDA
  PADDLE_ENFORCE_EQ(
1811 1812
      build_strategy.async_mode_,
      false,
1813 1814 1815
      platform::errors::InvalidArgument(
          "Async Executor does not support CUDA Graph capturing."));
  PADDLE_ENFORCE_EQ(
1816 1817
      platform::IsCUDAGraphCapturing(),
      false,
1818 1819 1820
      platform::errors::PermissionDenied("CUDA Graph is not allowed to capture "
                                         "when running the first batch."));
  PADDLE_ENFORCE_EQ(
1821 1822
      member_->places_.size(),
      1,
1823 1824
      platform::errors::InvalidArgument(
          "CUDA Graph is only supported when one GPU device is running."));
1825 1826
  PADDLE_ENFORCE_EQ(platform::is_gpu_place(member_->places_[0]),
                    true,
1827 1828
                    platform::errors::InvalidArgument(
                        "CUDA Graph is only supported on NVIDIA GPU device."));
1829 1830
  PADDLE_ENFORCE_EQ(FLAGS_sync_nccl_allreduce,
                    false,
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
                    platform::errors::InvalidArgument(
                        "FLAGS_sync_nccl_allreduce must be False to support "
                        "CUDA Graph capturing."));

  std::unordered_map<std::string, std::vector<VarDesc *>> all_vars;
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      auto *var_desc = node->Var();
      all_vars[var_desc->Name()].emplace_back(var_desc);
    }
  }

  auto mark_var_as_persistable = [&all_vars](const std::string &name) {
    auto iter = all_vars.find(name);
    if (iter != all_vars.end()) {
      for (auto *var_desc : iter->second) {
        var_desc->SetPersistable(true);
      }
    }
  };

  // Step 1: All fused vars must be persistable.
  if (graph->Has(details::kFusedVars)) {
    auto &fused_vars = graph->Get<details::FusedVars>(details::kFusedVars);
    for (auto &fused_var : fused_vars) {
      fused_var.second.persistable_ = true;
      mark_var_as_persistable(fused_var.first);
    }
  }

  // Step 2: All pinned vars must be persistable.
  if (graph->Has(details::kPinnedVars)) {
    auto &pinned_vars = graph->Get<details::PinnedVars>(details::kPinnedVars);
    for (auto &pinned_var : pinned_vars) {
      mark_var_as_persistable(pinned_var);
    }
  }

  // Step 3: Move all main programs to startup programs to make sure that
  // the main programs would only be run once.
  if (graph->Has(details::kProgramDescs)) {
    auto &startup_programs =
        graph->GetOrInit<details::ProgramDescs>(details::kStartupProgramDescs);
    auto &main_programs =
        graph->Get<details::ProgramDescs>(details::kProgramDescs);
    for (auto &main_program : main_programs) {
      startup_programs.emplace_back(main_program);
    }
    graph->Erase(details::kProgramDescs);
  }

  // Step 4: Mark all vars in startup programs to be persistable.
  if (graph->Has(details::kStartupProgramDescs)) {
    auto &startup_programs =
        graph->GetOrInit<details::ProgramDescs>(details::kStartupProgramDescs);
    for (auto &startup_program : startup_programs) {
      for (auto &op_desc : startup_program.Block(0).AllOps()) {
        for (auto &output : op_desc->OutputArgumentNames()) {
          mark_var_as_persistable(output);
        }
      }
    }
  }

  // Step 5: ScaleLossGrad must be run beforehand to avoid H2D copy.
  auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*graph);
  auto *scope = member_->local_scopes_[0];
  for (auto *op : ops) {
    auto *loss_grad_op = dynamic_cast<details::ScaleLossGradOpHandle *>(op);
    if (loss_grad_op == nullptr) continue;
    auto loss_grad_name = loss_grad_op->LossGradName();
    mark_var_as_persistable(loss_grad_name);
    loss_grad_op->RunOnVar(scope->Var(loss_grad_name));
    loss_grad_op->SetSkipRunning(true);
  }
#else
  PADDLE_THROW(platform::errors::Unimplemented(
      "CUDA Graph is only supported on NVIDIA GPU device."));
#endif
}

Y
Yu Yang 已提交
1912
}  // namespace framework
Y
Yang Yang 已提交
1913
}  // namespace paddle
S
sneaxiy 已提交
1914

S
sneaxiy 已提交
1915
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
1916
USE_PASS(eager_deletion_pass);
1917
USE_PASS(buffer_shared_inplace_pass);
1918
USE_PASS(buffer_shared_cross_op_memory_reuse_pass);
1919
USE_PASS(inplace_addto_op_pass);
Z
Zeng Jinle 已提交
1920
USE_PASS(fix_op_run_order_pass);