parallel_executor.cc 73.4 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
16

D
dzhwinter 已提交
17
#include <algorithm>
Q
qingqing01 已提交
18
#include <memory>
C
chengduoZH 已提交
19
#include <string>
20
#include <tuple>
Q
Qiao Longfei 已提交
21
#include <utility>
Q
qiaolongfei 已提交
22
#include <vector>
23

24
#include "paddle/fluid/framework/convert_utils.h"
Q
Qiao Longfei 已提交
25
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
26
#include "paddle/fluid/framework/details/bind_threaded_ssa_graph_executor.h"
Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
28
#include "paddle/fluid/framework/details/multi_devices_helper.h"
29
#include "paddle/fluid/framework/details/op_handle_base.h"
Y
Yancey1989 已提交
30
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
31
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
33 34
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
35
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimization_var_info.h"
36
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
37
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/set_reader_device_info_utils.h"
38
#include "paddle/fluid/framework/variable_helper.h"
39
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
W
wangchaochaohu 已提交
40
#include "paddle/fluid/platform/event.h"
41
#include "paddle/fluid/platform/profiler.h"
42
#include "paddle/fluid/platform/profiler/event_tracing.h"
Y
Yu Yang 已提交
43

44
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
45 46
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif
47
#include "paddle/fluid/platform/flags.h"
48

49
PHI_DECLARE_double(eager_delete_tensor_gb);
50

51
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
52
PHI_DECLARE_bool(sync_nccl_allreduce);
53 54
#endif

Y
Yu Yang 已提交
55
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
56
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
57
#endif
58
PADDLE_DEFINE_EXPORTED_string(
59 60
    pe_profile_fname,
    "",
61 62
    "Profiler filename for PE, which generated by gperftools."
    "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
Y
Yu Yang 已提交
63

Y
Yang Yang 已提交
64
namespace paddle {
Y
Yu Yang 已提交
65 66
namespace framework {

Y
Yu Yang 已提交
67
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
68
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
69
static bool gProfileStarted = false;
Y
Yu Yang 已提交
70
#endif
71

72
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
73 74 75
std::once_flag p2p_init_flag;
#endif

Y
Yu Yang 已提交
76 77
class ParallelExecutorPrivate {
 public:
78 79 80
  ParallelExecutorPrivate(const std::vector<platform::Place> &places,
                          Scope *global_scope)
      : places_(places), global_scope_(global_scope) {
Y
Yu Yang 已提交
81
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
82 83
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
84
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
85 86 87
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
88
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
89 90 91 92
#endif
      });
    }
  }
Y
Yu Yang 已提交
93

94 95 96 97 98 99 100 101 102 103 104
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
105

106
  bool IsUseCUDA(DeviceType use_device);
107

108 109 110 111
  void SetHasFeed(size_t dev_idx, bool has_feed = true);

  bool AllowPartialFeed() const;

112
  ir::Graph *ApplyMemoryOptimizePass(ir::Graph *graph);
S
sneaxiy 已提交
113 114 115

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

Z
Zeng Jinle 已提交
116 117 118 119 120 121 122
  void ApplyFixOpRunOrderPass(ir::Graph *graph) {
    if (build_strategy_.fix_op_run_order_) {
      auto pass = ir::PassRegistry::Instance().Get("fix_op_run_order_pass");
      pass->Apply(graph);
    }
  }

123
  /**
T
tianshuo78520a 已提交
124 125
   * NOTE(zengjinle): the fed variables of users should not be reused,
   * because users may feed them into another network. Changing the fed
126 127 128 129 130 131
   * variables that users can visit may cause calculation wrong, which is
   * a very subtle bug when traning networks. However, these variables
   * can be garbage collected.
   *
   * ParallelExecutor provides 2 methods to feed variables:
   *
T
tianshuo78520a 已提交
132
   *  - FeedTensorsIntoLocalScopes: this method would share memory of fed
133 134
   *                                variables, so we have to skip these.
   *
T
tianshuo78520a 已提交
135
   *  - FeedAndSplitTensorIntoLocalScopes: this method would copy data of fed
136 137 138 139
   *                                       variables, so we do not need to skip
   *                                       them.
   */
  inline void SetSkipMemoryReuse(size_t scope_idx, const std::string &name) {
140
    if (mem_opt_var_infos_.empty()) {
141 142 143 144
      VLOG(4) << "The mem_opt_var_infos_ is empty, maybe no memory "
                 "optimization strategy is enabled";
      return;
    }
145 146 147 148 149 150
    auto iter = mem_opt_var_infos_[scope_idx].find(name);
    if (iter != mem_opt_var_infos_[scope_idx].end()) {
      iter->second->SetSkipMemoryReuse(true);
    }
  }

151
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
168 169
      nccl_ctxs_->InitFlatCtxs(
          places_, flat_nccl_ids, bst.num_trainers_, bst.trainer_id_);
170 171 172 173 174 175 176 177 178 179 180 181
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
182
        VLOG(10) << "find nccl_id_var:" << var_name << ", nccl_id:" << nccl_id;
183 184
      } else {
        nccl_id = new ncclUniqueId();
185
        PADDLE_ENFORCE_EQ(
186 187
            platform::dynload::ncclGetUniqueId(nccl_id),
            ncclSuccess,
188 189 190
            platform::errors::PreconditionNotMet(
                "PaddlePaddle failed to get NCCL unique ID. It may due to your "
                "system settings or NCCL library error, please debug on NCCL"));
191 192
        VLOG(10) << "can't find nccl_id_var:" << var_name
                 << ", nccl_id:" << nccl_id;
193 194 195 196
      }

      flat_nccl_ids.push_back(nccl_id);

197 198
      nccl_ctxs_->InitFlatCtxs(
          places_, flat_nccl_ids, bst.num_trainers_, bst.trainer_id_);
199 200 201 202 203 204
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
205 206
      nccl_ctxs_->InitFlatCtxs(
          places_, flat_nccl_ids, bst.num_trainers_, bst.trainer_id_);
207 208 209 210 211 212
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
213 214 215
      PADDLE_ENFORCE_NOT_NULL(
          nccl_id_var,
          platform::errors::NotFound("Can't find nccl_id_var '%s'.", var_name));
216 217 218 219
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

220 221
    nccl_ctxs_->InitFlatCtxs(
        places_, flat_nccl_ids, bst.num_trainers_, bst.trainer_id_);
222 223

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
224 225 226 227
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
228 229 230
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
G
gongweibao 已提交
231 232 233
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
234 235 236 237 238

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
239 240 241
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
242 243 244
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
245

246
      nccl_ctxs_->InitHierarchicalCtxs(
247 248 249 250 251 252
          places_,
          inter_nccl_ids,
          exter_nccl_ids,
          bst.num_trainers_,
          bst.trainer_id_,
          bst.hierarchical_allreduce_inter_nranks_,
253
          bst.hierarchical_allreduce_exter_nranks_);
254 255
    }
  }
256

257
  void InitOrGetNCCLCommunicator(framework::Scope *scope, BuildStrategy *bst) {
258 259 260
    const std::string var_name = "NCCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
261 262
      PADDLE_ENFORCE_EQ(var->IsInitialized(),
                        true,
263 264
                        platform::errors::PreconditionNotMet(
                            "if %s exists, it must be initialized", var_name));
265 266 267 268 269 270
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      nccl_ctxs_ = var->GetMutable<platform::NCCLCommunicator>();
      return;
    }

271
    if (bst->use_hierarchical_allreduce_) {
272
      PADDLE_ENFORCE_GT(
273 274
          bst->num_trainers_,
          1,
275 276 277 278
          platform::errors::PreconditionNotMet(
              "The num_trainers should be greater than 1, but received %llu.",
              bst->num_trainers_));
      PADDLE_ENFORCE_GT(
279 280
          bst->hierarchical_allreduce_inter_nranks_,
          1,
281 282 283 284
          platform::errors::PreconditionNotMet(
              "The inter_nranks should be greater than 1, but received %d.",
              bst->hierarchical_allreduce_inter_nranks_));
      PADDLE_ENFORCE_EQ(
285 286
          bst->num_trainers_ % bst->hierarchical_allreduce_inter_nranks_,
          0,
287
          platform::errors::PreconditionNotMet(
288 289
              "num_trainers:%llu mod inter_nranks:%d != 0",
              bst->num_trainers_,
290
              bst->hierarchical_allreduce_inter_nranks_));
291 292 293 294 295

      bst->hierarchical_allreduce_exter_nranks_ =
          bst->num_trainers_ / bst->hierarchical_allreduce_inter_nranks_;
    }

296 297
    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    nccl_ctxs_ = scope->Var(var_name)->GetMutable<platform::NCCLCommunicator>();
298
    InitNCCLCtxs(scope, *bst);
299
  }
300 301
#endif

302 303 304 305 306 307
#if defined(PADDLE_WITH_XPU_BKCL)
  void InitBKCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "bkcl comm num:" << bst.bkcl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

308 309
    PADDLE_ENFORCE_EQ(bst.use_hierarchical_allreduce_,
                      false,
310 311 312 313 314 315
                      platform::errors::Unimplemented(
                          "xpu doesn't support use_hierarchical_allreduce"));

    std::vector<BKCLUniqueId *> flat_bkcl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create bkclid when nranks==1
316 317
      bkcl_ctxs_->InitFlatCtxs(
          places_, flat_bkcl_ids, bst.num_trainers_, bst.trainer_id_);
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one bkclid in pg model";

      BKCLUniqueId *bkcl_id = nullptr;

      std::string var_name = platform::GetFlatBKCLVarName(0);
      auto bkcl_id_var = scope->FindVar(var_name);
      std::unique_ptr<BKCLUniqueId> id(new BKCLUniqueId());
      if (bkcl_id_var) {
        bkcl_id = bkcl_id_var->GetMutable<BKCLUniqueId>();
      } else {
        PADDLE_ENFORCE_EQ(
333 334
            bkcl_get_unique_id(id.get()),
            BKCL_SUCCESS,
335 336 337 338 339 340
            platform::errors::Unavailable("bkcl get unique id failed"));
        bkcl_id = id.get();
      }

      flat_bkcl_ids.push_back(bkcl_id);

341 342
      bkcl_ctxs_->InitFlatCtxs(
          places_, flat_bkcl_ids, bst.num_trainers_, bst.trainer_id_);
343 344 345 346 347 348
      VLOG(1) << "init bst bkcl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
349 350
      bkcl_ctxs_->InitFlatCtxs(
          places_, flat_bkcl_ids, bst.num_trainers_, bst.trainer_id_);
351 352 353 354 355 356 357 358 359 360 361 362 363
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.bkcl_comm_num_); i++) {
      std::string var_name = platform::GetFlatBKCLVarName(i);
      auto bkcl_id_var = scope->FindVar(var_name);
      PADDLE_ENFORCE_NOT_NULL(
          bkcl_id_var,
          platform::errors::NotFound("can't find %s bkcl_id_var", var_name));
      auto bkcl_id = bkcl_id_var->GetMutable<BKCLUniqueId>();
      flat_bkcl_ids.push_back(bkcl_id);
    }

364 365
    bkcl_ctxs_->InitFlatCtxs(
        places_, flat_bkcl_ids, bst.num_trainers_, bst.trainer_id_);
366 367 368 369 370 371 372
  }

  void InitOrGetBKCLCommunicator(framework::Scope *scope,
                                 const BuildStrategy &bst) {
    const std::string var_name = "BKCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
373 374
      PADDLE_ENFORCE_EQ(var->IsInitialized(),
                        true,
375 376 377 378 379 380 381 382 383 384 385 386 387 388
                        platform::errors::PreconditionNotMet(
                            "if %s exists, it must be initialized", var_name));
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      bkcl_ctxs_ = var->GetMutable<platform::BKCLCommunicator>();
      return;
    }

    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    bkcl_ctxs_ = scope->Var(var_name)->GetMutable<platform::BKCLCommunicator>();
    InitBKCLCtxs(scope, bst);
  }
#endif

389 390 391 392 393
  inline bool IsPersistable(const std::string &name) const {
    auto iter = is_persistable_.find(name);
    return iter != is_persistable_.end() && iter->second;
  }

D
dzhwinter 已提交
394
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
395 396
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
397
  std::vector<Scope *> local_exec_scopes_;
398
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
399
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
400

401 402
  std::unordered_map<std::string, bool> is_persistable_;

403
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
404
  platform::NCCLCommunicator *nccl_ctxs_{nullptr};
405 406
#elif defined(PADDLE_WITH_XPU_BKCL)
  platform::BKCLCommunicator *bkcl_ctxs_{nullptr};
Y
Yu Yang 已提交
407
#endif
C
chengduoZH 已提交
408
  bool own_local_scope_;
409
  DeviceType use_device_;
410
  bool use_all_reduce_;
411
  size_t nranks_;
S
sneaxiy 已提交
412

413
  ir::MemOptVarInfoMapList mem_opt_var_infos_;
414
  ir::GarbageCollectorMap gcs_;
415 416

  details::ParallelSSAGraphExecutor *inference_executor_{nullptr};
Y
Yu Yang 已提交
417 418
};

419 420
bool ParallelExecutorPrivate::IsUseCUDA(DeviceType use_device) {
  return use_device == p::kCUDA;
421 422
}

423 424 425 426 427 428 429 430 431 432
void ParallelExecutorPrivate::SetHasFeed(size_t dev_idx, bool has_feed) {
  if (inference_executor_) {
    inference_executor_->SetHasFeed(dev_idx, has_feed);
  }
}

bool ParallelExecutorPrivate::AllowPartialFeed() const {
  return inference_executor_ && inference_executor_->SupportPartialFeed();
}

433
ir::Graph *ParallelExecutorPrivate::ApplyMemoryOptimizePass(ir::Graph *graph) {
Z
Zeng Jinle 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
  /**
   * NOTE(zengjinle): If BuildStrategy.memory_optimize = None in Python,
   * set BuildStrategy.memory_optimize according to whether gc is enabled.
   * If gc is enabled, BuildStrategy.memory_optimize = False.
   * If gc is disabled, BuildStrategy.memory_optimize = True.
   * This is because gc+memory_optimize is worse than gc only.
   *
   * As an option, users can enable BuildStrategy.memory_optimize forcely
   * by setting True, and disable it forcely by setting False.
   */
  bool is_gc_enabled = (GetEagerDeletionThreshold() >= 0);
  if (!build_strategy_.memory_optimize_) {
    build_strategy_.memory_optimize_ = !is_gc_enabled;
  }

  bool need_mem_opt = build_strategy_.enable_inplace_ ||
450
                      build_strategy_.enable_addto_ ||
Z
Zeng Jinle 已提交
451 452 453 454
                      build_strategy_.memory_optimize_.get() || is_gc_enabled;

  if (!need_mem_opt) return graph;

455 456 457 458 459 460 461 462
  std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;

  auto ref_cnt_pass = ir::PassRegistry::Instance().Get("reference_count_pass");
  ref_cnt_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
  ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
  graph = ref_cnt_pass->Apply(graph);
  VLOG(10) << "ReferenceCountPass Applied";

463 464 465 466
  if (build_strategy_.enable_addto_) {
    auto addto_pass = ir::PassRegistry::Instance().Get("inplace_addto_op_pass");
    addto_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    addto_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
467
    addto_pass->Set(ir::kUseCuda, new bool(use_device_ == p::kCUDA));
468 469 470 471 472
    VLOG(10) << "Start to apply inplace_addto_op_pass";
    graph = addto_pass->Apply(graph);
    VLOG(10) << "inplace_addto_op_pass Applied";
  }

473 474 475 476 477
  if (build_strategy_.enable_inplace_) {
    auto inplace_pass =
        ir::PassRegistry::Instance().Get("buffer_shared_inplace_pass");
    inplace_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    inplace_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
478
    inplace_pass->Set(ir::kUseCuda, new bool(use_device_ == p::kCUDA));
479 480 481
    VLOG(10) << "Start to apply buffer_shared_inplace_pass";
    graph = inplace_pass->Apply(graph);
    VLOG(10) << "buffer_shared_inplace_pass Applied";
482 483
    VLOG(1) << "Inplace strategy is enabled, when "
               "build_strategy.enable_inplace = True";
484 485
  }

486
  if (build_strategy_.memory_optimize_.get()) {
487 488 489 490 491 492
    auto cross_op_memory_reuse_pass = ir::PassRegistry::Instance().Get(
        "buffer_shared_cross_op_memory_reuse_pass");
    cross_op_memory_reuse_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                            &mem_opt_var_infos_);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
                                            &last_live_ops_of_vars);
493
    cross_op_memory_reuse_pass->Set(ir::kUseCuda,
494
                                    new bool(use_device_ == p::kCUDA));
495 496 497
    VLOG(10) << "Start to apply buffer_shared_cross_op_memory_reuse_pass";
    graph = cross_op_memory_reuse_pass->Apply(graph);
    VLOG(10) << "buffer_shared_cross_op_memory_reuse_pass Applied";
Z
Zeng Jinle 已提交
498 499 500
    LOG(INFO) << "Cross op memory reuse strategy is enabled, when "
                 "build_strategy.memory_optimize = True or garbage collection "
                 "strategy is disabled, which is not recommended";
501
  }
502

503
  if (!is_gc_enabled) {
504 505 506 507
    return graph;
  }
  size_t max_memory_size = static_cast<size_t>(GetEagerDeletionThreshold());

S
sneaxiy 已提交
508 509 510 511 512
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
513
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
514
    if (platform::is_gpu_place(place)) {
515
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
sneaxiy 已提交
516
      if (IsFastEagerDeletionModeEnabled()) {
517
        gc.reset(new UnsafeFastGPUGarbageCollector(place, max_memory_size));
S
sneaxiy 已提交
518
      } else {
519
        gc.reset(new StreamGarbageCollector(place, max_memory_size));
S
sneaxiy 已提交
520 521
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
522 523 524 525
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use CUDA device since it's not compiled with CUDA,"
          "Please recompile or reinstall Paddle with GPU support."));
S
sneaxiy 已提交
526
#endif
527 528
    } else if (platform::is_xpu_place(place)) {
#if defined(PADDLE_WITH_XPU)
529
      gc.reset(new XPUGarbageCollector(place, max_memory_size));
530 531 532 533 534
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use XPU device since it's not compiled with XPU,"
          "Please recompile or reinstall Paddle with XPU support."));
535 536 537 538 539 540 541 542 543
#endif
    } else if (platform::is_ipu_place(place)) {
#if defined(PADDLE_WITH_IPU)
      gc.reset(new IPUGarbageCollector(place, max_memory_size));
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use IPU device since it's not compiled with IPU,"
          "Please recompile or reinstall Paddle with IPU support."));
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
#endif
    } else if (platform::is_custom_place(place)) {
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
      if (IsFastEagerDeletionModeEnabled()) {
        gc.reset(
            new CustomDeviceUnsafeFastGarbageCollector(place, max_memory_size));
      } else {
        gc.reset(new CustomStreamGarbageCollector(place, max_memory_size));
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use custom device since it's not compiled with "
          "CustomDevice,"
          "Please recompile or reinstall Paddle with CustomDevice support."));
S
sneaxiy 已提交
559
#endif
560
    } else if (platform::is_cpu_place(place)) {
561
      gc.reset(new CPUGarbageCollector(place, max_memory_size));
562 563 564 565 566
      VLOG(10) << "Created GarbageCollector at " << place;
    } else {
      PADDLE_THROW(platform::errors::PreconditionNotMet(
          "Unsupported place for garbage collection"));
    }
S
sneaxiy 已提交
567
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
568 569
  }

S
sneaxiy 已提交
570
  if (!gcs_.empty()) {
S
sneaxiy 已提交
571 572
    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
573 574
    eager_deletion_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                     &mem_opt_var_infos_);
575 576
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
577
                                     &last_live_ops_of_vars);
578
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
579
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
580
    VLOG(10) << "EagerDeletionPass Applied";
581 582 583
    VLOG(1) << "Garbage collection strategy is enabled, when "
            << "FLAGS_eager_delete_tensor_gb = "
            << FLAGS_eager_delete_tensor_gb;
S
sneaxiy 已提交
584 585 586 587
  }
  return graph;
}

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
class ResetHasFeedGuard {
 public:
  explicit ResetHasFeedGuard(ParallelExecutorPrivate *pe_member)
      : pe_member_(pe_member) {}

  ~ResetHasFeedGuard() {
    for (size_t i = 0; i < pe_member_->places_.size(); ++i) {
      pe_member_->SetHasFeed(i, false);
    }
  }

 private:
  ParallelExecutorPrivate *pe_member_;
};

603 604
size_t ParallelExecutor::DeviceCount() const { return member_->places_.size(); }

605 606 607 608
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

609 610 611 612 613 614 615 616 617 618 619 620 621 622
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

623
void InitP2P(const std::vector<platform::Place> &places) {
624
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
625 626 627 628 629 630
  std::call_once(p2p_init_flag, [&]() {
    int count = places.size();
    if (count <= 1) return;

    std::vector<int> devices;
    for (int i = 0; i < count; i++) {
631
      if (!platform::is_gpu_place(places[i])) return;
632

633
      platform::CUDAPlace device = places[i];
634 635 636 637 638 639 640
      devices.push_back(device.GetDeviceId());
    }

    for (int i = 0; i < count; ++i) {
      for (int j = 0; j < count; ++j) {
        if (devices[i] == devices[j]) continue;
        int can_acess = -1;
641 642 643 644 645
#ifdef PADDLE_WITH_HIP
        hipError_t ret =
            hipDeviceCanAccessPeer(&can_acess, devices[i], devices[j]);
        if (ret != hipSuccess || can_acess != 1) {
#else
646 647 648
        cudaError_t ret =
            cudaDeviceCanAccessPeer(&can_acess, devices[i], devices[j]);
        if (ret != cudaSuccess || can_acess != 1) {
649
#endif
650 651 652 653
          LOG(WARNING) << "Cannot enable P2P access from " << devices[i]
                       << " to " << devices[j];
        } else {
          platform::CUDADeviceGuard guard(devices[i]);
654 655 656
#ifdef PADDLE_WITH_HIP
          hipDeviceEnablePeerAccess(devices[j], 0);
#else
657
          cudaDeviceEnablePeerAccess(devices[j], 0);
658
#endif
659 660 661 662 663 664 665 666
        }
      }
    }
    VLOG(1) << "init p2p";
  });
#endif
}

Y
Yan Xu 已提交
667 668 669 670 671 672 673 674
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
675
    : member_(new ParallelExecutorPrivate(places, scope)) {
676
  PADDLE_ENFORCE_EQ(!places.empty(),
677 678 679
                    true,
                    platform::errors::Unavailable(
                        "NPU is not supported in ParallelExecutor."));
680
  InitP2P(places);
681 682
  ir::InitReaderQueueDeviceCount(
      graph, *(member_->global_scope_), member_->places_.size());
683
  // Initialize necessary info of member_ with strategy.
684 685
  InitExecutorPrivateMemberInfo(
      exec_strategy, build_strategy, places.size(), *graph);
Y
Yancey1989 已提交
686

687 688 689 690
  // Step 1. Create local scopes and Clone graph into multi device
  CreateLocalScopes(scope, local_scopes, /*create_new*/ true);
  std::vector<ir::Graph *> graphs = CloneGraphToMultiDevices(graph);
  PrepareNCCLCommunicator(scope);
691

Y
Yan Xu 已提交
692 693
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
C
chengduo 已提交
694
    if (member_->build_strategy_.num_trainers_ > 1) {
Y
Yan Xu 已提交
695 696 697 698 699 700 701 702 703 704
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };
  if (need_broadcast()) {
C
chengduo 已提交
705
    BCastParamsToDevices(bcast_vars, member_->build_strategy_.trainer_id_);
Y
Yu Yang 已提交
706
  }
707

Q
Qiao Longfei 已提交
708 709
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
710 711
  std::vector<ir::Graph *> async_graphs =
      CompileGraphWithBuildStrategy(graph, &graphs, loss_var_name);
712
  PrepareForCUDAGraphCapture(graph);
713
  graph = member_->ApplyMemoryOptimizePass(graph);
Q
Qiao Longfei 已提交
714 715
  async_graphs[0] = graph;

716 717
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
718
  std::vector<details::VariableInfo> var_infos;
719 720 721
  CreateVariableInfos(&var_infos, graph);
  std::unordered_map<Scope *, Scope *> scope_map =
      CreateLocalExecScopes(member_->local_scopes_, /*create_new*/ true);
722

723 724 725
  // Step 4. Create SSAGraph executor
  std::vector<ir::Graph *> final_graphs =
      CreateSSAGraphExecutor(exec_strategy, &async_graphs, graph);
726

727 728 729
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
  if (!member_->build_strategy_.async_mode_) {
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
730 731 732 733 734 735
        exec_strategy,
        member_->local_scopes_,
        member_->local_exec_scopes_,
        std::move(var_infos),
        member_->places_,
        std::move(member_->executor_)));
736 737
  }

738 739 740
  ResetOpHandleScopeMapOfGraphs(final_graphs, scope_map);
  SetReaderOpDeviceInfoOfGraphs(final_graphs);
}
741

742 743
ParallelExecutor::ParallelExecutor(const platform::Place &place,
                                   Scope *scope,
744 745 746 747 748
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
    : member_(new ParallelExecutorPrivate({place}, scope)) {
  // Initialize necessary info of member_ with strategy.
749 750 751 752
  InitExecutorPrivateMemberInfo(exec_strategy,
                                build_strategy,
                                /*device_count=*/1,
                                *graph);
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789

  CreateLocalScopes(scope, /*local_scope=*/{scope}, /*create_new=*/false);

  // Apply BuildStrategy to compile graph.
  std::vector<ir::Graph *> graphs = {graph};
  std::vector<ir::Graph *> async_graphs =
      CompileGraphWithBuildStrategy(graph, &graphs, /*loss_var_name=*/"");

  graph = member_->ApplyMemoryOptimizePass(graph);

  // Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
  CreateVariableInfos(&var_infos_, graph);

  // Create local execution scopes
  std::unordered_map<Scope *, Scope *> scope_map =
      CreateLocalExecScopes(member_->local_scopes_, /*create_new=*/false);

  std::vector<ir::Graph *> final_graphs =
      CreateSSAGraphExecutor(exec_strategy, &async_graphs, graph);

  // Set scope_map of op from each graph
  ResetOpHandleScopeMapOfGraphs(final_graphs, scope_map);
}

void ParallelExecutor::PrepareVariables(Scope *scope) {
  for (auto &info : var_infos_) {
    auto var = scope->FindVar(info.name_);
    if (var != nullptr) {
      VLOG(2) << info.name_
              << " has been initialized beforehand in global scope, skipped.";
      continue;
    }
    framework::InitializeVariable(scope->Var(info.name_), info.type_);
  }
}

790 791 792 793 794 795
void ParallelExecutor::BCastParamsToDevices(
    const std::vector<std::string> &vars, int trainer_id) const {
  VLOG(3) << "BCastParamsToDevices";
  // the initializing bcast, all vars would be bcast from device(0).
  for (auto &var : vars) {
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
796
    if (main_var == nullptr || !main_var->IsType<phi::DenseTensor>()) {
797 798
      continue;
    }
799

800
    auto &main_tensor = main_var->Get<phi::DenseTensor>();
801 802 803 804 805 806 807 808 809 810
    if (!main_tensor.IsInitialized()) {
      VLOG(3) << "one in var not inited, return!";
      continue;
    }
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
      std::vector<void *> buffers;
      buffers.reserve(member_->places_.size());
      size_t numel = main_tensor.numel();
811 812
      auto dtype = framework::TransToProtoVarType(main_tensor.dtype());
      ncclDataType_t data_type = platform::ToNCCLDataType(dtype);
813 814 815
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
816

817
        if (i == 0 && trainer_id == 0) {
818
          buffer = const_cast<void *>(main_tensor.data());
819 820
        } else {
          auto local_scope = member_->local_scopes_[i];
821
          auto *t = local_scope->Var(var)->GetMutable<phi::DenseTensor>();
822
          t->Resize(dims);
823
          buffer = t->mutable_data(place, main_tensor.dtype());
824 825 826
        }
        buffers.push_back(buffer);
      }
827

828 829
      PADDLE_ENFORCE_EQ(member_->places_.size(),
                        buffers.size(),
830 831 832
                        platform::errors::PreconditionNotMet(
                            "variables' buffer size to bcast is %d, which is "
                            "NOT equal to places size %d",
833 834
                            buffers.size(),
                            member_->places_.size()));
835
      if (member_->nccl_ctxs_ != nullptr) {
836
        auto *nccl_ctxs = member_->nccl_ctxs_->DefaultFlatCtx();
837 838
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
839
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
840 841 842 843 844 845
          platform::dynload::ncclBcast(buffers[i],
                                       numel,
                                       data_type,
                                       0,
                                       nccl_ctx.comm_,
                                       nccl_ctx.stream());
846
        }
847
        nccl_ctxs->WaitAll();
848 849
      } else {
        auto src_place = member_->places_[0];
L
Leo Chen 已提交
850
        auto src_dev_ctx = static_cast<phi::GPUContext *>(
851 852 853 854
            platform::DeviceContextPool::Instance().Get(src_place));
        auto sizeof_dtype = framework::SizeOfType(dtype) * numel;
        for (size_t i = 1; i < member_->places_.size(); ++i) {
          auto dst_place = member_->places_[i];
L
Leo Chen 已提交
855
          auto dst_dev_ctx = static_cast<phi::GPUContext *>(
856 857 858
              platform::DeviceContextPool::Instance().Get(dst_place));
          src_dev_ctx->Wait();
          dst_dev_ctx->Wait();
859 860 861 862 863 864
          memory::Copy(dst_place,
                       buffers[i],
                       src_place,
                       buffers[0],
                       sizeof_dtype,
                       src_dev_ctx->stream());
865 866 867
          src_dev_ctx->Wait();
          dst_dev_ctx->Wait();
        }
868
      }
869 870 871 872 873 874
#endif
    } else if (paddle::platform::is_xpu_place(main_tensor.place())) {
#if defined(PADDLE_WITH_XPU_BKCL)
      std::vector<void *> buffers;
      buffers.reserve(member_->places_.size());
      size_t numel = main_tensor.numel();
875 876 877 878 879
      // TODO(liuyuhui): BKCL only support parameters using float type,
      // other parameters need to be strongly converted to float before
      // broadcasting,
      // but broadcast is equivalent to no type of operation, does not affect
      // correctness.
880
      BKCLDataType data_type = BKCL_FLOAT;
881 882
      // BKCLDataType data_type =
      // platform::ToBKCLDataType(framework::TransToProtoVarType(main_tensor.dtype()));
883 884 885 886 887
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;

        if (i == 0 && trainer_id == 0) {
888
          buffer = const_cast<void *>(main_tensor.data());
889 890
        } else {
          auto local_scope = member_->local_scopes_[i];
891
          auto *t = local_scope->Var(var)->GetMutable<phi::DenseTensor>();
892
          t->Resize(dims);
893
          buffer = t->mutable_data(place, main_tensor.dtype());
894 895 896 897
        }
        buffers.push_back(buffer);
      }

898 899
      PADDLE_ENFORCE_EQ(member_->places_.size(),
                        buffers.size(),
900 901 902
                        platform::errors::PreconditionNotMet(
                            "variables' buffer size to bcast is %d, which is "
                            "NOT equal to places size %d",
903 904
                            buffers.size(),
                            member_->places_.size()));
905 906 907 908
      {
        auto *bkcl_ctxs = member_->bkcl_ctxs_->DefaultFlatCtx();

        PADDLE_ENFORCE_EQ(
909 910
            bkcl_group_start(),
            BKCL_SUCCESS,
911 912 913
            platform::errors::Unavailable("bkcl_group_start failed"));
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &bkcl_ctx = bkcl_ctxs->at(member_->places_[i]);
914
          auto broadcast_numel = numel;
915 916
          if (framework::TransToProtoVarType(main_tensor.dtype()) ==
              framework::proto::VarType::INT64) {
917
            broadcast_numel *= 2;
918 919
          }
          PADDLE_ENFORCE_EQ(
920 921 922 923 924 925 926
              bkcl_broadcast(bkcl_ctx.comm(),
                             buffers[i],
                             buffers[i],
                             broadcast_numel,
                             data_type,
                             0,
                             NULL),
927 928 929 930
              BKCL_SUCCESS,
              platform::errors::Unavailable("bkcl_broadcast failed"));
        }
        PADDLE_ENFORCE_EQ(
931 932
            bkcl_group_end(),
            BKCL_SUCCESS,
933 934 935 936 937
            platform::errors::Unavailable("bkcl_group_end failed"));
      }
#else
      PADDLE_THROW(
          platform::errors::PreconditionNotMet("Not compiled with BKCL."));
C
chengduoZH 已提交
938
#endif
939 940
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
941
      for (size_t i = 1; i < member_->places_.size(); ++i) {
942
        auto local_scope = member_->local_scopes_[i];
943
        auto *t = local_scope->Var(var)->GetMutable<phi::DenseTensor>();
C
chengduo 已提交
944

Q
Qiao Longfei 已提交
945
        auto copy_memory = [&] {
946
          t->Resize(dims);
947
          t->mutable_data(cpu, main_tensor.dtype());
948
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
949 950
        };

Q
Qiao Longfei 已提交
951
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
952 953 954 955

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
956 957
        } else if (member_->use_all_reduce_ ||
                   member_->IsUseCUDA(member_->use_device_) ||
Q
can run  
Qiao Longfei 已提交
958 959
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
960
        } else {
Q
can run  
Qiao Longfei 已提交
961
          share_memory();
962
        }
Y
Yu Yang 已提交
963
      }
Y
Stash  
Yu Yang 已提交
964 965
    }
  }
Y
Yu Yang 已提交
966
}
Y
Yu Yang 已提交
967

968 969
FetchUnmergedList ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors) {
970
  LOG_FIRST_N(INFO, 1) << "ParallelExecutor is Running (Run).";
971 972
  PreludeToRun(fetch_tensors);
  platform::RecordBlock b(0);
973

974 975 976 977 978
  ResetHasFeedGuard reset_has_feed_guard(member_);

  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_),
                                fetch_tensors,
                                member_->HasGarbageCollectors());
Y
Yu Yang 已提交
979

980 981 982
  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
  auto fetch_data =
      member_->executor_->Run(fetch_tensors, /*return_merged=*/false);
R
Ruibiao Chen 已提交
983
  return PADDLE_GET(FetchUnmergedList, fetch_data);
984 985 986 987
}

FetchList ParallelExecutor::RunAndMerge(
    const std::vector<std::string> &fetch_tensors) {
988
  LOG_FIRST_N(INFO, 1) << "ParallelExecutor is Running (RunAndMerge).";
989
  PreludeToRun(fetch_tensors);
X
Xin Pan 已提交
990
  platform::RecordBlock b(0);
991

992 993
  ResetHasFeedGuard reset_has_feed_guard(member_);

994 995
  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_),
                                fetch_tensors,
996
                                member_->HasGarbageCollectors());
997

998 999 1000
  VLOG(3) << "ParallelExecutor begin to run member_->executor_->RunAndMerge";
  auto fetch_data =
      member_->executor_->Run(fetch_tensors, /*return_merged=*/true);
R
Ruibiao Chen 已提交
1001
  return PADDLE_GET(FetchList, fetch_data);
Y
Yu Yang 已提交
1002
}
Y
Yu Yang 已提交
1003

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
void ParallelExecutor::RunWithoutFetch(
    const std::vector<std::string> &skip_eager_vars) {
  VLOG(3) << "enter ParallelExecutor RunWithoutFetch";
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
  }
#endif
  platform::RecordBlock b(0);

  ResetHasFeedGuard reset_has_feed_guard(member_);

1016 1017
  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_),
                                skip_eager_vars,
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
                                member_->HasGarbageCollectors());

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
  member_->executor_->Run(/*fetch_tensors*/ {}, /*return_merged*/ false);
}

void ParallelExecutor::SkipMemoryReuse(
    size_t scope_idx, const std::vector<std::string> &skip_vars) {
  for (auto &var_name : skip_vars) {
    bool is_persistable = member_->IsPersistable(var_name);
    if (!is_persistable) {
      VLOG(3) << "SkipMemoryReuse for var: " << var_name;
      member_->SetSkipMemoryReuse(scope_idx, var_name);
    }
  }
}

Y
Yu Yang 已提交
1035
void ParallelExecutor::FeedTensorsIntoLocalScopes(
1036 1037
    const std::vector<std::unordered_map<std::string, phi::DenseTensor>>
        &tensors) {
1038 1039 1040
  if (platform::IsCUDAGraphCapturing()) {
    for (auto &tensor : tensors) {
      PADDLE_ENFORCE_EQ(
1041 1042
          tensor.empty(),
          true,
1043 1044 1045 1046 1047 1048
          platform::errors::PermissionDenied(
              "Feeding data is not permitted when capturing CUDA Graph."));
    }
    return;
  }

1049
  if (!member_->AllowPartialFeed()) {
1050 1051
    PADDLE_ENFORCE_EQ(tensors.size(),
                      member_->local_scopes_.size(),
1052 1053 1054 1055 1056 1057 1058
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
1059 1060
                          tensors.size(),
                          member_->local_scopes_.size()));
1061
  } else {
1062 1063
    PADDLE_ENFORCE_GE(member_->local_scopes_.size(),
                      tensors.size(),
1064 1065 1066
                      platform::errors::InvalidArgument(
                          "The feed tensor number exceeds the device number"));
  }
Y
Yu Yang 已提交
1067

1068
  size_t feed_num = 0;
Y
Yu Yang 已提交
1069 1070
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
1071 1072 1073 1074 1075 1076
    if (map.empty()) {
      continue;
    }

    member_->SetHasFeed(i);
    ++feed_num;
Y
Yu Yang 已提交
1077
    for (auto &pair : map) {
1078
      bool is_persistable = member_->IsPersistable(pair.first);
1079 1080 1081
      if (!is_persistable) {
        member_->SetSkipMemoryReuse(i, pair.first);
      }
1082 1083 1084 1085
      auto *feed_scope = is_persistable ? member_->local_scopes_[i]
                                        : member_->local_exec_scopes_[i];
      auto *feed_var = feed_scope->Var(pair.first);

1086
      auto *trg = feed_var->GetMutable<phi::DenseTensor>();
Y
Yu Yang 已提交
1087 1088 1089 1090
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
1091 1092

  if (!member_->AllowPartialFeed()) {
1093 1094
    PADDLE_ENFORCE_EQ(feed_num,
                      member_->local_scopes_.size(),
1095 1096 1097 1098 1099 1100 1101
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
1102 1103
                          feed_num,
                          member_->local_scopes_.size()));
1104
  }
Y
Yu Yang 已提交
1105 1106 1107
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
1108
    const std::unordered_map<std::string, phi::DenseTensor> &tensors) {
1109 1110
  if (platform::IsCUDAGraphCapturing()) {
    PADDLE_ENFORCE_EQ(
1111 1112
        tensors.empty(),
        true,
1113 1114 1115 1116 1117
        platform::errors::PermissionDenied(
            "Feeding data is not permitted when capturing CUDA Graph."));
    return;
  }

1118
  size_t num_places = member_->places_.size();
1119 1120 1121 1122 1123
  bool allow_partial_feed = member_->AllowPartialFeed();

  size_t persistable_feed_len = -1UL;
  size_t non_persistable_feed_len = -1UL;

1124
  for (auto &pair : tensors) {
1125 1126 1127 1128
    bool is_persistable = member_->IsPersistable(pair.first);
    VLOG(3) << "Split " << (is_persistable ? "persistable" : "no persistable")
            << " data (" << pair.first << "), dim:" << pair.second.dims()
            << ", place: " << pair.second.place();
1129
    auto lod_tensors = SplitLoDTensor(pair.second, member_->places_);
1130
    bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
1131 1132
    if (!is_persistable && num_places != lod_tensors.size() &&
        !allow_partial_feed) {
C
chengduo 已提交
1133
      auto error_info = string::Sprintf(
1134 1135
          "The number(%d) of samples[%s] of current batch is less than the "
          "count(%d) of devices(%s), currently, it is not allowed. ",
1136 1137 1138
          lod_tensors.size(),
          pair.first,
          num_places,
C
chengduo 已提交
1139 1140 1141 1142 1143 1144
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
1145
      PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
1146 1147 1148 1149
    } else if (is_persistable) {
      if (lod_tensors.size() == 1) {
        lod_tensors.reserve(num_places);
        auto &tensor = lod_tensors.front();
1150
        PADDLE_ENFORCE_EQ(
1151 1152
            tensor.dims(),
            pair.second.dims(),
1153 1154
            platform::errors::PreconditionNotMet("The dim doesn't match."));
        PADDLE_ENFORCE_EQ(
1155 1156
            tensor.place(),
            member_->places_.at(0),
1157
            platform::errors::PreconditionNotMet("The place doesn't match."));
1158 1159 1160 1161 1162 1163
        for (size_t i = 1; i < num_places; ++i) {
          lod_tensors.emplace_back();
          auto &tmp = lod_tensors.back();
          framework::TensorCopy(pair.second, member_->places_.at(i), &tmp);
        }
      }
1164
      if (lod_tensors.size() != num_places && !allow_partial_feed) {
1165 1166 1167 1168 1169 1170 1171
        auto error_info = string::Sprintf(
            "The number(%d) of samples[%s] of the current batch does not match "
            "the count(%d) of devices(%s). Because that %s is a persistable "
            "variable, you can feed just one sample, in that case, the input "
            "sample will be copied in %d copies and be sent to different "
            "places separately. If you need that different place has different "
            "value, you should feed %d samples.",
1172 1173 1174 1175 1176 1177 1178
            lod_tensors.size(),
            pair.first,
            num_places,
            (is_cpu_place ? "CPU" : "GPU"),
            pair.first,
            num_places,
            num_places);
1179
        PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
1180
      }
C
chengduo 已提交
1181
    }
1182

1183 1184 1185 1186 1187 1188
    if (allow_partial_feed) {
      if (is_persistable) {
        if (persistable_feed_len == -1UL) {
          persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
1189 1190
              persistable_feed_len,
              lod_tensors.size(),
1191 1192 1193 1194 1195 1196 1197 1198 1199
              platform::errors::InvalidArgument(
                  "The feeded number of different persistable variables "
                  "should be the same"));
        }
      } else {
        if (non_persistable_feed_len == -1UL) {
          non_persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
1200 1201
              non_persistable_feed_len,
              lod_tensors.size(),
1202 1203 1204 1205 1206 1207 1208 1209
              platform::errors::InvalidArgument(
                  "The feeded number of different non-persistable variables "
                  "should be the same"));
        }
      }
    }

    for (size_t j = 0; j < lod_tensors.size(); ++j) {
1210 1211 1212 1213
      auto *feed_scope = is_persistable ? member_->local_scopes_[j]
                                        : member_->local_exec_scopes_[j];
      auto *feed_var = feed_scope->Var(pair.first);

1214
      auto t = feed_var->GetMutable<phi::DenseTensor>();
1215 1216
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
1217 1218
    }
  }
1219 1220 1221 1222 1223

  if (allow_partial_feed && persistable_feed_len != -1UL &&
      non_persistable_feed_len != -1UL) {
    VLOG(10) << "Persistable len " << persistable_feed_len;
    VLOG(10) << "Non persistable len " << non_persistable_feed_len;
1224 1225
    PADDLE_ENFORCE_GE(persistable_feed_len,
                      non_persistable_feed_len,
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
                      platform::errors::InvalidArgument(
                          "The feeded number of persistable variables should "
                          "not be less than non-persistable variables"));
  }

  if (non_persistable_feed_len != -1UL) {
    for (size_t i = 0; i < non_persistable_feed_len; ++i) {
      member_->SetHasFeed(i);
    }
  }
X
Xin Pan 已提交
1236 1237
}

X
Xin Pan 已提交
1238 1239 1240 1241 1242 1243 1244
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

1245
bool ParallelExecutor::EnableParallelGraphExecution(
1246 1247
    const ir::Graph &graph,
    const ExecutionStrategy &exec_strategy,
1248
    const BuildStrategy &build_strategy) const {
1249
  return false;
1250

Y
Yancey1989 已提交
1251
  bool enable_parallel_graph = true;
1252

X
Xin Pan 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
1266 1267 1268
    }
  }

1269
  if (!member_->use_all_reduce_ || !member_->IsUseCUDA(member_->use_device_)) {
Y
Yancey1989 已提交
1270
    if (build_strategy.enable_sequential_execution_ ||
1271
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
1272
      enable_parallel_graph = false;
1273 1274 1275 1276 1277 1278 1279 1280 1281
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
1282
  return enable_parallel_graph;
1283 1284
}

1285
void ParallelExecutor::InitExecutorPrivateMemberInfo(
1286 1287 1288 1289
    const ExecutionStrategy &exec_strategy,
    const BuildStrategy &build_strategy,
    size_t device_count,
    const ir::Graph &graph) {
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
  member_->use_device_ = exec_strategy.use_device_;
  member_->build_strategy_ = build_strategy;
  member_->use_all_reduce_ = member_->build_strategy_.reduce_ ==
                             BuildStrategy::ReduceStrategy::kAllReduce;
  member_->nranks_ = build_strategy.num_trainers_ * device_count;
  if (!member_->use_all_reduce_ && member_->nranks_ == 1) {
    LOG(INFO) << "If you set build_strategy.reduce with 'Reduce',"
                 "the number of places should be greater than 1.";
    member_->build_strategy_.reduce_ =
        BuildStrategy::ReduceStrategy::kAllReduce;
    member_->use_all_reduce_ = true;
  }
#if (defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)) && defined(_WIN32)
  if (member_->IsUseCUDA(member_->use_device_)) {
    PADDLE_ENFORCE_EQ(
1305 1306
        device_count,
        1,
1307 1308 1309 1310 1311 1312 1313 1314
        platform::errors::Unavailable("Windows can support Single GPU only."));
  }
#endif

#if (defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)) && \
    (!defined(PADDLE_WITH_NCCL) && !defined(PADDLE_WITH_RCCL))
  if (member_->IsUseCUDA(member_->use_device_)) {
    PADDLE_ENFORCE_EQ(
1315 1316
        device_count,
        1,
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
        platform::errors::PermissionDenied(
            "Your machine has multiple cards, "
            "but the WITH_NCCL option is not turned on during compilation, "
            "and you cannot use multi-card training or prediction. "
            "Please recompile and turn on the WITH_NCCL option."));
  }
#endif

  std::string device_name;
  if (member_->use_device_ == p::kCPU) {
    device_name = "CPU";
  } else if (member_->use_device_ == p::kCUDA) {
    device_name = "CUDA";
1330
  } else if (member_->use_device_ == p::kXPU) {
1331
    device_name = "XPU";
1332 1333
  } else {
    PADDLE_THROW(
1334 1335
        platform::errors::Unavailable("Only CPU/CUDA/XPU is supportted. "
                                      "please use CPU/CUDA/XPU backend."));
1336 1337 1338 1339 1340
  }

  VLOG(1) << string::Sprintf(
      "The Program will be executed on %s using ParallelExecutor, %lu "
      "cards are used, so %lu programs are executed in parallel.",
1341 1342 1343
      device_name,
      device_count,
      device_count);
1344 1345 1346 1347 1348

  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
  member_->build_strategy_.enable_parallel_graph_ =
1349 1350
      EnableParallelGraphExecution(
          graph, exec_strategy, member_->build_strategy_);
1351 1352 1353 1354 1355 1356 1357 1358
  if (member_->build_strategy_.enable_parallel_graph_) {
    LOG(INFO) << "The Executor would execute the graph by ParallelGraph "
                 "Execution which can get better performance,"
              << "you can force it off by env FLAGS_enable_parallel_graph=0";
  }
}

void ParallelExecutor::CreateLocalScopes(
1359 1360
    Scope *global_scope,
    const std::vector<Scope *> &local_scopes,
1361 1362 1363 1364 1365 1366 1367 1368 1369
    bool create_new) {
  if (local_scopes.empty()) {
    member_->own_local_scope_ = true;
    member_->local_scopes_.emplace_back(global_scope);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
      member_->local_scopes_.emplace_back(&global_scope->NewScope());
    }
  } else {
    member_->own_local_scope_ = false;
1370 1371
    PADDLE_ENFORCE_EQ(member_->places_.size(),
                      local_scopes.size(),
1372 1373 1374
                      platform::errors::PreconditionNotMet(
                          "member_->places_.size() = %d is not equal to "
                          "local_scopes.size() = %d",
1375 1376
                          member_->places_.size(),
                          local_scopes.size()));
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
    for (size_t i = 0; i < member_->places_.size(); ++i) {
      if (create_new) {
        member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
      } else {
        // Use local scopes directly
        member_->local_scopes_.emplace_back(local_scopes[i]);
      }
    }
  }
}

std::unordered_map<Scope *, Scope *> ParallelExecutor::CreateLocalExecScopes(
    const std::vector<Scope *> &local_scopes, bool create_new) {
  std::unordered_map<Scope *, Scope *> scope_map;

  for (auto *scope : local_scopes) {
    Scope *local_exec_scope = scope;
    if (create_new) {
      local_exec_scope = &scope->NewScope();
    }
    member_->local_exec_scopes_.emplace_back(local_exec_scope);
    scope_map.emplace(scope, local_exec_scope);
  }

1401 1402 1403 1404 1405 1406 1407
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(),
                    member_->local_exec_scopes_.size(),
                    platform::errors::PreconditionNotMet(
                        "member_->local_scopes_.size() = %d is not equal to "
                        "member_->local_exec_scopes_.size() = %d",
                        member_->local_scopes_.size(),
                        member_->local_exec_scopes_.size()));
1408 1409 1410 1411 1412 1413 1414 1415

  return scope_map;
}

std::vector<ir::Graph *> ParallelExecutor::CloneGraphToMultiDevices(
    ir::Graph *graph) {
  std::vector<ir::Graph *> graphs;
  if (member_->build_strategy_.async_mode_) {
1416 1417
    PADDLE_ENFORCE_EQ(member_->IsUseCUDA(member_->use_device_),
                      false,
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
                      platform::errors::Unavailable(
                          "gpu mode does not support async_mode_ now!"));
    graphs.push_back(graph);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
  }

  return graphs;
}

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
void ParallelExecutor::PreludeToRun(
    const std::vector<std::string> &fetch_tensors) {
  platform::RecordEvent record_run(
      "ParallelExecutor::Run", platform::TracerEventType::UserDefined, 1);
  VLOG(3) << "enter ParallelExecutor Run";
#ifdef PADDLE_WITH_CUDA
  if (platform::IsCUDAGraphCapturing()) {
    PADDLE_ENFORCE_EQ(fetch_tensors.empty(),
                      true,
                      platform::errors::InvalidArgument(
                          "Cannot fetch data when using CUDA Graph."));
    PADDLE_ENFORCE_EQ(
        member_->build_strategy_.allow_cuda_graph_capture_,
        true,
        platform::errors::InvalidArgument(
            "You must turn on build_strategy.allow_cuda_graph_capture = True "
            "to enable CUDA Graph capturing."));
    PADDLE_ENFORCE_EQ(
        member_->places_[0],
        platform::CUDAGraphCapturingPlace(),
        platform::errors::InvalidArgument("The place to capture CUDAGraph is "
                                          "not the same as the place to run."));
  }
#endif

#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
  }
#endif
}

1463
void ParallelExecutor::PrepareNCCLCommunicator(Scope *global_scope) {
1464 1465 1466 1467 1468
  if (member_->build_strategy_.reduce_ ==
      BuildStrategy::ReduceStrategy::kNoReduce) {
    return;
  }

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
  if (member_->IsUseCUDA(member_->use_device_) && member_->nranks_ > 1) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
    member_->InitOrGetNCCLCommunicator(global_scope, &member_->build_strategy_);

    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
    // be rewrite and there will be some problem.
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
    auto *nccl_ctxs = member_->nccl_ctxs_->GetSyncBatchNormCtx(
        global_scope, member_->places_);
    auto &pool = platform::DeviceContextPool::Instance();
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
L
Leo Chen 已提交
1484 1485
      auto *dev_ctx =
          static_cast<phi::GPUContext *>(pool.Get(member_->places_[dev_id]));
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
      auto &nccl_ctx = nccl_ctxs->at(member_->places_[dev_id]);
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
    }
#else
    PADDLE_THROW(
        platform::errors::PreconditionNotMet("Not compiled with CUDA."));
#endif
  }
  if (member_->use_device_ == p::kXPU && member_->nranks_ > 1) {
#if defined(PADDLE_WITH_XPU_BKCL)
    member_->InitOrGetBKCLCommunicator(global_scope, member_->build_strategy_);

    auto *bkcl_ctxs = member_->bkcl_ctxs_->GetSyncBatchNormCtx(
        global_scope, member_->places_);
    auto &pool = platform::DeviceContextPool::Instance();
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::XPUDeviceContext *>(
          pool.Get(member_->places_[dev_id]));
      auto &bkcl_ctx = bkcl_ctxs->at(member_->places_[dev_id]);
W
Wilber 已提交
1505
      dev_ctx->SetBkclContext(bkcl_ctx.comm());
1506 1507 1508 1509 1510 1511 1512 1513 1514
    }
#else
    PADDLE_THROW(
        platform::errors::PreconditionNotMet("Not compiled with XPU."));
#endif
  }
}

std::vector<ir::Graph *> ParallelExecutor::CompileGraphWithBuildStrategy(
1515 1516
    ir::Graph *graph,
    std::vector<ir::Graph *> *device_graphs,
1517 1518 1519 1520 1521 1522 1523
    const std::string &loss_var_name) {
  auto device_count = member_->places_.size();
  std::vector<ir::Graph *> async_graphs(device_count);

  auto &graphs = *device_graphs;
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
  if (member_->build_strategy_.async_mode_) {
1524 1525
    PADDLE_ENFORCE_EQ(graphs.size(),
                      device_count,
1526 1527
                      platform::errors::PreconditionNotMet(
                          "graphs.size() shoule be %d, but received %d",
1528 1529
                          device_count,
                          graphs.size()));
1530
    VLOG(3) << "use local async mode";
1531 1532 1533 1534 1535 1536 1537
    graph = member_->build_strategy_.Apply(graph,
                                           {member_->places_[0]},
                                           loss_var_name,
                                           {member_->local_scopes_[0]},
                                           1,
                                           member_->use_device_,
                                           member_->nccl_ctxs_);
1538
    for (size_t i = 1; i < device_count; ++i) {
1539 1540 1541 1542 1543 1544 1545
      graphs[i] = member_->build_strategy_.Apply(graphs[i],
                                                 {member_->places_[i]},
                                                 loss_var_name,
                                                 {member_->local_scopes_[i]},
                                                 1,
                                                 member_->use_device_,
                                                 member_->nccl_ctxs_);
1546 1547 1548
      async_graphs[i] = graphs[i];
    }
  } else {
1549 1550 1551 1552 1553 1554 1555
    graph = member_->build_strategy_.Apply(graph,
                                           member_->places_,
                                           loss_var_name,
                                           member_->local_scopes_,
                                           member_->nranks_,
                                           member_->use_device_,
                                           member_->nccl_ctxs_);
1556 1557 1558
  }
#elif defined(PADDLE_WITH_XPU_BKCL)
  if (member_->build_strategy_.async_mode_) {
1559 1560
    PADDLE_ENFORCE_EQ(graphs.size(),
                      device_count,
1561 1562
                      platform::errors::PreconditionNotMet(
                          "graphs.size() shoule be %d, but received %d",
1563 1564
                          device_count,
                          graphs.size()));
1565
    VLOG(3) << "use local async mode";
1566 1567 1568 1569 1570 1571 1572
    graph = member_->build_strategy_.Apply(graph,
                                           {member_->places_[0]},
                                           loss_var_name,
                                           {member_->local_scopes_[0]},
                                           1,
                                           member_->use_device_,
                                           member_->bkcl_ctxs_);
1573
    for (size_t i = 1; i < device_count; ++i) {
1574 1575 1576 1577 1578 1579 1580
      graphs[i] = member_->build_strategy_.Apply(graphs[i],
                                                 {member_->places_[i]},
                                                 loss_var_name,
                                                 {member_->local_scopes_[i]},
                                                 1,
                                                 member_->use_device_,
                                                 member_->bkcl_ctxs_);
1581 1582 1583
      async_graphs[i] = graphs[i];
    }
  } else {
1584 1585 1586 1587 1588 1589 1590
    graph = member_->build_strategy_.Apply(graph,
                                           member_->places_,
                                           loss_var_name,
                                           member_->local_scopes_,
                                           member_->nranks_,
                                           member_->use_device_,
                                           member_->bkcl_ctxs_);
1591 1592 1593 1594
  }
#else
  if (member_->build_strategy_.async_mode_) {
    VLOG(3) << "use local async mode";
1595 1596 1597 1598 1599 1600
    graph = member_->build_strategy_.Apply(graph,
                                           {member_->places_[0]},
                                           loss_var_name,
                                           {member_->local_scopes_[0]},
                                           1,
                                           member_->use_device_);
1601
    for (size_t i = 1; i < device_count; ++i) {
1602 1603 1604 1605 1606 1607
      graphs[i] = member_->build_strategy_.Apply(graphs[i],
                                                 {member_->places_[i]},
                                                 loss_var_name,
                                                 {member_->local_scopes_[i]},
                                                 1,
                                                 member_->use_device_);
1608 1609 1610
      async_graphs[i] = graphs[i];
    }
  } else {
1611 1612 1613 1614 1615 1616
    graph = member_->build_strategy_.Apply(graph,
                                           member_->places_,
                                           loss_var_name,
                                           member_->local_scopes_,
                                           member_->nranks_,
                                           member_->use_device_);
1617 1618 1619 1620 1621 1622 1623 1624 1625
  }
#endif

  return async_graphs;
}

void ParallelExecutor::CreateVariableInfos(
    std::vector<details::VariableInfo> *var_infos, ir::Graph *graph) {
  PADDLE_ENFORCE_EQ(
1626 1627
      var_infos->size(),
      0,
1628 1629 1630
      platform::errors::PreconditionNotMet(
          "var_infos->size() shoule be 0, but received %d", var_infos->size()));
  PADDLE_ENFORCE_EQ(
1631 1632
      member_->is_persistable_.size(),
      0,
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
      platform::errors::PreconditionNotMet(
          "member_->is_persistable_.size() shoule be 0, but received %d",
          member_->is_persistable_.size()));
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos->emplace_back();
      var_infos->back().name_ = node->Var()->Name();
      var_infos->back().type_ = node->Var()->GetType();
      var_infos->back().persistable_ = node->Var()->Persistable();

      member_->is_persistable_.emplace(node->Var()->Name(),
                                       node->Var()->Persistable());
    }
  }

  if (graph->Has(details::kFusedVars)) {
    auto &fused_vars = graph->Get<details::FusedVars>(details::kFusedVars);
    for (auto &fused_var : fused_vars) {
      var_infos->emplace_back();
      var_infos->back() = fused_var.second;

      member_->is_persistable_.emplace(fused_var.first,
                                       fused_var.second.persistable_);
    }
  }
}

std::vector<ir::Graph *> ParallelExecutor::CreateSSAGraphExecutor(
    const ExecutionStrategy &exec_strategy,
1662 1663
    std::vector<ir::Graph *> *async_graphs,
    ir::Graph *graph) {
1664 1665 1666 1667
  std::vector<ir::Graph *> final_graphs;

  if (member_->build_strategy_.async_mode_) {
    VLOG(3) << "use AsyncSSAGraphExecutor";
1668 1669 1670 1671 1672 1673
    member_->executor_.reset(
        new details::AsyncSSAGraphExecutor(exec_strategy,
                                           member_->local_scopes_,
                                           member_->local_exec_scopes_,
                                           member_->places_,
                                           *async_graphs));
1674 1675 1676 1677 1678 1679 1680 1681 1682
    final_graphs = *async_graphs;
  } else if (member_->build_strategy_.enable_parallel_graph_) {
    VLOG(3) << "use ParallelSSAGraphExecutor";
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
    bool is_inference = details::IsDataParallelInferenceGraph(*graph);
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);

1683 1684 1685 1686 1687 1688
    auto *pg_exe =
        new details::ParallelSSAGraphExecutor(exec_strategy,
                                              member_->local_scopes_,
                                              member_->local_exec_scopes_,
                                              member_->places_,
                                              graph);
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
    final_graphs = pg_exe->Graphs();
    member_->executor_.reset(pg_exe);

    if (is_inference && member_->places_.size() > 1) {
      member_->inference_executor_ = pg_exe;
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
    }
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Paddle should be compiled with CUDA for ParallelGraph Execution."));
#endif
  } else {
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);
    auto possible_inference_graphs =
        details::TrySeparateToMultipleSingleDeviceGraphs(graph);
    if (!possible_inference_graphs.empty()) {
Z
Zeng Jinle 已提交
1708 1709 1710 1711
      for (auto &g : possible_inference_graphs) {
        member_->ApplyFixOpRunOrderPass(g.get());
      }

1712 1713
      VLOG(5) << "Use ParallelSSAGraphExecutor in inference phase";
      auto *pg_exe = new details::ParallelSSAGraphExecutor(
1714 1715 1716 1717 1718
          exec_strategy,
          member_->local_scopes_,
          member_->local_exec_scopes_,
          member_->places_,
          std::move(possible_inference_graphs));
1719 1720 1721 1722 1723 1724 1725 1726
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
      final_graphs = pg_exe->Graphs();
      member_->executor_.reset(pg_exe);
      member_->inference_executor_ = pg_exe;
    } else {
Z
Zeng Jinle 已提交
1727 1728 1729
      if (member_->places_.size() == 1) {
        member_->ApplyFixOpRunOrderPass(graph);
      }
1730 1731 1732 1733 1734
      LOG_IF(WARNING, details::HasKeepLastReadOp(*graph))
          << "drop_last=False for DataLoader is not supported in training "
             "network. It is automatically turned to drop_last=True.";
      if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
        VLOG(3) << "use ThreadedSSAGraphExecutor";
1735 1736 1737 1738 1739 1740
        member_->executor_.reset(
            new details::ThreadedSSAGraphExecutor(exec_strategy,
                                                  member_->local_scopes_,
                                                  member_->local_exec_scopes_,
                                                  member_->places_,
                                                  graph));
1741
      } else {
1742 1743 1744 1745
        if (member_->use_device_ == p::kXPU) {
#if defined(PADDLE_WITH_XPU)
          VLOG(3) << "use BindThreadedSSAGraphExecutor";
          member_->executor_.reset(new details::BindThreadedSSAGraphExecutor(
1746 1747 1748 1749 1750
              exec_strategy,
              member_->local_scopes_,
              member_->local_exec_scopes_,
              member_->places_,
              graph));
1751 1752 1753 1754 1755 1756 1757 1758
#else
          PADDLE_THROW(platform::errors::PermissionDenied(
              "Paddle can't use XPU device since it's not compiled with XPU,"
              "Please recompile or reinstall Paddle with XPU support."));
#endif
        } else {
          VLOG(3) << "use FastThreadedSSAGraphExecutor";
          member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
1759 1760 1761 1762 1763
              exec_strategy,
              member_->local_scopes_,
              member_->local_exec_scopes_,
              member_->places_,
              graph));
1764
        }
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
      }
      final_graphs.emplace_back(graph);
    }
  }
  return final_graphs;
}

void ParallelExecutor::ResetOpHandleScopeMapOfGraphs(
    const std::vector<ir::Graph *> &final_graphs,
    const std::unordered_map<Scope *, Scope *> &scope_map) {
  PADDLE_ENFORCE_GE(
1776 1777
      final_graphs.size(),
      1,
1778 1779 1780 1781
      platform::errors::PreconditionNotMet(
          "final_graphs shoule contain at least one graph, but received %d",
          final_graphs.size()));

1782 1783
  PADDLE_ENFORCE_GT(scope_map.size(),
                    0,
1784 1785 1786 1787 1788 1789 1790 1791
                    platform::errors::PreconditionNotMet(
                        "scope_map shoule contain at least one "
                        "element, but received %d",
                        scope_map.size()));
  for (auto *g : final_graphs) {
    auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*g);
    for (auto *op : ops) {
      op->SetLocalExecScopes(scope_map);
1792
      op->SetIsVariantScope(true);
1793 1794 1795 1796
    }
  }
}

1797 1798 1799 1800 1801 1802 1803
void ParallelExecutor::ResetOpHandleScopeMapOfGraphs(
    const std::unordered_map<Scope *, Scope *> &scope_map) {
  auto inner_graph = const_cast<ir::Graph *>(&Graph());
  std::vector<ir::Graph *> graphs = {inner_graph};
  ResetOpHandleScopeMapOfGraphs(graphs, scope_map);
}

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
void ParallelExecutor::SetReaderOpDeviceInfoOfGraphs(
    const std::vector<ir::Graph *> &final_graphs) {
  if (final_graphs.size() == 1) {
    ir::SetReaderOpDeviceInfo(final_graphs[0], member_->places_.size());
  } else {
    for (size_t i = 0; i < final_graphs.size(); ++i) {
      ir::SetReaderOpDeviceInfo(final_graphs[i], member_->places_.size(), i);
    }
  }
}

1815 1816 1817 1818
const ir::Graph &ParallelExecutor::Graph() const {
  return member_->executor_->Graph();
}

1819 1820 1821 1822 1823
void ParallelExecutor::PrepareForCUDAGraphCapture(ir::Graph *graph) {
  const auto &build_strategy = member_->build_strategy_;
  if (!build_strategy.allow_cuda_graph_capture_) return;
#ifdef PADDLE_WITH_CUDA
  PADDLE_ENFORCE_EQ(
1824 1825
      build_strategy.async_mode_,
      false,
1826 1827 1828
      platform::errors::InvalidArgument(
          "Async Executor does not support CUDA Graph capturing."));
  PADDLE_ENFORCE_EQ(
1829 1830
      platform::IsCUDAGraphCapturing(),
      false,
1831 1832 1833
      platform::errors::PermissionDenied("CUDA Graph is not allowed to capture "
                                         "when running the first batch."));
  PADDLE_ENFORCE_EQ(
1834 1835
      member_->places_.size(),
      1,
1836 1837
      platform::errors::InvalidArgument(
          "CUDA Graph is only supported when one GPU device is running."));
1838 1839
  PADDLE_ENFORCE_EQ(platform::is_gpu_place(member_->places_[0]),
                    true,
1840 1841
                    platform::errors::InvalidArgument(
                        "CUDA Graph is only supported on NVIDIA GPU device."));
1842 1843
  PADDLE_ENFORCE_EQ(FLAGS_sync_nccl_allreduce,
                    false,
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
                    platform::errors::InvalidArgument(
                        "FLAGS_sync_nccl_allreduce must be False to support "
                        "CUDA Graph capturing."));

  std::unordered_map<std::string, std::vector<VarDesc *>> all_vars;
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      auto *var_desc = node->Var();
      all_vars[var_desc->Name()].emplace_back(var_desc);
    }
  }

  auto mark_var_as_persistable = [&all_vars](const std::string &name) {
    auto iter = all_vars.find(name);
    if (iter != all_vars.end()) {
      for (auto *var_desc : iter->second) {
        var_desc->SetPersistable(true);
      }
    }
  };

  // Step 1: All fused vars must be persistable.
  if (graph->Has(details::kFusedVars)) {
    auto &fused_vars = graph->Get<details::FusedVars>(details::kFusedVars);
    for (auto &fused_var : fused_vars) {
      fused_var.second.persistable_ = true;
      mark_var_as_persistable(fused_var.first);
    }
  }

  // Step 2: All pinned vars must be persistable.
  if (graph->Has(details::kPinnedVars)) {
    auto &pinned_vars = graph->Get<details::PinnedVars>(details::kPinnedVars);
    for (auto &pinned_var : pinned_vars) {
      mark_var_as_persistable(pinned_var);
    }
  }

  // Step 3: Move all main programs to startup programs to make sure that
  // the main programs would only be run once.
  if (graph->Has(details::kProgramDescs)) {
    auto &startup_programs =
        graph->GetOrInit<details::ProgramDescs>(details::kStartupProgramDescs);
    auto &main_programs =
        graph->Get<details::ProgramDescs>(details::kProgramDescs);
    for (auto &main_program : main_programs) {
      startup_programs.emplace_back(main_program);
    }
    graph->Erase(details::kProgramDescs);
  }

  // Step 4: Mark all vars in startup programs to be persistable.
  if (graph->Has(details::kStartupProgramDescs)) {
    auto &startup_programs =
        graph->GetOrInit<details::ProgramDescs>(details::kStartupProgramDescs);
    for (auto &startup_program : startup_programs) {
      for (auto &op_desc : startup_program.Block(0).AllOps()) {
        for (auto &output : op_desc->OutputArgumentNames()) {
          mark_var_as_persistable(output);
        }
      }
    }
  }

  // Step 5: ScaleLossGrad must be run beforehand to avoid H2D copy.
  auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*graph);
  auto *scope = member_->local_scopes_[0];
  for (auto *op : ops) {
    auto *loss_grad_op = dynamic_cast<details::ScaleLossGradOpHandle *>(op);
    if (loss_grad_op == nullptr) continue;
    auto loss_grad_name = loss_grad_op->LossGradName();
    mark_var_as_persistable(loss_grad_name);
    loss_grad_op->RunOnVar(scope->Var(loss_grad_name));
    loss_grad_op->SetSkipRunning(true);
  }
#else
  PADDLE_THROW(platform::errors::Unimplemented(
      "CUDA Graph is only supported on NVIDIA GPU device."));
#endif
}

Y
Yu Yang 已提交
1925
}  // namespace framework
Y
Yang Yang 已提交
1926
}  // namespace paddle
S
sneaxiy 已提交
1927

S
sneaxiy 已提交
1928
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
1929
USE_PASS(eager_deletion_pass);
1930
USE_PASS(buffer_shared_inplace_pass);
1931
USE_PASS(buffer_shared_cross_op_memory_reuse_pass);
1932
USE_PASS(inplace_addto_op_pass);
Z
Zeng Jinle 已提交
1933
USE_PASS(fix_op_run_order_pass);