parallel_executor.cc 73.9 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
16

D
dzhwinter 已提交
17
#include <algorithm>
Q
qingqing01 已提交
18
#include <memory>
C
chengduoZH 已提交
19
#include <string>
20
#include <tuple>
Q
Qiao Longfei 已提交
21
#include <utility>
Q
qiaolongfei 已提交
22
#include <vector>
23

24
#include "paddle/fluid/framework/convert_utils.h"
Q
Qiao Longfei 已提交
25
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
26
#include "paddle/fluid/framework/details/bind_threaded_ssa_graph_executor.h"
Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
28
#include "paddle/fluid/framework/details/multi_devices_helper.h"
29
#include "paddle/fluid/framework/details/op_handle_base.h"
Y
Yancey1989 已提交
30
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
31
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
33 34
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
35
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimization_var_info.h"
36
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
37
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/set_reader_device_info_utils.h"
38
#include "paddle/fluid/framework/variable_helper.h"
39
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
W
wangchaochaohu 已提交
40
#include "paddle/fluid/platform/event.h"
41
#include "paddle/fluid/platform/profiler.h"
42
#include "paddle/fluid/platform/profiler/event_tracing.h"
Y
Yu Yang 已提交
43

44
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
45 46 47
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif

48 49
DECLARE_double(eager_delete_tensor_gb);

50 51 52 53
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
DECLARE_bool(sync_nccl_allreduce);
#endif

Y
Yu Yang 已提交
54
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
55
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
56
#endif
57
PADDLE_DEFINE_EXPORTED_string(
58 59
    pe_profile_fname,
    "",
60 61 62
    "Profiler filename for PE, which generated by gperftools."
    "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
PADDLE_DEFINE_EXPORTED_bool(
63 64
    enable_parallel_graph,
    false,
65
    "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
66

Y
Yang Yang 已提交
67
namespace paddle {
Y
Yu Yang 已提交
68 69
namespace framework {

Y
Yu Yang 已提交
70
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
71
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
72
static bool gProfileStarted = false;
Y
Yu Yang 已提交
73
#endif
74

75
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
76 77 78
std::once_flag p2p_init_flag;
#endif

Y
Yu Yang 已提交
79 80
class ParallelExecutorPrivate {
 public:
81 82 83
  ParallelExecutorPrivate(const std::vector<platform::Place> &places,
                          Scope *global_scope)
      : places_(places), global_scope_(global_scope) {
Y
Yu Yang 已提交
84
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
85 86
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
87
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
88 89 90
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
91
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
92 93 94 95
#endif
      });
    }
  }
Y
Yu Yang 已提交
96

97 98 99 100 101 102 103 104 105 106 107
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
108

109
  bool IsUseCUDA(DeviceType use_device);
110

111 112 113 114
  void SetHasFeed(size_t dev_idx, bool has_feed = true);

  bool AllowPartialFeed() const;

115
  ir::Graph *ApplyMemoryOptimizePass(ir::Graph *graph);
S
sneaxiy 已提交
116 117 118

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

Z
Zeng Jinle 已提交
119 120 121 122 123 124 125
  void ApplyFixOpRunOrderPass(ir::Graph *graph) {
    if (build_strategy_.fix_op_run_order_) {
      auto pass = ir::PassRegistry::Instance().Get("fix_op_run_order_pass");
      pass->Apply(graph);
    }
  }

126
  /**
T
tianshuo78520a 已提交
127 128
   * NOTE(zengjinle): the fed variables of users should not be reused,
   * because users may feed them into another network. Changing the fed
129 130 131 132 133 134
   * variables that users can visit may cause calculation wrong, which is
   * a very subtle bug when traning networks. However, these variables
   * can be garbage collected.
   *
   * ParallelExecutor provides 2 methods to feed variables:
   *
T
tianshuo78520a 已提交
135
   *  - FeedTensorsIntoLocalScopes: this method would share memory of fed
136 137
   *                                variables, so we have to skip these.
   *
T
tianshuo78520a 已提交
138
   *  - FeedAndSplitTensorIntoLocalScopes: this method would copy data of fed
139 140 141 142
   *                                       variables, so we do not need to skip
   *                                       them.
   */
  inline void SetSkipMemoryReuse(size_t scope_idx, const std::string &name) {
143 144 145 146 147
    if (mem_opt_var_infos_.size() == 0) {
      VLOG(4) << "The mem_opt_var_infos_ is empty, maybe no memory "
                 "optimization strategy is enabled";
      return;
    }
148 149 150 151 152 153
    auto iter = mem_opt_var_infos_[scope_idx].find(name);
    if (iter != mem_opt_var_infos_[scope_idx].end()) {
      iter->second->SetSkipMemoryReuse(true);
    }
  }

154
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
171 172
      nccl_ctxs_->InitFlatCtxs(
          places_, flat_nccl_ids, bst.num_trainers_, bst.trainer_id_);
173 174 175 176 177 178 179 180 181 182 183 184
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
185
        VLOG(10) << "find nccl_id_var:" << var_name << ", nccl_id:" << nccl_id;
186 187
      } else {
        nccl_id = new ncclUniqueId();
188
        PADDLE_ENFORCE_EQ(
189 190
            platform::dynload::ncclGetUniqueId(nccl_id),
            ncclSuccess,
191 192 193
            platform::errors::PreconditionNotMet(
                "PaddlePaddle failed to get NCCL unique ID. It may due to your "
                "system settings or NCCL library error, please debug on NCCL"));
194 195
        VLOG(10) << "can't find nccl_id_var:" << var_name
                 << ", nccl_id:" << nccl_id;
196 197 198 199
      }

      flat_nccl_ids.push_back(nccl_id);

200 201
      nccl_ctxs_->InitFlatCtxs(
          places_, flat_nccl_ids, bst.num_trainers_, bst.trainer_id_);
202 203 204 205 206 207
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
208 209
      nccl_ctxs_->InitFlatCtxs(
          places_, flat_nccl_ids, bst.num_trainers_, bst.trainer_id_);
210 211 212 213 214 215
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
216 217 218
      PADDLE_ENFORCE_NOT_NULL(
          nccl_id_var,
          platform::errors::NotFound("Can't find nccl_id_var '%s'.", var_name));
219 220 221 222
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

223 224
    nccl_ctxs_->InitFlatCtxs(
        places_, flat_nccl_ids, bst.num_trainers_, bst.trainer_id_);
225 226

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
227 228 229 230
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
231 232 233
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
G
gongweibao 已提交
234 235 236
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
237 238 239 240 241

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
242 243 244
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
245 246 247
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
248

249
      nccl_ctxs_->InitHierarchicalCtxs(
250 251 252 253 254 255
          places_,
          inter_nccl_ids,
          exter_nccl_ids,
          bst.num_trainers_,
          bst.trainer_id_,
          bst.hierarchical_allreduce_inter_nranks_,
256
          bst.hierarchical_allreduce_exter_nranks_);
257 258
    }
  }
259

260
  void InitOrGetNCCLCommunicator(framework::Scope *scope, BuildStrategy *bst) {
261 262 263
    const std::string var_name = "NCCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
264 265
      PADDLE_ENFORCE_EQ(var->IsInitialized(),
                        true,
266 267
                        platform::errors::PreconditionNotMet(
                            "if %s exists, it must be initialized", var_name));
268 269 270 271 272 273
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      nccl_ctxs_ = var->GetMutable<platform::NCCLCommunicator>();
      return;
    }

274
    if (bst->use_hierarchical_allreduce_) {
275
      PADDLE_ENFORCE_GT(
276 277
          bst->num_trainers_,
          1,
278 279 280 281
          platform::errors::PreconditionNotMet(
              "The num_trainers should be greater than 1, but received %llu.",
              bst->num_trainers_));
      PADDLE_ENFORCE_GT(
282 283
          bst->hierarchical_allreduce_inter_nranks_,
          1,
284 285 286 287
          platform::errors::PreconditionNotMet(
              "The inter_nranks should be greater than 1, but received %d.",
              bst->hierarchical_allreduce_inter_nranks_));
      PADDLE_ENFORCE_EQ(
288 289
          bst->num_trainers_ % bst->hierarchical_allreduce_inter_nranks_,
          0,
290
          platform::errors::PreconditionNotMet(
291 292
              "num_trainers:%llu mod inter_nranks:%d != 0",
              bst->num_trainers_,
293
              bst->hierarchical_allreduce_inter_nranks_));
294 295 296 297 298

      bst->hierarchical_allreduce_exter_nranks_ =
          bst->num_trainers_ / bst->hierarchical_allreduce_inter_nranks_;
    }

299 300
    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    nccl_ctxs_ = scope->Var(var_name)->GetMutable<platform::NCCLCommunicator>();
301
    InitNCCLCtxs(scope, *bst);
302
  }
303 304
#endif

305 306 307 308 309 310
#if defined(PADDLE_WITH_XPU_BKCL)
  void InitBKCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "bkcl comm num:" << bst.bkcl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

311 312
    PADDLE_ENFORCE_EQ(bst.use_hierarchical_allreduce_,
                      false,
313 314 315 316 317 318
                      platform::errors::Unimplemented(
                          "xpu doesn't support use_hierarchical_allreduce"));

    std::vector<BKCLUniqueId *> flat_bkcl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create bkclid when nranks==1
319 320
      bkcl_ctxs_->InitFlatCtxs(
          places_, flat_bkcl_ids, bst.num_trainers_, bst.trainer_id_);
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one bkclid in pg model";

      BKCLUniqueId *bkcl_id = nullptr;

      std::string var_name = platform::GetFlatBKCLVarName(0);
      auto bkcl_id_var = scope->FindVar(var_name);
      std::unique_ptr<BKCLUniqueId> id(new BKCLUniqueId());
      if (bkcl_id_var) {
        bkcl_id = bkcl_id_var->GetMutable<BKCLUniqueId>();
      } else {
        PADDLE_ENFORCE_EQ(
336 337
            bkcl_get_unique_id(id.get()),
            BKCL_SUCCESS,
338 339 340 341 342 343
            platform::errors::Unavailable("bkcl get unique id failed"));
        bkcl_id = id.get();
      }

      flat_bkcl_ids.push_back(bkcl_id);

344 345
      bkcl_ctxs_->InitFlatCtxs(
          places_, flat_bkcl_ids, bst.num_trainers_, bst.trainer_id_);
346 347 348 349 350 351
      VLOG(1) << "init bst bkcl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
352 353
      bkcl_ctxs_->InitFlatCtxs(
          places_, flat_bkcl_ids, bst.num_trainers_, bst.trainer_id_);
354 355 356 357 358 359 360 361 362 363 364 365 366
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.bkcl_comm_num_); i++) {
      std::string var_name = platform::GetFlatBKCLVarName(i);
      auto bkcl_id_var = scope->FindVar(var_name);
      PADDLE_ENFORCE_NOT_NULL(
          bkcl_id_var,
          platform::errors::NotFound("can't find %s bkcl_id_var", var_name));
      auto bkcl_id = bkcl_id_var->GetMutable<BKCLUniqueId>();
      flat_bkcl_ids.push_back(bkcl_id);
    }

367 368
    bkcl_ctxs_->InitFlatCtxs(
        places_, flat_bkcl_ids, bst.num_trainers_, bst.trainer_id_);
369 370 371 372 373 374 375
  }

  void InitOrGetBKCLCommunicator(framework::Scope *scope,
                                 const BuildStrategy &bst) {
    const std::string var_name = "BKCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
376 377
      PADDLE_ENFORCE_EQ(var->IsInitialized(),
                        true,
378 379 380 381 382 383 384 385 386 387 388 389 390 391
                        platform::errors::PreconditionNotMet(
                            "if %s exists, it must be initialized", var_name));
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      bkcl_ctxs_ = var->GetMutable<platform::BKCLCommunicator>();
      return;
    }

    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    bkcl_ctxs_ = scope->Var(var_name)->GetMutable<platform::BKCLCommunicator>();
    InitBKCLCtxs(scope, bst);
  }
#endif

392 393 394 395 396
  inline bool IsPersistable(const std::string &name) const {
    auto iter = is_persistable_.find(name);
    return iter != is_persistable_.end() && iter->second;
  }

D
dzhwinter 已提交
397
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
398 399
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
400
  std::vector<Scope *> local_exec_scopes_;
401
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
402
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
403

404 405
  std::unordered_map<std::string, bool> is_persistable_;

406
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
407
  platform::NCCLCommunicator *nccl_ctxs_{nullptr};
408 409
#elif defined(PADDLE_WITH_XPU_BKCL)
  platform::BKCLCommunicator *bkcl_ctxs_{nullptr};
Y
Yu Yang 已提交
410
#endif
C
chengduoZH 已提交
411
  bool own_local_scope_;
412
  DeviceType use_device_;
413
  bool use_all_reduce_;
414
  size_t nranks_;
S
sneaxiy 已提交
415

416
  ir::MemOptVarInfoMapList mem_opt_var_infos_;
417
  ir::GarbageCollectorMap gcs_;
418 419

  details::ParallelSSAGraphExecutor *inference_executor_{nullptr};
Y
Yu Yang 已提交
420 421
};

422 423
bool ParallelExecutorPrivate::IsUseCUDA(DeviceType use_device) {
  return use_device == p::kCUDA;
424 425
}

426 427 428 429 430 431 432 433 434 435
void ParallelExecutorPrivate::SetHasFeed(size_t dev_idx, bool has_feed) {
  if (inference_executor_) {
    inference_executor_->SetHasFeed(dev_idx, has_feed);
  }
}

bool ParallelExecutorPrivate::AllowPartialFeed() const {
  return inference_executor_ && inference_executor_->SupportPartialFeed();
}

436
ir::Graph *ParallelExecutorPrivate::ApplyMemoryOptimizePass(ir::Graph *graph) {
Z
Zeng Jinle 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
  /**
   * NOTE(zengjinle): If BuildStrategy.memory_optimize = None in Python,
   * set BuildStrategy.memory_optimize according to whether gc is enabled.
   * If gc is enabled, BuildStrategy.memory_optimize = False.
   * If gc is disabled, BuildStrategy.memory_optimize = True.
   * This is because gc+memory_optimize is worse than gc only.
   *
   * As an option, users can enable BuildStrategy.memory_optimize forcely
   * by setting True, and disable it forcely by setting False.
   */
  bool is_gc_enabled = (GetEagerDeletionThreshold() >= 0);
  if (!build_strategy_.memory_optimize_) {
    build_strategy_.memory_optimize_ = !is_gc_enabled;
  }

  bool need_mem_opt = build_strategy_.enable_inplace_ ||
453
                      build_strategy_.enable_addto_ ||
Z
Zeng Jinle 已提交
454 455 456 457
                      build_strategy_.memory_optimize_.get() || is_gc_enabled;

  if (!need_mem_opt) return graph;

458 459 460 461 462 463 464 465
  std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;

  auto ref_cnt_pass = ir::PassRegistry::Instance().Get("reference_count_pass");
  ref_cnt_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
  ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
  graph = ref_cnt_pass->Apply(graph);
  VLOG(10) << "ReferenceCountPass Applied";

466 467 468 469
  if (build_strategy_.enable_addto_) {
    auto addto_pass = ir::PassRegistry::Instance().Get("inplace_addto_op_pass");
    addto_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    addto_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
470
    addto_pass->Set(ir::kUseCuda, new bool(use_device_ == p::kCUDA));
471 472 473 474 475
    VLOG(10) << "Start to apply inplace_addto_op_pass";
    graph = addto_pass->Apply(graph);
    VLOG(10) << "inplace_addto_op_pass Applied";
  }

476 477 478 479 480
  if (build_strategy_.enable_inplace_) {
    auto inplace_pass =
        ir::PassRegistry::Instance().Get("buffer_shared_inplace_pass");
    inplace_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    inplace_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
481
    inplace_pass->Set(ir::kUseCuda, new bool(use_device_ == p::kCUDA));
482 483 484
    VLOG(10) << "Start to apply buffer_shared_inplace_pass";
    graph = inplace_pass->Apply(graph);
    VLOG(10) << "buffer_shared_inplace_pass Applied";
485 486
    VLOG(1) << "Inplace strategy is enabled, when "
               "build_strategy.enable_inplace = True";
487 488
  }

489
  if (build_strategy_.memory_optimize_.get()) {
490 491 492 493 494 495
    auto cross_op_memory_reuse_pass = ir::PassRegistry::Instance().Get(
        "buffer_shared_cross_op_memory_reuse_pass");
    cross_op_memory_reuse_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                            &mem_opt_var_infos_);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
                                            &last_live_ops_of_vars);
496
    cross_op_memory_reuse_pass->Set(ir::kUseCuda,
497
                                    new bool(use_device_ == p::kCUDA));
498 499 500
    VLOG(10) << "Start to apply buffer_shared_cross_op_memory_reuse_pass";
    graph = cross_op_memory_reuse_pass->Apply(graph);
    VLOG(10) << "buffer_shared_cross_op_memory_reuse_pass Applied";
Z
Zeng Jinle 已提交
501 502 503
    LOG(INFO) << "Cross op memory reuse strategy is enabled, when "
                 "build_strategy.memory_optimize = True or garbage collection "
                 "strategy is disabled, which is not recommended";
504
  }
505

506
  if (!is_gc_enabled) {
507 508 509 510
    return graph;
  }
  size_t max_memory_size = static_cast<size_t>(GetEagerDeletionThreshold());

S
sneaxiy 已提交
511 512 513 514 515
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
516
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
517
    if (platform::is_gpu_place(place)) {
518
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
sneaxiy 已提交
519
      if (IsFastEagerDeletionModeEnabled()) {
520
        gc.reset(new UnsafeFastGPUGarbageCollector(place, max_memory_size));
S
sneaxiy 已提交
521
      } else {
522
        gc.reset(new StreamGarbageCollector(place, max_memory_size));
S
sneaxiy 已提交
523 524
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
525 526 527 528
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use CUDA device since it's not compiled with CUDA,"
          "Please recompile or reinstall Paddle with GPU support."));
F
fwenguang 已提交
529 530 531 532
#endif
    } else if (platform::is_mlu_place(place)) {
#ifdef PADDLE_WITH_MLU
      if (IsFastEagerDeletionModeEnabled()) {
533
        gc.reset(new MLUUnsafeFastGarbageCollector(place, max_memory_size));
F
fwenguang 已提交
534
      } else {
535
        gc.reset(new MLUStreamGarbageCollector(place, max_memory_size));
F
fwenguang 已提交
536 537 538 539 540 541
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use MLU device since it's not compiled with MLU,"
          "Please recompile or reinstall Paddle with MLU support."));
S
sneaxiy 已提交
542
#endif
543 544
    } else if (platform::is_xpu_place(place)) {
#if defined(PADDLE_WITH_XPU)
545
      gc.reset(new XPUGarbageCollector(place, max_memory_size));
546 547 548 549 550
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use XPU device since it's not compiled with XPU,"
          "Please recompile or reinstall Paddle with XPU support."));
551 552 553 554 555 556 557 558 559
#endif
    } else if (platform::is_ipu_place(place)) {
#if defined(PADDLE_WITH_IPU)
      gc.reset(new IPUGarbageCollector(place, max_memory_size));
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use IPU device since it's not compiled with IPU,"
          "Please recompile or reinstall Paddle with IPU support."));
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
#endif
    } else if (platform::is_custom_place(place)) {
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
      if (IsFastEagerDeletionModeEnabled()) {
        gc.reset(
            new CustomDeviceUnsafeFastGarbageCollector(place, max_memory_size));
      } else {
        gc.reset(new CustomStreamGarbageCollector(place, max_memory_size));
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use custom device since it's not compiled with "
          "CustomDevice,"
          "Please recompile or reinstall Paddle with CustomDevice support."));
S
sneaxiy 已提交
575
#endif
576
    } else if (platform::is_cpu_place(place)) {
577
      gc.reset(new CPUGarbageCollector(place, max_memory_size));
578 579 580 581 582
      VLOG(10) << "Created GarbageCollector at " << place;
    } else {
      PADDLE_THROW(platform::errors::PreconditionNotMet(
          "Unsupported place for garbage collection"));
    }
S
sneaxiy 已提交
583
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
584 585
  }

S
sneaxiy 已提交
586
  if (!gcs_.empty()) {
S
sneaxiy 已提交
587 588
    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
589 590
    eager_deletion_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                     &mem_opt_var_infos_);
591 592
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
593
                                     &last_live_ops_of_vars);
594
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
595
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
596
    VLOG(10) << "EagerDeletionPass Applied";
597 598 599
    VLOG(1) << "Garbage collection strategy is enabled, when "
            << "FLAGS_eager_delete_tensor_gb = "
            << FLAGS_eager_delete_tensor_gb;
S
sneaxiy 已提交
600 601 602 603
  }
  return graph;
}

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
class ResetHasFeedGuard {
 public:
  explicit ResetHasFeedGuard(ParallelExecutorPrivate *pe_member)
      : pe_member_(pe_member) {}

  ~ResetHasFeedGuard() {
    for (size_t i = 0; i < pe_member_->places_.size(); ++i) {
      pe_member_->SetHasFeed(i, false);
    }
  }

 private:
  ParallelExecutorPrivate *pe_member_;
};

619 620
size_t ParallelExecutor::DeviceCount() const { return member_->places_.size(); }

621 622 623 624
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

625 626 627 628 629 630 631 632 633 634 635 636 637 638
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

639
void InitP2P(const std::vector<platform::Place> &places) {
640
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
641 642 643 644 645 646
  std::call_once(p2p_init_flag, [&]() {
    int count = places.size();
    if (count <= 1) return;

    std::vector<int> devices;
    for (int i = 0; i < count; i++) {
647
      if (!platform::is_gpu_place(places[i])) return;
648

649
      platform::CUDAPlace device = places[i];
650 651 652 653 654 655 656
      devices.push_back(device.GetDeviceId());
    }

    for (int i = 0; i < count; ++i) {
      for (int j = 0; j < count; ++j) {
        if (devices[i] == devices[j]) continue;
        int can_acess = -1;
657 658 659 660 661
#ifdef PADDLE_WITH_HIP
        hipError_t ret =
            hipDeviceCanAccessPeer(&can_acess, devices[i], devices[j]);
        if (ret != hipSuccess || can_acess != 1) {
#else
662 663 664
        cudaError_t ret =
            cudaDeviceCanAccessPeer(&can_acess, devices[i], devices[j]);
        if (ret != cudaSuccess || can_acess != 1) {
665
#endif
666 667 668 669
          LOG(WARNING) << "Cannot enable P2P access from " << devices[i]
                       << " to " << devices[j];
        } else {
          platform::CUDADeviceGuard guard(devices[i]);
670 671 672
#ifdef PADDLE_WITH_HIP
          hipDeviceEnablePeerAccess(devices[j], 0);
#else
673
          cudaDeviceEnablePeerAccess(devices[j], 0);
674
#endif
675 676 677 678 679 680 681 682
        }
      }
    }
    VLOG(1) << "init p2p";
  });
#endif
}

Y
Yan Xu 已提交
683 684 685 686 687 688 689 690
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
691
    : member_(new ParallelExecutorPrivate(places, scope)) {
692
  PADDLE_ENFORCE_EQ(places.size() > 0 && !platform::is_npu_place(places[0]),
693 694 695
                    true,
                    platform::errors::Unavailable(
                        "NPU is not supported in ParallelExecutor."));
696
  InitP2P(places);
697 698
  ir::InitReaderQueueDeviceCount(
      graph, *(member_->global_scope_), member_->places_.size());
699
  // Initialize necessary info of member_ with strategy.
700 701
  InitExecutorPrivateMemberInfo(
      exec_strategy, build_strategy, places.size(), *graph);
Y
Yancey1989 已提交
702

703 704 705 706
  // Step 1. Create local scopes and Clone graph into multi device
  CreateLocalScopes(scope, local_scopes, /*create_new*/ true);
  std::vector<ir::Graph *> graphs = CloneGraphToMultiDevices(graph);
  PrepareNCCLCommunicator(scope);
707

Y
Yan Xu 已提交
708 709
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
C
chengduo 已提交
710
    if (member_->build_strategy_.num_trainers_ > 1) {
Y
Yan Xu 已提交
711 712 713 714 715 716 717 718 719 720
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };
  if (need_broadcast()) {
C
chengduo 已提交
721
    BCastParamsToDevices(bcast_vars, member_->build_strategy_.trainer_id_);
Y
Yu Yang 已提交
722
  }
723

Q
Qiao Longfei 已提交
724 725
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
726 727
  std::vector<ir::Graph *> async_graphs =
      CompileGraphWithBuildStrategy(graph, &graphs, loss_var_name);
728
  PrepareForCUDAGraphCapture(graph);
729
  graph = member_->ApplyMemoryOptimizePass(graph);
Q
Qiao Longfei 已提交
730 731
  async_graphs[0] = graph;

732 733
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
734
  std::vector<details::VariableInfo> var_infos;
735 736 737
  CreateVariableInfos(&var_infos, graph);
  std::unordered_map<Scope *, Scope *> scope_map =
      CreateLocalExecScopes(member_->local_scopes_, /*create_new*/ true);
738

739 740 741
  // Step 4. Create SSAGraph executor
  std::vector<ir::Graph *> final_graphs =
      CreateSSAGraphExecutor(exec_strategy, &async_graphs, graph);
742

743 744 745
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
  if (!member_->build_strategy_.async_mode_) {
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
746 747 748 749 750 751
        exec_strategy,
        member_->local_scopes_,
        member_->local_exec_scopes_,
        std::move(var_infos),
        member_->places_,
        std::move(member_->executor_)));
752 753
  }

754 755 756
  ResetOpHandleScopeMapOfGraphs(final_graphs, scope_map);
  SetReaderOpDeviceInfoOfGraphs(final_graphs);
}
757

758 759
ParallelExecutor::ParallelExecutor(const platform::Place &place,
                                   Scope *scope,
760 761 762 763 764
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
    : member_(new ParallelExecutorPrivate({place}, scope)) {
  // Initialize necessary info of member_ with strategy.
765 766 767 768
  InitExecutorPrivateMemberInfo(exec_strategy,
                                build_strategy,
                                /*device_count=*/1,
                                *graph);
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805

  CreateLocalScopes(scope, /*local_scope=*/{scope}, /*create_new=*/false);

  // Apply BuildStrategy to compile graph.
  std::vector<ir::Graph *> graphs = {graph};
  std::vector<ir::Graph *> async_graphs =
      CompileGraphWithBuildStrategy(graph, &graphs, /*loss_var_name=*/"");

  graph = member_->ApplyMemoryOptimizePass(graph);

  // Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
  CreateVariableInfos(&var_infos_, graph);

  // Create local execution scopes
  std::unordered_map<Scope *, Scope *> scope_map =
      CreateLocalExecScopes(member_->local_scopes_, /*create_new=*/false);

  std::vector<ir::Graph *> final_graphs =
      CreateSSAGraphExecutor(exec_strategy, &async_graphs, graph);

  // Set scope_map of op from each graph
  ResetOpHandleScopeMapOfGraphs(final_graphs, scope_map);
}

void ParallelExecutor::PrepareVariables(Scope *scope) {
  for (auto &info : var_infos_) {
    auto var = scope->FindVar(info.name_);
    if (var != nullptr) {
      VLOG(2) << info.name_
              << " has been initialized beforehand in global scope, skipped.";
      continue;
    }
    framework::InitializeVariable(scope->Var(info.name_), info.type_);
  }
}

806 807 808 809 810 811 812 813 814
void ParallelExecutor::BCastParamsToDevices(
    const std::vector<std::string> &vars, int trainer_id) const {
  VLOG(3) << "BCastParamsToDevices";
  // the initializing bcast, all vars would be bcast from device(0).
  for (auto &var : vars) {
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
      continue;
    }
815

816 817 818 819 820 821 822 823 824 825 826
    auto &main_tensor = main_var->Get<LoDTensor>();
    if (!main_tensor.IsInitialized()) {
      VLOG(3) << "one in var not inited, return!";
      continue;
    }
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
      std::vector<void *> buffers;
      buffers.reserve(member_->places_.size());
      size_t numel = main_tensor.numel();
827 828
      auto dtype = framework::TransToProtoVarType(main_tensor.dtype());
      ncclDataType_t data_type = platform::ToNCCLDataType(dtype);
829 830 831
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
832

833
        if (i == 0 && trainer_id == 0) {
834
          buffer = const_cast<void *>(main_tensor.data());
835 836 837 838
        } else {
          auto local_scope = member_->local_scopes_[i];
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
          t->Resize(dims);
839
          buffer = t->mutable_data(place, main_tensor.dtype());
840 841 842
        }
        buffers.push_back(buffer);
      }
843

844 845
      PADDLE_ENFORCE_EQ(member_->places_.size(),
                        buffers.size(),
846 847 848
                        platform::errors::PreconditionNotMet(
                            "variables' buffer size to bcast is %d, which is "
                            "NOT equal to places size %d",
849 850
                            buffers.size(),
                            member_->places_.size()));
851
      if (member_->nccl_ctxs_ != nullptr) {
852
        auto *nccl_ctxs = member_->nccl_ctxs_->DefaultFlatCtx();
853 854
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
855
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
856 857 858 859 860 861
          platform::dynload::ncclBcast(buffers[i],
                                       numel,
                                       data_type,
                                       0,
                                       nccl_ctx.comm_,
                                       nccl_ctx.stream());
862
        }
863
        nccl_ctxs->WaitAll();
864 865
      } else {
        auto src_place = member_->places_[0];
L
Leo Chen 已提交
866
        auto src_dev_ctx = static_cast<phi::GPUContext *>(
867 868 869 870
            platform::DeviceContextPool::Instance().Get(src_place));
        auto sizeof_dtype = framework::SizeOfType(dtype) * numel;
        for (size_t i = 1; i < member_->places_.size(); ++i) {
          auto dst_place = member_->places_[i];
L
Leo Chen 已提交
871
          auto dst_dev_ctx = static_cast<phi::GPUContext *>(
872 873 874
              platform::DeviceContextPool::Instance().Get(dst_place));
          src_dev_ctx->Wait();
          dst_dev_ctx->Wait();
875 876 877 878 879 880
          memory::Copy(dst_place,
                       buffers[i],
                       src_place,
                       buffers[0],
                       sizeof_dtype,
                       src_dev_ctx->stream());
881 882 883
          src_dev_ctx->Wait();
          dst_dev_ctx->Wait();
        }
884
      }
885 886 887 888 889 890
#endif
    } else if (paddle::platform::is_xpu_place(main_tensor.place())) {
#if defined(PADDLE_WITH_XPU_BKCL)
      std::vector<void *> buffers;
      buffers.reserve(member_->places_.size());
      size_t numel = main_tensor.numel();
891 892 893 894 895
      // TODO(liuyuhui): BKCL only support parameters using float type,
      // other parameters need to be strongly converted to float before
      // broadcasting,
      // but broadcast is equivalent to no type of operation, does not affect
      // correctness.
896
      BKCLDataType data_type = BKCL_FLOAT;
897 898
      // BKCLDataType data_type =
      // platform::ToBKCLDataType(framework::TransToProtoVarType(main_tensor.dtype()));
899 900 901 902 903
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;

        if (i == 0 && trainer_id == 0) {
904
          buffer = const_cast<void *>(main_tensor.data());
905 906 907 908
        } else {
          auto local_scope = member_->local_scopes_[i];
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
          t->Resize(dims);
909
          buffer = t->mutable_data(place, main_tensor.dtype());
910 911 912 913
        }
        buffers.push_back(buffer);
      }

914 915
      PADDLE_ENFORCE_EQ(member_->places_.size(),
                        buffers.size(),
916 917 918
                        platform::errors::PreconditionNotMet(
                            "variables' buffer size to bcast is %d, which is "
                            "NOT equal to places size %d",
919 920
                            buffers.size(),
                            member_->places_.size()));
921 922 923 924
      {
        auto *bkcl_ctxs = member_->bkcl_ctxs_->DefaultFlatCtx();

        PADDLE_ENFORCE_EQ(
925 926
            bkcl_group_start(),
            BKCL_SUCCESS,
927 928 929
            platform::errors::Unavailable("bkcl_group_start failed"));
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &bkcl_ctx = bkcl_ctxs->at(member_->places_[i]);
930
          auto broadcast_numel = numel;
931 932
          if (framework::TransToProtoVarType(main_tensor.dtype()) ==
              framework::proto::VarType::INT64) {
933
            broadcast_numel *= 2;
934 935
          }
          PADDLE_ENFORCE_EQ(
936 937 938 939 940 941 942
              bkcl_broadcast(bkcl_ctx.comm(),
                             buffers[i],
                             buffers[i],
                             broadcast_numel,
                             data_type,
                             0,
                             NULL),
943 944 945 946
              BKCL_SUCCESS,
              platform::errors::Unavailable("bkcl_broadcast failed"));
        }
        PADDLE_ENFORCE_EQ(
947 948
            bkcl_group_end(),
            BKCL_SUCCESS,
949 950 951 952 953
            platform::errors::Unavailable("bkcl_group_end failed"));
      }
#else
      PADDLE_THROW(
          platform::errors::PreconditionNotMet("Not compiled with BKCL."));
C
chengduoZH 已提交
954
#endif
955 956
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
957
      for (size_t i = 1; i < member_->places_.size(); ++i) {
958 959
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
960

Q
Qiao Longfei 已提交
961
        auto copy_memory = [&] {
962
          t->Resize(dims);
963
          t->mutable_data(cpu, main_tensor.dtype());
964
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
965 966
        };

Q
Qiao Longfei 已提交
967
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
968 969 970 971

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
972 973
        } else if (member_->use_all_reduce_ ||
                   member_->IsUseCUDA(member_->use_device_) ||
Q
can run  
Qiao Longfei 已提交
974 975
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
976
        } else {
Q
can run  
Qiao Longfei 已提交
977
          share_memory();
978
        }
Y
Yu Yang 已提交
979
      }
Y
Stash  
Yu Yang 已提交
980 981
    }
  }
Y
Yu Yang 已提交
982
}
Y
Yu Yang 已提交
983

984 985
FetchUnmergedList ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors) {
986
  LOG_FIRST_N(INFO, 1) << "ParallelExecutor is Running (Run).";
987 988
  PreludeToRun(fetch_tensors);
  platform::RecordBlock b(0);
989

990 991 992 993 994
  ResetHasFeedGuard reset_has_feed_guard(member_);

  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_),
                                fetch_tensors,
                                member_->HasGarbageCollectors());
Y
Yu Yang 已提交
995

996 997 998
  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
  auto fetch_data =
      member_->executor_->Run(fetch_tensors, /*return_merged=*/false);
R
Ruibiao Chen 已提交
999
  return PADDLE_GET(FetchUnmergedList, fetch_data);
1000 1001 1002 1003
}

FetchList ParallelExecutor::RunAndMerge(
    const std::vector<std::string> &fetch_tensors) {
1004
  LOG_FIRST_N(INFO, 1) << "ParallelExecutor is Running (RunAndMerge).";
1005
  PreludeToRun(fetch_tensors);
X
Xin Pan 已提交
1006
  platform::RecordBlock b(0);
1007

1008 1009
  ResetHasFeedGuard reset_has_feed_guard(member_);

1010 1011
  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_),
                                fetch_tensors,
1012
                                member_->HasGarbageCollectors());
1013

1014 1015 1016
  VLOG(3) << "ParallelExecutor begin to run member_->executor_->RunAndMerge";
  auto fetch_data =
      member_->executor_->Run(fetch_tensors, /*return_merged=*/true);
R
Ruibiao Chen 已提交
1017
  return PADDLE_GET(FetchList, fetch_data);
Y
Yu Yang 已提交
1018
}
Y
Yu Yang 已提交
1019

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
void ParallelExecutor::RunWithoutFetch(
    const std::vector<std::string> &skip_eager_vars) {
  VLOG(3) << "enter ParallelExecutor RunWithoutFetch";
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
  }
#endif
  platform::RecordBlock b(0);

  ResetHasFeedGuard reset_has_feed_guard(member_);

1032 1033
  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_),
                                skip_eager_vars,
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
                                member_->HasGarbageCollectors());

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
  member_->executor_->Run(/*fetch_tensors*/ {}, /*return_merged*/ false);
}

void ParallelExecutor::SkipMemoryReuse(
    size_t scope_idx, const std::vector<std::string> &skip_vars) {
  for (auto &var_name : skip_vars) {
    bool is_persistable = member_->IsPersistable(var_name);
    if (!is_persistable) {
      VLOG(3) << "SkipMemoryReuse for var: " << var_name;
      member_->SetSkipMemoryReuse(scope_idx, var_name);
    }
  }
}

Y
Yu Yang 已提交
1051 1052
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
1053 1054 1055
  if (platform::IsCUDAGraphCapturing()) {
    for (auto &tensor : tensors) {
      PADDLE_ENFORCE_EQ(
1056 1057
          tensor.empty(),
          true,
1058 1059 1060 1061 1062 1063
          platform::errors::PermissionDenied(
              "Feeding data is not permitted when capturing CUDA Graph."));
    }
    return;
  }

1064
  if (!member_->AllowPartialFeed()) {
1065 1066
    PADDLE_ENFORCE_EQ(tensors.size(),
                      member_->local_scopes_.size(),
1067 1068 1069 1070 1071 1072 1073
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
1074 1075
                          tensors.size(),
                          member_->local_scopes_.size()));
1076
  } else {
1077 1078
    PADDLE_ENFORCE_GE(member_->local_scopes_.size(),
                      tensors.size(),
1079 1080 1081
                      platform::errors::InvalidArgument(
                          "The feed tensor number exceeds the device number"));
  }
Y
Yu Yang 已提交
1082

1083
  size_t feed_num = 0;
Y
Yu Yang 已提交
1084 1085
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
1086 1087 1088 1089 1090 1091
    if (map.empty()) {
      continue;
    }

    member_->SetHasFeed(i);
    ++feed_num;
Y
Yu Yang 已提交
1092
    for (auto &pair : map) {
1093
      bool is_persistable = member_->IsPersistable(pair.first);
1094 1095 1096
      if (!is_persistable) {
        member_->SetSkipMemoryReuse(i, pair.first);
      }
1097 1098 1099 1100 1101
      auto *feed_scope = is_persistable ? member_->local_scopes_[i]
                                        : member_->local_exec_scopes_[i];
      auto *feed_var = feed_scope->Var(pair.first);

      auto *trg = feed_var->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
1102 1103 1104 1105
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
1106 1107

  if (!member_->AllowPartialFeed()) {
1108 1109
    PADDLE_ENFORCE_EQ(feed_num,
                      member_->local_scopes_.size(),
1110 1111 1112 1113 1114 1115 1116
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
1117 1118
                          feed_num,
                          member_->local_scopes_.size()));
1119
  }
Y
Yu Yang 已提交
1120 1121 1122 1123
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
1124 1125
  if (platform::IsCUDAGraphCapturing()) {
    PADDLE_ENFORCE_EQ(
1126 1127
        tensors.empty(),
        true,
1128 1129 1130 1131 1132
        platform::errors::PermissionDenied(
            "Feeding data is not permitted when capturing CUDA Graph."));
    return;
  }

1133
  size_t num_places = member_->places_.size();
1134 1135 1136 1137 1138
  bool allow_partial_feed = member_->AllowPartialFeed();

  size_t persistable_feed_len = -1UL;
  size_t non_persistable_feed_len = -1UL;

1139
  for (auto &pair : tensors) {
1140 1141 1142 1143
    bool is_persistable = member_->IsPersistable(pair.first);
    VLOG(3) << "Split " << (is_persistable ? "persistable" : "no persistable")
            << " data (" << pair.first << "), dim:" << pair.second.dims()
            << ", place: " << pair.second.place();
1144
    auto lod_tensors = SplitLoDTensor(pair.second, member_->places_);
1145
    bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
1146 1147
    if (!is_persistable && num_places != lod_tensors.size() &&
        !allow_partial_feed) {
C
chengduo 已提交
1148
      auto error_info = string::Sprintf(
1149 1150
          "The number(%d) of samples[%s] of current batch is less than the "
          "count(%d) of devices(%s), currently, it is not allowed. ",
1151 1152 1153
          lod_tensors.size(),
          pair.first,
          num_places,
C
chengduo 已提交
1154 1155 1156 1157 1158 1159
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
1160
      PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
1161 1162 1163 1164
    } else if (is_persistable) {
      if (lod_tensors.size() == 1) {
        lod_tensors.reserve(num_places);
        auto &tensor = lod_tensors.front();
1165
        PADDLE_ENFORCE_EQ(
1166 1167
            tensor.dims(),
            pair.second.dims(),
1168 1169
            platform::errors::PreconditionNotMet("The dim doesn't match."));
        PADDLE_ENFORCE_EQ(
1170 1171
            tensor.place(),
            member_->places_.at(0),
1172
            platform::errors::PreconditionNotMet("The place doesn't match."));
1173 1174 1175 1176 1177 1178
        for (size_t i = 1; i < num_places; ++i) {
          lod_tensors.emplace_back();
          auto &tmp = lod_tensors.back();
          framework::TensorCopy(pair.second, member_->places_.at(i), &tmp);
        }
      }
1179
      if (lod_tensors.size() != num_places && !allow_partial_feed) {
1180 1181 1182 1183 1184 1185 1186
        auto error_info = string::Sprintf(
            "The number(%d) of samples[%s] of the current batch does not match "
            "the count(%d) of devices(%s). Because that %s is a persistable "
            "variable, you can feed just one sample, in that case, the input "
            "sample will be copied in %d copies and be sent to different "
            "places separately. If you need that different place has different "
            "value, you should feed %d samples.",
1187 1188 1189 1190 1191 1192 1193
            lod_tensors.size(),
            pair.first,
            num_places,
            (is_cpu_place ? "CPU" : "GPU"),
            pair.first,
            num_places,
            num_places);
1194
        PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
1195
      }
C
chengduo 已提交
1196
    }
1197

1198 1199 1200 1201 1202 1203
    if (allow_partial_feed) {
      if (is_persistable) {
        if (persistable_feed_len == -1UL) {
          persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
1204 1205
              persistable_feed_len,
              lod_tensors.size(),
1206 1207 1208 1209 1210 1211 1212 1213 1214
              platform::errors::InvalidArgument(
                  "The feeded number of different persistable variables "
                  "should be the same"));
        }
      } else {
        if (non_persistable_feed_len == -1UL) {
          non_persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
1215 1216
              non_persistable_feed_len,
              lod_tensors.size(),
1217 1218 1219 1220 1221 1222 1223 1224
              platform::errors::InvalidArgument(
                  "The feeded number of different non-persistable variables "
                  "should be the same"));
        }
      }
    }

    for (size_t j = 0; j < lod_tensors.size(); ++j) {
1225 1226 1227 1228 1229
      auto *feed_scope = is_persistable ? member_->local_scopes_[j]
                                        : member_->local_exec_scopes_[j];
      auto *feed_var = feed_scope->Var(pair.first);

      auto t = feed_var->GetMutable<LoDTensor>();
1230 1231
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
1232 1233
    }
  }
1234 1235 1236 1237 1238

  if (allow_partial_feed && persistable_feed_len != -1UL &&
      non_persistable_feed_len != -1UL) {
    VLOG(10) << "Persistable len " << persistable_feed_len;
    VLOG(10) << "Non persistable len " << non_persistable_feed_len;
1239 1240
    PADDLE_ENFORCE_GE(persistable_feed_len,
                      non_persistable_feed_len,
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
                      platform::errors::InvalidArgument(
                          "The feeded number of persistable variables should "
                          "not be less than non-persistable variables"));
  }

  if (non_persistable_feed_len != -1UL) {
    for (size_t i = 0; i < non_persistable_feed_len; ++i) {
      member_->SetHasFeed(i);
    }
  }
X
Xin Pan 已提交
1251 1252
}

X
Xin Pan 已提交
1253 1254 1255 1256 1257 1258 1259
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

1260
bool ParallelExecutor::EnableParallelGraphExecution(
1261 1262
    const ir::Graph &graph,
    const ExecutionStrategy &exec_strategy,
1263
    const BuildStrategy &build_strategy) const {
1264 1265 1266
  if (!FLAGS_enable_parallel_graph) {
    return false;
  }
1267

Y
Yancey1989 已提交
1268
  bool enable_parallel_graph = true;
1269

X
Xin Pan 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
1283 1284 1285
    }
  }

1286
  if (!member_->use_all_reduce_ || !member_->IsUseCUDA(member_->use_device_)) {
Y
Yancey1989 已提交
1287
    if (build_strategy.enable_sequential_execution_ ||
1288
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
1289
      enable_parallel_graph = false;
1290 1291 1292 1293 1294 1295 1296 1297 1298
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
1299
  return enable_parallel_graph;
1300 1301
}

1302
void ParallelExecutor::InitExecutorPrivateMemberInfo(
1303 1304 1305 1306
    const ExecutionStrategy &exec_strategy,
    const BuildStrategy &build_strategy,
    size_t device_count,
    const ir::Graph &graph) {
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
  member_->use_device_ = exec_strategy.use_device_;
  member_->build_strategy_ = build_strategy;
  member_->use_all_reduce_ = member_->build_strategy_.reduce_ ==
                             BuildStrategy::ReduceStrategy::kAllReduce;
  member_->nranks_ = build_strategy.num_trainers_ * device_count;
  if (!member_->use_all_reduce_ && member_->nranks_ == 1) {
    LOG(INFO) << "If you set build_strategy.reduce with 'Reduce',"
                 "the number of places should be greater than 1.";
    member_->build_strategy_.reduce_ =
        BuildStrategy::ReduceStrategy::kAllReduce;
    member_->use_all_reduce_ = true;
  }
#if (defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)) && defined(_WIN32)
  if (member_->IsUseCUDA(member_->use_device_)) {
    PADDLE_ENFORCE_EQ(
1322 1323
        device_count,
        1,
1324 1325 1326 1327 1328 1329 1330 1331
        platform::errors::Unavailable("Windows can support Single GPU only."));
  }
#endif

#if (defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)) && \
    (!defined(PADDLE_WITH_NCCL) && !defined(PADDLE_WITH_RCCL))
  if (member_->IsUseCUDA(member_->use_device_)) {
    PADDLE_ENFORCE_EQ(
1332 1333
        device_count,
        1,
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
        platform::errors::PermissionDenied(
            "Your machine has multiple cards, "
            "but the WITH_NCCL option is not turned on during compilation, "
            "and you cannot use multi-card training or prediction. "
            "Please recompile and turn on the WITH_NCCL option."));
  }
#endif

  std::string device_name;
  if (member_->use_device_ == p::kCPU) {
    device_name = "CPU";
  } else if (member_->use_device_ == p::kCUDA) {
    device_name = "CUDA";
  } else {
    device_name = "XPU";
  }

  VLOG(1) << string::Sprintf(
      "The Program will be executed on %s using ParallelExecutor, %lu "
      "cards are used, so %lu programs are executed in parallel.",
1354 1355 1356
      device_name,
      device_count,
      device_count);
1357 1358 1359 1360 1361

  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
  member_->build_strategy_.enable_parallel_graph_ =
1362 1363
      EnableParallelGraphExecution(
          graph, exec_strategy, member_->build_strategy_);
1364 1365 1366 1367 1368 1369 1370 1371
  if (member_->build_strategy_.enable_parallel_graph_) {
    LOG(INFO) << "The Executor would execute the graph by ParallelGraph "
                 "Execution which can get better performance,"
              << "you can force it off by env FLAGS_enable_parallel_graph=0";
  }
}

void ParallelExecutor::CreateLocalScopes(
1372 1373
    Scope *global_scope,
    const std::vector<Scope *> &local_scopes,
1374 1375 1376 1377 1378 1379 1380 1381 1382
    bool create_new) {
  if (local_scopes.empty()) {
    member_->own_local_scope_ = true;
    member_->local_scopes_.emplace_back(global_scope);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
      member_->local_scopes_.emplace_back(&global_scope->NewScope());
    }
  } else {
    member_->own_local_scope_ = false;
1383 1384
    PADDLE_ENFORCE_EQ(member_->places_.size(),
                      local_scopes.size(),
1385 1386 1387
                      platform::errors::PreconditionNotMet(
                          "member_->places_.size() = %d is not equal to "
                          "local_scopes.size() = %d",
1388 1389
                          member_->places_.size(),
                          local_scopes.size()));
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
    for (size_t i = 0; i < member_->places_.size(); ++i) {
      if (create_new) {
        member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
      } else {
        // Use local scopes directly
        member_->local_scopes_.emplace_back(local_scopes[i]);
      }
    }
  }
}

std::unordered_map<Scope *, Scope *> ParallelExecutor::CreateLocalExecScopes(
    const std::vector<Scope *> &local_scopes, bool create_new) {
  std::unordered_map<Scope *, Scope *> scope_map;

  for (auto *scope : local_scopes) {
    Scope *local_exec_scope = scope;
    if (create_new) {
      local_exec_scope = &scope->NewScope();
    }
    member_->local_exec_scopes_.emplace_back(local_exec_scope);
    scope_map.emplace(scope, local_exec_scope);
  }

1414 1415 1416 1417 1418 1419 1420
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(),
                    member_->local_exec_scopes_.size(),
                    platform::errors::PreconditionNotMet(
                        "member_->local_scopes_.size() = %d is not equal to "
                        "member_->local_exec_scopes_.size() = %d",
                        member_->local_scopes_.size(),
                        member_->local_exec_scopes_.size()));
1421 1422 1423 1424 1425 1426 1427 1428

  return scope_map;
}

std::vector<ir::Graph *> ParallelExecutor::CloneGraphToMultiDevices(
    ir::Graph *graph) {
  std::vector<ir::Graph *> graphs;
  if (member_->build_strategy_.async_mode_) {
1429 1430
    PADDLE_ENFORCE_EQ(member_->IsUseCUDA(member_->use_device_),
                      false,
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
                      platform::errors::Unavailable(
                          "gpu mode does not support async_mode_ now!"));
    graphs.push_back(graph);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
  }

  return graphs;
}

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
void ParallelExecutor::PreludeToRun(
    const std::vector<std::string> &fetch_tensors) {
  platform::RecordEvent record_run(
      "ParallelExecutor::Run", platform::TracerEventType::UserDefined, 1);
  VLOG(3) << "enter ParallelExecutor Run";
#ifdef PADDLE_WITH_CUDA
  if (platform::IsCUDAGraphCapturing()) {
    PADDLE_ENFORCE_EQ(fetch_tensors.empty(),
                      true,
                      platform::errors::InvalidArgument(
                          "Cannot fetch data when using CUDA Graph."));
    PADDLE_ENFORCE_EQ(
        member_->build_strategy_.allow_cuda_graph_capture_,
        true,
        platform::errors::InvalidArgument(
            "You must turn on build_strategy.allow_cuda_graph_capture = True "
            "to enable CUDA Graph capturing."));
    PADDLE_ENFORCE_EQ(
        member_->places_[0],
        platform::CUDAGraphCapturingPlace(),
        platform::errors::InvalidArgument("The place to capture CUDAGraph is "
                                          "not the same as the place to run."));
  }
#endif

#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
  }
#endif
}

1476
void ParallelExecutor::PrepareNCCLCommunicator(Scope *global_scope) {
1477 1478 1479 1480 1481
  if (member_->build_strategy_.reduce_ ==
      BuildStrategy::ReduceStrategy::kNoReduce) {
    return;
  }

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
  if (member_->IsUseCUDA(member_->use_device_) && member_->nranks_ > 1) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
    member_->InitOrGetNCCLCommunicator(global_scope, &member_->build_strategy_);

    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
    // be rewrite and there will be some problem.
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
    auto *nccl_ctxs = member_->nccl_ctxs_->GetSyncBatchNormCtx(
        global_scope, member_->places_);
    auto &pool = platform::DeviceContextPool::Instance();
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
L
Leo Chen 已提交
1497 1498
      auto *dev_ctx =
          static_cast<phi::GPUContext *>(pool.Get(member_->places_[dev_id]));
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
      auto &nccl_ctx = nccl_ctxs->at(member_->places_[dev_id]);
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
    }
#else
    PADDLE_THROW(
        platform::errors::PreconditionNotMet("Not compiled with CUDA."));
#endif
  }
  if (member_->use_device_ == p::kXPU && member_->nranks_ > 1) {
#if defined(PADDLE_WITH_XPU_BKCL)
    member_->InitOrGetBKCLCommunicator(global_scope, member_->build_strategy_);

    auto *bkcl_ctxs = member_->bkcl_ctxs_->GetSyncBatchNormCtx(
        global_scope, member_->places_);
    auto &pool = platform::DeviceContextPool::Instance();
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::XPUDeviceContext *>(
          pool.Get(member_->places_[dev_id]));
      auto &bkcl_ctx = bkcl_ctxs->at(member_->places_[dev_id]);
W
Wilber 已提交
1518
      dev_ctx->SetBkclContext(bkcl_ctx.comm());
1519 1520 1521 1522 1523 1524 1525 1526 1527
    }
#else
    PADDLE_THROW(
        platform::errors::PreconditionNotMet("Not compiled with XPU."));
#endif
  }
}

std::vector<ir::Graph *> ParallelExecutor::CompileGraphWithBuildStrategy(
1528 1529
    ir::Graph *graph,
    std::vector<ir::Graph *> *device_graphs,
1530 1531 1532 1533 1534 1535 1536
    const std::string &loss_var_name) {
  auto device_count = member_->places_.size();
  std::vector<ir::Graph *> async_graphs(device_count);

  auto &graphs = *device_graphs;
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
  if (member_->build_strategy_.async_mode_) {
1537 1538
    PADDLE_ENFORCE_EQ(graphs.size(),
                      device_count,
1539 1540
                      platform::errors::PreconditionNotMet(
                          "graphs.size() shoule be %d, but received %d",
1541 1542
                          device_count,
                          graphs.size()));
1543
    VLOG(3) << "use local async mode";
1544 1545 1546 1547 1548 1549 1550
    graph = member_->build_strategy_.Apply(graph,
                                           {member_->places_[0]},
                                           loss_var_name,
                                           {member_->local_scopes_[0]},
                                           1,
                                           member_->use_device_,
                                           member_->nccl_ctxs_);
1551
    for (size_t i = 1; i < device_count; ++i) {
1552 1553 1554 1555 1556 1557 1558
      graphs[i] = member_->build_strategy_.Apply(graphs[i],
                                                 {member_->places_[i]},
                                                 loss_var_name,
                                                 {member_->local_scopes_[i]},
                                                 1,
                                                 member_->use_device_,
                                                 member_->nccl_ctxs_);
1559 1560 1561
      async_graphs[i] = graphs[i];
    }
  } else {
1562 1563 1564 1565 1566 1567 1568
    graph = member_->build_strategy_.Apply(graph,
                                           member_->places_,
                                           loss_var_name,
                                           member_->local_scopes_,
                                           member_->nranks_,
                                           member_->use_device_,
                                           member_->nccl_ctxs_);
1569 1570 1571
  }
#elif defined(PADDLE_WITH_XPU_BKCL)
  if (member_->build_strategy_.async_mode_) {
1572 1573
    PADDLE_ENFORCE_EQ(graphs.size(),
                      device_count,
1574 1575
                      platform::errors::PreconditionNotMet(
                          "graphs.size() shoule be %d, but received %d",
1576 1577
                          device_count,
                          graphs.size()));
1578
    VLOG(3) << "use local async mode";
1579 1580 1581 1582 1583 1584 1585
    graph = member_->build_strategy_.Apply(graph,
                                           {member_->places_[0]},
                                           loss_var_name,
                                           {member_->local_scopes_[0]},
                                           1,
                                           member_->use_device_,
                                           member_->bkcl_ctxs_);
1586
    for (size_t i = 1; i < device_count; ++i) {
1587 1588 1589 1590 1591 1592 1593
      graphs[i] = member_->build_strategy_.Apply(graphs[i],
                                                 {member_->places_[i]},
                                                 loss_var_name,
                                                 {member_->local_scopes_[i]},
                                                 1,
                                                 member_->use_device_,
                                                 member_->bkcl_ctxs_);
1594 1595 1596
      async_graphs[i] = graphs[i];
    }
  } else {
1597 1598 1599 1600 1601 1602 1603
    graph = member_->build_strategy_.Apply(graph,
                                           member_->places_,
                                           loss_var_name,
                                           member_->local_scopes_,
                                           member_->nranks_,
                                           member_->use_device_,
                                           member_->bkcl_ctxs_);
1604 1605 1606 1607
  }
#else
  if (member_->build_strategy_.async_mode_) {
    VLOG(3) << "use local async mode";
1608 1609 1610 1611 1612 1613
    graph = member_->build_strategy_.Apply(graph,
                                           {member_->places_[0]},
                                           loss_var_name,
                                           {member_->local_scopes_[0]},
                                           1,
                                           member_->use_device_);
1614
    for (size_t i = 1; i < device_count; ++i) {
1615 1616 1617 1618 1619 1620
      graphs[i] = member_->build_strategy_.Apply(graphs[i],
                                                 {member_->places_[i]},
                                                 loss_var_name,
                                                 {member_->local_scopes_[i]},
                                                 1,
                                                 member_->use_device_);
1621 1622 1623
      async_graphs[i] = graphs[i];
    }
  } else {
1624 1625 1626 1627 1628 1629
    graph = member_->build_strategy_.Apply(graph,
                                           member_->places_,
                                           loss_var_name,
                                           member_->local_scopes_,
                                           member_->nranks_,
                                           member_->use_device_);
1630 1631 1632 1633 1634 1635 1636 1637 1638
  }
#endif

  return async_graphs;
}

void ParallelExecutor::CreateVariableInfos(
    std::vector<details::VariableInfo> *var_infos, ir::Graph *graph) {
  PADDLE_ENFORCE_EQ(
1639 1640
      var_infos->size(),
      0,
1641 1642 1643
      platform::errors::PreconditionNotMet(
          "var_infos->size() shoule be 0, but received %d", var_infos->size()));
  PADDLE_ENFORCE_EQ(
1644 1645
      member_->is_persistable_.size(),
      0,
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
      platform::errors::PreconditionNotMet(
          "member_->is_persistable_.size() shoule be 0, but received %d",
          member_->is_persistable_.size()));
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos->emplace_back();
      var_infos->back().name_ = node->Var()->Name();
      var_infos->back().type_ = node->Var()->GetType();
      var_infos->back().persistable_ = node->Var()->Persistable();

      member_->is_persistable_.emplace(node->Var()->Name(),
                                       node->Var()->Persistable());
    }
  }

  if (graph->Has(details::kFusedVars)) {
    auto &fused_vars = graph->Get<details::FusedVars>(details::kFusedVars);
    for (auto &fused_var : fused_vars) {
      var_infos->emplace_back();
      var_infos->back() = fused_var.second;

      member_->is_persistable_.emplace(fused_var.first,
                                       fused_var.second.persistable_);
    }
  }
}

std::vector<ir::Graph *> ParallelExecutor::CreateSSAGraphExecutor(
    const ExecutionStrategy &exec_strategy,
1675 1676
    std::vector<ir::Graph *> *async_graphs,
    ir::Graph *graph) {
1677 1678 1679 1680
  std::vector<ir::Graph *> final_graphs;

  if (member_->build_strategy_.async_mode_) {
    VLOG(3) << "use AsyncSSAGraphExecutor";
1681 1682 1683 1684 1685 1686
    member_->executor_.reset(
        new details::AsyncSSAGraphExecutor(exec_strategy,
                                           member_->local_scopes_,
                                           member_->local_exec_scopes_,
                                           member_->places_,
                                           *async_graphs));
1687 1688 1689 1690 1691 1692 1693 1694 1695
    final_graphs = *async_graphs;
  } else if (member_->build_strategy_.enable_parallel_graph_) {
    VLOG(3) << "use ParallelSSAGraphExecutor";
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
    bool is_inference = details::IsDataParallelInferenceGraph(*graph);
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);

1696 1697 1698 1699 1700 1701
    auto *pg_exe =
        new details::ParallelSSAGraphExecutor(exec_strategy,
                                              member_->local_scopes_,
                                              member_->local_exec_scopes_,
                                              member_->places_,
                                              graph);
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
    final_graphs = pg_exe->Graphs();
    member_->executor_.reset(pg_exe);

    if (is_inference && member_->places_.size() > 1) {
      member_->inference_executor_ = pg_exe;
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
    }
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Paddle should be compiled with CUDA for ParallelGraph Execution."));
#endif
  } else {
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);
    auto possible_inference_graphs =
        details::TrySeparateToMultipleSingleDeviceGraphs(graph);
    if (!possible_inference_graphs.empty()) {
Z
Zeng Jinle 已提交
1721 1722 1723 1724
      for (auto &g : possible_inference_graphs) {
        member_->ApplyFixOpRunOrderPass(g.get());
      }

1725 1726
      VLOG(5) << "Use ParallelSSAGraphExecutor in inference phase";
      auto *pg_exe = new details::ParallelSSAGraphExecutor(
1727 1728 1729 1730 1731
          exec_strategy,
          member_->local_scopes_,
          member_->local_exec_scopes_,
          member_->places_,
          std::move(possible_inference_graphs));
1732 1733 1734 1735 1736 1737 1738 1739
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
      final_graphs = pg_exe->Graphs();
      member_->executor_.reset(pg_exe);
      member_->inference_executor_ = pg_exe;
    } else {
Z
Zeng Jinle 已提交
1740 1741 1742
      if (member_->places_.size() == 1) {
        member_->ApplyFixOpRunOrderPass(graph);
      }
1743 1744 1745 1746 1747
      LOG_IF(WARNING, details::HasKeepLastReadOp(*graph))
          << "drop_last=False for DataLoader is not supported in training "
             "network. It is automatically turned to drop_last=True.";
      if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
        VLOG(3) << "use ThreadedSSAGraphExecutor";
1748 1749 1750 1751 1752 1753
        member_->executor_.reset(
            new details::ThreadedSSAGraphExecutor(exec_strategy,
                                                  member_->local_scopes_,
                                                  member_->local_exec_scopes_,
                                                  member_->places_,
                                                  graph));
1754
      } else {
1755 1756 1757 1758
        if (member_->use_device_ == p::kXPU) {
#if defined(PADDLE_WITH_XPU)
          VLOG(3) << "use BindThreadedSSAGraphExecutor";
          member_->executor_.reset(new details::BindThreadedSSAGraphExecutor(
1759 1760 1761 1762 1763
              exec_strategy,
              member_->local_scopes_,
              member_->local_exec_scopes_,
              member_->places_,
              graph));
1764 1765 1766 1767 1768 1769 1770 1771
#else
          PADDLE_THROW(platform::errors::PermissionDenied(
              "Paddle can't use XPU device since it's not compiled with XPU,"
              "Please recompile or reinstall Paddle with XPU support."));
#endif
        } else {
          VLOG(3) << "use FastThreadedSSAGraphExecutor";
          member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
1772 1773 1774 1775 1776
              exec_strategy,
              member_->local_scopes_,
              member_->local_exec_scopes_,
              member_->places_,
              graph));
1777
        }
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
      }
      final_graphs.emplace_back(graph);
    }
  }
  return final_graphs;
}

void ParallelExecutor::ResetOpHandleScopeMapOfGraphs(
    const std::vector<ir::Graph *> &final_graphs,
    const std::unordered_map<Scope *, Scope *> &scope_map) {
  PADDLE_ENFORCE_GE(
1789 1790
      final_graphs.size(),
      1,
1791 1792 1793 1794
      platform::errors::PreconditionNotMet(
          "final_graphs shoule contain at least one graph, but received %d",
          final_graphs.size()));

1795 1796
  PADDLE_ENFORCE_GT(scope_map.size(),
                    0,
1797 1798 1799 1800 1801 1802 1803 1804
                    platform::errors::PreconditionNotMet(
                        "scope_map shoule contain at least one "
                        "element, but received %d",
                        scope_map.size()));
  for (auto *g : final_graphs) {
    auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*g);
    for (auto *op : ops) {
      op->SetLocalExecScopes(scope_map);
1805
      op->SetIsVariantScope(true);
1806 1807 1808 1809
    }
  }
}

1810 1811 1812 1813 1814 1815 1816
void ParallelExecutor::ResetOpHandleScopeMapOfGraphs(
    const std::unordered_map<Scope *, Scope *> &scope_map) {
  auto inner_graph = const_cast<ir::Graph *>(&Graph());
  std::vector<ir::Graph *> graphs = {inner_graph};
  ResetOpHandleScopeMapOfGraphs(graphs, scope_map);
}

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
void ParallelExecutor::SetReaderOpDeviceInfoOfGraphs(
    const std::vector<ir::Graph *> &final_graphs) {
  if (final_graphs.size() == 1) {
    ir::SetReaderOpDeviceInfo(final_graphs[0], member_->places_.size());
  } else {
    for (size_t i = 0; i < final_graphs.size(); ++i) {
      ir::SetReaderOpDeviceInfo(final_graphs[i], member_->places_.size(), i);
    }
  }
}

1828 1829 1830 1831
const ir::Graph &ParallelExecutor::Graph() const {
  return member_->executor_->Graph();
}

1832 1833 1834 1835 1836
void ParallelExecutor::PrepareForCUDAGraphCapture(ir::Graph *graph) {
  const auto &build_strategy = member_->build_strategy_;
  if (!build_strategy.allow_cuda_graph_capture_) return;
#ifdef PADDLE_WITH_CUDA
  PADDLE_ENFORCE_EQ(
1837 1838
      build_strategy.async_mode_,
      false,
1839 1840 1841
      platform::errors::InvalidArgument(
          "Async Executor does not support CUDA Graph capturing."));
  PADDLE_ENFORCE_EQ(
1842 1843
      platform::IsCUDAGraphCapturing(),
      false,
1844 1845 1846
      platform::errors::PermissionDenied("CUDA Graph is not allowed to capture "
                                         "when running the first batch."));
  PADDLE_ENFORCE_EQ(
1847 1848
      member_->places_.size(),
      1,
1849 1850
      platform::errors::InvalidArgument(
          "CUDA Graph is only supported when one GPU device is running."));
1851 1852
  PADDLE_ENFORCE_EQ(platform::is_gpu_place(member_->places_[0]),
                    true,
1853 1854
                    platform::errors::InvalidArgument(
                        "CUDA Graph is only supported on NVIDIA GPU device."));
1855 1856
  PADDLE_ENFORCE_EQ(FLAGS_sync_nccl_allreduce,
                    false,
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
                    platform::errors::InvalidArgument(
                        "FLAGS_sync_nccl_allreduce must be False to support "
                        "CUDA Graph capturing."));

  std::unordered_map<std::string, std::vector<VarDesc *>> all_vars;
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      auto *var_desc = node->Var();
      all_vars[var_desc->Name()].emplace_back(var_desc);
    }
  }

  auto mark_var_as_persistable = [&all_vars](const std::string &name) {
    auto iter = all_vars.find(name);
    if (iter != all_vars.end()) {
      for (auto *var_desc : iter->second) {
        var_desc->SetPersistable(true);
      }
    }
  };

  // Step 1: All fused vars must be persistable.
  if (graph->Has(details::kFusedVars)) {
    auto &fused_vars = graph->Get<details::FusedVars>(details::kFusedVars);
    for (auto &fused_var : fused_vars) {
      fused_var.second.persistable_ = true;
      mark_var_as_persistable(fused_var.first);
    }
  }

  // Step 2: All pinned vars must be persistable.
  if (graph->Has(details::kPinnedVars)) {
    auto &pinned_vars = graph->Get<details::PinnedVars>(details::kPinnedVars);
    for (auto &pinned_var : pinned_vars) {
      mark_var_as_persistable(pinned_var);
    }
  }

  // Step 3: Move all main programs to startup programs to make sure that
  // the main programs would only be run once.
  if (graph->Has(details::kProgramDescs)) {
    auto &startup_programs =
        graph->GetOrInit<details::ProgramDescs>(details::kStartupProgramDescs);
    auto &main_programs =
        graph->Get<details::ProgramDescs>(details::kProgramDescs);
    for (auto &main_program : main_programs) {
      startup_programs.emplace_back(main_program);
    }
    graph->Erase(details::kProgramDescs);
  }

  // Step 4: Mark all vars in startup programs to be persistable.
  if (graph->Has(details::kStartupProgramDescs)) {
    auto &startup_programs =
        graph->GetOrInit<details::ProgramDescs>(details::kStartupProgramDescs);
    for (auto &startup_program : startup_programs) {
      for (auto &op_desc : startup_program.Block(0).AllOps()) {
        for (auto &output : op_desc->OutputArgumentNames()) {
          mark_var_as_persistable(output);
        }
      }
    }
  }

  // Step 5: ScaleLossGrad must be run beforehand to avoid H2D copy.
  auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*graph);
  auto *scope = member_->local_scopes_[0];
  for (auto *op : ops) {
    auto *loss_grad_op = dynamic_cast<details::ScaleLossGradOpHandle *>(op);
    if (loss_grad_op == nullptr) continue;
    auto loss_grad_name = loss_grad_op->LossGradName();
    mark_var_as_persistable(loss_grad_name);
    loss_grad_op->RunOnVar(scope->Var(loss_grad_name));
    loss_grad_op->SetSkipRunning(true);
  }
#else
  PADDLE_THROW(platform::errors::Unimplemented(
      "CUDA Graph is only supported on NVIDIA GPU device."));
#endif
}

Y
Yu Yang 已提交
1938
}  // namespace framework
Y
Yang Yang 已提交
1939
}  // namespace paddle
S
sneaxiy 已提交
1940

S
sneaxiy 已提交
1941
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
1942
USE_PASS(eager_deletion_pass);
1943
USE_PASS(buffer_shared_inplace_pass);
1944
USE_PASS(buffer_shared_cross_op_memory_reuse_pass);
1945
USE_PASS(inplace_addto_op_pass);
Z
Zeng Jinle 已提交
1946
USE_PASS(fix_op_run_order_pass);