optimizer.py 302.6 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
import numpy as np
18
import six
19
import os
20
import logging
21
from collections import defaultdict
22

23
import paddle
Q
Qiao Longfei 已提交
24
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
25
from paddle.fluid.framework import Program, Variable, Parameter, name_scope, default_main_program, default_startup_program, device_guard
26

27 28
from . import framework
from . import layers
29
from . import unique_name
30
from .backward import append_backward, _some_in_set_, _append_grad_suffix_, _get_no_grad_set_name
31
from .clip import GradientClipBase, GradientClipByNorm, error_clip_callback, append_gradient_clip_ops, ClipGradByGlobalNorm
32 33 34
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
35
from .layers import ops
36
from .dygraph import base as imperative_base
37
from .dygraph import no_grad
38
from .dygraph.learning_rate_scheduler import LearningRateDecay, _LearningRateEpochDecay
39 40 41
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
42
from functools import cmp_to_key
43
from .wrapped_decorator import signature_safe_contextmanager
M
mapingshuo 已提交
44
from .. import compat as cpt
45
import warnings
W
wanghuancoder 已提交
46
from paddle import _C_ops
47

48
__all__ = [
49 50 51 52
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'Dpsgd', 'DecayedAdagrad',
    'Ftrl', 'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer',
    'AdamOptimizer', 'AdamaxOptimizer', 'DpsgdOptimizer',
    'DecayedAdagradOptimizer', 'RMSPropOptimizer', 'FtrlOptimizer', 'Adadelta',
Z
Zeng Jinle 已提交
53
    'AdadeltaOptimizer', 'ModelAverage', 'LarsMomentum',
54 55
    'LarsMomentumOptimizer', 'LambOptimizer', 'ExponentialMovingAverage',
    'PipelineOptimizer', 'LookaheadOptimizer', 'RecomputeOptimizer'
56
]
Q
Qiao Longfei 已提交
57 58 59 60 61 62


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
63 64
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
65 66
    """

67
    @imperative_base.no_grad
68 69 70 71
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
72
                 grad_clip=None,
73 74
                 flatten_param_grads=False,
                 align_size=-1,
75
                 name=None):
76 77 78 79 80 81
        """
        Args:
            flatten_param_grads (bool, optional): Whether to flatten all the parameters and grads. 
                If true, the parameters and gradients will be coalesce to contiguous mempry, 
                and the grad_clip ops / optimizer ops will be fuse to one operator.
        """
82
        # Because of the loop import, so place it in the function body
83
        from paddle.optimizer.lr import LRScheduler
H
hong 已提交
84 85
        self._parameter_list = list(
            parameter_list) if parameter_list is not None else None
86
        self._name = name
L
lujun 已提交
87
        if framework.in_dygraph_mode():
88
            if not isinstance(learning_rate,
89
                              (float, LearningRateDecay, LRScheduler)):
M
minqiyang 已提交
90
                raise TypeError(
91
                    "learning rate should be float or LRScheduler, got %s here"
M
minqiyang 已提交
92
                    % type(learning_rate))
93
            if self._parameter_list is None:
94 95 96
                raise AttributeError(
                    "parameter_list argument given to the Optimizer should not be None in dygraph mode."
                )
97 98 99 100 101 102 103 104
            if regularization is not None:
                for param in self._parameter_list:
                    if param.regularizer is not None:
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
                            % regularization.__str__())
                        break
M
minqiyang 已提交
105
        else:
106
            if not isinstance(learning_rate,
107
                              (float, framework.Variable, LRScheduler)):
M
minqiyang 已提交
108
                raise TypeError(
109
                    "learning rate should be float or LRScheduler, got %s here"
110
                    % type(learning_rate))
M
minqiyang 已提交
111

112 113 114 115 116
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
D
dzhwinter 已提交
117
        self.regularization = regularization
118
        self._grad_clip = grad_clip
119
        self._learning_rate = learning_rate
120 121
        self._flatten_param_grads = flatten_param_grads
        self._align_size = align_size
L
Leo Chen 已提交
122

D
dzhwinter 已提交
123
        self._dtype = None
L
Leo Chen 已提交
124 125 126 127
        # Infer the dtype form parameter
        if self._parameter_list:
            self._dtype = self._parameter_list[0].dtype

128
        # each program should have a independent learning rate
129
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
130
        self._learning_rate_map = dict()
131
        if isinstance(self._learning_rate, framework.Variable):
132 133
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
134 135 136 137 138
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
139 140
        # global_accumulator dict, {accum_name : acc_variable, ...}
        self._global_accumulators = {}
141
        self.helper = LayerHelper(self.__class__.__name__)
142
        self._opti_name_list = []
H
hong 已提交
143
        self._accumulators_holder = {}
144
        self._param_device_map = dict()
145 146 147 148 149
        # NOTE(zhiqiu): sometimes we want to add some variables(Tenosr) to the optimizer for a specific optimization,
        # for example, we want to pass 'found_inf' to adam optimizer so it can skip update when found_inf is True.
        # And these variables should not be the parameters of Optimizer's construnctor (because not commonly used). 
        # Use _auxiliary_vars together with _set_auxiliary_var/_get_auxiliary_var to achieve that.
        self._auxiliary_vars = dict()
H
hong 已提交
150 151 152 153

    @framework.dygraph_only
    def state_dict(self):
        '''
T
tianshuo78520a 已提交
154 155
        Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict.
        If the optimizer never be called(minimize function), the state_dict is empty.
H
hong 已提交
156 157 158

        Args: None
        Return:
T
tianshuo78520a 已提交
159
            state_dict(dict) : dict contains all the variable used by optimizer
H
hong 已提交
160 161 162 163 164
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
165 166 167 168 169 170

                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])

                    adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters())
                    state_dict = adam.state_dict()
H
hong 已提交
171 172

        '''
173
        from paddle.optimizer.lr import LRScheduler
H
hong 已提交
174 175 176 177
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
178 179
        for k, v in self._global_accumulators.items():
            state_dict[v.name] = v
H
hong 已提交
180
        # global step if use lr decay
181
        if isinstance(self._learning_rate, LRScheduler):
182 183
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
            return state_dict
H
hong 已提交
184
        if isinstance(self._learning_rate, LearningRateDecay):
185 186 187 188
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                var_tmp = None
189 190 191
                var_temp = framework._varbase_creator(
                    None, name='global_step', dtype='int32')

192 193
                tensor.fill_constant(
                    [1], "int32", self._learning_rate.step_num, out=var_temp)
H
hong 已提交
194

195
                state_dict['global_step'] = var_temp
H
hong 已提交
196 197 198
        return state_dict

    @framework.dygraph_only
199
    def set_state_dict(self, state_dict):
H
hong 已提交
200
        '''
T
tianshuo78520a 已提交
201
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
H
hong 已提交
202 203 204 205 206 207 208 209

        Args: 
            state_dict(dict) : Dict contains all the Variable needed by optimizer
        Return:
            None
        
        Examples:
            .. code-block:: python
210

211 212
                import paddle
                import paddle.fluid as fluid
213 214 215

                paddle.disable_static()

216
                emb = paddle.nn.Embedding(10, 10)
217

218
                state_dict = emb.state_dict()
219
                fluid.save_dygraph(state_dict, "paddle_dy")
220

221
                scheduler = paddle.optimizer.lr.NoamDecay(	
222 223 224 225
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
226
                state_dict = adam.state_dict()
227
                fluid.save_dygraph(state_dict, "paddle_dy")
228

229
                para_state_dict, opti_state_dict = fluid.load_dygraph("paddle_dy")
H
hong 已提交
230
        '''
231 232
        from paddle.optimizer.lr import LRScheduler
        if isinstance(self._learning_rate, LRScheduler):
233
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])
H
hong 已提交
234 235

        if isinstance(self._learning_rate, LearningRateDecay):
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                assert 'global_step' in state_dict, \
                        'Global step not in state dict, Dygraph use LearningRateDecay, global_step must in state_dict'
                global_step = state_dict['global_step']

                if isinstance(global_step, Variable):
                    step_np = global_step
                    step_np = np.array(step_np.value().get_tensor())
                    assert step_np.shape == (1,),  \
                            "global step shape is (1,), the shape is {}".format( step_np.shape )

                    self._learning_rate.step_num = int(step_np[0])
                elif isinstance(global_step, np.ndarray):
                    assert global_step.shape == (1,),  \
                            "global step shape is (1,), the shape is {}".format( global_step.shape )
                    self._learning_rate.step_num = global_step[0]
                else:
                    raise RuntimeError(
                        "Type not supprt, value in state dict must be [VarBase, Variable, numpy], the type is ",
                        type(global_step))
H
hong 已提交
258

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
        def _load_state_para(state_dict, param):
            var = param.value()
            tensor = var.get_tensor()
            model_np = np.array(tensor)
            load_para = state_dict[param.name]
            if isinstance(load_para, Variable):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, core.VarBase):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, np.ndarray):
                load_para_np = load_para
            else:
                raise RuntimeError("State dict type {} not supprt".format(
                    str(type(load_para))))

            assert model_np.shape == load_para_np.shape,  \
                                        "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
276
                                                param.name, model_np.shape, load_para_np.shape)
277 278 279

            assert model_np.dtype == load_para_np.dtype, \
                                        "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
280
                                            param.name, model_np.dtype, load_para_np.dtype)
281 282 283

            tensor.set(load_para_np, framework._current_expected_place())

H
hong 已提交
284 285 286 287 288
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                assert var_tmp.name in state_dict, \
                        "optimizer variable {} not found".format( var_tmp.name )
289
                _load_state_para(state_dict, var_tmp)
H
hong 已提交
290

291 292 293 294
        for k, v in self._global_accumulators.items():
            assert v.name in state_dict, \
                        "optimizer variable {} not found".format( v.name )
            _load_state_para(state_dict, v)
295

296 297 298
    # [aliases] Compatible with old method names
    set_dict = set_state_dict

299 300
    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
301

302 303 304 305 306 307 308 309 310
    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

    def _get_auxiliary_var(self, key):
        if key in self._auxiliary_vars:
            return self._auxiliary_vars[key]
        else:
            return None

Q
Qiao Longfei 已提交
311
    def _create_global_learning_rate(self):
312 313
        from paddle.optimizer.lr import LRScheduler
        if isinstance(self._learning_rate, LRScheduler):
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
                    dtype='float32' if self._dtype is None else self._dtype)
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
                self._learning_rate_map[framework.default_main_program(
                )] = lr_var

            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
                lr_var, initializer=Constant(value=lr_value))
            return

336 337 338
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
M
minqiyang 已提交
339 340 341 342 343 344 345 346 347 348 349 350
                lr = self._global_learning_rate()

                if isinstance(lr, framework.Variable):
                    return
                else:
                    self._learning_rate_map[framework.default_main_program(
                    )] = layers.create_global_var(
                        name=unique_name.generate("learning_rate"),
                        shape=[1],
                        value=float(self._learning_rate),
                        dtype='float32' if self._dtype is None else self._dtype,
                        persistable=True)
351
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
352
            elif isinstance(self._learning_rate, LearningRateDecay):
353 354 355
                self._learning_rate_map[framework.default_main_program(
                )] = self._learning_rate()
            else:
Q
qiaolongfei 已提交
356
                raise TypeError(
357 358
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
359
        else:
360 361 362 363
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return
M
minqiyang 已提交
364 365 366 367 368 369
            else:
                if not isinstance(self._learning_rate, float):
                    raise TypeError(
                        "learning rate variable is create outside optimizer,"
                        "can not create new learning rate variable for new program"
                    )
Q
Qiao Longfei 已提交
370

371 372 373 374 375 376 377 378
            # create learning rate in the current main program
            self._learning_rate_map[framework.default_main_program(
            )] = layers.create_global_var(
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True)
379

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
        
        Set the value of the learning rate manually in the optimizer. If the optimizer use LearningRateDecay,
        this API cannot be invoked, because it will lead to conflict.

        Args:
            value (float|Variable): the value of learning rate

        Returns:
            None
          
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                        
                with fluid.dygraph.guard():
                    linear = fluid.dygraph.nn.Linear(10, 10)

                    adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters())

                    # set learning rate manually by python float value
                    lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                    for i in range(5):
                        adam.set_lr(lr_list[i])
                        lr = adam.current_step_lr()
                        print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.2
                    #    current lr is 0.3
                    #    current lr is 0.4
                    #    current lr is 0.5
                    #    current lr is 0.6


                    # set learning rate manually by framework Variable
                    lr_var = fluid.layers.create_global_var(
                        shape=[1], value=0.7, dtype='float32')
                    adam.set_lr(lr_var)
                    lr = adam.current_step_lr()
                    print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.7



        """
        if not isinstance(value, (framework.Variable, float)):
            raise TypeError(
                "The type of 'value' in optimizer.set_lr must be (float, Variable), but received %s."
                % (type(value)))
        if isinstance(self._learning_rate, LearningRateDecay):
            raise RuntimeError(
                "optimizer's learning rate can't be LearningRateDecay when invoke this API, because this will lead to conflict."
            )
        if isinstance(value, float):
            self._learning_rate = value
            current_lr = self._global_learning_rate()
            if current_lr is not None:
                global_block = framework.default_main_program().global_block()
                global_block.append_op(
                    type='fill_constant',
                    outputs={'Out': [current_lr]},
                    attrs={
                        'dtype': current_lr.dtype,
                        'shape': list(current_lr.shape),
                        'value': float(value)
                    },
                    stop_gradient=True)
        else:
            assert len(value.shape) == 1 and value.shape[
                0] == 1, "optimizer's learning rate must be 1-D Tensor with shape[1]"
            self._learning_rate_map[framework.default_main_program()] = value

457 458 459
    @framework.dygraph_only
    def current_step_lr(self):
        """
460
        :api_attr: imperative
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
        
        Get current step learning rate. The return value is all the same When LearningRateDecay is not used,
        otherwise return the step learning rate.

        Returns:
            float: The learning rate of the current step.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                # example1: LearningRateDecay is not used, return value is all the same
                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])
                    adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
                    lr = adam.current_step_lr()
                    print(lr) # 0.001

                # example2: PiecewiseDecay is used, return the step learning rate
                with fluid.dygraph.guard():
                    inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
                    linear = fluid.dygraph.nn.Linear(10, 10)
                    inp = fluid.dygraph.to_variable(inp)
                    out = linear(inp)
                    loss = fluid.layers.reduce_mean(out)
                    
                    bd = [2, 4, 6, 8]
                    value = [0.2, 0.4, 0.6, 0.8, 1.0]
                    adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                                           parameter_list=linear.parameters())

                    # first step: learning rate is 0.2
                    np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

                    # learning rate for different steps
                    ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
                    for i in range(12):
                        adam.minimize(loss)
                        lr = adam.current_step_lr()
                        np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True

        """
        current_lr = self._global_learning_rate()
506
        if isinstance(current_lr, framework.Variable):
507 508 509 510
            return self._global_learning_rate().numpy()[0]

        if isinstance(self._learning_rate, float):
            return self._learning_rate
511 512 513
        elif isinstance(self._learning_rate, _LearningRateEpochDecay):
            step_lr = self._learning_rate()
            return step_lr.numpy()[0]
514 515 516 517 518 519 520
        else:
            step_lr = self._learning_rate.step()
            if isinstance(step_lr, (float, int)):
                return step_lr
            else:
                return step_lr.numpy()[0]

Y
yuyang18 已提交
521
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
522 523 524 525
        """
        get global decayed learning rate
        :return:
        """
526 527
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
528
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
529

Q
Qiao Longfei 已提交
530 531 532 533 534
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

535 536 537 538
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
539 540
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
541
        else:
W
Wu Yi 已提交
542
            if param_lr == 1.0:
Y
yuyang18 已提交
543
                return self._global_learning_rate()
W
Wu Yi 已提交
544
            else:
X
Xin Pan 已提交
545 546 547
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
548
                    return self._global_learning_rate() * param_lr
549 550 551 552 553 554 555

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
556
        """
557 558
        pass

559
    def _finish_update(self, block, parameters_and_grads):
560 561 562 563 564 565 566 567
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
568
            None
569 570 571
        """
        pass

572 573 574 575 576
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
577
                         shape=None,
578
                         type=None,
579
                         device=None):
580 581 582 583 584 585 586 587 588
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
589 590
        if self._name is not None:
            name = self._name + "_" + name
591 592
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
L
lujun 已提交
593
            if framework.in_dygraph_mode():
X
polish  
Xin Pan 已提交
594
                return self._accumulators[name][param.name]
595
            raise Exception("Accumulator {} already exists for parameter {}".
596
                            format(name, param.name))
597 598
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
599
        assert isinstance(self.helper, LayerHelper)
600 601 602 603 604

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
605
        var = self.helper.create_global_variable(
606
            name=var_name,
Q
Qiao Longfei 已提交
607
            persistable=True,
F
fengjiayi 已提交
608
            dtype=dtype or param.dtype,
609
            type=param.type if type is None else type,
H
hong 已提交
610 611
            shape=shape,
            belong_to_optimizer=True)
612 613 614 615 616
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
                var, initializer=Constant(value=float(fill_value)))
H
hong 已提交
617 618 619 620 621 622 623

        if framework.in_dygraph_mode():
            if len(self._accumulators_holder) > 0:
                assert var_name in self._accumulators_holder, \
                        "Optimizer set error, {} should in state dict".format( var_name )
                var.set_value(self._accumulators_holder[var_name])

Q
Qiao Longfei 已提交
624
        self._accumulators[name][param.name] = var
625
        return var
626

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
    def _add_global_accumulator(self,
                                name,
                                dtype=None,
                                fill_value=0.0,
                                shape=None,
                                type=None,
                                device=None):
        """Utility function to add a global accumulator for all parameters in the model

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
            shape: the shape of the accumulator
            type: the variable type of the accumulator
            device: the target place of the accumulator
        """
        if self._name is not None:
            name = self._name + "_" + name
        if (name in self._global_accumulators):
            if framework.in_dygraph_mode():
                return self._global_accumulators[name]
            raise Exception("Global accumulator {} already exists".format(name))
        if shape == None:
            shape = [1]  # most case, global accumulator is of shape [1]
        assert isinstance(self.helper, LayerHelper)

        var_name = name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype if dtype else self._dtype,
            type=type,
            shape=shape,
            belong_to_optimizer=True)
        if device is None:
            device = 'cpu'
        with device_guard(device):
            self.helper.set_variable_initializer(
                var, initializer=Constant(value=float(fill_value)))

        if framework.in_dygraph_mode():
            if len(self._accumulators_holder) > 0:
                assert var_name in self._accumulators_holder, \
                        "Optimizer set error, {} should in state dict".format( var_name )
                var.set_value(self._accumulators_holder[var_name])

        self._global_accumulators[name] = var
        return var

681 682 683 684 685 686 687 688
    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
689
            accumulator variable
690
        """
W
whs 已提交
691 692
        if self._name is not None:
            name = self._name + "_" + name
693 694 695 696 697 698
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
    def _get_global_accumulator(self, name):
        """Utility function to fetch a global accumulator

        Args:
            name: name of the accumulator

        Returns:
            accumulator variable
        """
        if self._name is not None:
            name = self._name + "_" + name
        if (name not in self._global_accumulators):
            raise Exception("Global accumulator {} does not exist".format(name))
        return self._global_accumulators[name]

714 715 716 717 718 719 720 721 722 723 724 725
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
            if param_and_grad[0].trainable is True:
                param_name = param_and_grad[0].name
                ops = target_block.ops
                device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
                            device_attr_name)
726
                        break
727 728 729 730 731 732 733

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

734
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
735 736 737
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
738
          parameters_and_grads(list(tuple(Variable, Variable))):
739
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
740 741

        Returns:
742
          return_op_list: a list of operators that will complete one step of
743 744 745
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
746
        """
747 748 749 750 751
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
752
        # for parameters and extend _finish_update method to add custom ops.
753

754
        # Allways called under program_guard use global block as loss block
755 756 757
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

758
        global_block = framework.default_main_program().global_block()
759 760 761 762 763 764 765 766 767
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
            assert current_block.backward_block_idx != -1, \
                "current block is not global_block, but it doesn't have backward block."
            target_block = framework.default_main_program().blocks[
                current_block.backward_block_idx]

        start = len(target_block.ops)
768

769
        self._update_param_device_map(parameters_and_grads, target_block)
C
chengduo 已提交
770
        self._create_accumulators(
771
            target_block,
C
chengduo 已提交
772
            [p[0] for p in parameters_and_grads if p[0].trainable])
773 774
        self._create_global_learning_rate()

M
minqiyang 已提交
775
        if framework.in_dygraph_mode():
776 777 778
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
779 780
                if param_and_grad[0].trainable is True:
                    self._append_optimize_op(target_block, param_and_grad)
781 782 783 784 785 786 787
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
                        param_and_grad), name_scope("optimizer"):
                    if param_and_grad[0].trainable is True:
788 789 790 791 792
                        device = self._get_device_for_param(param_and_grad[0]
                                                            .name)
                        with device_guard(device):
                            optimize_op = self._append_optimize_op(
                                target_block, param_and_grad)
793 794 795

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
796
        self._finish_update(target_block, parameters_and_grads)
797

798 799
        end = len(target_block.ops)
        return target_block._slice_ops(start, end)
800 801

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
802 803 804 805 806 807 808 809 810
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
811 812
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
                        "multi dist table var found, only support one now!")
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
828 829 830 831 832 833 834 835 836 837 838 839 840
            param_and_grad = [table_param, table_grad]
            with table_param.block.program._optimized_guard(param_and_grad), \
                    framework.name_scope("optimizer"):
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
                        "LearningRate": self._create_param_lr(param_and_grad)
                    },
                    outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
841 842
        return new_param_grads, (table_param, table_grad), sgd_op

843 844 845 846 847 848 849
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        """
850
        The first part of ``minimize``, do auto-diff to append backward operations for
851 852 853
        the current program.

        Args:
854 855 856 857
            loss (Variable): ``loss`` variable to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
858
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
859 860
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
861
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
862 863 864
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.
M
minqiyang 已提交
865

866
        Return:
867 868
            list: list of (param, grad) variable pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.
M
minqiyang 已提交
869

870
        Examples:
871
            See examples in ``apply_gradients``.
872
        """
873
        act_no_grad_set = None
L
Leo Chen 已提交
874
        if framework.in_dygraph_mode():
875
            pass
L
Leo Chen 已提交
876 877
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)
G
gongweibao 已提交
878

L
Leo Chen 已提交
879 880 881 882
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

L
lujun 已提交
883
        if framework.in_dygraph_mode():
884 885 886
            parameter_list = parameter_list if parameter_list \
                else self._parameter_list

C
chengduo 已提交
887
            params_grads = []
888
            for param in parameter_list:
C
chengduo 已提交
889 890
                if not param.trainable:
                    continue
891
                if param._grad_ivar() is not None:
C
chengduo 已提交
892
                    # create gradient variable
893
                    grad_var = param._grad_ivar()
C
chengduo 已提交
894
                    params_grads.append((param, grad_var))
895
        else:
C
chengduo 已提交
896 897 898 899 900
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
                assert (isinstance(callbacks, list))
            program = loss.block.program
C
chengduo 已提交
901 902 903 904
            assert len(loss.shape) == 1 and loss.shape[0] == 1, \
                "The loss.shape should be (1L,), but the current loss.shape is {}. " \
                "Maybe that you should call fluid.layers.mean to process the current loss.".format(
                    loss.shape)
905 906
            parameter_list = parameter_list if parameter_list \
                else self._parameter_list
C
chengduo 已提交
907 908
            with program_guard(program, startup_program):
                params_grads = append_backward(loss, parameter_list,
909
                                               act_no_grad_set, callbacks)
C
chengduo 已提交
910
        return params_grads
911

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
    def _create_regularization_of_grad(self, param, grad, regularization=None):
        """ Create and add backward regularization Operators
    
        Function helper of append_regularization_ops.
        """
        # If no gradient or no regularization is specified,  then we don't need to do anything
        if grad is None or ((not hasattr(param, 'regularizer') or
                             (hasattr(param, 'regularizer') and
                              param.regularizer is None)) and
                            regularization is None):
            return grad
        regularization_term = None
        if hasattr(param, 'regularizer') and param.regularizer is not None:
            # Add variable for regularization term in grad block
            regularization_term = param.regularizer(param, grad, grad.block)
        elif regularization is not None:
            regularization_term = regularization(param, grad, grad.block)

        assert regularization_term is not None

932
        if framework.in_dygraph_mode():
W
wanghuancoder 已提交
933
            return _C_ops.sum([grad, regularization_term])
934

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
        new_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
            # the grad's type and name will be changed. But the gradient's name
            # is used in ParallelExecutor Reduce mode, so I add a flag for
            # the new_grad here.
            new_grad = grad.block.create_var(
                name=grad.name + core.kNewGradSuffix(),
                dtype=param.dtype,
                shape=param.shape,
                lod_level=param.lod_level,
                type=core.VarDesc.VarType.LOD_TENSOR)

        inputs = {"X": [grad, regularization_term]}
        outputs = {"Out": [new_grad]}
950
        grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986

        return new_grad

    def append_regularization_ops(self,
                                  parameters_and_grads,
                                  regularization=None):
        r"""Create and add backward regularization Operators
    
        Creates and adds backward regularization operators in the BlockDesc.
        This will add gradients of the regularizer function to the gradients
        of the parameters and return these modified gradients. This is the
        same as implementing weight decay in optimizers for regularization.
    
        Args:
            parameters_and_grads: A list of (parameters, gradients) pairs
                                  that need to be regularized.
            regularization: A global regularizer. If the parameter is not
                            set. It will be applied with regularizer.
    
        Returns:
            list[(Variable, Variable)]: list of (parameters, gradients) \
            pair with the regularized gradient
    
        Raises:
            Exception: Unknown regularization type
        """
        params_and_grads = []
        if framework.in_dygraph_mode():
            for param, grad in parameters_and_grads:
                new_grad = self._create_regularization_of_grad(param, grad,
                                                               regularization)
                params_and_grads.append((param, new_grad))
        else:
            repeate_regularizer = False
            with framework.name_scope('regularization'):
                for param, grad in parameters_and_grads:
987 988 989
                    if not repeate_regularizer and getattr(
                            param, 'regularizer',
                            None) is not None and regularization is not None:
990 991 992 993 994 995 996 997 998 999 1000
                        repeate_regularizer = True
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
                            % regularization.__str__())
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = self._create_regularization_of_grad(
                            param, grad, regularization)
                        params_and_grads.append((param, new_grad))
        return params_and_grads

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
    def flatten_param_grads(self, params_grads):
        need_flatten_params = []
        need_flatten_grads = []
        for p, g in params_grads:
            if g is None:
                continue
            g.persistable = True
            if getattr(p, 'need_clip', True) is False or getattr(
                    p, 'regularizer', None) is not None:
                warnings.warn(
                    "flatten_param_grads=True will be discarded since paramter '{}''s need_clip is False or "
                    "the regularizer is set".format(p.name))
                self._flatten_param_grads = False
                return params_grads

            need_flatten_params.append(p)
            need_flatten_grads.append(g)

        shape = [np.prod(p.shape) for p in need_flatten_params]
        block = need_flatten_params[0].block

        flatten_param = self.helper.create_global_variable(
            name='flatten_param',
            persistable=True,
            dtype=need_flatten_params[0].dtype,
            shape=[np.sum(shape)],
            belong_to_optimizer=True)

        flatten_param.trainable = True
        flatten_param.optimize_attr = need_flatten_params[0].optimize_attr
        flatten_param.regularizer = need_flatten_params[0].regularizer

        flatten_grad = self.helper.create_global_variable(
            name='flatten_grad',
            persistable=True,
            dtype=need_flatten_grads[0].dtype,
            shape=[np.sum(shape)],
            belong_to_optimizer=True)

        with program_guard(default_main_program()):
            block.append_op(
                type="coalesce_tensor",
                inputs={"Input": need_flatten_params},
                outputs={
                    "Output": need_flatten_params,
                    "FusedOutput": flatten_param
                },
                attrs={
                    "copy_data": True,
                    "use_align": True,
                    "align_size": self._align_size,
                    "dtype": need_flatten_params[0].dtype
                })

            block.append_op(
                type="coalesce_tensor",
                inputs={"Input": need_flatten_grads},
                outputs={
                    "Output": need_flatten_grads,
                    "FusedOutput": flatten_grad
                },
                attrs={
                    "copy_data": True,
                    "use_align": True,
                    "align_size": self._align_size,
                    "dtype": need_flatten_grads[0].dtype
                })

        #NOTE(zhiqiu): the initializer should be set after coalesce_tensor op,
        # so the shape of flatten_param and flatten_grad will be inferred.
        self.helper.set_variable_initializer(
            flatten_param, initializer=Constant(0.0))
        self.helper.set_variable_initializer(
            flatten_grad, initializer=Constant(0.0))

        return [(flatten_param, flatten_grad)]

1078 1079 1080 1081 1082 1083 1084
    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
1085

1086 1087
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
1088

1089 1090 1091
        Examples:
            .. code-block:: python

1092
                import paddle.fluid as fluid
1093 1094 1095 1096 1097 1098 1099 1100 1101
                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

1102 1103 1104 1105 1106 1107
        # NOTE(zhiqiu): currently, only support ClipGradByGlobalNorm and without regularization.
        if self._flatten_param_grads and self.regularization is None:
            if self._grad_clip == None or isinstance(self._grad_clip,
                                                     ClipGradByGlobalNorm):
                params_grads = self.flatten_param_grads(params_grads)

1108
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
1109 1110 1111 1112
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:
            params_grads = append_gradient_clip_ops(params_grads)
1113 1114

        # Add regularization if any
1115 1116
        params_grads = self.append_regularization_ops(params_grads,
                                                      self.regularization)
1117 1118 1119 1120

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

C
chengduo 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
    def apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
L
lujun 已提交
1133
        if framework.in_dygraph_mode():
C
chengduo 已提交
1134 1135
            with program_guard(framework.default_main_program(),
                               framework.default_startup_program()):
1136 1137
                if self._grad_clip is not None:
                    params_grads = self._grad_clip(params_grads)
1138 1139
                params_grads = self.append_regularization_ops(
                    params_grads, self.regularization)
C
chengduo 已提交
1140 1141 1142 1143 1144 1145 1146
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

G
gongweibao 已提交
1147
    def _get_no_grad_set(self, loss, no_grad_set=None):
1148
        no_grad_set = _get_no_grad_set_name(no_grad_set)
G
gongweibao 已提交
1149 1150 1151 1152 1153 1154 1155 1156
        parameters = loss.block.program.global_block().all_parameters()
        param_no_trainable = set(
            [param.name for param in parameters if param.trainable is False])
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

1157 1158 1159 1160
    @framework.dygraph_only
    def clear_gradients(self):
        """
        Clear the gradients of all optimized parameters for model.
1161 1162

        If not, new gradient will accumulat on previous gradient.
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
        
        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
                    linear = fluid.Linear(13, 5, dtype="float32")
                    # This can be any optimizer supported by dygraph.
                    adam = fluid.optimizer.Adam(learning_rate = 0.01, 
                                                parameter_list = linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    adam.clear_gradients()

        """
        for p in self._parameter_list:
            if p.trainable:
                p.clear_gradient()

1190
    @imperative_base.no_grad
Q
Qiao Longfei 已提交
1191 1192
    def minimize(self,
                 loss,
1193
                 startup_program=None,
Q
Qiao Longfei 已提交
1194
                 parameter_list=None,
1195
                 no_grad_set=None):
1196
        """
1197
        Add operations to minimize ``loss`` by updating ``parameter_list``.
M
minqiyang 已提交
1198

1199
        Args:
1200 1201 1202 1203
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
1204
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
1205 1206
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1207
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
1208
                to be updated. The default value is None.
Q
Qiao Longfei 已提交
1209

1210
        Returns:
1211 1212 1213
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1214 1215 1216
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to 
            indicate program pruning. If so, the program will be pruned by ``feed`` and 
            ``fetch_list`` before run, see details in ``Executor``.
1217 1218 1219

        Examples:
            Please refer to the example of current Optimizer.
Q
Qiao Longfei 已提交
1220
        """
C
chengduo 已提交
1221
        assert isinstance(loss, Variable), "The loss should be an Variable."
1222

1223 1224
        parameter_list = parameter_list if parameter_list \
            else self._parameter_list
1225

C
chengduo 已提交
1226 1227 1228 1229 1230
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set)
1231

C
chengduo 已提交
1232 1233
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)
M
minqiyang 已提交
1234

Q
Qiao Longfei 已提交
1235
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
1236 1237 1238


class SGDOptimizer(Optimizer):
1239
    r"""
Q
qiaolongfei 已提交
1240 1241 1242 1243 1244 1245
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

1246 1247 1248
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
H
hong 已提交
1249
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1250 1251
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1252 1253 1254 1255 1256
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1257 1258 1259 1260
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1261 1262
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1263 1264 1265 1266

    Examples:
        .. code-block:: python

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
                sgd_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
Qiao Longfei 已提交
1292 1293
    """

1294 1295 1296 1297
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
1298
                 grad_clip=None,
1299
                 name=None):
Q
Qiao Longfei 已提交
1300
        assert learning_rate is not None
Q
Qiao Longfei 已提交
1301
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
1302
            learning_rate=learning_rate,
1303
            parameter_list=parameter_list,
X
Xin Pan 已提交
1304
            regularization=regularization,
1305
            grad_clip=grad_clip,
X
Xin Pan 已提交
1306
            name=name)
Q
Qiao Longfei 已提交
1307
        self.type = "sgd"
1308
        self._use_mkldnn = False
Q
Qiao Longfei 已提交
1309

1310
    @no_grad
1311
    def _append_optimize_op(self, block, param_and_grad):
1312
        lr = self._create_param_lr(param_and_grad)
1313
        if framework.in_dygraph_mode():
W
wanghuancoder 已提交
1314 1315
            _C_ops.sgd(param_and_grad[0], lr, param_and_grad[1],
                       param_and_grad[0])
1316
            return None
1317

1318
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1319 1320 1321 1322 1323 1324
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
1325
                "LearningRate": lr
Q
Qiao Longfei 已提交
1326
            },
1327
            attrs={"use_mkldnn": self._use_mkldnn},
M
minqiyang 已提交
1328 1329
            outputs={"ParamOut": param_and_grad[0]},
            stop_gradient=True)
Q
Qiao Longfei 已提交
1330 1331

        return sgd_op
1332 1333 1334


class MomentumOptimizer(Optimizer):
1335
    r"""
Q
qiaolongfei 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

1349
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
1350 1351 1352

        & else:

Q
qiaolongfei 已提交
1353
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
1354

1355 1356 1357 1358
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor
H
hong 已提交
1359
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1360 1361
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1362
        use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
1363 1364 1365 1366 1367
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1368 1369 1370 1371
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1372 1373
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1374 1375 1376 1377

    Examples:
        .. code-block:: python

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
                moment_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

1403 1404 1405
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
1406 1407 1408
    def __init__(self,
                 learning_rate,
                 momentum,
1409
                 parameter_list=None,
X
Xin Pan 已提交
1410 1411
                 use_nesterov=False,
                 regularization=None,
1412
                 grad_clip=None,
X
Xin Pan 已提交
1413
                 name=None):
1414 1415
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
1416
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
1417
            learning_rate=learning_rate,
1418
            parameter_list=parameter_list,
X
Xin Pan 已提交
1419
            regularization=regularization,
1420
            grad_clip=grad_clip,
X
Xin Pan 已提交
1421
            name=name)
1422 1423
        self.type = "momentum"
        self._momentum = momentum
1424
        self._use_nesterov = bool(use_nesterov)
1425 1426 1427 1428 1429

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
1430
            self._add_accumulator(self._velocity_acc_str, p)
1431 1432 1433 1434 1435 1436

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
1437
        lr = self._create_param_lr(param_and_grad)
1438
        master_weight = None
1439
        if framework.in_dygraph_mode():
1440 1441 1442 1443
            _, _, _ = _C_ops.momentum(
                param_and_grad[0], param_and_grad[1], velocity_acc, lr,
                master_weight, param_and_grad[0], velocity_acc, master_weight,
                'mu', self._momentum, 'use_nesterov', self._use_nesterov)
1444
            return None
1445

1446
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1447 1448 1449 1450
        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "Velocity": [velocity_acc],
1451
            "LearningRate": [lr]
1452 1453 1454 1455 1456 1457
        }

        outputs = {
            "ParamOut": [param_and_grad[0]],
            "VelocityOut": [velocity_acc]
        }
1458 1459 1460
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
1461 1462 1463
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
1464
            stop_gradient=True)
1465 1466

        return momentum_op
1467 1468


1469
class DGCMomentumOptimizer(Optimizer):
1470
    r"""
1471
	:api_attr: Static Graph
S
swtkiwi 已提交
1472

1473
    DGC (Deep Gradient Compression) Momentum Optimizer. Original paper is https://arxiv.org/abs/1712.01887
1474

G
gongweibao 已提交
1475
    DGC reduces the communication bandwidth by sending only the important gradients (sparse update):\
1476 1477
        only gradients larger than a threshold are transmitted.

G
gongweibao 已提交
1478
    To avoid losing information, DGC accumulates the rest of the gradients locally.
1479 1480 1481

    Eventually, these gradients become large enough to be transmitted.

1482
    Thus, DGC sends the large gradients immediately but eventually sends all of the gradients over time.
1483

G
gongweibao 已提交
1484
    To ensure no loss of accuracy, DGC employs momentum correction and local gradient clipping on top of the gradient sparsification to maintain model performance.
1485 1486 1487 1488

    DGC also uses momentum factor masking and warmup training to overcome the staleness problem caused by reduced communication.

    This optimizer will do two things:
1489

1490 1491
        1. Compress the gradient by get TopK import value from tensor \
            and use it for allreduce to reduce network bandwidth.
1492

1493
        2. Call momentum to optimize the cost.
1494 1495

    Args:
1496 1497
        learning_rate (float|Variable): The learning rate used to update parameters. \
            It can be a float value or a Variable with one float value as a data element.
1498
        momentum (float): Momentum factor.
G
gongweibao 已提交
1499
        rampup_begin_step (int): The beginning step from which gradient compression is implemented.
1500 1501 1502 1503 1504 1505 1506
        rampup_step (int): Time steps used in sparsity warm-up periods. Default is 1.
            For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. \
                And when reach sparsity array ends, it will use 0.999 then and after.
        sparsity (list[float]): Get top important element from gradient tensor, the ratio is (1 - current sparsity). \
            Default is [0.999]. For example, if the sparsity is [0.99, 0.999], \
                the top [1%, 0.1%] important element will be transmitted.
H
hong 已提交
1507
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1508 1509
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1510
        use_nesterov (bool): Enables Nesterov momentum. True means use Nesterov. Default is False.
1511 1512 1513 1514 1515
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1516 1517 1518
        grad_clip (GradientClipByNorm, optional): Gradient cliping strategy. ``DGCMomentumOptimizer`` only support 
            :ref:`api_fluid_clip_GradientClipByNorm` , and if not, it will raise TypeError. Default None, 
            meaning there is no gradient clipping.
1519 1520
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1521 1522 1523 1524

    Examples:
        .. code-block:: python

1525
            import paddle.fluid as fluid
1526
            optimizer = fluid.optimizer.DGCMomentumOptimizer(
G
gongweibao 已提交
1527 1528 1529 1530 1531
                        learning_rate=0.0001,
                        momentum=0.9,
                        rampup_step=1000,
                        rampup_begin_step=1252,
                        sparsity=[0.999, 0.999])
1532 1533

    """
1534 1535
    _u_velocity_acc_str = "_dgc_u_"
    _v_velocity_acc_str = "_dgc_v_"
1536 1537 1538 1539 1540 1541 1542

    def __init__(self,
                 learning_rate,
                 momentum,
                 rampup_begin_step,
                 rampup_step=1,
                 sparsity=[0.999],
1543
                 parameter_list=None,
1544 1545 1546
                 use_nesterov=False,
                 num_trainers=None,
                 regularization=None,
1547
                 grad_clip=None,
1548
                 name=None):
Z
zhongpu 已提交
1549 1550
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support DGCMomentumOptimizer.")
1551 1552 1553 1554

        assert core.is_compiled_with_cuda(), \
            "Paddle is not compiled with CUDA. DGC is only support GPU for now."

1555 1556 1557 1558
        assert learning_rate is not None
        assert momentum is not None
        super(DGCMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
1559
            parameter_list=parameter_list,
1560
            regularization=regularization,
1561
            grad_clip=grad_clip,
1562 1563 1564 1565
            name=name)
        self.type = "dgc_momentum"
        self._momentum = momentum
        self._use_nesterov = bool(use_nesterov)
1566

1567
        assert rampup_begin_step >= 0, "rampup_begin_step must >= 0"
1568
        self._rampup_begin_step = rampup_begin_step
1569 1570
        self._rampup_step = rampup_step
        self._sparsity = sparsity
1571

1572
        self._rampup_begin_step_var = None
1573
        self._global_step_var = None
1574

1575 1576 1577 1578 1579 1580 1581 1582 1583
        self._dgc_clip_norm = None
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipByNorm):
                raise TypeError(
                    "The type of grad_clip should be 'GradientClipByNorm', because DGCMomentumOptimizer only support GradientClipByNorm"
                )
            assert isinstance(
                num_trainers, int
            ), "The type of num_trainers should be 'int', but received %s" % type(
J
Jiangxinz 已提交
1584
                num_trainers)
1585
            assert num_trainers > 0, "The value of num_trainers should be greater than 0!"
1586 1587

            self._num_trainers = num_trainers
1588
            self._dgc_clip_norm = grad_clip.clip_norm * (num_trainers**-0.5)
1589

1590 1591
        self.regular_type, self.regular_coeff = self._get_regularization_param(
            self.regularization)
1592

1593 1594 1595
    def _get_regularization_param(self, regularization):
        regular_type = 0
        regular_coeff = 0.0
1596

1597 1598
        if regularization is not None:
            regular_coeff = regularization._regularization_coeff
1599
            from .regularizer import L1Decay, L2Decay
1600 1601 1602 1603
            if isinstance(regularization, L1Decay):
                regular_type = 1
            elif isinstance(regularization, L2Decay):
                regular_type = 2
1604 1605
            else:
                assert False, 'regularization must be None|L1Decay|L2Deacy'
1606
        return regular_type, regular_coeff
1607

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
    def _is_use_dgc(self, param_var, grad_var):
        var_numel = abs(reduce(lambda x, y: x * y, param_var.shape))
        if var_numel < 16384 or \
           param_var.type == core.VarDesc.VarType.SELECTED_ROWS  or \
           grad_var.type == core.VarDesc.VarType.SELECTED_ROWS  or  \
               param_var.dtype != core.VarDesc.VarType.FP32 :
            return False
        return True

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
        velocity_acc = self._get_accumulator(self._u_velocity_acc_str,
                                             param_and_grad[0])
        assert velocity_acc is not None

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
            "LearningRate": self._create_param_lr(param_and_grad),
        }
        outputs = {
            "ParamOut": param_and_grad[0],
            "VelocityOut": velocity_acc,
        }
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1634 1635

        if not self._is_use_dgc(param_and_grad[0], param_and_grad[1]):
1636 1637 1638
            type = "momentum"
        else:
            type = "dgc_momentum"
1639 1640 1641 1642 1643
            inputs.update({
                "current_step": self._global_step_var,
                "nranks": self._nranks_var
            })
            outputs.update({'Grad_out': param_and_grad[1]})
1644
            attrs.update({"rampup_begin_step": float(self._rampup_begin_step)})
1645 1646 1647

        # create the dgc momentum optimize op
        dgc_momentum_op = block.append_op(
1648 1649 1650 1651
            type=type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
1652 1653 1654
            stop_gradient=True)
        return dgc_momentum_op

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
    def _add_auto_increment_var(self, counter_name, begin, step=1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=counter_name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(begin - 1), force_cpu=True))
            helper.main_program.global_block()._prepend_op(
                type='increment',
                inputs={'X': [counter]},
                outputs={'Out': [counter]},
                attrs={'step': float(step)},
                stop_gradient=True)
            counter.stop_gradient = True

        return counter

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
    def _add_nranks_var(self, name, value=-1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(value), force_cpu=True))
            counter.stop_gradient = True

        return counter

1687 1688 1689 1690 1691 1692
    def _append_dgc_ops(self, param_and_grads):
        main_program = default_main_program()
        main_program._enable_dgc = True

        # step counter
        self._global_step_var = self._add_auto_increment_var(
G
gongweibao 已提交
1693
            counter_name=core.dgc.kDGCCounterName(), begin=0)
1694

1695 1696 1697
        self._nranks_var = self._add_nranks_var(
            name=core.dgc.kDGCNRanksName(), value=-1)

1698 1699 1700 1701 1702
        # rampup begin step var for all_reduce_op_handle
        self._rampup_begin_step_var = tensor.create_global_var(
            shape=[1],
            dtype=core.VarDesc.VarType.FP32,
            persistable=True,
G
gongweibao 已提交
1703
            name=core.dgc.kDGCRampUpBeginStepName(),
1704 1705 1706
            value=self._rampup_begin_step * 1.0,
            force_cpu=True)

1707 1708
        self.helper = LayerHelper(self.__class__.__name__)

1709
        for param_var, grad_var in param_and_grads:
1710 1711 1712
            # reuse velocity in dgc_op and dgc_momentum_op
            u_var = self._add_accumulator(self._u_velocity_acc_str, param_var)

1713
            if not self._is_use_dgc(param_var, grad_var):
1714 1715
                continue

1716
            v_var = self._add_accumulator(self._v_velocity_acc_str, param_var)
1717 1718 1719 1720 1721

            k_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
1722
                name=param_var.name + core.dgc.kDGCKName(),
1723 1724 1725 1726 1727 1728 1729
                value=0.0,
                force_cpu=True)

            encoded_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
1730
                name=param_var.name + core.dgc.kDGCEncodedName(),
1731 1732 1733
                value=0.0,
                force_cpu=False)

1734 1735 1736 1737 1738 1739 1740 1741
            gather_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + core.dgc.kDGCGatherName(),
                value=0.0,
                force_cpu=False)

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
            # del back oprolevarname
            op_maker = core.op_proto_and_checker_maker
            backward = core.op_proto_and_checker_maker.OpRole.Backward
            for op in main_program.global_block().ops:
                if not self._is_the_backward_op(op):
                    continue

                var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
                if param_var.name not in var_attr:
                    continue

                var_attr.remove(param_var.name)
                var_attr.remove(grad_var.name)
                if len(var_attr) > 1:
                    op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
                else:
                    op._remove_attr(op_maker.kOpRoleVarAttrName())

            clip_var = grad_var
1761 1762
            if self._dgc_clip_norm is not None:
                clip_var = self._append_clip_norm(grad_var, self._dgc_clip_norm)
1763
            self._dgc_op(param_var, clip_var, grad_var, u_var, v_var, k_var,
1764
                         encoded_var, gather_var)
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        if op_maker.kOpRoleVarAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
            return True
        return False

    def _clip_by_norm(self, x, max_norm, name=None):
        args = {'x': x, 'max_norm': max_norm, 'name': name}

        helper = LayerHelper("dgc_clip_by_norm_op", **args)

        if name is None:
1780 1781
            name = unique_name.generate_with_ignorable_key(".".join(
                [helper.name, 'tmp']))
1782 1783 1784 1785 1786

        out = helper.create_variable(
            type=x.type, name=name, dtype=x.dtype, persistable=False)

        helper.append_op(
G
gongweibao 已提交
1787
            type="dgc_clip_by_norm",
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
            inputs={"X": x,
                    "current_step": self._global_step_var},
            attrs={
                "max_norm": max_norm,
                "rampup_begin_step": float(self._rampup_begin_step)
            },
            outputs={"Out": out})
        return out

    def _append_clip_norm(self, grad_var, clip_norm):
        with grad_var.block.program._backward_role_guard():
            return self._clip_by_norm(
G
gongweibao 已提交
1800
                x=grad_var, max_norm=clip_norm, name=grad_var.name)
1801 1802

    def _dgc_op(self, param_var, clip_var, grad_var, u_var, v_var, k_var,
1803
                encoded_var, gather_var):
1804 1805
        block = framework.default_main_program().global_block()
        op_maker = core.op_proto_and_checker_maker
1806

1807 1808 1809 1810 1811 1812 1813
        regular_type = self.regular_type
        regular_coeff = self.regular_coeff
        # The regularizer of the Parameters have higher priority
        if param_var.regularizer is not None:
            regular_type, regular_coeff = self._get_regularization_param(
                param_var.regularizer)

1814 1815 1816 1817 1818 1819
        dgc_op = block.append_op(
            type="dgc",
            inputs={
                "U": u_var,
                "V": v_var,
                "Grad": clip_var,
1820
                "Param": param_var,
1821 1822
                "current_step": self._global_step_var,
                "nranks": self._nranks_var,
1823 1824 1825 1826 1827 1828
            },
            outputs={
                "U_out": u_var,
                "V_out": v_var,
                "EncodeGrad": encoded_var,
                "k": k_var,
1829 1830
                "Grad_out": grad_var,
                "GatherBuff": gather_var,
1831 1832 1833 1834 1835 1836
            },
            attrs={
                "m": self._momentum,
                "sparsity": self._sparsity,
                "use_nesterov": self._use_nesterov,
                "rampup_begin_step": float(self._rampup_begin_step),
1837
                "rampup_step": float(self._rampup_step),
1838 1839
                "regular_coeff": float(regular_coeff),
                "regular_type": int(regular_type),
1840 1841 1842 1843 1844 1845 1846 1847
            },
            stop_gradient=True)

        backward = op_maker.OpRole.Backward
        dgc_op._set_attr(op_maker.kOpRoleAttrName(), backward)
        dgc_op._set_attr(op_maker.kOpRoleVarAttrName(),
                         [param_var.name, grad_var.name])

1848
    @imperative_base.no_grad
1849
    def apply_gradients(self, params_grads):
1850 1851 1852 1853 1854
        # Note: since we can't use all_reduce_op now,
        # dgc_op should be the last op of one grad.
        # Maybe need a grad allreduce pass.
        self._append_dgc_ops(params_grads)

1855 1856 1857 1858 1859 1860
        params_grads = sorted(params_grads, key=lambda x: x[0].name)
        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

        not_dgc_params_grads = []
        dgc_params_grads = []
1861
        # DGC clip and regularization in optimizer.backward
1862 1863 1864 1865 1866 1867
        for param, grad in params_grads:
            if not self._is_use_dgc(param, grad):
                not_dgc_params_grads.append((param, grad))
            else:
                dgc_params_grads.append((param, grad))

1868
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
1869 1870 1871 1872 1873
        if self._grad_clip is not None:
            not_dgc_params_grads = self._grad_clip(not_dgc_params_grads)
        else:
            not_dgc_params_grads = append_gradient_clip_ops(
                not_dgc_params_grads)
1874

1875 1876
        not_dgc_params_grads = self.append_regularization_ops(
            not_dgc_params_grads, self.regularization)
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

        params_grads = not_dgc_params_grads + dgc_params_grads
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

1888

1889
class LarsMomentumOptimizer(Optimizer):
1890
    r"""
1891 1892 1893 1894 1895 1896 1897 1898 1899
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

1900
        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param + epsilon)
1901 1902 1903

        & param = param - velocity

1904 1905 1906 1907 1908 1909
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element. \
            momentum (float): momentum factor
        lars_coeff (float): Defines how much we trust the layer to change its weights.
        lars_weight_decay (float): Weight decay coefficient for decaying using LARS.
H
hong 已提交
1910
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1911 1912
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1913 1914 1915 1916 1917
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1918 1919 1920 1921
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1922 1923
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1924 1925
        exclude_from_weight_decay (list[str], optional): Name string of layers which will be exclude from lars weight decay. Default is None.
        epsilon (float, optional): Epsilon to avoid Division by Zero when calculate local lr. Default is 0.
1926 1927 1928
        multi_precision (bool, optional): Whether to use multi-precision during weight updating.
        rescale_grad (float, optional): Multiply the gradient with `rescale_grad` \
            before updating. Often choose to be `1.0/batch_size`.
1929
        
1930 1931 1932
    Examples:
        .. code-block:: python

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
            import paddle.fluid as fluid
            import numpy as np

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
            optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1949 1950 1951 1952 1953 1954 1955 1956
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
1957
                 parameter_list=None,
1958
                 regularization=None,
1959
                 grad_clip=None,
1960 1961
                 name=None,
                 exclude_from_weight_decay=None,
1962 1963 1964
                 epsilon=0,
                 multi_precision=False,
                 rescale_grad=1.0):
1965 1966 1967 1968
        assert learning_rate is not None
        assert momentum is not None
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
1969
            parameter_list=parameter_list,
1970
            regularization=regularization,
1971
            grad_clip=grad_clip,
1972 1973 1974 1975 1976
            name=name)
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)
1977 1978 1979 1980 1981
        self._epsilon = float(epsilon)
        if exclude_from_weight_decay is None:
            self._exclude_from_weight_decay = []
        else:
            self._exclude_from_weight_decay = exclude_from_weight_decay
1982 1983 1984 1985 1986
        self._multi_precision = multi_precision
        self._rescale_grad = float(rescale_grad)
        self._master_weights = {}

    def _create_master_weight(self, param):
1987 1988 1989 1990
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)
1991

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
            var_name = param.name + '_fp32_master'
            var_name = unique_name.generate(var_name)
            var = layers.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True)
            block = self.helper.startup_program.global_block()
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32
                })
            self._master_weights[param.name] = var
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        find_master = self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        target_param = self._master_weights[
            param.name] if find_master else param
        target_name = target_param.name
        if (name not in self._accumulators or
                target_name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, target_name))
        return self._accumulators[name][target_name]
2031 2032 2033 2034 2035

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
2036 2037 2038 2039 2040 2041 2042 2043 2044
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._velocity_acc_str, master_p)
                continue
            if p.dtype == core.VarDesc.VarType.FP16 and not self._multi_precision:
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
2045 2046 2047 2048
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
2049 2050 2051 2052 2053 2054 2055 2056
        _lars_weight_decay = self._lars_weight_decay
        param_name = param_and_grad[0].name
        if len(self._exclude_from_weight_decay) > 0:
            for name in self._exclude_from_weight_decay:
                if name in param_name:
                    _lars_weight_decay = 0.0
                    break

2057 2058
        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
2059 2060 2061 2062 2063 2064 2065 2066 2067
        lr = self._create_param_lr(param_and_grad)

        find_master = self._multi_precision and param_and_grad[
            0].dtype == core.VarDesc.VarType.FP16
        master_weight = (self._master_weights[param_and_grad[0].name]
                         if find_master else None)

        attrs = {
            "mu": self._momentum,
2068
            "lars_coeff": self._lars_coeff,
L
limingshu 已提交
2069
            "lars_weight_decay": [_lars_weight_decay],
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
            "multi_precision": find_master,
            "rescale_grad": self._rescale_grad
        }

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
            "LearningRate": lr
        }

        outputs = {"ParamOut": param_and_grad[0], "VelocityOut": velocity_acc}

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

2087 2088
        # create the momentum optimize op
        momentum_op = block.append_op(
2089
            type=self.type,
2090 2091 2092
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
2093
            stop_gradient=True)
2094 2095 2096 2097

        return momentum_op


2098
class AdagradOptimizer(Optimizer):
2099
    r"""
2100 2101
    The Adaptive Gradient optimizer (Adagrad for short) can adaptively assign
    different learning rates to individual parameters.
Q
qiaolongfei 已提交
2102

2103
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2104 2105 2106 2107 2108 2109 2110

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2111 2112 2113 2114 2115 2116
    Related paper: `Adaptive Subgradient Methods for Online Learning and
    Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have the ``epsilon`` attribute. It is added here
    in our implementation as also proposed `Per-parameter adaptive learning rate
    methods <http://cs231n.github.io/neural-networks-3/#ada>`_
Q
qiaolongfei 已提交
2117 2118 2119
    for numerical stability to avoid the division by zero error.

    Args:
2120 2121 2122 2123
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2124
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2125 2126
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2127 2128 2129 2130 2131
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2132 2133 2134 2135
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2136 2137 2138 2139 2140
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        initial_accumulator_value (float, optional): Initial value for moment accumulator.
            The default value is 0.0.
Q
qiaolongfei 已提交
2141 2142 2143 2144

    Examples:
        .. code-block:: python

2145
            import numpy as np
2146
            import paddle.fluid as fluid
2147 2148

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
2149
            inp = fluid.data(name="inp", shape=[2, 2])
2150 2151
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
2152
            optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2)
2153 2154 2155 2156 2157 2158 2159
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
2160 2161 2162
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
2163 2164 2165
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
2166
                 parameter_list=None,
X
Xin Pan 已提交
2167
                 regularization=None,
2168
                 grad_clip=None,
2169
                 name=None,
X
xuezhong 已提交
2170
                 initial_accumulator_value=0.0):
2171 2172
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
2173
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
2174
            learning_rate=learning_rate,
2175
            parameter_list=parameter_list,
X
Xin Pan 已提交
2176
            regularization=regularization,
2177
            grad_clip=grad_clip,
X
Xin Pan 已提交
2178
            name=name)
2179 2180
        self.type = "adagrad"
        self._epsilon = epsilon
2181
        self.initial_accumulator_value = initial_accumulator_value
2182 2183 2184 2185 2186

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Z
zhongpu 已提交
2187 2188 2189 2190
            self._add_accumulator(
                self._moment_acc_str,
                p,
                fill_value=self.initial_accumulator_value)
2191 2192 2193 2194 2195 2196

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])
2197
        # Create the adagrad optimizer op
2198 2199 2200 2201 2202 2203
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
2204
                "LearningRate": self._create_param_lr(param_and_grad)
2205 2206 2207
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
2208 2209
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
2210 2211

        return adagrad_op
2212 2213 2214


class AdamOptimizer(Optimizer):
2215
    r"""
T
tianshuo78520a 已提交
2216
    The Adam optimizer uses an optimization described at the end
2217 2218 2219 2220 2221
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
    
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

2236 2237
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

Q
qiaolongfei 已提交
2238
    Args:
2239 2240
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
2241 2242
        beta1 (float|Variable, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2243
            The default value is 0.9.
2244 2245
        beta2 (float|Variable, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2246
            The default value is 0.999.
2247 2248
        epsilon (float|Tensor, optional): A small float value for numerical stability.
            It should be a float number or a Variable with shape [1] and data type as float32.
2249
            The default value is 1e-08.
H
hong 已提交
2250
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2251 2252
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2253 2254 2255 2256 2257
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2258 2259 2260 2261
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
2272 2273
        use_global_beta_pow (bool, optional): Whether to use global beta_pow. If true, Adam will use global beta_pow 
            for whole model instead of creating beta_pow for each parameter. Default is false.
2274 2275 2276
        flatten_param_grads (bool, optional): Whether to flatten all parameters and gradients. Default is false.
        align_size (int, optional): The alignment size when flatten parameters and gradients. Default is -1, which means
            use same align_size as allocator. 
Q
qiaolongfei 已提交
2277 2278 2279 2280

    Examples:
        .. code-block:: python

2281 2282 2283 2284 2285 2286
            import paddle
            import paddle.fluid as fluid

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
2287 2288
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
Q
qiaolongfei 已提交
2304

2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
        .. code-block:: python

            # Adam with beta1/beta2 as Variable
            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                # define beta decay variable
2322
                def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate, epsilon_init):
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
                    global_step = lr_scheduler._decay_step_counter()

                    beta1 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta1")
                    beta2 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta2")
2339 2340 2341 2342 2343 2344 2345
                    epsilon = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(epsilon_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="epsilon")
2346 2347 2348 2349 2350 2351 2352

                    div_res = global_step / decay_steps
                    decayed_beta1 = beta1_init * (decay_rate**div_res)
                    decayed_beta2 = beta2_init * (decay_rate**div_res)
                    fluid.layers.assign(decayed_beta1, beta1)
                    fluid.layers.assign(decayed_beta2, beta2)

2353
                    return beta1, beta2, epsilon
2354

2355
                beta1, beta2, epsilon = get_decayed_betas(0.9, 0.99, 1e5, 0.9, 1e-8)
2356 2357
                adam_optimizer = fluid.optimizer.AdamOptimizer(
                                                    learning_rate=0.01,
2358
                                                    beta1=beta1,
2359 2360
                                                    beta2=beta2,
                                                    epsilon=epsilon)
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
2371 2372 2373
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
2374 2375
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
2376 2377 2378 2379 2380

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
2381
                 epsilon=1e-8,
2382
                 parameter_list=None,
X
Xin Pan 已提交
2383
                 regularization=None,
2384
                 grad_clip=None,
Q
Qiao Longfei 已提交
2385
                 name=None,
2386
                 lazy_mode=False,
2387 2388 2389
                 use_global_beta_pow=False,
                 flatten_param_grads=False,
                 align_size=-1):
2390 2391 2392 2393
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
2394
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
2395
            learning_rate=learning_rate,
2396
            parameter_list=parameter_list,
X
Xin Pan 已提交
2397
            regularization=regularization,
2398
            grad_clip=grad_clip,
2399 2400
            flatten_param_grads=flatten_param_grads,
            align_size=align_size,
X
Xin Pan 已提交
2401
            name=name)
2402 2403 2404 2405
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
2406
        self._lazy_mode = lazy_mode
2407
        self._use_global_beta_pow = use_global_beta_pow
2408 2409 2410 2411 2412 2413

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
2414 2415
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
            if not self._use_global_beta_pow:
                self._add_accumulator(
                    name=self._beta1_pow_acc_str,
                    param=p,
                    fill_value=0.9 if isinstance(self._beta1, Variable) \
                            else self._beta1,
                    shape=[1],
                    type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
                self._add_accumulator(
                    name=self._beta2_pow_acc_str,
                    param=p,
                    fill_value=0.999 if isinstance(self._beta2, Variable) \
                            else self._beta2,
                    shape=[1],
                    type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
        if self._use_global_beta_pow:
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2433
                name=self._beta1_pow_acc_str,
2434 2435
                fill_value=0.9 if isinstance(self._beta1, Variable) \
                        else self._beta1,
2436
                shape=[1],
2437
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
2438
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2439
                name=self._beta2_pow_acc_str,
2440 2441
                fill_value=0.999 if isinstance(self._beta2, Variable) \
                        else self._beta2,
2442
                shape=[1],
2443
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
2444 2445 2446 2447 2448 2449 2450 2451

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
                self._beta1_pow_acc_str)
            beta2_pow_acc = self._get_global_accumulator(
                self._beta2_pow_acc_str)
        else:
            beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                  param_and_grad[0])
            beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                                  param_and_grad[0])
2462
        lr = self._create_param_lr(param_and_grad)
2463
        # create the adam optimize op
2464 2465 2466 2467 2468 2469

        if framework.in_dygraph_mode():
            _beta1 = self._beta1 if not isinstance(
                self._beta1, Variable) else self._beta1.numpy().item(0)
            _beta2 = self._beta2 if not isinstance(
                self._beta2, Variable) else self._beta2.numpy().item(0)
2470 2471
            master_weight = None
            _, _, _, _, _, _ = _C_ops.adam(
2472
                param_and_grad[0], param_and_grad[1], lr, moment1, moment2,
2473 2474 2475 2476 2477
                beta1_pow_acc, beta2_pow_acc, master_weight, param_and_grad[0],
                moment1, moment2, beta1_pow_acc, beta2_pow_acc, master_weight,
                'epsilon', self._epsilon, 'lazy_mode', self._lazy_mode,
                'min_row_size_to_use_multithread', 1000, 'beta1', _beta1,
                'beta2', _beta2, 'use_global_beta_pow',
2478
                self._use_global_beta_pow)
2479 2480 2481

            return None

2482
        inputs = {
2483 2484
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
2485
            "LearningRate": [lr],
2486 2487 2488 2489
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
            "Beta2Pow": [beta2_pow_acc]
2490
        }
2491 2492 2493 2494 2495 2496 2497

        # Pass found_inf to adam, to skip update for not only param, but also momentum and beta_pow
        found_inf = self._get_auxiliary_var('found_inf')

        if found_inf:
            inputs['SkipUpdate'] = found_inf

2498
        outputs = {
2499 2500 2501 2502 2503
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
2504 2505 2506
        }
        attrs = {
            "lazy_mode": self._lazy_mode,
2507 2508
            "min_row_size_to_use_multithread": 1000,
            'use_global_beta_pow': self._use_global_beta_pow
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2
2519 2520 2521 2522
        if isinstance(self._epsilon, Variable):
            inputs['EpsilonTensor'] = self._epsilon
        else:
            attrs['epsilon'] = self._epsilon
2523

2524 2525
        adam_op = block.append_op(
            type=self.type,
2526 2527 2528
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
2529
            stop_gradient=True)
2530 2531 2532

        return adam_op

2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
    def _finish_update(self, block, parameters_and_grads):
        r"""Update beta1_pow and beta2_pow accumulator
        """
        assert isinstance(block, framework.Block)
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
                self._beta1_pow_acc_str)
            beta2_pow_acc = self._get_global_accumulator(
                self._beta2_pow_acc_str)

            with block.program._optimized_guard([]):
                inputs = {"X": beta1_pow_acc}
2545
                outputs = {"Out": beta1_pow_acc}
2546 2547
                attrs = {}
                if isinstance(self._beta1, Variable):
2548 2549 2550 2551 2552 2553 2554 2555
                    inputs["Y"] = self._beta1
                    # use elementwise_mul for better performance
                    block.append_op(
                        type="elementwise_mul",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True)
2556 2557
                else:
                    attrs['scale'] = self._beta1
2558 2559 2560 2561 2562 2563
                    block.append_op(
                        type="scale",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True)
2564 2565

                inputs = {"X": beta2_pow_acc}
2566
                outputs = {"Out": beta2_pow_acc}
2567 2568
                attrs = {}
                if isinstance(self._beta2, Variable):
2569 2570 2571 2572 2573 2574 2575 2576
                    inputs["Y"] = self._beta2
                    # use elementwise_mul for better performance
                    block.append_op(
                        type="elementwise_mul",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True)
2577 2578
                else:
                    attrs['scale'] = self._beta2
2579 2580 2581 2582 2583 2584
                    block.append_op(
                        type="scale",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True)
2585

2586 2587

class AdamaxOptimizer(Optimizer):
2588
    r"""
2589 2590 2591 2592
    The Adamax optimizer is implemented based on the Adamax Optimization 
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.
Q
qiaolongfei 已提交
2593

2594
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}

2608
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
Q
qiaolongfei 已提交
2609

2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
H
hong 已提交
2622
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2623 2624
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2625 2626 2627 2628 2629
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2630 2631 2632 2633
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2634 2635 2636 2637 2638 2639
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, AdamaxOptimizer doesn't support sparse parameter optimization.**
Q
qiaolongfei 已提交
2640

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
2654
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
2655 2656
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
2657
              adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
2658 2659 2660 2661 2662 2663 2664 2665 2666
              adam.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])
2667 2668 2669
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
2670
    _beta1_pow_acc_str = "beta1_pow_acc"
2671 2672 2673 2674 2675

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
2676
                 epsilon=1e-8,
2677
                 parameter_list=None,
X
Xin Pan 已提交
2678
                 regularization=None,
2679
                 grad_clip=None,
X
Xin Pan 已提交
2680
                 name=None):
2681 2682 2683 2684
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
2685
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
2686
            learning_rate=learning_rate,
2687
            parameter_list=parameter_list,
X
Xin Pan 已提交
2688
            regularization=regularization,
2689
            grad_clip=grad_clip,
X
Xin Pan 已提交
2690
            name=name)
2691 2692 2693 2694 2695 2696 2697 2698
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
2699 2700
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
2701 2702 2703 2704 2705
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                fill_value=self._beta1,
                shape=[1])
2706 2707 2708 2709 2710 2711 2712

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
2713 2714
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
2715 2716 2717 2718 2719 2720
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
2721
                "LearningRate": self._create_param_lr(param_and_grad),
2722 2723
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
2724
                "Beta1Pow": beta1_pow_acc
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
M
minqiyang 已提交
2735 2736
            },
            stop_gradient=True)
2737 2738 2739

        return adamax_op

2740
    def _finish_update(self, block, parameters_and_grads):
2741 2742 2743
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
2744
        for param, grad in parameters_and_grads:
C
chengduo 已提交
2745
            if grad is None or param.trainable is False:
2746
                continue
X
Xin Pan 已提交
2747 2748
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
2749 2750
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
2751
                block.append_op(
2752 2753 2754
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
2755 2756
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
2757 2758


2759
class DpsgdOptimizer(Optimizer):
2760
    r"""
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
    We implement the Dpsgd optimizer according to CCS16 paper -
    Deep Learning with Differential Privacy.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
              optimizer.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        clip (float): clipping threshold
        batch_size (float): batch size.
        sigma (float): for gaussian noise.
H
hong 已提交
2797
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2798 2799
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2800 2801 2802 2803 2804 2805 2806 2807
    Notes:
       Currently, DpsgdOptimizer doesn't support sparse parameter optimization.
    """

    def __init__(self,
                 learning_rate=0.001,
                 clip=0.9,
                 batch_size=0.999,
2808 2809
                 sigma=1e-8,
                 parameter_list=None):
2810 2811 2812 2813
        assert learning_rate is not None
        assert clip is not None
        assert batch_size is not None
        assert sigma is not None
2814 2815
        super(DpsgdOptimizer, self).__init__(
            learning_rate=learning_rate, parameter_list=parameter_list)
2816 2817 2818 2819
        self.type = "dpsgd"
        self._clip = clip
        self._batch_size = batch_size
        self._sigma = sigma
Z
zhongpu 已提交
2820 2821 2822 2823 2824 2825 2826
        '''
        Note(wangzhongpu):
        This property is only used for debugging, do not need to set it!
        Dpsgd operator use time(NULL) as random seed to generate random number.
        However, during debugging, we need determinated result, so we will set self._seed to a fixed number.
        '''
        self._seed = None
2827 2828 2829 2830 2831

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        # create the dpsgd optimize op
Z
zhongpu 已提交
2832 2833 2834
        if self._seed == None:
            self._seed = 0

2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
        dpsgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0]},
            attrs={
                "clip": self._clip,
                "batch_size": self._batch_size,
Z
zhongpu 已提交
2846 2847
                "sigma": self._sigma,
                "seed": self._seed
2848 2849 2850 2851 2852 2853
            },
            stop_gradient=True)

        return dpsgd_op


2854
class DecayedAdagradOptimizer(Optimizer):
2855
    r"""
2856 2857 2858
    The Decayed Adagrad optimizer can be seen as an Adagrad algorithm that introduces
    the decay rate to solve the problem of a sharp drop in the learning rate
    during model training when using the AdagradOptimizer.
2859

2860
    The parameter ``param_out`` update rule with gradient ``grad``:
2861 2862 2863 2864 2865 2866 2867

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2868 2869 2870 2871
    Related paper: `Adaptive Subgradient Methods for Online Learning and Stochastic
    Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have an ``epsilon`` attribute. It is added here for numerical
2872 2873 2874
    stability to avoid the division by zero error.

    Args:
2875 2876 2877 2878 2879
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        decay (float, optional): The decay rate. The default value is 0.95.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2880
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2881 2882
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2883 2884 2885 2886 2887
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2888 2889 2890 2891
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2892 2893 2894 2895 2896 2897
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.**
2898 2899 2900 2901

    Examples:
        .. code-block:: python

2902 2903
            import paddle.fluid as fluid

2904 2905 2906 2907
            x = fluid.data( name='x', shape=[None, 10], dtype='float32' )
            trans = fluid.layers.fc( x, 100 )
            cost = fluid.layers.reduce_mean( trans )
            optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
2908
            optimizer.minimize(cost)
2909 2910 2911
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
2912 2913 2914 2915
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
2916
                 parameter_list=None,
X
Xin Pan 已提交
2917
                 regularization=None,
2918
                 grad_clip=None,
X
Xin Pan 已提交
2919
                 name=None):
2920 2921 2922 2923
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
2924
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
2925
            learning_rate=learning_rate,
2926
            parameter_list=parameter_list,
X
Xin Pan 已提交
2927
            regularization=regularization,
2928
            grad_clip=grad_clip,
X
Xin Pan 已提交
2929
            name=name)
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
2957 2958
            attrs={"epsilon": self._epsilon,
                   "decay": self._decay},
M
minqiyang 已提交
2959
            stop_gradient=True)
2960 2961

        return decayed_adagrad_op
2962 2963


2964
class AdadeltaOptimizer(Optimizer):
2965
    r"""
Z
Zeng Jinle 已提交
2966
    **Notes: This API does not support sparse parameter optimization.**
Q
qiaolongfei 已提交
2967

Z
Zeng Jinle 已提交
2968
    Adadelta Optimizer. Please refer to this for details:
Z
Zeng Jinle 已提交
2969 2970 2971
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.

    The update is done as follows:
2972

Z
Zeng Jinle 已提交
2973 2974
    .. math::

Z
Zeng Jinle 已提交
2975
        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2
2976

Z
Zeng Jinle 已提交
2977
        learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) }
Z
Zeng Jinle 已提交
2978

Z
Zeng Jinle 已提交
2979
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2
2980 2981

    Args:
Z
Zeng Jinle 已提交
2982 2983 2984
        learning_rate (float|Variable): global learning rate.
        epsilon (float): a small float number for numeric stability. Default 1.0e-6.
        rho (float): a floating point value indicating the decay rate. Default 0.95.
H
hong 已提交
2985
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2986 2987
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2988 2989 2990 2991 2992
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2993 2994 2995 2996
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2997 2998 2999
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .
3000 3001 3002 3003

    Examples:
        .. code-block:: python

3004
            import paddle.fluid as fluid
Z
Zeng Jinle 已提交
3005

3006
            image = fluid.data(name='image', shape=[None, 28], dtype='float32')
Z
Zeng Jinle 已提交
3007 3008
            fc = fluid.layers.fc(image, size=10)
            cost = fluid.layers.reduce_mean(fc)
3009 3010
            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
C
chengduo 已提交
3011

Z
Zeng Jinle 已提交
3012 3013 3014 3015
            # optimizer_ops is a list of optimizer operators to update parameters
            # params_grads is a list of (param, param_grad), where param is each
            # parameter and param_grad is the gradient variable of param.
            optimizer_ops, params_grads = optimizer.minimize(cost)
3016
    """
3017

3018 3019 3020
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
3021 3022 3023 3024
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
3025
                 parameter_list=None,
X
Xin Pan 已提交
3026
                 regularization=None,
3027
                 grad_clip=None,
X
Xin Pan 已提交
3028
                 name=None):
3029 3030 3031 3032 3033 3034
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
3035
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
3036
            learning_rate=learning_rate,
3037
            parameter_list=parameter_list,
X
Xin Pan 已提交
3038
            regularization=regularization,
3039
            grad_clip=grad_clip,
X
Xin Pan 已提交
3040
            name=name)
3041 3042 3043 3044 3045
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
3046 3047
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3048 3049 3050 3051 3052 3053

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
3054 3055
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
M
minqiyang 已提交
3077 3078
                   "rho": self._rho},
            stop_gradient=True)
3079 3080 3081 3082

        return adadelta_op


Q
qingqing01 已提交
3083
class RMSPropOptimizer(Optimizer):
3084
    r"""
Q
qingqing01 已提交
3085 3086 3087 3088 3089 3090 3091 3092
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
3093
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3094 3095 3096 3097

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
3098
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
3099 3100 3101 3102 3103 3104

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
3105
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3106

3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
3121 3122 3123 3124
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
3125
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
3126 3127 3128 3129 3130
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


3131 3132 3133
    Parameters:
        learning_rate(float): Global learning rate.
        rho(float): rho is :math: `\\rho` in equation, default is 0.95.
Q
qingqing01 已提交
3134
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
3135
            avoid division by zero, default is 1e-6.
Q
qiaolongfei 已提交
3136
        momentum(float): :math:`\\beta` in equation is the momentum term,
3137
            default is 0.0.
3138 3139 3140 3141
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
H
hong 已提交
3142
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3143 3144
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3145 3146 3147 3148 3149
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3150 3151 3152 3153
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3154 3155
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qingqing01 已提交
3156 3157 3158 3159 3160 3161 3162

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
                rms_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
qingqing01 已提交
3188 3189 3190 3191
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
3192
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
3193 3194 3195 3196 3197 3198

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
3199
                 centered=False,
3200
                 parameter_list=None,
X
Xin Pan 已提交
3201
                 regularization=None,
3202
                 grad_clip=None,
X
Xin Pan 已提交
3203
                 name=None):
Q
qingqing01 已提交
3204
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
3205
            learning_rate=learning_rate,
3206
            parameter_list=parameter_list,
X
Xin Pan 已提交
3207
            regularization=regularization,
3208
            grad_clip=grad_clip,
X
Xin Pan 已提交
3209
            name=name)
Q
qingqing01 已提交
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
3223
        self._centered = centered
Q
qingqing01 已提交
3224 3225 3226 3227 3228 3229 3230 3231

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
3232
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
3233 3234 3235 3236 3237 3238 3239 3240 3241

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
3242 3243
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
3244 3245 3246 3247 3248 3249 3250
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
3251
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
3252 3253 3254 3255 3256
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
3257 3258
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
3259 3260 3261 3262
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
3263 3264
                "momentum": self._momentum,
                "centered": self._centered
M
minqiyang 已提交
3265 3266
            },
            stop_gradient=True)
Q
qingqing01 已提交
3267 3268 3269 3270

        return rmsprop_op


Q
qiaolongfei 已提交
3271
class FtrlOptimizer(Optimizer):
3272
    r"""
Q
qiaolongfei 已提交
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

3311 3312 3313 3314 3315
    Parameters:
        learning_rate (float|Variable): Global learning rate.
        l1 (float): L1 regularization strength, default is 0.0.
        l2 (float): L2 regularization strength, default is 0.0.
        lr_power (float): Learning Rate Power, default is -0.5.
H
hong 已提交
3316
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3317 3318
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3319 3320 3321 3322 3323
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3324 3325 3326 3327
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3328 3329
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
3330 3331 3332 3333 3334 3335 3336

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
                ftrl_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
C
chengduo 已提交
3361

3362
    NOTE:
C
chengduo 已提交
3363
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
3364 3365 3366 3367 3368
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
3369 3370 3371 3372 3373
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
3374
                 parameter_list=None,
X
Xin Pan 已提交
3375
                 regularization=None,
3376
                 grad_clip=None,
X
Xin Pan 已提交
3377
                 name=None):
Q
qiaolongfei 已提交
3378
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
3379
            learning_rate=learning_rate,
3380
            parameter_list=parameter_list,
X
Xin Pan 已提交
3381
            regularization=regularization,
3382
            grad_clip=grad_clip,
X
Xin Pan 已提交
3383
            name=name)
Q
qiaolongfei 已提交
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
3423
                   "l2": self._l2,
M
minqiyang 已提交
3424 3425
                   "lr_power": self._lr_power},
            stop_gradient=True)
Q
qiaolongfei 已提交
3426 3427 3428 3429

        return ftrl_op


Y
Yibing Liu 已提交
3430
class LambOptimizer(AdamOptimizer):
3431
    r"""
Y
Yibing Liu 已提交
3432 3433 3434 3435
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

    LAMB Optimizer is designed to scale up the batch size of training without losing 
    accuracy, which supports adaptive element-wise updating and accurate layer-wise 
Y
Yibing Liu 已提交
3436 3437
    correction. For more information, please refer to `Large Batch Optimization for 
    Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .
Y
Yibing Liu 已提交
3438 3439 3440 3441 3442

    The updating of parameters follows:

    ..  math::

Y
Yibing Liu 已提交
3443
        m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t 
Y
Yibing Liu 已提交
3444

Y
Yibing Liu 已提交
3445
        v_t &= \\beta_2 v_{t - 1}  + (1 - \\beta_2)g_t^2
Y
Yibing Liu 已提交
3446

3447 3448 3449 3450
        m_t &= \\frac{m_t}{\\beta_1^t}

        v_t &= \\frac{v_t}{\\beta_2^t}

Y
Yibing Liu 已提交
3451
        r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
Y
Yibing Liu 已提交
3452

Y
Yibing Liu 已提交
3453
        w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
Y
Yibing Liu 已提交
3454 3455 3456 3457 3458 3459


    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the 
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
Y
Yibing Liu 已提交
3460 3461 3462 3463 3464 3465 3466 3467
        learning_rate (float|Variable, optional): the learning rate used to update parameters. \
            Can be a float value or a Variable with data type float32. Default 0.001.
        lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            Default 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            Default 0.999.
        epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
H
hong 已提交
3468
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3469 3470
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3471 3472 3473 3474 3475
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3476 3477
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
3478 3479 3480
            ( :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` , :ref:`api_paddle_fluid_clip_ClipGradByNorm` ,
            :ref:`api_paddle_fluid_clip_ClipGradByValue` ). If you want better convergence, it is recommended
            to use :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` . Default None, meaning there is no gradient clipping.
Y
Yibing Liu 已提交
3481 3482 3483 3484 3485
        exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight 
            decay when **exclude_from_weight_decay_fn(parameter)** returns true. 
            Default None.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
Y
Yibing Liu 已提交
3486 3487 3488 3489 3490 3491

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid 

Y
Yibing Liu 已提交
3492
            data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
Y
Yibing Liu 已提交
3493 3494 3495
            hidden = fluid.layers.fc(input=data, size=10)
            cost = fluid.layers.mean(hidden)

Y
Yibing Liu 已提交
3496 3497 3498 3499 3500
            def exclude_fn(param):
                return param.name.endswith('.b_0')

            optimizer = fluid.optimizer.Lamb(learning_rate=0.002,
                                             exclude_from_weight_decay_fn=exclude_fn)
Y
Yibing Liu 已提交
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
            optimizer.minimize(cost)
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

    def __init__(self,
                 learning_rate=0.001,
                 lamb_weight_decay=0.01,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-6,
3514
                 parameter_list=None,
Y
Yibing Liu 已提交
3515
                 regularization=None,
3516
                 grad_clip=None,
Y
Yibing Liu 已提交
3517
                 exclude_from_weight_decay_fn=None,
Y
Yibing Liu 已提交
3518 3519 3520 3521 3522 3523 3524 3525
                 name=None):
        assert learning_rate is not None
        assert lamb_weight_decay is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        super(LambOptimizer, self).__init__(
            learning_rate=learning_rate,
3526
            parameter_list=parameter_list,
Y
Yibing Liu 已提交
3527
            regularization=regularization,
3528
            grad_clip=grad_clip,
Y
Yibing Liu 已提交
3529 3530 3531 3532 3533 3534
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            name=name)
        self.type = "lamb"
        self._weight_decay = lamb_weight_decay
Y
Yibing Liu 已提交
3535
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
Y
Yibing Liu 已提交
3536 3537 3538

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
3539
        block.program._use_lamb = True
Y
Yibing Liu 已提交
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

Y
Yibing Liu 已提交
3550 3551 3552 3553 3554
        if self._exclude_from_weight_decay_fn is not None \
            and self._exclude_from_weight_decay_fn(param_and_grad[0]):
            weight_decay = 0.0
        else:
            weight_decay = self._weight_decay
3555 3556 3557
        lr = self._create_param_lr(param_and_grad)

        if framework.in_dygraph_mode():
W
wanghuancoder 已提交
3558
            _, _, _, _, _ = _C_ops.lamb(
3559 3560 3561 3562 3563 3564
                param_and_grad[0], param_and_grad[1], lr, moment1, moment2,
                beta1_pow_acc, beta2_pow_acc, param_and_grad[0], moment1,
                moment2, beta1_pow_acc, beta2_pow_acc, 'beta1', self._beta1,
                'beta2', self._beta2, 'epsilon', self._epsilon, 'weight_decay',
                weight_decay)
            return None
Y
Yibing Liu 已提交
3565

Y
Yibing Liu 已提交
3566 3567 3568 3569 3570 3571
        # create the lamb optimize op
        lamb_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
3572
                "LearningRate": lr,
Y
Yibing Liu 已提交
3573 3574 3575 3576 3577 3578 3579 3580
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
3581 3582 3583
                "Moment2Out": moment2,
                "Beta1PowOut": beta1_pow_acc,
                "Beta2PowOut": beta2_pow_acc
Y
Yibing Liu 已提交
3584 3585 3586 3587 3588
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
Y
Yibing Liu 已提交
3589
                "weight_decay": weight_decay
Y
Yibing Liu 已提交
3590 3591 3592 3593 3594 3595
            },
            stop_gradient=True)

        return lamb_op


3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
3609
Dpsgd = DpsgdOptimizer
3610
DecayedAdagrad = DecayedAdagradOptimizer
3611
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
3612
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
3613
Ftrl = FtrlOptimizer
3614
LarsMomentum = LarsMomentumOptimizer
Y
Yibing Liu 已提交
3615
Lamb = LambOptimizer
3616 3617 3618


class ModelAverage(Optimizer):
3619
    r"""
3620
	:api_attr: Static Graph
S
swtkiwi 已提交
3621

3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
    The ModelAverage optimizer accumulates specific continuous historical parameters
    during training. The accumulated historical range can be controlled by the passed
    ``average_window_rate`` argument. The averaged ``Parameter`` are used in the prediction,
    which usually can improve the accuracy of the prediction.

    Accumulate the average of the ``Parameter`` in the sliding window, the result will be saved
    in a temporary variable, can be applied to the current model's ``Parameter`` by calling
    the ``apply()`` method, and the current model ``Parameter`` can be restored by calling
    the ``restore()`` method.

    The window size for calculating the average is determined by ``average_window_rate``,
    ``min_average_window``, ``max_average_window`` and the current ``Parameter`` update times (num_updates).

    When the cumulative times (num_accumulates) is greater than the specific window
    threshold (average_window), the accumulated ``Parameter`` temporary variable is set to 0.0.
    The following example will help to understand the role of these arguments:

    ::
3640

3641 3642 3643 3644 3645 3646 3647 3648 3649
        if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate):
            num_accumulates = 0

    In the above conditional judgment statement, ``num_accumulates`` indicates the current
    accumulated number, which can be abstractly understood as the length of the cumulative window.
    The length of the window must be at least the length set by the ``min_average_window`` argument,
    and cannot exceed the length specified by the ``max_average_window`` argument or
    ``num_updates * average_window_rate``, where ``num_updates`` indicates the current ``Parameter``
    update times, ``average_window_rate`` is a coefficient that calculates the length of the window.
3650 3651

    Args:
3652 3653 3654
        average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times.
        min_average_window (int, optional): the minimum size of average window length. The default value is 10000.
        max_average_window (int, optional): The maximum size of average window length. The default value is 10000.
3655 3656 3657 3658 3659
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3660 3661 3662
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
3663

3664
    Examples:
Q
qiaolongfei 已提交
3665 3666 3667

      .. code-block:: python

3668 3669 3670 3671 3672 3673
        import paddle.fluid as fluid
        import numpy

        # First create the Executor.
        place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
3674

3675 3676 3677 3678
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # build net
3679
            data = fluid.data(name='X', shape=[None, 1], dtype='float32')
3680 3681 3682 3683 3684 3685 3686 3687
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
            optimizer.minimize(loss)

            # build ModelAverage optimizer
            model_average = fluid.optimizer.ModelAverage(0.15,
                                                         min_average_window=10000,
3688
                                                         max_average_window=12500)
3689 3690

            exe.run(startup_program)
3691 3692 3693 3694 3695
            for i in range(12500):
                x = numpy.random.random(size=(10, 1)).astype('float32')
                outs = exe.run(program=train_program,
                               feed={'X': x},
                               fetch_list=[loss.name])
3696 3697

            # apply ModelAverage
3698
            with model_average.apply(exe):
3699 3700 3701 3702
                x = numpy.random.random(size=(10, 1)).astype('float32')
                exe.run(program=train_program,
                        feed={'X': x},
                        fetch_list=[loss.name])
3703 3704 3705
    """

    def __init__(self,
W
wanghaoshuang 已提交
3706
                 average_window_rate,
3707 3708
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
3709 3710
                 regularization=None,
                 name=None):
Z
zhongpu 已提交
3711 3712
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support ModelAverage.")
X
Xin Pan 已提交
3713 3714
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
3715 3716 3717
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
3718

3719
        self.params_grads = []
3720 3721
        for param in framework.default_main_program().global_block(
        ).all_parameters():
3722
            if param.do_model_average != False:
3723
                grad = param.block.create_var(
3724 3725
                    name=unique_name.generate_with_ignorable_key(".".join(
                        [param.name, 'tmp'])),
3726 3727
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
3728
                    stop_gradient=True)
3729
                self.params_grads.append((param, grad))
3730

3731
        for param, grad in self.params_grads:
3732 3733
            if grad is None:
                continue
X
Xin Pan 已提交
3734 3735
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
3736
                self._append_average_accumulate_op(param)
3737

3738 3739 3740 3741
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
3742
                self._add_average_apply_op(block, param_grad)
3743 3744 3745 3746 3747

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
3748
                self._add_average_restore_op(block, param_grad)
3749

3750
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
3751 3752 3753 3754 3755 3756
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
3757
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
3758
        old_num_accumulates = block._clone_variable(
3759
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
3760
        num_updates = block._clone_variable(
3761 3762 3763 3764 3765 3766
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
3767 3768 3769 3770
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
3771
        ops._elementwise_div(x=sum, y=tmp, out=param)
3772 3773

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
3774 3775
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
M
minqiyang 已提交
3813 3814
            },
            stop_gradient=True)
3815

S
rename  
sneaxiy 已提交
3816
    @signature_safe_contextmanager
3817
    def apply(self, executor, need_restore=True):
3818 3819
        """
        Apply the average of the cumulative ``Parameter`` to the parameters of the current model.
3820 3821

        Args:
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
            executor(fluid.Executor): The current network executor.
            need_restore(bool): Restore flag variable, if set to True, the network will restore
                the parameters of the network to the default value, if set to False,
                it will not be restored. The default value is True.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])
3866
        """
3867 3868 3869 3870 3871 3872
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
3873 3874

    def restore(self, executor):
3875 3876
        """
        Restore ``Parameter`` values of current model.
3877 3878
        
        Args:
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
            executor(fluid.Executor): The current network executor.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe, False):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])

                # restore Parameters
                model_average.restore(exe)
3923
        """
3924
        executor.run(self.restore_program)
3925 3926 3927


class ExponentialMovingAverage(object):
3928
    r"""
3929
	:api_attr: Static Graph
S
swtkiwi 已提交
3930

3931 3932 3933 3934 3935 3936
    Compute the moving average of parameters with exponential decay.
    Given a parameter :math:`\\theta`, its exponential moving average (EMA)
    will be

    ..  math::

3937
        \\text{EMA}_0 & = 0
3938

3939 3940
	\\text{EMA}_t & = \\text{decay} * \\text{EMA}_{t-1} + (1 - \\text{decay}) * \\theta_t

Y
Yibing Liu 已提交
3941 3942 3943 3944
    The average results calculated by **update()** method will be saved in 
    temporary variables which are created and maintained by the object, and can 
    be applied to parameters of current model by calling **apply()** method. And 
    the **restore()** method is used to restore the parameters.
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965

    **Bias correction**. All EMAs are initialized to :math:`0` and hence they will be 
    zero biased, which can be corrected by divided by a factor 
    :math:`(1 - \\text{decay}^t)` , i.e., the actual EMAs applied to parameters 
    when calling **apply()** method would be 

    ..  math::
    
        \\widehat{\\text{EMA}}_t = \\frac{\\text{EMA}_t}{1 - \\text{decay}^t}

    **Decay rate scheduling**. A large decay rate very close to 1 would result 
    in that the averages move very slowly. And a better strategy is to set a 
    relative smaller decay rate in the very beginning. The argument **thres_steps**
    allows users to pass a Variable to schedule the decay rate, in this case, 
    the actual decay rate becomes
     
    ..  math::
    
        \\min(\\text{decay}, \\frac{1 + \\text{thres_steps}}{10 + \\text{thres_steps}})

    Usually **thres_steps** can be the global training steps.
3966 3967 3968


    Args:
3969 3970 3971
        decay (float, optional): The exponential decay rate, usually close to 1, such as 0.999, 0.9999, ... . Default 0.999.
        thres_steps (Variable|None, optional): If not `None`, schedule the decay rate. Default None.
        name (str|None, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
3972 3973 3974 3975


    Examples:

3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
        .. code-block:: python

            import numpy
            import paddle
            import paddle.static as static
            from paddle.static import ExponentialMovingAverage

            paddle.enable_static()

            data = static.data(name='x', shape=[-1, 5], dtype='float32')
            hidden = static.nn.fc(x=data, size=10)
            cost = paddle.mean(hidden)

            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Adam(learning_rate=0.001)
            optimizer.minimize(cost)

            ema = ExponentialMovingAverage(0.999)
            ema.update()

            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())

            for pass_id in range(3):
                for batch_id in range(6):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=static.default_main_program(),
                    feed={'x': data}, 
                    fetch_list=[cost.name])

                # usage 1
                with ema.apply(exe):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=test_program,
                        feed={'x': data}, 
                        fetch_list=[hidden.name])

                # usage 2
                with ema.apply(exe, need_restore=False):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=test_program,
                        feed={'x': data}, 
                        fetch_list=[hidden.name])
                ema.restore(exe)

4022 4023
    """

4024
    def __init__(self, decay=0.999, thres_steps=None, name=None):
Z
zhongpu 已提交
4025 4026 4027
        if framework.in_dygraph_mode():
            raise Exception(
                "In dygraph, don't support ExponentialMovingAverage.")
4028
        self._decay = decay
4029
        self._thres_steps = thres_steps
4030
        self._name = name if name is not None else ''
4031 4032
        self._decay_var = self._get_ema_decay()

4033
        self._step_counter_name = "@EMA_STEP_COUNTER@"
Y
Yibing Liu 已提交
4034
        self._params_tmps = []
4035
        for param in default_main_program().global_block().all_parameters():
4036 4037 4038 4039 4040 4041 4042
            if param.do_model_average != False:
                tmp = param.block.create_var(
                    name=unique_name.generate(".".join(
                        [self._name + param.name, 'ema_tmp'])),
                    dtype=param.dtype,
                    persistable=False,
                    stop_gradient=True)
Y
Yibing Liu 已提交
4043
                self._params_tmps.append((param, tmp))
4044

Y
Yibing Liu 已提交
4045 4046
        self._ema_vars = {}
        for param, tmp in self._params_tmps:
4047 4048
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
Y
Yibing Liu 已提交
4049
                self._ema_vars[param.name] = self._create_ema_vars(param)
4050 4051 4052 4053

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
4054
            decay_pow, global_step = self._get_decay_pow(block)
Y
Yibing Liu 已提交
4055
            for param, tmp in self._params_tmps:
4056 4057
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
Y
Yibing Liu 已提交
4058
                ema = block._clone_variable(self._ema_vars[param.name])
4059
                layers.assign(input=param, output=tmp)
4060
                # bias correction
4061 4062
                with layers.control_flow.Switch() as switch:
                    with switch.case(global_step > 0):
4063 4064 4065 4066
                        layers.assign(
                            output=param, input=ema / (1.0 - decay_pow))
                    with switch.default():
                        layers.assign(output=param, input=ema)
4067 4068 4069 4070

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
Y
Yibing Liu 已提交
4071
            for param, tmp in self._params_tmps:
4072 4073 4074 4075
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
                layers.assign(input=tmp, output=param)

4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
            decay_var = layers.tensor.create_global_var(
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
                name="scheduled_ema_decay_rate")

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
                        layers.tensor.assign(decay_t, decay_var)
                    with switch.default():
                        layers.tensor.assign(
                            np.array(
                                [self._decay], dtype=np.float32),
                            decay_var)
        return decay_var

    def _get_decay_pow(self, block):
4098 4099 4100 4101 4102 4103 4104
        global_step = layers.create_global_var(
            name=self._step_counter_name,
            shape=[1],
            value=0,
            dtype='int64',
            persistable=True)
        global_step = layers.cast(global_step, "float32")
4105
        decay_var = block._clone_variable(self._decay_var)
4106 4107
        decay_pow_acc = layers.elementwise_pow(decay_var, global_step)
        return decay_pow_acc, global_step
4108

Y
Yibing Liu 已提交
4109
    def _create_ema_vars(self, param):
4110 4111 4112 4113 4114 4115 4116 4117 4118
        param_ema = layers.create_global_var(
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
            persistable=True)

        return param_ema

Y
Yibing Liu 已提交
4119 4120 4121 4122 4123
    def update(self):
        """ 
        Update Exponential Moving Average. Should only call this method in 
        train program.
        """
4124 4125
        global_step = layers.autoincreased_step_counter(
            counter_name=self._step_counter_name)
4126
        param_master_emas = []
Y
Yibing Liu 已提交
4127 4128 4129 4130
        for param, tmp in self._params_tmps:
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
                param_ema = self._ema_vars[param.name]
4131
                if param.name + '.master' in self._ema_vars:
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
                        1 - self._decay_var)
                    layers.assign(input=ema_t, output=param_ema)

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
                    "out_dtype": param_ema.dtype
                })
Y
Yibing Liu 已提交
4149

4150 4151 4152 4153 4154 4155 4156
    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.
        
        Args:
            executor (Executor): The Executor to execute applying.
Y
Yibing Liu 已提交
4157 4158
            need_restore (bool, optional): Whether to restore parameters after 
                applying. Default True.
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.
        
        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)
H
hutuxian 已提交
4174 4175 4176


class PipelineOptimizer(object):
4177
    """
4178
	:api_attr: Static Graph
S
swtkiwi 已提交
4179

4180 4181 4182 4183
    Pipeline Optimizer: Make a program to run as pipeline, that is splitting a
    program into multiple sections (sub-programs) and each section run on a
    device to enable the training of large scale models and the use of
    heterogeneous devices. Meanwhile, all sections run in the stype of pipeline.
H
hutuxian 已提交
4184

4185
    Args:
4186 4187 4188 4189
        optimizer (Optimizer): The optimizer to use, such as SGD.
        num_microbatches (int): Number of microbatches. [Optional. Default:1].
        start_cpu_core_id (int): The first cpu core id to use. [Optional. Default:0].
    
4190 4191
    Examples:
        .. code-block:: python
H
hutuxian 已提交
4192

4193
            import paddle.fluid as fluid
H
hutuxian 已提交
4194 4195
            import paddle.fluid.layers as layers

4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
            with fluid.device_guard("gpu:0"):
                x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0)
                y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0)
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=[x, y],
                    capacity=64,
                    use_double_buffer=True,
                    iterable=False)

                emb_x = layers.embedding(input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10,2], is_sparse=False)
                emb_y = layers.embedding(input=y, param_attr=fluid.ParamAttr(name="emby",learning_rate=0.9), size=[10,2], is_sparse=False)

            with fluid.device_guard("gpu:1"):
                concat = layers.concat([emb_x, emb_y], axis=1)
                fc = layers.fc(input=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False)
                loss = layers.reduce_mean(fc)
H
hutuxian 已提交
4212
            optimizer = fluid.optimizer.SGD(learning_rate=0.5)
4213
            optimizer = fluid.optimizer.PipelineOptimizer(optimizer)
H
hutuxian 已提交
4214
            optimizer.minimize(loss)
4215 4216 4217 4218 4219 4220 4221 4222 4223

            def train_reader():
                for _ in range(4):
                    x = np.random.random(size=[1]).astype('int64')
                    y = np.random.random(size=[1]).astype('int64')
                    yield x, y
            data_loader.set_sample_generator(train_reader, batch_size=1)

            place = fluid.CUDAPlace(0)
H
hutuxian 已提交
4224 4225
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
4226 4227
            batch_size = 1
            data_loader.start()
H
hutuxian 已提交
4228
            exe.train_from_dataset(
4229
                    fluid.default_main_program())
4230
            data_loader.reset()
4231 4232
    """

4233
    def __init__(self, optimizer, num_microbatches=1, start_cpu_core_id=0):
4234 4235 4236 4237 4238
        self._device = 'cpu'
        if core.is_compiled_with_npu():
            self._device = "npu"
        elif core.is_compiled_with_cuda():
            self._device = "gpu"
Z
zhongpu 已提交
4239 4240
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support PipelineOptimizer.")
4241 4242 4243 4244
        valid_optimizers = (Optimizer, paddle.optimizer.Optimizer,
                            paddle.fluid.contrib.mixed_precision.decorator.
                            OptimizerWithMixedPrecision)
        if not isinstance(optimizer, valid_optimizers):
4245 4246
            raise ValueError("The 'optimizer' parameter for "
                             "PipelineOptimizer must be an instance of "
4247 4248
                             "{}, but the given type is {}.".format(
                                 valid_optimizers, type(optimizer)))
H
hutuxian 已提交
4249
        self._optimizer = optimizer
4250 4251 4252 4253 4254 4255

        # Get the original optimizer defined by users, such as SGD
        self._origin_optimizer = self._optimizer
        while hasattr(self._origin_optimizer, "inner_opt"):
            self._origin_optimizer = self._origin_optimizer.inner_opt

4256 4257 4258 4259
        assert num_microbatches >= 1, (
            "num_microbatches must be a positive value.")
        self._num_microbatches = num_microbatches
        assert start_cpu_core_id >= 0, (
4260
            "start_cpu_core_id must be a non-negative integer.")
H
hutuxian 已提交
4261
        self._start_cpu_core_id = start_cpu_core_id
4262 4263 4264 4265 4266 4267
        self._place_list = None
        op_maker = core.op_proto_and_checker_maker
        self._op_role = op_maker.OpRole
        self._op_role_key = op_maker.kOpRoleAttrName()
        self._op_role_var_key = op_maker.kOpRoleVarAttrName()
        self._op_device_key = op_maker.kOpDeviceAttrName()
4268
        self._param_device_map = None
4269 4270
        self._pipeline_pair = []
        self._pp_ring_map = dict()
4271 4272
        self.output_var_to_op = None
        self.input_var_to_op = None
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307

    # insert allreduce op to sync global information for global
    # gradient clip and amp
    def _insert_allreduce_op(self, op_idx, block):
        """
        Insert allreduce op to sync global information for global
        gradient clip and amp.
        """
        op = block.ops[op_idx]
        out_name = op.desc.output_arg_names()[0]
        out_var = block.var(out_name)
        offset = 0
        if op.type == "reduce_any":
            # cast the bool var to int32 to use allreduce_max op
            temp_var_name = unique_name.generate(out_name + "_cast_int32")
            temp_var = block.create_var(
                name=temp_var_name, shape=[1], dtype="int32")
            block._insert_op(
                op_idx + 1 + offset,
                type='cast',
                inputs={'X': out_var},
                outputs={'Out': temp_var},
                attrs={
                    'in_dtype': out_var.dtype,
                    'out_dtype': temp_var.dtype,
                    self._op_role_key: self._op_role.Optimize
                })
            offset += 1
        block._insert_op(
            op_idx + 1 + offset,
            type='c_allreduce_max'
            if op.type == "reduce_any" else 'c_allreduce_sum',
            inputs={'X': temp_var if op.type == "reduce_any" else out_var},
            outputs={'Out': temp_var if op.type == "reduce_any" else out_var},
            attrs={
4308
                'ring_id': self.global_ring_id,
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
                self._op_role_key: self._op_role.Optimize,
                'use_calc_stream': True
            })
        offset += 1
        if op.type == "reduce_any":
            block._insert_op(
                op_idx + 1 + offset,
                type='cast',
                inputs={'X': temp_var},
                outputs={'Out': out_var},
                attrs={
                    'in_dtype': temp_var.dtype,
                    'out_dtype': out_var.dtype,
                    self._op_role_key: self._op_role.Optimize
                })
4324
            offset += 1
4325
        return offset
H
hutuxian 已提交
4326

4327
    def _create_vars(self, block, ori_block):
4328
        # Create vars for block, copied from ori_block
H
hutuxian 已提交
4329
        used_var_set = set()
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
        added_op_num = 0
        op_idx = 0
        op_size = block.desc.op_size()
        while op_idx < op_size + added_op_num:
            # Whether to insert allreduce_sum or allreduce_max op.
            # For amp and global gradient clip strategies, we should
            # get the global information, so allreduce op is needed.
            should_insert = False
            op = block.ops[op_idx]
            # For op process vars on all devices, remove its input 
            # vars not in this block
            reserved_x = []
            if op.type == 'reduce_any' and self._is_optimize_op(op):
                should_insert = True
            elif op.type == 'concat' and self._is_optimize_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
            elif op.type == 'update_loss_scaling':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
            elif op.type == 'check_finite_and_unscale':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
                if len(reserved_x) == 0:
                    block._remove_op(op_idx)
                    op_size -= 1
                    continue
4365 4366 4367 4368 4369 4370 4371 4372
            elif op.type == 'sum' and self._is_gradient_clip_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                should_insert = True

            vars = op.desc.input_arg_names() + op.desc.output_arg_names()
H
hutuxian 已提交
4373
            for var in vars:
4374 4375 4376
                # a var whose name contains "blocking_queue" 
                # only exists in startup program 
                if var in used_var_set or "_blocking_queue" in var:
H
hutuxian 已提交
4377 4378
                    continue
                used_var_set.add(var)
4379 4380
                if block._find_var_recursive(str(var)): continue
                source_var = ori_block._var_recursive(str(var))
4381
                if source_var.type == core.VarDesc.VarType.READER:
4382
                    dest_var = block.create_var(
4383 4384 4385
                        name=var,
                        type=core.VarDesc.VarType.READER,
                        persistable=source_var.persistable)
4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
                elif isinstance(source_var, Parameter):
                    dest_var = block.create_parameter(
                        name=source_var.name,
                        shape=source_var.shape,
                        dtype=source_var.dtype,
                        type=source_var.type,
                        lod_level=source_var.lod_level,
                        stop_gradient=source_var.stop_gradient,
                        trainable=source_var.trainable,
                        optimize_attr=source_var.optimize_attr,
                        regularizer=source_var.regularizer,
                        error_clip=source_var.error_clip)
4398
                else:
4399
                    dest_var = block._clone_variable(source_var, False)
4400
                self._clone_var_attr(dest_var, source_var)
4401 4402 4403 4404 4405 4406 4407 4408
            # When use with sharding, allreduce_sum and allreduce_max
            # used for global gradient clip and amp will be added by sharding.
            op_idx += 1
            if self.use_sharding or not should_insert: continue
            inserted_ops = self._insert_allreduce_op(op_idx - 1, block)
            added_op_num += inserted_ops
            op_idx += inserted_ops
        block._sync_with_cpp()
H
hutuxian 已提交
4409

4410
    def _is_loss_grad_op(self, op):
4411 4412
        assert self._op_role_key in op.attr_names
        op_role = int(op.attr(self._op_role_key))
4413 4414 4415
        return op_role & int(self._op_role.Backward) and op_role & int(
            self._op_role.Loss)

4416 4417 4418 4419
    def _is_forward_op(self, op):
        return self._op_role_key in op.attr_names and (
            int(op.attr(self._op_role_key)) == int(self._op_role.Forward))

4420
    def _is_backward_op(self, op):
4421 4422 4423 4424 4425 4426
        return self._op_role_key in op.attr_names and (
            int(op.attr(self._op_role_key)) & int(self._op_role.Backward))

    def _is_loss_op(self, op):
        assert self._op_role_key in op.attr_names
        return int(op.attr(self._op_role_key)) == int(self._op_role.Loss)
4427 4428

    def _is_optimize_op(self, op):
4429 4430
        return self._op_role_key in op.attr_names and (
            int(op.attr(self._op_role_key)) & int(self._op_role.Optimize))
4431 4432 4433 4434 4435

    def _is_update_op(self, op):
        return 'Param' in op.input_names and 'Grad' in op.input_names and (
            "LearningRate" in op.input_names)

4436
    def _split_program(self, main_program, devices):
H
hutuxian 已提交
4437
        """
4438
        Split a program into sections according to devices that ops run on.
4439
        The op whose op_device attr is "gpu:all" is copied to all sections.
4440 4441 4442

        Args:
            main_program (Program): the main program
4443
            devices: all used devices
H
hutuxian 已提交
4444
        """
4445
        # Map from device to its corresponding section program info
4446
        device_program_map = defaultdict(Program)
4447

4448
        block = main_program.block(0)
4449 4450
        for op in block.ops:
            device = op.attr(self._op_device_key)
4451
            # Copy ops whose op_device set to "gpu:all" to all sections.
4452
            if device == f"{self._device}:all":
4453
                for device in devices:
4454 4455
                    program = device_program_map[device]
                    op_desc = op.desc
4456
                    ap_op = program.global_block().desc.append_op()
4457
                    ap_op.copy_from(op_desc)
4458
                    ap_op._set_attr(self._op_device_key, "")
4459 4460 4461
            else:
                program = device_program_map[device]
                op_desc = op.desc
4462
                ap_op = program.global_block().desc.append_op()
4463
                ap_op.copy_from(op_desc)
4464
                ap_op._set_attr(self._op_device_key, "")
4465

4466
        program_list = []
4467
        for key in devices:
4468
            program = device_program_map[key]
4469 4470
            program._sync_with_cpp()
            program_list.append(program)
H
hutuxian 已提交
4471

4472
        return program_list
H
hutuxian 已提交
4473

4474 4475 4476 4477 4478 4479 4480
    def _get_op_device_for_startup_program(self, var_name):
        """
        For adam optimizer, it will add accumulators and initialize them
        with fill_constant, and force the op device to cpu. Hence, we should
        get the real op_device attribute of the fill_constant as the device
        where the corresponding parameters on.
        """
4481 4482 4483
        assert "beta1_pow_acc" in var_name or "beta2_pow_acc" in var_name, \
            'For accumulators for Adam, the name must contain beta1_pow_acc ' \
            'or beta2_pow_acc.'
4484 4485 4486 4487
        param_name = var_name[0:var_name.index('_beta')]
        device = self._param_device_map[param_name]
        return device

4488 4489
    def _split_startup_program(self, startup_program, device_id):
        block = startup_program.global_block()
4490 4491 4492
        new_startup_program = Program()
        for op in block.ops:
            device = op.attr(self._op_device_key)
4493 4494
            if device == "cpu":
                assert op.type == "fill_constant", (
4495 4496
                    "For ops in startup program with the op_device attribute "
                    "of cpu, they must be of type fill_constant.")
4497 4498 4499
                output_var = op.output_arg_names[0]
                device = self._get_op_device_for_startup_program(output_var)

4500
            if device:
4501
                device_index = int(device.split(':')[1])
4502
            else:
4503 4504
                # LR related ops
                device = None
4505
            if device and device_index != device_id: continue
4506
            op_desc = op.desc
4507
            ap_op = new_startup_program.global_block().desc.append_op()
4508 4509 4510
            ap_op.copy_from(op_desc)
            ap_op._set_attr(self._op_device_key, "")
        new_startup_program._sync_with_cpp()
4511
        self._create_vars(new_startup_program.global_block(), block)
4512 4513
        return new_startup_program

4514
    def _find_post_op(self, index, var_name):
H
hutuxian 已提交
4515
        """
4516
        Find the post op that has variable named var_name as input.
H
hutuxian 已提交
4517
        """
4518 4519 4520 4521 4522 4523
        # bugfix for uniform hybrid parallelism
        if '.cast_fp32' in var_name:
            var_name = var_name.replace('.cast_fp32', '')
        if '.cast_fp16' in var_name:
            var_name = var_name.replace('.cast_fp16', '')

4524 4525 4526 4527 4528 4529 4530 4531
        post_ops = self.input_var_to_op[var_name]
        if post_ops == None: return None
        result_op = None
        for post_op, post_idx in reversed(post_ops):
            if post_idx > index:
                result_op = post_op
                break
        return result_op
4532

4533
    def _find_prev_op(self, index, var_name):
H
hutuxian 已提交
4534
        """
4535 4536
        Find the previous op of op with index that outputs
        variable named var_name.
H
hutuxian 已提交
4537
        """
4538 4539 4540 4541 4542 4543
        prev_ops = self.output_var_to_op[var_name]
        if prev_ops == None: return None
        result_op = None
        for prev_op, prev_idx in reversed(prev_ops):
            if prev_idx < index:
                result_op = prev_op
4544
                break
4545
        return result_op
4546 4547

    def _rename_arg(self, op, old_name, new_name):
4548 4549
        op._rename_input(old_name, new_name)
        op._rename_output(old_name, new_name)
4550

4551
    def _create_var(self, block, ref_var, name, dtype=None):
4552 4553 4554 4555 4556 4557 4558 4559
        """
        Create a new var for block, which has the same type,
        shape and dtype as ref_var, then rename it with the
        name `name`.
        """
        new_var = block.create_var(
            name=name,
            shape=ref_var.shape,
4560
            dtype=ref_var.dtype if dtype is None else dtype,
4561 4562
            type=ref_var.type,
            lod_level=ref_var.lod_level,
4563 4564
            persistable=ref_var.persistable,
            is_data=ref_var.is_data,
4565
            need_check_feed=ref_var.desc.need_check_feed())
4566
        self._clone_var_attr(new_var, ref_var)
4567 4568
        return new_var

4569 4570 4571 4572 4573
    def _clone_var_attr(self, dest, src):
        dest.stop_gradient = src.stop_gradient
        if hasattr(src, 'is_distributed'):
            dest.is_distributed = src.is_distributed

4574 4575 4576 4577 4578 4579
    def _strip_grad_suffix(self, name):
        """
        Strip the grad suffix from the given variable name
        """
        pos = name.find(core.grad_var_suffix())
        return name[:pos] if pos != -1 else name
H
hutuxian 已提交
4580

4581 4582 4583 4584 4585 4586
    def _append_grad_suffix(self, name):
        """
        Append grad suffix to the given variable name
        """
        return name + core.grad_var_suffix()

4587
    def _get_op_device_attr(self, op):
H
hutuxian 已提交
4588
        """
4589
        Get the op_device attribute of a op.
H
hutuxian 已提交
4590
        """
4591 4592 4593
        device = op.attr(self._op_device_key) \
            if op.has_attr(self._op_device_key) else None
        if device:
B
Baibaifan 已提交
4594
            assert device[0:3] == 'gpu' or device[0:3] == 'npu', "Now, only gpu and npu devices are " \
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
                "supported in pipeline parallemism."
        return device

    def _add_op_device_attr_for_op(self, op, idx, block):
        """
        Add op_device attrribute for ops that have not that attribute set.
        We use "gpu:all" to represent the op should be put on all
        sub-programs, such as lr-related ops. Note that: "gpu:all"
        is only used by pipeline as an indicator.
        """
        lrsched_role = int(self._op_role.LRSched)
        if op.attr(self._op_role_key) == lrsched_role:
            # For LRSched ops, we should put them on all sub-programs to
            # make sure each sub-program update the lr correctly
4609
            op._set_attr(self._op_device_key, f"{self._device}:all")
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
        # bugfix in hybrid parallelism
        elif op.type == "sum" and self._is_backward_op(op):
            # For sum ops that compute the sum of @RENAMED@ vars
            for name in op.desc.input_arg_names():
                assert '@RENAME@' in name, \
                    "The op must be sum used to accumulate renamed vars."
            assert len(op.desc.output_arg_names()) == 1
            out_name = op.desc.output_arg_names()[0]
            post_op = self._find_post_op(idx, out_name)
            assert post_op.has_attr(
                'op_device'), "{} has no op_device attr for var {}".format(
                    post_op.type, out_name)
            device = post_op.attr(self._op_device_key)
            assert device, "The post op must have op_device set."
            op._set_attr(self._op_device_key, device)
        elif (op.type == "cast" or
              op.type == "scale") and self._is_backward_op(op):
4627
            prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
4628 4629
            op._set_attr(self._op_device_key, prev_op.attr(self._op_device_key))
        elif op.type == "memcpy" and not self._is_optimize_op(op):
4630
            # for checkpoint offloading
4631 4632 4633 4634 4635
            assert len(op.input_arg_names) == 1 and len(
                op.output_arg_names) == 1
            input_name = op.input_arg_names[0]
            output_name = op.output_arg_names[0]
            if '@Fetch' in output_name:
4636
                post_op = self._find_post_op(idx, output_name)
4637 4638 4639
                op._set_attr(self._op_device_key,
                             post_op.attr(self._op_device_key))
            else:
4640
                prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
                op._set_attr(self._op_device_key,
                             prev_op.attr(self._op_device_key))
        elif self._is_loss_op(op):
            # For loss * loss_scaling op added by AMP
            offset = 1
            while (not block.ops[idx + offset].has_attr(self._op_device_key) or
                   not block.ops[idx + offset].attr(self._op_device_key)):
                offset += 1
            device = block.ops[idx + offset].attr(self._op_device_key)
            assert device, "Please put you program within device_guard scope."
            for i in range(offset):
                block.ops[idx + i]._set_attr(self._op_device_key, device)
        elif self._is_optimize_op(op) and op.type == "cast":
            # For fp16-->fp32 cast added by AMP
            grad_name = op.output('Out')
            assert len(grad_name) == 1
4657
            param_name = self._strip_grad_suffix(grad_name[0])
4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
            device = self._param_device_map[param_name]
            op._set_attr(self._op_device_key, device)
        elif self._is_gradient_clip_op(op) or self._is_regularization_op(op):
            # For gradient clip and regularization ops, we set their op_device
            # attribute to the device where their corresponding parameters on.
            assert self._op_role_var_key in op.attr_names, "gradient_clip " \
                "and regularization ops must have op_role_var attribute."
            op_role_var = op.attr(self._op_role_var_key)
            assert len(op_role_var) == 2, "op_role_var for gradient_clip " \
                "regularization ops must have two elements."
            param_name = op_role_var[0]
            device = self._param_device_map[param_name]
            # For sum op added by global gradient clip, it must be 
            # put on all devices
            if (op.type == 'sum' or op.type == 'sqrt' or
                    op.type == 'fill_constant' or
                    op.type == 'elementwise_max' or
                    op.type == 'elementwise_div'):
4676
                device = f"{self._device}:all"
4677
            op._set_attr(self._op_device_key, device)
R
Roc 已提交
4678
        elif op.type == "alloc_float_status" or op.type == "clear_float_status":
4679
            op._set_attr(self._op_device_key, f"{self._device}:all")
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
            # NOTE(wangxi): NPU should only clear the float status
            # once at each batch step
            op._set_attr(self._op_role_key, self._op_role.LRSched)

            float_status_name = op.output_arg_names[0]
            float_status_var = block.var(float_status_name)
            # FIXME(wangxi): pipeline lr schedule will exec on sub_scope(0)
            # while update will exec on sub_scope(last_micro_step), should
            # set persistable to use global scope
            float_status_var.persistable = True
4690 4691
        else:
            other_known_ops = [
R
Roc 已提交
4692
                'update_loss_scaling', 'reduce_any', 'concat', 'sum',
4693
                'check_finite_and_unscale', 'memcpy'
4694 4695 4696 4697 4698
            ]
            assert op.type in other_known_ops, "For other ops without " \
                "op_device set, they must be one of {}, but it " \
                "is {}".format(other_known_ops, op.type)
            assert self._is_optimize_op(op)
4699
            op._set_attr(self._op_device_key, f"{self._device}:all")
4700 4701

    def _add_op_device_attr(self, block):
4702
        """
4703 4704
        Add op_device attrribute for ops in block that have 
        not that attribute set.
4705
        """
4706 4707 4708 4709 4710 4711 4712 4713
        for idx, op in enumerate(list(block.ops)):
            if (op.type == "create_py_reader" or op.type == "read" or
                    op.type == "create_double_buffer_reader"):
                # Copy read related ops to all section to make them exit 
                # after each epoch.
                # We use "gpu:all" to represent the op should be put on all
                # sub-programs, such as lr-related ops. Note that: "gpu:all"
                # is only used by pipeline as an indicator.
4714
                op._set_attr(self._op_device_key, f"{self._device}:all")
4715 4716 4717 4718
                continue
            # op_device attribute has been set
            if self._get_op_device_attr(op): continue
            self._add_op_device_attr_for_op(op, idx, block)
H
hutuxian 已提交
4719

4720 4721
    def _check_validation(self, block):
        """
4722 4723 4724
        Check whether ops in a block have both the op_device and the 
        op_role attributes set.
        Then, return all devices in order.
4725
        """
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735
        device_list = []
        # Section worker only supports the following op_role
        valid_op_role_value = [
            int(self._op_role.LRSched),
            int(self._op_role.Forward),
            int(self._op_role.Backward),
            int(self._op_role.Loss),
            int(self._op_role.Optimize),
            int(self._op_role.Backward) | int(self._op_role.Loss),
        ]
4736
        for op in block.ops:
4737
            if not op._has_kernel(op.type):
4738 4739 4740 4741
                assert op.type == "conditional_block" and (
                    op.attr(self._op_role_key) == int(self._op_role.LRSched)), (
                        "Now, the only supported op without kernel is "
                        "conditional_block, and its op role must be LRSched.")
4742 4743 4744
            assert op.has_attr(self._op_role_key), (
                "op ({}) has no {} attribute.".format(op.type,
                                                      self._op_role_key))
4745 4746
            op_role = op.attr(self._op_role_key)
            assert int(op_role) in valid_op_role_value, \
4747
                "op_role {} for op {} must be one of {}".format(
4748
                    op_role,
4749 4750
                    op.type,
                    valid_op_role_value)
4751

4752 4753 4754
            assert op.has_attr(self._op_device_key), (
                "op ({}) has no {} attribute.".format(op.type,
                                                      self._op_device_key))
4755 4756 4757 4758

            device = op.attr(self._op_device_key)
            assert device, ("op_device attribute for op "
                            "{} has not been set.".format(op.type))
4759
            if device == f"{self._device}:all": continue
4760

4761
            dev_type = device.split(':')[0]
B
Baibaifan 已提交
4762 4763 4764
            assert dev_type == "gpu" or dev_type == 'npu', (
                "Now only gpu and npu devices are supported "
                "for pipeline parallelism.")
4765 4766

            if device not in device_list:
4767
                device_list.append(device)
4768

4769
        return device_list
4770

4771
    def _insert_sendrecv_ops_for_boundaries(self, block):
4772
        """
4773
        Insert a pair of send and recv ops for every two
4774 4775
        consecutive ops on different devices.
        """
4776
        # A map from var to device where op takes it as input,
4777
        # avoiding multiple send and recv ops.
4778
        input_var_to_device = dict()
4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
        # bugfix hybrid parallelism
        first_optimize_index = None
        for index, op in enumerate(list(block.ops)):
            if self._is_optimize_op(op):
                first_optimize_index = index
                break
        extra_index_info = {
            'index': 0,
            'first_optimize_index': first_optimize_index
        }
4789

4790
        for index, op in enumerate(list(block.ops)):
4791
            cur_device = op.attr(self._op_device_key)
4792
            if cur_device == f"{self._device}:all": continue
4793 4794
            for var_name in op.input_arg_names:
                var = block.var(var_name)
4795
                # skip data var
4796
                if var.is_data: continue
4797
                prev_device = None
4798 4799 4800

                prev_op = self._find_prev_op(index, var_name)
                if prev_op is None:
4801 4802
                    if var_name not in self._param_device_map:
                        continue
4803
                    prev_device = self._param_device_map[var_name]
4804

4805 4806 4807
                if not prev_device:
                    prev_device = prev_op.attr(self._op_device_key) \
                        if prev_op else None
4808

4809 4810
                if prev_device is None or prev_device == f"{self._device}:all":
                    continue
4811 4812

                if prev_device == cur_device: continue
4813

4814 4815 4816 4817 4818 4819 4820
                if var_name not in input_var_to_device:
                    input_var_to_device[var_name] = []
                if (cur_device, prev_device) in input_var_to_device[var_name]:
                    continue

                device_type = cur_device.split(':')[0] + ':'

4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839
                def _check_stage(cur_id, prev_id):
                    # check send/recv stage valid
                    is_forward = self._is_forward_op(op)
                    is_backward = self._is_backward_op(op)
                    assert is_forward or is_backward, \
                        'send/recv in pipeline should only be inserted in forward or backward,' \
                        'please check the op_role of op={}'.format(op)

                    if is_forward:
                        assert prev_id < cur_id, \
                            "In forward, send/recv can only be passed forward, but now " \
                            "prev_stage={} great than cur_stage={}, please check op_device of op={}".format(
                                prev_id, cur_id, op)
                    elif is_backward:
                        assert prev_id > cur_id, \
                            "In backward, send/recv can only be passed backward, but now " \
                            "prev_stage={} less than cur_stage={}, please check op_device of op={}".format(
                                prev_id, cur_id, op)

4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862
                def _insert_send_recv(cur_id, prev_id):
                    cur_dev = device_type + str(cur_id)
                    prev_dev = device_type + str(prev_id)
                    if (cur_dev, prev_dev) in input_var_to_device[var_name]:
                        return

                    if cur_id - prev_id > 1:
                        _insert_send_recv(cur_id - 1, prev_id)
                        _insert_send_recv(cur_id, cur_id - 1)
                        input_var_to_device[var_name].append(
                            (cur_dev, prev_dev))
                        return
                    elif cur_id - prev_id < -1:
                        _insert_send_recv(cur_id + 1, prev_id)
                        _insert_send_recv(cur_id, cur_id + 1)
                        input_var_to_device[var_name].append(
                            (cur_dev, prev_dev))
                        return

                    assert abs(cur_id - prev_id) == 1
                    input_var_to_device[var_name].append((cur_dev, prev_dev))

                    op_role = op.attr(self._op_role_key)
4863
                    var = block.vars[var_name]
4864 4865 4866
                    pair = (prev_id, cur_id)
                    # 1000 is just a magic number
                    pair_key = prev_id * 1000 + cur_id
4867 4868 4869 4870 4871 4872 4873
                    if pair not in self._pipeline_pair:
                        self._pipeline_pair.append(pair)
                        self._pp_ring_map[pair_key] = self.ring_id
                        ring_id = self.ring_id
                        self.ring_id += 1
                    else:
                        ring_id = self._pp_ring_map[pair_key]
4874

4875
                    if self.schedule_mode == 'F-then-B':  # F-then-B
F
fangshuixun007 已提交
4876
                        block._insert_op_without_sync(
4877
                            index=index + extra_index_info['index'],
4878 4879 4880
                            type='send_v2',
                            inputs={'X': var},
                            attrs={
4881
                                self._op_device_key: prev_dev,
4882 4883 4884 4885 4886
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 1,
                                'ring_id': ring_id
                            })
4887
                        extra_index_info['index'] += 1
4888 4889 4890
                        var_shape = list(var.shape)
                        var_shape[0] = self.micro_batch_size if var_shape[
                            0] < 0 else var_shape[0]
F
fangshuixun007 已提交
4891
                        block._insert_op_without_sync(
4892
                            index=index + extra_index_info['index'],
4893 4894 4895
                            type='recv_v2',
                            outputs={'Out': [var]},
                            attrs={
4896
                                'out_shape': var_shape,
4897
                                'dtype': var.dtype,
4898
                                self._op_device_key: cur_dev,
4899 4900 4901 4902 4903
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
                                'ring_id': ring_id
                            })
4904
                        extra_index_info['index'] += 1
4905
                    elif self.schedule_mode == '1F1B':  # 1F1B
4906 4907 4908 4909
                        var_shape = list(var.shape)
                        var_shape[0] = self.micro_batch_size if var_shape[
                            0] < 0 else var_shape[0]

4910 4911 4912
                        numel = np.prod(var_shape)
                        use_mp = (self.mp_degree > 1) and (
                            numel % self.mp_degree == 0)
4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938

                        if 'subprog' in var.name:
                            # For recompute, if the checkpoints var is layer_norm_6.tmp_2
                            # this var will be sent twice, layer_norm_6.tmp_2 for forward pass,
                            # layer_norm_6.tmp_2.subprog_* for recompute pass.
                            # We can store the first sent var and copy the value to the
                            # second one to reduce one send/recv op.
                            # The origin_ckpt_name is layer_norm_6.tmp_2, which will be used
                            # to find the stored var for the forward pass.
                            origin_name = var.name.split('subprog')[0][0:-1]
                            associate_var = block.var(origin_name)
                            block._insert_op_without_sync(
                                index=index + extra_index_info['index'],
                                type='assign',
                                inputs={'X': [associate_var]},
                                outputs={'Out': [var]},
                                attrs={
                                    'out_shape': var_shape,
                                    'dtype': var.dtype,
                                    self._op_device_key: cur_dev,
                                    self._op_role_key: op_role,
                                    'use_calc_stream': True,
                                })
                            extra_index_info['index'] += 1
                            return

4939 4940
                        _check_stage(cur_id, prev_id)

F
fangshuixun007 已提交
4941
                        block._insert_op_without_sync(
4942
                            index=index + extra_index_info['index'],
4943 4944 4945 4946
                            type='c_sync_calc_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
4947
                                self._op_device_key: prev_dev,
4948 4949
                                self._op_role_key: op_role,
                            })
4950
                        extra_index_info['index'] += 1
4951 4952 4953 4954
                        prefix_name = var.name.split('@')[0]
                        prefix_var = block.var(prefix_name)
                        is_param = True if isinstance(prefix_var,
                                                      Parameter) else False
F
fangshuixun007 已提交
4955
                        block._insert_op_without_sync(
4956
                            index=index + extra_index_info['index'],
4957 4958
                            type='send_v2'
                            if not use_mp or is_param else 'partial_send',
4959 4960
                            inputs={'X': var},
                            attrs={
4961
                                self._op_device_key: prev_dev,
4962 4963 4964 4965
                                self._op_role_key: op_role,
                                'use_calc_stream': False,
                                'ring_id': ring_id,
                                'peer': 1,
4966 4967 4968
                                # if send_v2, num&id attr is not in op_attrs, will not insert
                                'num': self.mp_degree,
                                'id': self.mp_rank,
4969
                            })
4970
                        extra_index_info['index'] += 1
4971 4972 4973 4974 4975 4976 4977 4978
                        insert_index = None
                        if int(op_role) == int(self._op_role.Backward):
                            insert_index = extra_index_info[
                                'first_optimize_index']
                            new_op_role = self._op_role.Optimize
                        else:
                            insert_index = index
                            new_op_role = self._op_role.Backward
4979
                        sync_comm_op = block._insert_op_without_sync(
4980
                            index=insert_index + extra_index_info['index'],
4981 4982 4983 4984
                            type='c_sync_comm_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
4985
                                self._op_device_key: prev_dev,
4986
                                self._op_role_key: new_op_role,
4987 4988
                                'ring_id': ring_id,
                            })
4989
                        if int(op_role) == int(self._op_role.Forward):
4990
                            sync_comm_op._set_attr('pipeline_flag', '')
4991
                            extra_index_info['index'] += 1
F
fangshuixun007 已提交
4992
                        block._insert_op_without_sync(
4993
                            index=index + extra_index_info['index'],
4994 4995
                            type='recv_v2'
                            if not use_mp or is_param else 'partial_recv',
4996 4997 4998 4999
                            outputs={'Out': [var]},
                            attrs={
                                'out_shape': var_shape,
                                'dtype': var.dtype,
5000
                                self._op_device_key: cur_dev,
5001 5002 5003
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
5004 5005 5006 5007
                                'ring_id': ring_id,
                                # if recv_v2, num&id attr is not in op_attrs, will not insert
                                'num': self.mp_degree,
                                'id': self.mp_rank,
5008
                            })
5009
                        extra_index_info['index'] += 1
5010
                        if use_mp and not is_param:
5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
                            block._insert_op_without_sync(
                                index=index + extra_index_info['index'],
                                type='partial_allgather',
                                inputs={'X': [var]},
                                outputs={'Out': [var]},
                                attrs={
                                    self._op_device_key: cur_dev,
                                    self._op_role_key: op_role,
                                    'use_calc_stream': True,
                                    'ring_id': 0,
                                    # if recv_v2, num&id attr is not in op_attrs, will not insert
                                    'nranks': self.mp_degree,
                                    'rank': self.mp_rank,
                                })
                            extra_index_info['index'] += 1
5026 5027 5028 5029 5030
                    else:
                        raise ValueError(
                            "Now only 'F-then-B' and '1F1B' are supported."
                            "The given value is {}.".format(self.schedule_mode))

5031 5032 5033 5034 5035
                _insert_send_recv(
                    int(cur_device.split(':')[1]),
                    int(prev_device.split(':')[1]))
        block._sync_with_cpp()

5036
    def _insert_loss_scale(self, block):
5037
        """
5038
        Scale the loss corresponding to number of micro-batches.
5039
        """
5040
        if self._num_microbatches == 1: return
5041
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
5042
            if self._is_loss_grad_op(op):
5043 5044 5045 5046 5047 5048 5049
                assert op.type == 'fill_constant', \
                    "loss_grad_op must be fill_constant op, " \
                    "but this op is {}".format(op.type)
                assert op.has_attr('value')
                loss_scale = float(op.attr('value'))
                loss_scale = loss_scale / self._num_microbatches
                op._set_attr('value', loss_scale)
5050 5051
                break

5052 5053 5054 5055 5056 5057
    def _rename_gradient_var_name(self, block):
        for index, op in enumerate(block.ops):
            if not self._is_optimize_op(op): continue
            input_names = op.input_arg_names
            output_names = op.output_arg_names
            in_out_names = input_names + output_names
L
lilong12 已提交
5058
            if op.type == 'cast' or op.type == "c_sync_comm_stream": continue
5059 5060 5061 5062 5063 5064 5065 5066
            # append "MERGED" to the names of parameter gradients,
            # and mofify the op_role_var attribute (by rename_arg func).
            for name in in_out_names:
                if not core.grad_var_suffix() in name: continue
                param_name = name.strip(core.grad_var_suffix())
                new_grad_name = name + "@MERGED"
                self._rename_arg(op, name, new_grad_name)

5067 5068 5069
    def _accumulate_gradients(self,
                              block,
                              pp_allreduce_in_optimize=False,
5070 5071
                              strategy=None,
                              shard=None):
5072 5073 5074 5075
        """
        Create a new merged gradient for each parameter and accumulate the
        corresponding gradient to it.
        """
5076 5077
        fp16_allreduce = strategy.fp16_allreduce if strategy else False
        if strategy and strategy.fuse_grad_merge:
5078
            fused_gradient_names = self._accumulate_gradients_with_fuse(
5079
                block, fp16_allreduce, strategy.fuse_grad_size_in_MB, shard)
5080 5081
            return fused_gradient_names

5082 5083 5084
        merged_gradient_names = []
        first_opt_op_idx = None

5085 5086 5087
        merged_suffix = '@MERGED@FP16' if fp16_allreduce else '@MERGED'
        dtype = paddle.float16 if fp16_allreduce else None

5088 5089 5090 5091 5092 5093 5094 5095
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    block._remove_op(index)
5096
                    continue
5097

5098
            if self._is_backward_op(op) and first_opt_op_idx is None:
5099
                first_opt_op_idx = index + 1
5100 5101
                # maybe have no optimize
                # if first_opt_op_idx == len(block.ops): return
5102 5103 5104 5105 5106

            if self._is_backward_op(op) and (
                    self._op_role_var_key in op.attr_names):
                op_role_var = op.attr(self._op_role_var_key)
                if len(op_role_var) == 0: continue
5107 5108
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
5109 5110 5111 5112
                    offset = 0
                    param_name = op_role_var[i]
                    if not block.has_var(param_name): continue
                    if '@BroadCast' in param_name: continue
5113

5114
                    param_grad_name = param_name + core.grad_var_suffix()
5115
                    merged_param_grad_name = param_grad_name + merged_suffix
5116 5117
                    if not block.has_var(merged_param_grad_name):
                        self._create_var(block, block.vars[param_name],
5118
                                         merged_param_grad_name, dtype)
5119
                    assert block.has_var(merged_param_grad_name)
5120

5121 5122 5123
                    param_grad_var = block.var(param_grad_name)
                    merged_param_grad_var = block.var(merged_param_grad_name)
                    merged_param_grad_var.persistable = True
5124
                    block._insert_op(
5125 5126 5127 5128
                        index=first_opt_op_idx + offset,
                        type='fill_constant',
                        inputs={},
                        outputs={'Out': [merged_param_grad_var]},
5129
                        attrs={
5130 5131 5132 5133 5134
                            'shape': merged_param_grad_var.shape,
                            'dtype': merged_param_grad_var.dtype,
                            'value': float(0),
                            # a trick to run this op once per mini-batch
                            self._op_role_key: self._op_role.Optimize.LRSched,
5135 5136
                        })
                    offset += 1
5137 5138
                    grad_name = op_role_var[i + 1]
                    grad_var = block.vars[grad_name]
5139 5140 5141 5142 5143 5144 5145 5146 5147

                    is_fp16_grad = 'cast_fp16' in grad_name
                    need_cast = (is_fp16_grad is not fp16_allreduce)

                    if need_cast:
                        # if fp16_allreduce:
                        #     cast grad to fp16 to accumulate to merged gradient
                        # else:
                        #     cast grad to fp32 to accumulate to merged gradient
5148
                        cast_grad_var_name = param_grad_name + '@TMP'
5149 5150
                        cast_grad_var = self._create_var(
                            block, param_grad_var, cast_grad_var_name, dtype)
5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162
                        cast_grad_var.persistable = False
                        block._insert_op(
                            index=first_opt_op_idx + offset,
                            type='cast',
                            inputs={'X': grad_var},
                            outputs={'Out': cast_grad_var},
                            attrs={
                                'in_dtype': grad_var.dtype,
                                'out_dtype': cast_grad_var.dtype,
                                self._op_role_key: self._op_role.Backward,
                            })
                        offset += 1
5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208
                        grad_var = cast_grad_var

                    block._insert_op(
                        index=first_opt_op_idx + offset,
                        type='sum',
                        inputs={'X': [merged_param_grad_var, grad_var]},
                        outputs={'Out': merged_param_grad_var},
                        attrs={self._op_role_key: self._op_role.Backward, })
                    offset += 1
                    merged_gradient_names.append(merged_param_grad_name)

        if not fp16_allreduce: return merged_gradient_names

        first_opt_op_idx = None
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            if self._is_backward_op(op) and first_opt_op_idx is None:
                first_opt_op_idx = index + 1
                break
        assert first_opt_op_idx is not None

        # insert cast op from fp16->fp32
        # FIXME(wangxi): maybe put in sharding is better, for some grad
        #                is not in sharding device.
        for fp16_grad_name in merged_gradient_names:
            grad_name = fp16_grad_name.replace('@FP16', '')
            param_name = fp16_grad_name.replace('@GRAD@MERGED@FP16', '')

            if not block.has_var(grad_name):
                self._create_var(block, block.vars[param_name], grad_name)
            assert block.has_var(grad_name)

            fp16_grad_var = block.var(fp16_grad_name)
            grad_var = block.var(grad_name)
            grad_var.persistable = False

            block._insert_op(
                index=first_opt_op_idx,
                type='cast',
                inputs={'X': fp16_grad_var},
                outputs={'Out': grad_var},
                attrs={
                    'in_dtype': fp16_grad_var.dtype,
                    'out_dtype': grad_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                })

5209
        return merged_gradient_names
5210

5211 5212 5213
    def _insert_accumulate_gradients_with_fuse(self, main_block, fp16,
                                               fused_size, grad_param_pairs,
                                               first_opt_op_idx):
5214 5215 5216
        grad_param_pairs = self._sort_grad_param_by_dtype(main_block,
                                                          grad_param_pairs)

5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232
        grad_param_segments = []
        merged_suffix = '@MERGED@FP16' if fp16 else '@MERGED'
        dtype = paddle.float16 if fp16 else paddle.float32
        cur_size = 0.
        last_dtype = None
        # split the grad based on dtype and fused size
        for grad, param in grad_param_pairs:
            real_grad = main_block.var(grad)
            # create the gradient merged var for each grad
            merged_grad_var = main_block.create_var(
                name=param + core.grad_var_suffix() + merged_suffix,
                dtype=dtype,
                shape=real_grad.shape,
                persistable=True,
                stop_gradient=False)
            real_param = main_block.var(param)
5233 5234
            if hasattr(real_param, 'is_distributed'):
                merged_grad_var.is_distributed = real_param.is_distributed
5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315
            tmp_size = self._get_var_size(real_grad)
            # two strategies for splitting the grad
            # 1. the current segment's size reach the user defined grad_size_in_MB
            # 2. the upcoming grad holds different dtype compared with grads in current segment
            if len(grad_param_segments) == 0 \
                    or cur_size + tmp_size > fused_size \
                    or real_grad.dtype != last_dtype:
                grad_param_segments.append(
                    ([real_grad], [real_param], [merged_grad_var]))
                last_dtype = real_grad.dtype
                cur_size = 0.
            else:
                grad_param_segments[-1][0].append(real_grad)
                grad_param_segments[-1][1].append(real_param)
                grad_param_segments[-1][2].append(merged_grad_var)
                cur_size += tmp_size

        fused_gradients = []
        fused_merged_gradients = []
        # create fused vars for grad and param
        for grad_param_segment in grad_param_segments:
            grad_segment = grad_param_segment[0]
            merged_grad_segment = grad_param_segment[2]
            fused_grad = main_block.create_var(
                name='FusedGrad_{}'.format(grad_segment[0].name),
                dtype=grad_segment[0].dtype,
                persistable=False,
                stop_gradient=False)
            # keep the '.cast_fp16' info in the fuse var name
            fused_merged_grad_name_prefix = 'FusedMergedGrad.cast_fp16.' if \
                merged_grad_segment[0].dtype == paddle.float16 else 'FusedMergedGrad'
            fused_merged_grad_name = fused_merged_grad_name_prefix + '_{}'.format(
                merged_grad_segment[0].name)
            fused_merged_grad = main_block.create_var(
                name=fused_merged_grad_name,
                dtype=merged_grad_segment[0].dtype,
                persistable=True,
                stop_gradient=False)
            fused_gradients.append(fused_grad)
            fused_merged_gradients.append(fused_merged_grad)

        assert len(fused_gradients) == len(grad_param_segments)
        assert len(fused_merged_gradients) == len(grad_param_segments)

        # insert coalesce op at the start of the backward pass
        # use param as the coalesce input to make sure the two Fused vars are in same shape
        first_back_op_idx = None
        for index, op in enumerate(main_block.ops):
            if self._is_backward_op(op) and first_back_op_idx is None:
                first_back_op_idx = index
                break
        assert first_back_op_idx is not None
        offset = 0
        for i in range(len(grad_param_segments)):
            fused_grad = fused_gradients[i]
            fused_merged_grad = fused_merged_gradients[i]
            grads = grad_param_segments[i][0]
            params = grad_param_segments[i][1]
            merged_grads = grad_param_segments[i][2]
            main_block._insert_op_without_sync(
                first_back_op_idx + offset,
                type="coalesce_tensor",
                inputs={"Input": params},
                outputs={"Output": grads,
                         "FusedOutput": fused_grad},
                attrs={
                    # Explanation of user_defined_size_of_dtype:
                    # In coalesce op, the align size is 256 bytes
                    # the float takes 4 bytes while fp16 takes 2 bytes.
                    # To meet the requirement, 128 fp16 or 64 float will be aligned
                    # Think the total shape of the input tensors if [64],
                    # if the dtype is float, then the shape of the fuse var is [64]
                    # however if the dytpe if fp16, the shape of the fuse var is [128],
                    # which will cause the fused vars' shape vary between each other.
                    # To make sure the shape of the fused vars are identical,
                    # we set the dtype of float and fp16 both to 2.
                    # Under this way, the fused vars' shape for float and fp16 are all [128]
                    "user_defined_size_of_dtype": 2,
                    "copy_data": False,
                    "use_align": True,
                    "dtype": grads[0].dtype,
5316 5317 5318 5319 5320 5321 5322
                    self._op_role_key: self._op_role.Backward,
                    # On npu, the nan/inf check login is different with gpu.
                    # If there are some not initialized sections in the fused var,
                    # and the value in those sections are nan/inf, it will trigger the nan/inf check.
                    # To avoid these problematic triggers, set constant is needed for npu
                    "set_constant": core.is_compiled_with_npu(),
                    "constant": float(0.0),
5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413
                })
            offset += 1
            # For the gradient_merged_fused_var, given a init value during the coalesce op
            # this will remove a problematic fill_constant op. This op role of this coalesce
            # is set to be LRSched to make this coalesce (with init) only run once
            main_block._insert_op_without_sync(
                first_back_op_idx + offset,
                type="coalesce_tensor",
                inputs={"Input": params},
                outputs={
                    "Output": merged_grads,
                    "FusedOutput": fused_merged_grad
                },
                attrs={
                    "user_defined_size_of_dtype": 2,
                    "set_constant": True,
                    "constant": float(0.0),
                    "copy_data": False,
                    "use_align": True,
                    "dtype": merged_grads[0].dtype,
                    self._op_role_key: self._op_role.Optimize.LRSched
                })
            offset += 1

        # insert gradient merge relating ops
        first_opt_op_idx += offset
        offset = 0
        for i in range(len(fused_gradients)):
            fused_grad = fused_gradients[i]
            fused_merged_grad = fused_merged_gradients[i]
            is_fp16_grad = 'cast_fp16' in fused_grad.name
            need_cast = (is_fp16_grad is not fp16)
            if need_cast:
                # for fp16 allreduce, cast fp32 grad to fp16
                # for fp32 allreduce, cast fp16 grad to fp32
                cast_grad_var_name = fused_grad.name + '@TMP'
                cast_grad_var = main_block.create_var(
                    name=cast_grad_var_name,
                    dtype=dtype,
                    persistable=False,
                    stop_gradient=False)
                main_block._insert_op(
                    index=first_opt_op_idx + offset,
                    type='cast',
                    inputs={'X': fused_grad},
                    outputs={'Out': cast_grad_var},
                    attrs={
                        'in_dtype': fused_grad.dtype,
                        'out_dtype': cast_grad_var.dtype,
                        self._op_role_key: self._op_role.Backward,
                    })
                offset += 1
                fused_grad = cast_grad_var
            main_block._insert_op(
                index=first_opt_op_idx + offset,
                type='sum',
                inputs={'X': [fused_merged_grad, fused_grad]},
                outputs={'Out': fused_merged_grad},
                attrs={self._op_role_key: self._op_role.Backward})
            offset += 1

        if fp16:
            # if using fp16 allreduce, the optimizer needs fp32 grads, cast them back to fp32
            for grad, param in grad_param_pairs:
                real_grad = main_block.var(grad)
                fp16_grad_name = param + core.grad_var_suffix() + '@MERGED@FP16'
                assert main_block.has_var(fp16_grad_name)
                fp16_grad = main_block.var(fp16_grad_name)
                fp32_grad_name = param + core.grad_var_suffix() + '@MERGED'
                fp32_grad = main_block.create_var(
                    name=fp32_grad_name,
                    dtype=paddle.float32,
                    shape=real_grad.shape,
                    persistable=False,
                    stop_gradient=False)
                main_block._insert_op(
                    index=first_opt_op_idx + offset,
                    type='cast',
                    inputs={'X': fp16_grad},
                    outputs={'Out': fp32_grad},
                    attrs={
                        'in_dtype': paddle.float16,
                        'out_dtype': paddle.float32,
                        self._op_role_key: self._op_role.Optimize,
                    })
                offset += 1

        # replace the var with it's name, which will be used for inserting allreduce
        for i in range(len(fused_merged_gradients)):
            fused_merged_gradients[i] = fused_merged_gradients[i].name

5414
        return fused_merged_gradients, first_opt_op_idx
5415

5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473
    def _accumulate_gradients_with_fuse(self,
                                        main_block,
                                        fp16,
                                        fused_size,
                                        shard=None):
        first_opt_op_idx = None
        grad_param_pairs = []
        # obtain all param/grad pairs that needed to be fused
        for index, op in reversed(tuple(enumerate(list(main_block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    main_block._remove_op(index)
                    continue

            if self._is_backward_op(op) and first_opt_op_idx is None:
                first_opt_op_idx = index + 1
                # no optimize phase
                if first_opt_op_idx == len(main_block.ops):
                    return

            if self._is_backward_op(op) and (
                    self._op_role_var_key in op.attr_names):
                op_role_var = op.attr(self._op_role_var_key)
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
                    param_name = op_role_var[i]
                    if not main_block.has_var(param_name):
                        continue
                    if '@BroadCast' in param_name:
                        continue
                    grad_param_pairs.append(
                        (op_role_var[i + 1], op_role_var[i]))

        if len(grad_param_pairs) == 0:
            return

        nranks = shard.worker_num if shard else 1
        device_to_pairs = [[] for _ in range(nranks)]
        for pair in grad_param_pairs:
            root_id = shard.device(pair[1]) if shard else 0
            assert 0 <= root_id < nranks
            device_to_pairs[root_id].append(pair)

        all_fused_merged_gradients = []
        for pairs in device_to_pairs:
            fused_merged_gradients, first_opt_op_idx = \
                self._insert_accumulate_gradients_with_fuse(
                    main_block, fp16, fused_size, pairs, first_opt_op_idx)
            all_fused_merged_gradients += fused_merged_gradients

        main_block._sync_with_cpp()
        return all_fused_merged_gradients
5474

5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492
    def _sort_grad_param_by_dtype(self, main_block, grad_param_pairs):
        # sort the grad param paris by the dtype
        fp16_pairs = []
        fp32_pairs = []
        other_pairs = []
        for pairs in grad_param_pairs:
            dtype = main_block.var(pairs[0]).dtype
            if dtype == paddle.float32:
                fp32_pairs.append(pairs)
            elif dtype == paddle.float16:
                fp16_pairs.append(pairs)
            else:
                other_pairs.append(pairs)
        sorted_pairs = fp16_pairs
        sorted_pairs.extend(fp32_pairs)
        sorted_pairs.extend(other_pairs)
        return sorted_pairs

5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507
    def _get_var_size(self, var):
        dtype_to_size = {
            core.VarDesc.VarType.FP16: 2,
            core.VarDesc.VarType.FP32: 4,
            core.VarDesc.VarType.FP64: 8,
            core.VarDesc.VarType.INT16: 2,
            core.VarDesc.VarType.INT32: 4,
            core.VarDesc.VarType.INT64: 8,
            core.VarDesc.VarType.BOOL: 1,
            core.VarDesc.VarType.UINT8: 1,
        }
        assert -1 not in var.shape
        return reduce(lambda x, y: x * y,
                      var.shape) * dtype_to_size[var.dtype] / 1024.0 / 1024.0

5508 5509
    def _add_sub_blocks(self, main_block, program_list):
        main_program = main_block.program
5510
        for prog in program_list:
5511 5512 5513 5514 5515 5516
            for op in prog.block(0).ops:
                if not op.has_attr('sub_block'):
                    continue
                origin_sub_block_id = op.attr('sub_block').id
                origin_sub_block = main_program.block(origin_sub_block_id)
                new_sub_block = prog._create_block(parent_idx=0)
5517 5518
                for sub_op in origin_sub_block.ops:
                    op_desc = sub_op.desc
5519 5520 5521
                    ap_op = new_sub_block.desc.append_op()
                    ap_op.copy_from(op_desc)
                new_sub_block._sync_with_cpp()
5522
                self._create_vars(new_sub_block, origin_sub_block)
5523
                op._set_attr('sub_block', new_sub_block)
5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539

    def _get_device_info(self, block):
        for op in block.ops:
            if not op._has_kernel(op.type): continue
            op_device = op.attr(self._op_device_key)
            return op_device

    def _process_persistable_vars_in_multi_sections(self, main_program,
                                                    startup_prog, program_list):
        """
        Special Case: process persistable vars that exist in
        multiple sections, e.g., shared weight
        """
        # var_info = {var_name: [program1, program2...]},
        # persistable var only
        var_info = dict()
5540
        for prog in program_list:
5541 5542
            block = prog.block(0)
            for var_name in block.vars:
5543
                if var_name == "double_buffer_0": continue
5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560
                var = block.var(var_name)
                if not var.persistable: continue
                if not var_name in var_info:
                    var_info[var_name] = []
                if not prog in var_info[var_name]:
                    var_info[var_name].append(prog)
        for var_name in list(var_info.keys()):
            if len(var_info[var_name]) == 1:
                var_info.pop(var_name)

        # write_info = {var_name: program}, where program is the only program
        # in which the var named var_name is written.
        write_info = dict()
        for var_name in var_info.keys():
            for prog in var_info[var_name]:
                block = prog.block(0)
                for op in block.ops:
5561
                    if op.type == "recv_v2" or op.type == "create_py_reader" or \
5562
                        op.type == "read" or op.type == "update_loss_scaling":
5563
                        continue
5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
                    # We have processed lr related vars
                    if op.attr(self._op_role_key) == int(
                            self._op_role.Optimize.LRSched):
                        continue
                    if var_name in op.desc.output_arg_names():
                        assert var_name not in write_info, (
                            "two sections write the same var({}): second "
                            "op {}.".format(var_name, op))
                        write_info[var_name] = prog
                        break

        for var_name in var_info.keys():
            # Case 1: read only variables, no special process
            if not var_name in write_info: continue

            # Case 2: one write multiple reads
            write_prog = write_info[var_name]
            write_block = write_prog.block(0)
            write_device = self._get_device_info(write_block)
5583
            write_dev_index = int(write_device.split(':')[1])
5584 5585 5586
            all_progs = var_info[var_name]
            for prog in all_progs:
                if prog == write_prog: continue
5587 5588 5589
                read_block = prog.block(0)
                read_device = self._get_device_info(read_block)
                read_dev_index = int(read_device.split(':')[1])
5590 5591 5592 5593 5594 5595 5596 5597 5598
                pair = (write_dev_index, read_dev_index)
                pair_key = write_dev_index * 1000 + read_dev_index
                if pair not in self._pipeline_pair:
                    self._pipeline_pair.append(pair)
                    self._pp_ring_map[pair_key] = self.ring_id
                    ring_id = self.ring_id
                    self.ring_id += 1
                else:
                    ring_id = self._pp_ring_map[pair_key]
5599 5600 5601

                write_block._insert_op(
                    index=0,
5602
                    type='send_v2',
5603 5604 5605
                    inputs={'X': write_block.var(var_name), },
                    attrs={
                        self._op_device_key: write_device,
5606
                        'use_calc_stream': False,
5607 5608
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
5609 5610
                        self._op_role_key: self._op_role.LRSched,
                        'peer': read_dev_index,
5611
                        'ring_id': ring_id
5612 5613 5614
                    })
                read_block._insert_op(
                    index=0,
5615
                    type='recv_v2',
5616 5617
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
5618 5619
                        'out_shape': read_block.var(var_name).shape,
                        'dtype': read_block.var(var_name).dtype,
5620
                        self._op_device_key: read_device,
5621
                        'use_calc_stream': False,
5622 5623 5624
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
                        self._op_role_key: self._op_role.LRSched,
5625 5626
                        'peer': write_dev_index,
                        'ring_id': ring_id
5627
                    })
5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647
                read_block._insert_op(
                    index=1,
                    type='c_sync_comm_stream',
                    inputs={'X': [read_block.var(var_name)]},
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
                        self._op_device_key: read_device,
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
                        self._op_role_key: self._op_role.LRSched,
                        'ring_id': ring_id
                    })

    def _is_gradient_clip_op(self, op):
        return op.desc.has_attr("op_namescope") \
            and op.desc.attr("op_namescope").startswith("/gradient_clip")

    def _is_regularization_op(self, op):
        return op.desc.has_attr("op_namescope") \
            and op.desc.attr("op_namescope").startswith("/regularization")
H
hutuxian 已提交
5648

5649 5650 5651 5652 5653
    def _is_weight_decay_op(self, op):
        # in AdamW namescope is /optimizer_*/weight decay/
        return op.desc.has_attr("op_namescope") \
            and 'weight decay' in op.desc.attr("op_namescope")

5654 5655 5656 5657 5658
    def _get_input_output_info(self, block):
        '''
        Get info of op input and output.
        '''
        # A map from output var to op which generate it.
5659
        output_var_to_op = defaultdict(list)
5660
        # A map from var to op which takes it as input.
5661
        input_var_to_op = defaultdict(list)
5662

5663
        for index, op in enumerate(block.ops):
5664
            for var_name in op.input_arg_names:
5665
                input_var_to_op[var_name].append([op, index])
5666
            for var_name in op.output_arg_names:
5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678
                output_var_to_op[var_name].append([op, index])

        return output_var_to_op, input_var_to_op

    def _optimize_forward_send_sync(self, program):
        """
        optimize forward send's sync_comm_stream schedule
        """
        if self.schedule_mode != '1F1B': return

        block = program.block(0)

5679
        recv_type = 'recv_v2' if self.mp_degree == 1 else 'partial_recv'
5680 5681
        backward_recv_index = None
        for index, op in enumerate(block.ops):
5682
            if op.type == recv_type and self._is_backward_op(op):
5683 5684 5685
                backward_recv_index = index
                break

5686
        # last pipeline stage
5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709
        if backward_recv_index is None: return

        offset = 0
        for index, op in enumerate(list(block.ops)):
            if index >= backward_recv_index: break
            if op.type == 'c_sync_comm_stream' and op.has_attr('pipeline_flag'):
                var_name = op.input_arg_names[0]
                var = block.var(var_name)
                block._remove_op(index + offset, sync=False)
                offset -= 1
                # NOTE:
                # 1. When the backward recv is completed, it indicates
                # that the forward send is completed too. So we only need
                # to use the NOP op to prevent memory release.
                # 2. Because we removed sync_comm_op,
                # we will insert NOP after recv_op.
                block._insert_op_without_sync(
                    index=backward_recv_index,
                    type='nop',
                    inputs={'X': [var]},
                    outputs={'Out': [var]},
                    attrs={self._op_role_key: self._op_role.Backward})
        block._sync_with_cpp()
5710

5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759
    def _mv_head_recv(self, program):
        """
        A pass to move the recv op to the beginning of
        the forward/backward phase
        """
        forward_insert_index = 0
        backward_insert_index = None
        block = program.global_block()
        num_ops = len(program.global_block().ops)
        for i in range(num_ops):
            insert_index = None
            op = program.global_block().ops[i]
            op_role = int(op.attr(self._op_role_key))
            if op_role == int(
                    self._op_role.Backward) and backward_insert_index is None:
                backward_insert_index = i
            if op.type != "partial_recv" and op.type != "partial_allgather" and op.type != "nop" and op.type != "recv_v2":
                continue
            if op_role == int(self._op_role.Forward):
                if i == forward_insert_index:
                    forward_insert_index += 1
                    continue
                insert_index = forward_insert_index
            elif op_role == int(self._op_role.Backward):
                if i == backward_insert_index:
                    backward_insert_index += 1
                    continue
                insert_index = backward_insert_index
            else:
                raise ValueError("Unknown op_role: {}".format(op_role))
            op_inputs = dict()
            for name in op.input_names:
                op_inputs[name] = op.input(name)
            op_outputs = dict()
            for name in op.output_names:
                op_outputs[name] = op.output(name)
            block._insert_op_without_sync(
                index=insert_index,
                type=op.type,
                inputs=op_inputs,
                outputs=op_outputs,
                attrs=op.all_attrs())
            block._remove_op(i + 1)
            if op_role == int(self._op_role.Forward):
                forward_insert_index += 1
            elif op_role == int(self._op_role.Backward):
                backward_insert_index += 1
        block._sync_with_cpp()

5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788
    def _check_pipeline_persist_var(self, program):
        """
        Pipeline may need multiple forward before
        """
        block = program.global_block()

        persist_output = set()
        used_in_backward = set()
        for op in block.ops:
            if self._is_forward_op(op):
                for var_name in op.output_arg_names:
                    var = block.vars[var_name]
                    if var.persistable:
                        persist_output.add(var_name)
            elif self._is_backward_op(op):
                for var_name in op.input_arg_names:
                    if var_name in persist_output:
                        used_in_backward.add(var_name)
        if len(used_in_backward) == 0:
            return
        warnings.warn(
            "The pipeline requires multiple forward calculations before backward, "
            "so when the persistable var is changed in the forward, it may cause "
            "errors in the backward calculation who using this persistable var. "
            "However, some backward op don't need this var(NoNeedBufferVars), "
            "there will be no error at this time.\n"
            "So please check these persistable vars which changed in "
            "forward and used in backward:\n{}".format(used_in_backward))

H
hutuxian 已提交
5789 5790 5791 5792 5793
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
5794
        main_block = loss.block
5795
        self.origin_main_block = main_block
5796
        main_program = main_block.program
5797 5798
        if startup_program is None:
            startup_program = default_startup_program()
5799

5800 5801
        pipeline_opt = main_program._pipeline_opt
        assert pipeline_opt, 'Please use pipeline with fleet.'
5802 5803 5804 5805 5806 5807 5808
        required_keys = [
            'local_rank',
            'schedule_mode',
            'micro_batch_size',
            'ring_id',
            'global_ring_id',
            'use_sharding',
5809 5810
            'mp_degree',
            'mp_rank',
5811 5812
        ]
        for key in required_keys:
5813
            assert key in pipeline_opt, \
5814
                'Please use pipeline with fleet to use {}.'.format(key)
5815 5816 5817 5818 5819 5820 5821 5822
        self.local_rank = pipeline_opt['local_rank']
        self.schedule_mode = pipeline_opt['schedule_mode']
        self.micro_batch_size = pipeline_opt['micro_batch_size']
        self.use_sharding = pipeline_opt['use_sharding']
        self.ring_id = pipeline_opt['ring_id']
        self.global_ring_id = pipeline_opt['global_ring_id']
        self.mp_degree = pipeline_opt['mp_degree']
        self.mp_rank = pipeline_opt['mp_rank']
5823
        self.scale_gradient = pipeline_opt.get('scale_gradient', False)
5824 5825
        assert self.mp_degree >= 1
        assert 0 <= self.mp_rank < self.mp_degree
5826 5827 5828 5829

        optimize_ops, params_grads = self._optimizer.minimize(
            loss, startup_program, parameter_list, no_grad_set)
        self._param_device_map = self._origin_optimizer._param_device_map
5830

5831 5832
        self.output_var_to_op, self.input_var_to_op = \
            self._get_input_output_info(main_block)
5833 5834 5835
        # Step1: add default op_device attribute for ops.
        self._add_op_device_attr(main_block)
        device_list = self._check_validation(main_block)
5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846

        def device_cmp(device1, device2):
            dev1_id = int(device1.split(':')[1])
            dev2_id = int(device2.split(':')[1])
            if dev1_id < dev2_id:
                return -1
            elif dev1_id > dev2_id:
                return 1
            else:
                return 0

5847 5848 5849 5850 5851
        sorted_device_list = sorted(device_list, key=cmp_to_key(device_cmp))
        assert sorted_device_list == device_list, (
            "With pipeline parallelism, you must use gpu devices one after "
            "another in the order of their ids.")
        # Step2: add send and recv ops between section boundaries
5852
        self._insert_sendrecv_ops_for_boundaries(main_block)
5853

5854
        # Step3: split program into sections and add pairs of
5855 5856
        # send and recv ops for data var.
        main_program = main_block.program
5857
        program_list = self._split_program(main_program, device_list)
5858
        for p in program_list:
5859
            self._create_vars(p.global_block(), main_block)
5860

5861 5862 5863 5864
        self.local_rank %= len(device_list)
        # Step3.5: optimize forward send sync_comm to overlap send and recv
        self._optimize_forward_send_sync(program_list[self.local_rank])

5865
        # Step4: Special Case: process persistable vars that exist in
5866
        # multiple sections
5867 5868 5869
        # FIXME 
        # self._process_persistable_vars_in_multi_sections(
        #     main_program, startup_program, program_list)
5870

5871
        # Step5: Add sub blocks for section programs
5872 5873
        self._add_sub_blocks(main_block, program_list)

5874
        place_list = []
5875 5876
        for dev in device_list:
            dev_index = int(dev.split(":")[1])
5877 5878 5879 5880
            if core.is_compiled_with_cuda():
                place_list.append(core.CUDAPlace(dev_index % 1))
            elif core.is_compiled_with_npu():
                place_list.append(core.NPUPlace(dev_index % 1))
5881

5882
        # Step6: Split startup program
5883
        new_startup_program = self._split_startup_program(startup_program,
5884
                                                          self.local_rank)
5885 5886 5887 5888

        startup_program._pipeline_opt = {
            "startup_program": new_startup_program,
        }
5889
        real_block = program_list[self.local_rank].global_block()
5890 5891
        if not self.scale_gradient:
            self._insert_loss_scale(real_block)
5892 5893 5894 5895 5896 5897 5898
        if not self.use_sharding:
            # Step7: clear gradients before each mini-batch and 
            # accumulate gradients during backward
            self._rename_gradient_var_name(real_block)
            real_block._sync_with_cpp()
            self._accumulate_gradients(real_block)
            real_block._sync_with_cpp()
5899

5900 5901 5902 5903
        if core.is_compiled_with_cuda():
            place_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        elif core.is_compiled_with_npu():
            place_id = int(os.getenv("FLAGS_selected_npus", "0"))
5904 5905 5906
        # A pass to move the recv op to the beginning of
        # the forward/backward phase
        self._mv_head_recv(program_list[self.local_rank])
5907 5908 5909 5910 5911

        # A pass to check pipeline persist var which changed in
        # forward and used in backward
        self._check_pipeline_persist_var(program_list[self.local_rank])

5912
        main_program._pipeline_opt = {
H
hutuxian 已提交
5913 5914
            "trainer": "PipelineTrainer",
            "device_worker": "Section",
5915
            "pipeline_stage": self.local_rank,
5916
            "num_pipeline_stages": len(device_list),
5917
            "schedule_mode": self.schedule_mode,
5918
            "inner_parallelism": len(device_list),
5919 5920
            "section_program": program_list[self.local_rank],
            "place": place_list[self.local_rank],
5921
            "place_id": place_id,
5922
            "sync_steps": -1,
L
lilong12 已提交
5923
            "num_microbatches": self._num_microbatches,
H
hutuxian 已提交
5924 5925
            "start_cpu_core_id": self._start_cpu_core_id,
        }
5926
        return optimize_ops, params_grads, program_list, self._pipeline_pair, self._pp_ring_map
M
mapingshuo 已提交
5927 5928


M
mapingshuo 已提交
5929 5930
class RecomputeOptimizer(Optimizer):
    """
5931
	:api_attr: Static Graph
S
swtkiwi 已提交
5932

M
mapingshuo 已提交
5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992
    Recompute Optimizer Wrapper

    Normally, a training step contains three sub-steps: first, run forward
    Operators to calculate the loss; second, run backward Operators to 
    calculate gradient of the parameters; third, apply optimization method
    to update the value of the parameters.

    In the forward computation process, all variables that are needed by 
    backward computation process will be kept in memory, which occupy a great
    amount of memory when the network becomes very deep.

    Recompute split the network to k segments. In each segment, It will 
    recompute the forward Operators, before running backward operators. It is
    very helpful for saving memory.
 
    The Variables that separate a network to segments are called as checkpoints,
    and users should set it manually. The usage is very simple:

    Args:
        optimizer (Optimizer): The optimizer that is applied to parameters.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            def gen_data():
                return {"x": np.random.random(size=(32, 32)).astype('float32'),
                "y": np.random.randint(2, size=(32, 1)).astype('int64')}
            def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                print(input_x)
                fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                sum_cost = fluid.layers.reduce_mean(cost)
                return sum_cost, fc_1, prediction
            input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
            input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
            cost, fc_1, pred = mlp(input_x, input_y)

            sgd = fluid.optimizer.Adam(learning_rate=0.01)
            sgd = fluid.optimizer.RecomputeOptimizer(sgd)
            sgd._set_checkpoints([fc_1, pred])
            sgd.minimize(cost)

            print("Finished optimize")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            step = 10

            for i in range(step):
                cost_val = exe.run(feed=gen_data(),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
                print("step=%d cost=%f" % (i, cost_val[0]))

    """

    def __init__(self, optimizer):
Z
zhongpu 已提交
5993 5994
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support RecomputeOptimizer.")
M
mapingshuo 已提交
5995 5996
        self._optimizer = optimizer
        self._checkpoints = None
M
mapingshuo 已提交
5997 5998
        self._learning_rate = self._optimizer._learning_rate
        self._learning_rate_map = self._optimizer._learning_rate_map
J
JZ-LIANG 已提交
5999
        self.enable_offload = False
M
mapingshuo 已提交
6000 6001

    def _set_checkpoints(self, checkpoints):
6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012
        """
        Args:
            checkpoints (list): List of Variable or string    
        """
        assert isinstance(
            checkpoints, list
        ), "_checkpoints should be a list of Variable or a list of String"
        for ckpt in checkpoints:
            assert (
                isinstance(ckpt, six.string_types) or isinstance(ckpt, Variable)
            ), "_checkpoints should be a list of Variable or a list of String"
M
mapingshuo 已提交
6013 6014
        self._checkpoints = checkpoints

J
JZ-LIANG 已提交
6015 6016 6017 6018
    # should enable offload before calling backward 
    def _enable_offload(self):
        self.enable_offload = True

6019 6020
    @framework.deprecate_stat_dict
    def load(self, state_dict):
M
mapingshuo 已提交
6021
        """
6022
	    :api_attr: Static Graph
S
swtkiwi 已提交
6023

M
mapingshuo 已提交
6024 6025 6026 6027
        load function is not supported by Recompute Optimizer for now.
        :return: None

        Args:
6028
            state_dict: the dict load by load_persistable method
M
mapingshuo 已提交
6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.compat as cpt
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([fc_1, pred])
                try:
6052 6053
                    state_dict = {}
                    sgd.load(state_dict)
M
mapingshuo 已提交
6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090
                except NotImplementedError as e:
                    print(cpt.get_exception_message(e))
        """
        raise NotImplementedError(
            "load function is not supported by Recompute Optimizer for now")

    def apply_gradients(self, params_grads):
        """
        call apply_gradients function of self._optimizer.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.framework as framework

                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction


                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")

                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
6091
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
6092 6093 6094 6095
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
6096
                    no_grad_set=None)
M
mapingshuo 已提交
6097 6098 6099 6100 6101 6102 6103 6104 6105 6106

                program = cost.block.program
                with framework.program_guard(program, None):
                    optimize_ops = sgd.apply_gradients(params_grads)

                print("Finished apply gradients")
        """

        return self._optimizer.apply_gradients(params_grads=params_grads)

J
JZ-LIANG 已提交
6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162
    def _creat_vars(self, varname):
        pinned_var_name = unique_name.generate(varname + "@Pinned")
        fetched_var_name = unique_name.generate(varname + "@Fetch")

        pinned_var = self._main_program.global_block().create_var(
            name=pinned_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
            stop_gradient=True)

        fetch_var = self._main_program.global_block().create_var(
            name=fetched_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
            stop_gradient=False)

        return pinned_var_name, fetched_var_name

    def _append_fill_constant_ops(self, startup_program):
        """
        add fill_constant_ops to the end of the prog

        we should fill the pinned vars before runing the main_prog
        to instantiate their tensor hold_, which could tell us whether 
        the host memory could hold all the checkpoints from all the 
        GPU devices in this node. 
        """
        op_role = 0
        block = startup_program.global_block()
        fill_constant_vars = self.checkpoint_name2pinned_name.values()
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        for varname in fill_constant_vars:
            var = self._main_program.global_block().var(varname)
            # NOTE (JZ-LIANG) to pre-allocate the CUDAPinned MEM
            pinned_var = block.create_var(
                name=varname,
                shape=self.checkpoint_shape,
                dtype=self._main_program.global_block().var(var.name).dtype,
                persistable=False,
                stop_gradient=True)
            block.append_op(
                type='fill_constant',
                outputs={'Out': varname},
                attrs={
                    "shape": var.shape,
                    "dtype": var.dtype,
                    "value": 0.0,
                    "place_type": 2,
                    OP_ROLE_KEY: op_role,
                })

        return

    def _insert_async_memcpy_op(self, insert_idx, src_varname, dst_varname,
6163
                                op_role, dst_place_type):
J
JZ-LIANG 已提交
6164 6165 6166 6167 6168 6169 6170 6171
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        self.block._insert_op_without_sync(
            insert_idx,
            type='memcpy',
            inputs={'X': [self._main_program.global_block().var(src_varname)]},
            outputs={
                'Out': [self._main_program.global_block().var(dst_varname)]
            },
6172 6173 6174 6175
            attrs={
                "dst_place_type": int(dst_place_type),
                OP_ROLE_KEY: op_role
            })
J
JZ-LIANG 已提交
6176 6177 6178 6179 6180 6181 6182

    def _insert_fetch_op(self, idx, varname):
        assert varname in self.checkpoint_name2pinned_name, "Try to fetch {} from Pinned Memory, but it is NOT a checkpoint".format(
            varname)

        pinned_varname = self.checkpoint_name2pinned_name[varname]
        fetch_varname = self.checkpoint_name2fetch_name[varname]
6183
        self._insert_async_memcpy_op(idx, pinned_varname, fetch_varname, 1, 1)
J
JZ-LIANG 已提交
6184 6185 6186 6187 6188

    def _insert_offload_op(self, idx, varname):
        assert varname in self.checkpoint_name2pinned_name, "Try to offload {} to Pinned Memory, but it is NOT a checkpoint".format(
            varname)
        pinned_varname = self.checkpoint_name2pinned_name[varname]
6189
        self._insert_async_memcpy_op(idx, varname, pinned_varname, 0, 2)
J
JZ-LIANG 已提交
6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429

    def _insert_sync_op(self, op_idx, checkpoint_name):
        # single stream offload no need sync 
        pass

    def _record_fetch_op(self, idx):
        assert len(self.un_fetch_checkpoint_names
                   ) > 0, "Could NOT found checkpoint to fetch"
        checkpoint_name = self.un_fetch_checkpoint_names.pop(-1)
        logging.debug("Record fetch [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("fetch", checkpoint_name)

        return checkpoint_name

    def _record_offload_op(self, idx, checkpoint_name):
        expected_checkpoint_name = self.un_offload_checkpoint_names.pop(0)
        assert checkpoint_name == expected_checkpoint_name, "expected to offload [{}] but got [{}]".format(
            expected_checkpoint_name, checkpoint_name)
        logging.debug("Record offload [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("offload", checkpoint_name)

    def _record_sync_op(self, idx, checkpoint_name):
        assert checkpoint_name not in self.synced_checkpoints, "Try to sync the checkpoint [{}] twice".format(
            checkpoint_name)
        self.synced_checkpoints.add(checkpoint_name)
        logging.debug("Record offload sync [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("sync", checkpoint_name)

    def _parse_backward(self):

        self.idx2insertions = {}
        # don't offload the last checkpoints, to favor throughput        
        self.un_fetch_checkpoint_names = self.sorted_checkpoint_names[:]
        self.un_fetch_checkpoint_names.pop(-1)
        need_fetch_checkpoint_names = self.un_fetch_checkpoint_names[:]
        self.checkpoint_usage_count = {}
        for checkpoint_name in self.un_fetch_checkpoint_names:
            self.checkpoint_usage_count[checkpoint_name] = 0

        self.bw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 1:
                self.bw_strart_op_idx = idx
                break

        assert self.bw_strart_op_idx < len(
            self.block.ops), "Could NOT found backword op in prog"

        # fetch second to last checkpoint at the beginning of BW
        fetched_checkpoint_varname = self._record_fetch_op(
            self.bw_strart_op_idx)
        last_last_fetch_checkpoint = None

        for i, op in enumerate(self.block.ops[self.bw_strart_op_idx:]):
            idx = self.bw_strart_op_idx + i
            input_vars = op.desc.input_arg_names()

            for input_var in input_vars:
                if input_var in need_fetch_checkpoint_names:
                    if input_var not in self.un_fetch_checkpoint_names:
                        # fetch the  offloade checkpoint when the first usage of its previous one
                        if self.checkpoint_usage_count[input_var] == 0:
                            # TODO (JZ-LIANG) sync memcpy_stream if extra stream for memcpy
                            second_to_last_fetch_checkpoint = fetched_checkpoint_varname
                            # there is NO fetch ahead the first checkpoint 
                            if input_var != self.sorted_checkpoint_names[0]:
                                fetched_checkpoint_varname = self._record_fetch_op(
                                    idx)

                        # should check the current used checkpoint is ths last fetch one 
                        assert second_to_last_fetch_checkpoint == input_var, "Current recompute segment should use [{}] BUT got [{}]".format(
                            second_to_last_fetch_checkpoint, input_var)
                        # rename
                        self.block.ops[idx]._rename_input(
                            input_var,
                            self.checkpoint_name2fetch_name[input_var])
                        self.checkpoint_usage_count[input_var] += 1
                    else:
                        raise ValueError(
                            "use checkpoint [{}] before fetch in BW".format(
                                input_var))

        assert len(self.un_fetch_checkpoint_names
                   ) == 0, "{} checkpoints have NOT been Recorded".format(
                       self.un_fetch_checkpoint_names)

    def _update_backward(self):
        if len(self.idx2insertions) == 0:
            return
        total_op = len(self.block.ops)
        for op_idx in reversed(range(self.bw_strart_op_idx, total_op)):
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "fetch":
                    self._insert_fetch_op(op_idx, checkpoint_name)
                    logging.debug("Insert [{}] fetch op.".format(
                        checkpoint_name))
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
                    logging.debug("Sync [{}] fetch op.".format(checkpoint_name))
        self.block._sync_with_cpp()
        assert len(
            self.idx2insertions) == 0, "{} checkpoints left un-Fecthed".format(
                [ele[1] for ele in self.idx2insertions.values()])

    def _parse_forward(self):

        self.idx2insertions = {}
        # don't offload the last checkpoints, faster, less memory saving       
        self.un_offload_checkpoint_names = self.sorted_checkpoint_names[:]
        last_checkpoint = self.un_offload_checkpoint_names.pop(-1)
        need_offload_checkpoint_names = self.un_offload_checkpoint_names[:]
        self.checkpoint_usage_count_and_idx = {}
        for checkpoint_name in self.un_offload_checkpoint_names:
            self.checkpoint_usage_count_and_idx[checkpoint_name] = {
                'count': 0,
                'idx': -1
            }
        self.synced_checkpoints = set()
        self.fw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 0:
                self.fw_strart_op_idx = idx
                break

        assert self.fw_strart_op_idx < len(
            self.block.ops), "Could NOT found Forward op in prog"
        last_offload_checkpoint = None

        for i, op in enumerate(self.block.ops[self.fw_strart_op_idx:
                                              self.bw_strart_op_idx]):

            idx = self.fw_strart_op_idx + i
            output_vars = op.desc.output_arg_names()
            input_vars = op.desc.input_arg_names()

            for output_var in output_vars:
                if output_var in need_offload_checkpoint_names:
                    assert len(
                        output_vars
                    ) == 1, "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op)

                    if output_var in self.un_offload_checkpoint_names:
                        # insert sync op if last checkpoint has not been sync
                        if last_offload_checkpoint != None:
                            if self.checkpoint_usage_count_and_idx[
                                    last_offload_checkpoint]['count'] == 0:
                                self._record_sync_op(idx,
                                                     last_offload_checkpoint)
                            else:
                                last_usage_idx = self.checkpoint_usage_count_and_idx[
                                    last_offload_checkpoint]['idx']
                                assert last_usage_idx > 0, "last_usage_idx of checkpoint [{}] should large than 0".format(
                                    last_offload_checkpoint)
                                self._record_sync_op(last_usage_idx + 1,
                                                     last_offload_checkpoint)
                        # insert offload op after the checkpoint's generation op
                        self._record_offload_op(idx + 1, output_var)
                        last_offload_checkpoint = output_var
                    else:
                        raise ValueError(
                            "There should be just ONE op that output checkpoint [{}]".
                            format(output_var))
                # need to sync the last need to offload checkpoint before the last checkpoint as output op
                if output_var == last_checkpoint:
                    assert len(
                        output_vars
                    ) == 1, "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op)
                    assert last_offload_checkpoint == self.sorted_checkpoint_names[
                        -2], "the last offload chekpoint before [{}] is suppose to be [{}], but got [{}]".format(
                            last_checkpoint, self.sorted_checkpoint_names[-2],
                            last_offload_checkpoint)
                    # sync if last checkpoint has not been sync
                    if self.checkpoint_usage_count_and_idx[
                            last_offload_checkpoint]['idx'] == 0:
                        self._record_sync_op(idx, last_offload_checkpoint)
                    else:
                        last_usage_idx = self.checkpoint_usage_count_and_idx[
                            last_offload_checkpoint]['idx']
                        assert last_usage_idx > 0, "last_usage_idx of checkpoint [{}] should large than 0".format(
                            last_offload_checkpoint)
                        self._record_sync_op(last_usage_idx + 1,
                                             last_offload_checkpoint)
            # record checkpoint usage  
            for input_var in input_vars:
                if input_var in need_offload_checkpoint_names:
                    assert input_var not in self.synced_checkpoints, "checkpoint [{}] used after sync".format(
                        input_var)
                    self.checkpoint_usage_count_and_idx[input_var]['count'] += 1
                    self.checkpoint_usage_count_and_idx[input_var]['idx'] = idx

        assert len(self.un_offload_checkpoint_names
                   ) == 0, "{} checkpoints have NOT been Recorded".format(
                       self.un_fetch_checkpoint_names)
        assert len(self.synced_checkpoints) == len(
            need_offload_checkpoint_names
        ), "{} checkpoints have NOT been Recorded".format(
            set(need_offload_checkpoint_names) - set(self.synced_checkpoints))

    def _update_forward(self):
        if len(self.idx2insertions) == 0:
            return
        for op_idx in reversed(
                range(self.fw_strart_op_idx, self.bw_strart_op_idx)):
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "offload":
                    self._insert_offload_op(op_idx, checkpoint_name)
                    logging.debug("Insert [{}] offload op.".format(
                        checkpoint_name))
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
                    logging.debug("Insert [{}] offload_sync op.".format(
                        checkpoint_name))
                    del self.idx2insertions[op_idx]

        self.block._sync_with_cpp()
        assert len(self.idx2insertions
                   ) == 0, "{} checkpoints left un-Offloaded".format(
                       [ele[1] for ele in self.idx2insertions.values()])

    def _check_offload_fetch(self):
        # TODO(JZ-LIANG) the single stream offload need no sync
        pass

    def _offload(self, loss, startup_program=None):
        """
        core steps for recompute offload
        1. create pinned vars and temp vars 
        2. parse & update Forward pass: offload, sync
        3. parse & update Backward pass: rename, fetch, sync
        4. verify the correctness
        """
        self._main_program = loss.block.program
        self.block = loss.block
        if startup_program == None:
J
JZ-LIANG 已提交
6430
            startup_program = paddle.static.default_startup_program()
J
JZ-LIANG 已提交
6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460

        with program_guard(self._main_program, startup_program):
            assert len(self.checkpoint_shape) > 0, (
                "checkpoints shape {} should be an non empty list like: [12, 512, 1024]".
                format(self.checkpoint_shape))
            assert all([ele > 0 for ele in self.checkpoint_shape]), (
                "all ele in checkpoints shape {} should be a determined integer larger than 0".
                format(self.checkpoint_shape))
            self.checkpoint_name2pinned_name = dict()
            self.checkpoint_name2fetch_name = dict()
            for checkpoint_varname in self.sorted_checkpoint_names:
                pinned_var_name, fetch_var_name = self._creat_vars(
                    checkpoint_varname)
                self.checkpoint_name2pinned_name[
                    checkpoint_varname] = pinned_var_name
                self.checkpoint_name2fetch_name[
                    checkpoint_varname] = fetch_var_name
            self._append_fill_constant_ops(startup_program)
            # TODO (JZ-LIANG) to provide two offload stragtegy in future
            # step 2. parse & update FW: rename, offload, sync
            self._parse_backward()
            self._update_backward()
            # step 3. parse & update BW: rename, offload, sync
            self._parse_forward()
            self._update_forward()
            # step 4. verify the correctness
            self._check_offload_fetch()

        return

M
mapingshuo 已提交
6461 6462 6463 6464 6465
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
6466
                 callbacks=None):
M
mapingshuo 已提交
6467 6468 6469 6470 6471 6472 6473
        """
        call append_backward with checkpoints.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
6474 6475
            parameter_list (list): list of Variables or Variable.names to update.
            no_grad_set (set|None): set of Variables or Variables.names should be ignored.
M
mapingshuo 已提交
6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
            checkpoints (list): list of Variables as checkpoints

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
    
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
    
    
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
    
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
6500
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
6501 6502 6503 6504
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
6505
                    no_grad_set=None)
M
mapingshuo 已提交
6506 6507
                print("Finished backward")
        """
6508 6509
        assert (self._checkpoints is not None
                ), "You should call _set_checkpoints first"
M
mapingshuo 已提交
6510 6511 6512 6513 6514 6515 6516 6517

        if framework.in_dygraph_mode():
            raise NotImplementedError(
                "DyGraph current does not support recompute")

        self._dtype = loss.dtype
        program = loss.block.program
        with program_guard(program, startup_program):
6518 6519 6520 6521 6522 6523 6524
            checkpoint_vars = []
            for ckpt in self._checkpoints:
                if isinstance(ckpt, Variable):
                    checkpoint_vars.append(ckpt)
                else:
                    checkpoint_vars.append(loss.block.var(ckpt))

J
JZ-LIANG 已提交
6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542
            # allow return to non-recompute when checkpoints is empty
            if len(checkpoint_vars) > 0:
                params_grads, sorted_checkpoint_names = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
                    checkpoints=checkpoint_vars)
            else:
                params_grads = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
                    checkpoints=checkpoint_vars)

        if self.enable_offload:
            self.sorted_checkpoint_names = sorted_checkpoint_names
            self._offload(loss, startup_program=startup_program)

M
mapingshuo 已提交
6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        """
        call the apply_optimize function of self._optimizer
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Examples:
            .. code-block:: python
                import paddle.fluid as fluid
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
M
mapingshuo 已提交
6562
                    return sum_cost, fc_1, prediction                
M
mapingshuo 已提交
6563 6564 6565 6566 6567 6568 6569 6570
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
6571
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
6572 6573 6574 6575
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
6576
                    no_grad_set=None)
M
mapingshuo 已提交
6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590
                
                optimize_ops = sgd.apply_optimize(
                    cost, startup_program=None, params_grads=params_grads)
                
                print("Finished apply_optimize")
        """

        return self._optimizer.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
6591
                 no_grad_set=None):
6592
        assert isinstance(loss, Variable), "The loss should be an Variable."
M
mapingshuo 已提交
6593 6594 6595 6596 6597 6598 6599 6600 6601
        assert (self._checkpoints is not None
                ), "You should call _set_checkpoints first"
        if framework.in_dygraph_mode():
            raise NotImplementedError(
                "DyGraph current does not support recompute")
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
6602
            no_grad_set=no_grad_set)
M
mapingshuo 已提交
6603 6604 6605 6606 6607 6608 6609

        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

        return optimize_ops, params_grads


M
mapingshuo 已提交
6610
class LookaheadOptimizer(object):
6611
    r"""
6612
	:api_attr: Static Graph
S
swtkiwi 已提交
6613

M
mapingshuo 已提交
6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638
    This implements the Lookahead optimizer of the
    paper : https://arxiv.org/abs/1907.08610.

    Lookahead keeps two sets of params: the fast_params and
    the slow_params. inner_optimizer update fast_params every 
    training step. Lookahead updates the slow_params and fast_params 
    every k training steps as follows:

    .. math::
        
        slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1})
	
	fast\_param_t &=  slow\_param_t

    Args:
        inner_optimizer (Optimizer): The optimizer that update fast params step by step. 
        alpha (float): The learning rate of Lookahead.
        k (int): The slow params is updated every k steps.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np
6639
            import numpy.random as random
M
mapingshuo 已提交
6640

6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656
            paddle.enable_static()
        
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            y = fluid.layers.fc(input=[x], size=2, act="softmax")
            loss = fluid.layers.cross_entropy(input=y, label=label)
            loss = fluid.layers.mean(x=loss)
            sgd = fluid.optimizer.SGD(learning_rate=0.01)
            optimizer = fluid.optimizer.LookaheadOptimizer(sgd,
                                                alpha=0.5,
                                                k=5)
            optimizer.minimize(loss)
            main_program = fluid.default_main_program()
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
M
mapingshuo 已提交
6657

6658 6659 6660 6661 6662 6663 6664 6665 6666 6667
            def train_reader(limit=5):
                for i in range(limit):
                    yield random.random([2]).astype('float32'), random.random([1]).astype('int64')
            
            feeder = fluid.DataFeeder(feed_list=[x, label], place=place)
            reader = paddle.batch(paddle.reader.shuffle(train_reader, buf_size=50000),batch_size=1)
            
            for batch_data in reader():
                exe.run(fluid.default_main_program(),
                feed=feeder.feed(batch_data))
M
mapingshuo 已提交
6668 6669 6670 6671 6672

    """

    def __init__(self, inner_optimizer, alpha=0.5, k=5):

Z
zhongpu 已提交
6673 6674
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support LookaheadOptimizer.")
M
mapingshuo 已提交
6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725
        assert (inner_optimizer is not None), "inner optimizer can not be None"
        assert (
            0.0 <= alpha <= 1.0
        ), "alpha should be larger or equal to 0.0, and less or equal than 1.0"
        assert (isinstance(k, int) and k > 0), "k should be a positive integer"

        self.inner_optimizer = inner_optimizer
        self.alpha = alpha
        self.k = k
        self.type = "lookahead"

    def minimize(self, loss, startup_program=None):

        # Apply inner optimizer to the main_program
        mini_out = self.inner_optimizer.minimize(
            loss, startup_program=startup_program)

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program
        params = [param.name for param in main_block.all_parameters()]
        param_to_slow = {}
        for param in params:
            fast_var = main_block.var(param)
            assert (fast_var is not None)
            slow_var = main_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True)
            param_to_slow[param] = slow_var

        # add some vars to the startup_program
        startup_block = startup_program.global_block()
        for param in params:
            fast_var = startup_block.var(param)
            assert (fast_var is not None)
            slow_var = startup_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True)

            startup_block.append_op(
                type="assign",
                inputs={"X": fast_var},
                outputs={"Out": slow_var})

6726 6727 6728 6729 6730 6731 6732 6733
        with framework.program_guard(main_block.program, startup_program):
            # Add Var k to main prog and startup prog
            k = layers.create_global_var(
                name="lookahead_k",
                shape=[1],
                value=int(self.k),
                dtype='int32',
                persistable=True)
M
mapingshuo 已提交
6734

6735 6736 6737 6738 6739 6740 6741
            # Add Var alpha to main prog and startup prog
            alpha = layers.create_global_var(
                name="lookahead_alpha",
                shape=[1],
                value=float(self.alpha),
                dtype='float32',
                persistable=True)
M
mapingshuo 已提交
6742

6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760
            # Add Var step
            step = layers.create_global_var(
                name="lookahead_step",
                shape=[1],
                value=int(0),
                dtype='int32',
                persistable=True)
            layers.increment(x=step, value=1.0, in_place=True)

            # lookahead
            zero_var = layers.fill_constant(
                shape=[1], dtype='float32', value=0.0)

            one_var = layers.fill_constant(
                shape=[1], dtype='float32', value=1.0)

            mod = layers.elementwise_mod(step, k)
            with layers.control_flow.Switch() as switch:
6761 6762 6763 6764 6765
                with switch.case(step == one_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        layers.assign(input=fast_var, output=slow_var)
6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778
                with switch.case(mod == zero_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        tmp_var = layers.elementwise_add(
                            layers.elementwise_mul(fast_var, alpha),
                            layers.elementwise_mul(
                                slow_var,
                                layers.elementwise_sub(one_var, alpha)))
                        layers.assign(input=tmp_var, output=slow_var)
                        layers.assign(input=tmp_var, output=fast_var)
                with switch.default():
                    pass
M
mapingshuo 已提交
6779
        return mini_out
6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836


class GradientMergeOptimizer(object):
    """
    Gradient Merge, also called as Gradient Accumulation,
    is a training strategy for larger batches. With this strategy,
    the parameter will not be updated until specific steps.

    For each step, the forward network and the backward network
    will run to calculate the gradient of the parameters.

    For every k step, the optimization network will run,
    applying a specific optimization method (such as SGD, Adam)
    to the parameters.

    Args:
        inner_optimizer (Optimizer): The specific optimization (such as SGD, Adam)
            which update the parameters
        k_steps (int): the update period of the parameters
        avg (bool): whether to average the gradients of each mini-batch,
            the default value is `True`

    Examples:
        .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data(batch_size):
            return {"x": np.random.random(size=(batch_size, 32)).astype('float32'),
                    "y": np.random.random(size=(batch_size, 1)).astype('int64')}

        def mlp(input_x, input_y, hid_dim=128, label_dim=2):
            fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
            prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
            cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
            sum_cost = fluid.layers.reduce_mean(cost)
            return sum_cost, fc_1, prediction

        input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
        input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
        cost, fc_1, pred = mlp(input_x, input_y)
        sgd = fluid.optimizer.Adam(learning_rate=0.01)
        sgd = fluid.optimizer.GradientMergeOptimizer(sgd, k_steps=4, avg=True)
        sgd.minimize(cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        for i in range(10):
            cost_val = exe.run(feed=gen_data(32),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
            print("step=%d, cost=%f" % (i, cost_val[0]))
    """

6837 6838
    GRAD_MERGE_COND_NAME = "grad_merge_cond_name"

6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853
    def __init__(self, inner_optimizer, k_steps=1, avg=True):
        if framework.in_dygraph_mode():
            raise Exception(
                "In dygraph, we don't support GradientMergeOptimizer."
                "You can do Gradient merge by yourself with k-times forward + backward, "
                "and one-time optimizer.minimize()")

        assert (inner_optimizer is not None), "inner optimizer can not be None"
        assert (isinstance(k_steps, int) and
                k_steps > 0), "k_steps should be a positive integer"

        self.inner_optimizer = inner_optimizer
        self.k_steps = k_steps
        self.type = "gradient_merge"
        self.avg = avg
6854
        self._optimize_ops = None
6855

6856 6857 6858 6859 6860 6861
    def _set_k_steps(self, k_steps):
        self.k_steps = k_steps

    def _set_avg(self, avg):
        self.avg = avg

6862
    def backward(self,
6863 6864 6865
                 loss,
                 startup_program=None,
                 parameter_list=None,
6866 6867
                 no_grad_set=None,
                 callbacks=None):
6868 6869 6870 6871 6872 6873 6874 6875 6876 6877
        assert isinstance(loss, Variable), "The loss should be an Variable."
        assert (
            parameter_list is None
        ), "The parameter_list should be None when using GradientMergeOptimizer"
        assert (
            no_grad_set is None
        ), "The no_grad_set should be None when using GradientMergeOptimizer"

        params_grads = self.inner_optimizer.backward(
            loss, startup_program=startup_program)
6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        program = loss.block.program
        with program_guard(program, startup_program):
            optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        if op_maker.kOpRoleVarAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
            return True
        return False

    def _remove_op_role_var(self, param, grad):
        op_maker = core.op_proto_and_checker_maker
        op = grad.op
        assert self._is_the_backward_op(op), \
            'grad.op={} is not the backward op which produces the grad={}' \
            .format(op, grad.name)

        block = grad.block
        var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
        assert param.name in var_attr, \
            'when using GradientMergeOptimizer, param={} must be in var_attr={}' \
            .format(param.name, var_attr)
        assert grad.name in var_attr, \
            'when using GradientMergeOptimizer, grad={} must be in var_attr={}' \
            .format(param.name, var_attr)

        # remove (param, grad) from op_role_var
        var_attr.remove(param.name)
        var_attr.remove(grad.name)
        if len(var_attr) > 1:
            op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
        else:
            op._remove_attr(op_maker.kOpRoleVarAttrName())

    def _add_gm_op_role_var(self, op, param, grad, cond):
        grad.op = op
        op_maker = core.op_proto_and_checker_maker
        backward = op_maker.OpRole.Backward

        # NOTE(wangxi). When distributed, we will insert grad_merge_all_reduce_op_handle
        # in multi_devices_graph_pass, which will allreduce(grad) if cond is True, else
        # do nothing.
        # In this way, the gradient can be merged first, and then communicate when the
        # condition is met, reducing the number of communications to increase the
        # speed.
        op._set_attr(self.GRAD_MERGE_COND_NAME, cond.name)
        op._set_attr(op_maker.kOpRoleAttrName(), backward)
        op._set_attr(op_maker.kOpRoleVarAttrName(), [param.name, grad.name])

    def _get_gm_cond_var(self, main_block):
        # Add const var
        k_step_var = layers.create_global_var(
            name="gradient_merge_k",
            shape=[1],
            value=int(self.k_steps),
            dtype='int32',
            persistable=True,
            force_cpu=True)

        zero_var = layers.create_global_var(
            name="gradient_merge_zero",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True)

        # Add step var & cond var
        step_var = layers.create_global_var(
            name="gradient_merge_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True)

        cond_var = layers.create_global_var(
            name="gradient_merge_cond",
            shape=[1],
            value=bool(0),
            dtype='bool',
6965
            persistable=False,
6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994
            force_cpu=True)

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
            layers.increment(x=step_var, value=1.0, in_place=True)
            main_block.append_op(
                type='elementwise_mod',
                inputs={'X': step_var,
                        'Y': k_step_var},
                outputs={'Out': step_var},
                attrs={'axis': -1,
                       'use_mkldnn': False})

            # cond_var = (step_var == 0)
            main_block.append_op(
                type='equal',
                inputs={'X': step_var,
                        'Y': zero_var},
                outputs={'Out': cond_var})

        return cond_var

    def apply_gradients(self, params_grads):
        main_program = default_main_program()
        startup_program = default_startup_program()
        main_block = main_program.global_block()
        startup_block = startup_program.global_block()

        cond = self._get_gm_cond_var(main_block)
6995 6996

        #TODO(mapingshuo) support sparse embedding
6997 6998
        # step1: remove grad.op's op_role_var
        for param, grad in params_grads:
6999
            assert (
7000
                param.type != core.VarDesc.VarType.SELECTED_ROWS
7001 7002
            ), "SELECTED_ROWS is not supported in GradientMergeOptimizer for now"

7003
            self._remove_op_role_var(param, grad)
7004

7005
        param_to_grad = {k.name: v for (k, v) in params_grads}
7006 7007 7008
        param_names = param_to_grad.keys()
        param_to_gradient_merge = {}

7009 7010 7011 7012 7013
        new_params_grads = []
        # step2: create gradient_merge var and init with 0
        # and update op_role_var
        for param, grad in params_grads:
            param_name = param.name
7014 7015 7016 7017 7018 7019 7020 7021
            param_var = main_block.var(param_name)
            assert (param_var is not None)
            gradient_merge_var = main_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True)
            param_to_gradient_merge[param_name] = gradient_merge_var
7022

7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036
            startup_gradient_merge_var = startup_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True)
            startup_block.append_op(
                type="fill_constant",
                outputs={"Out": startup_gradient_merge_var},
                attrs={
                    "shape": param_var.shape,
                    "dtype": param_var.dtype,
                    "value": float(0),
                })

7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054
            # grad_merge += grad
            new_grad_op = main_block.append_op(
                type="elementwise_add",
                inputs={'X': grad,
                        'Y': gradient_merge_var},
                outputs={'Out': gradient_merge_var},
                attrs={'axis': -1,
                       'use_mkldnn': False})
            self._add_gm_op_role_var(new_grad_op, param, gradient_merge_var,
                                     cond)
            new_params_grads.append([param, gradient_merge_var])

        def true_apply_gradient():
            cur_block_idx = main_program.current_block_idx
            cur_block = main_program.current_block()

            # cur_block's forward_block & backward_block is itself
            cur_block._set_forward_block_idx(cur_block_idx)
7055
            op_maker = core.op_proto_and_checker_maker
7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068

            if self.avg:
                for param, new_grad in new_params_grads:
                    # grad /= k_steps
                    cur_block.append_op(
                        type='scale',
                        inputs={'X': new_grad},
                        outputs={'Out': new_grad},
                        attrs={
                            'scale': 1.0 / self.k_steps,
                            'bias': 0.0,
                            'bias_after_scale': False
                        })
7069 7070
                    new_grad.op._set_attr(op_maker.kOpRoleAttrName(),
                                          op_maker.OpRole.Backward)
7071

7072 7073 7074 7075 7076 7077
            for param, new_grad in new_params_grads:
                # NOTE. regularization will append ops to grad.block,
                # while new_grad's real block is global_block,
                # but we want append regularization ops to cur_block,
                # so we set new_grad.block = cur_block
                new_grad.block = cur_block
7078

7079 7080
            self._optimize_ops = self.inner_optimizer.apply_gradients(
                new_params_grads)
7081

7082 7083 7084 7085 7086 7087 7088
            # clear gradient_merge_vars
            for param, new_grad in new_params_grads:
                layers.fill_constant(
                    shape=new_grad.shape,
                    dtype=new_grad.dtype,
                    value=0.0,
                    out=new_grad)
7089 7090
                new_grad.op._set_attr(op_maker.kOpRoleAttrName(),
                                      op_maker.OpRole.Optimize)
7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111

        # step3. apply gradient
        layers.cond(cond, true_fn=true_apply_gradient, false_fn=None)

        return self._optimize_ops

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        assert isinstance(loss, Variable), "The loss should be an Variable."

        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set)

        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)
7112 7113

        return optimize_ops, params_grads