未验证 提交 b4474fb4 编写于 作者: R Roc 提交者: GitHub

[NPU]Adamw skip update for npu (#34897)

上级 1ef21855
......@@ -14,6 +14,7 @@ limitations under the License. */
#include "paddle/fluid/operators/optimizers/adam_op.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/operators/optimizers/adamw_op.h"
namespace paddle {
namespace operators {
......@@ -230,11 +231,30 @@ $$
)DOC");
}
};
class AdamWOpMaker : public AdamOpMaker {
public:
void Make() {
AdamOpMaker::Make();
AddAttr<float>("coeff",
"(float, default 0.01) "
"coeff of the weight decay")
.SetDefault(0.01f);
AddAttr<bool>("with_decay",
"(bool, default false) "
"whether to do weight decay")
.SetDefault(false);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(adam, ops::AdamOp, ops::AdamOpMaker);
REGISTER_OP_WITHOUT_GRADIENT(adamw, ops::AdamWOp, ops::AdamWOpMaker);
REGISTER_OP_CPU_KERNEL(
adam, ops::AdamOpKernel<paddle::platform::CPUDeviceContext, float>,
ops::AdamOpKernel<paddle::platform::CPUDeviceContext, double>);
......
......@@ -225,6 +225,79 @@ class AdamNPUKernel : public framework::OpKernel<T> {
}
};
template <typename T>
class AdamWNPUKernel : public AdamNPUKernel<platform::NPUDeviceContext, T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
VLOG(3) << "NPU AdamW Kernel";
bool skip_update = false;
if (ctx.HasInput("SkipUpdate")) {
VLOG(3) << "Has SkipUpdate";
auto* skip_update_tensor = ctx.Input<framework::Tensor>("SkipUpdate");
PADDLE_ENFORCE_EQ(skip_update_tensor->numel(), 1,
platform::errors::InvalidArgument(
"Input(SkipUpdate) size must be 1, but get %d",
skip_update_tensor->numel()));
std::vector<bool> skip_update_vec;
TensorToVector(*skip_update_tensor, ctx.device_context(),
&skip_update_vec);
skip_update = skip_update_vec[0];
}
VLOG(3) << "Skip update" << skip_update;
bool with_decay = ctx.Attr<bool>("with_decay");
if (!skip_update && with_decay) {
float coeff = ctx.Attr<float>("coeff");
auto* lr = ctx.Input<LoDTensor>("LearningRate");
auto place = ctx.GetPlace();
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
Tensor one(framework::proto::VarType::FP32);
Tensor decay(framework::proto::VarType::FP32);
Tensor tmp(framework::proto::VarType::FP32);
tmp.mutable_data<float>({1}, place);
one.mutable_data<float>({1}, place);
decay.mutable_data<float>({1}, place);
FillNpuTensorWithConstant<float>(&one, 1.0f);
framework::NPUAttributeMap attr_input = {{"value", coeff}};
const auto& runner1 = NpuOpRunner("Muls", {*lr}, {tmp}, attr_input);
runner1.Run(stream);
const auto& runner2 = NpuOpRunner("Sub", {one, tmp}, {decay}, {});
runner2.Run(stream);
if (ctx.HasInput("MasterParam")) {
PADDLE_THROW(platform::errors::Unimplemented(
"Master Parma is not supported on npu"));
} else {
auto* param_out = ctx.Output<LoDTensor>("ParamOut");
param_out->mutable_data<T>(ctx.GetPlace());
const auto* param_var = ctx.InputVar("Param");
PADDLE_ENFORCE_EQ(param_var->IsType<framework::LoDTensor>(), true,
platform::errors::InvalidArgument(
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s",
ctx.InputNames("Param").front(),
framework::ToTypeName(param_var->Type())));
auto* param = ctx.Input<LoDTensor>("Param");
const auto& runner =
NpuOpRunner("Mul", {*param, decay},
{*const_cast<framework::LoDTensor*>(param)}, {});
runner.Run(stream);
}
}
AdamNPUKernel<platform::NPUDeviceContext, T>::Compute(ctx);
}
};
} // namespace operators
} // namespace paddle
......@@ -234,3 +307,6 @@ REGISTER_OP_NPU_KERNEL(
adam, ops::AdamNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::AdamNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(adamw, ops::AdamWNPUKernel<float>,
ops::AdamWNPUKernel<paddle::platform::float16>);
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <paddle/fluid/operators/optimizers/adamw_op.h>
namespace ops = paddle::operators;
REGISTER_OP_CPU_KERNEL(
adamw, ops::AdamWOpKernel<paddle::platform::CPUDeviceContext, float>,
ops::AdamWOpKernel<paddle::platform::CPUDeviceContext, double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <paddle/fluid/operators/optimizers/adam_op.h>
namespace paddle {
namespace operators {
class AdamWOp : public AdamOp {
using AdamOp::AdamOp;
};
struct CPUAdamW;
template <typename T, typename Flavour>
class AdamWFunctor;
template <typename T>
class AdamWFunctor<T, CPUAdamW> {
private:
const float coeff_;
const float learning_rate_;
T* param_;
public:
AdamWFunctor(const float& coeff, const float& learning_rate, T* param)
: coeff_(coeff), learning_rate_(learning_rate), param_(param) {}
inline HOSTDEVICE void operator()(size_t numel) const {
Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> param{
param_, static_cast<Eigen::Index>(numel)};
// Calculation
param = param * (1.0f - learning_rate_ * coeff_);
}
};
template <typename DeviceContext, typename T>
class AdamWOpKernel : public AdamOpKernel<DeviceContext, T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
const auto* param_var = ctx.InputVar("Param");
PADDLE_ENFORCE_EQ(param_var->IsType<framework::LoDTensor>(), true,
platform::errors::InvalidArgument(
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s",
ctx.InputNames("Param").front(),
framework::ToTypeName(param_var->Type())));
using paddle::framework::LoDTensor;
bool skip_update = false;
// TODO(liupeng):
if (ctx.HasInput("SkipUpdate")) {
VLOG(3) << "Has SkipUpdate";
auto* skip_update_tensor = ctx.Input<framework::Tensor>("SkipUpdate");
PADDLE_ENFORCE_EQ(skip_update_tensor->numel(), 1,
platform::errors::InvalidArgument(
"Input(SkipUpdate) size must be 1, but get %d",
skip_update_tensor->numel()));
std::vector<bool> skip_update_vec;
TensorToVector(*skip_update_tensor, ctx.device_context(),
&skip_update_vec);
skip_update = skip_update_vec[0];
}
VLOG(3) << "Skip update" << skip_update;
bool with_decay = ctx.Attr<bool>("with_decay");
if (skip_update || !with_decay) {
AdamOpKernel<DeviceContext, T>::Compute(ctx);
return;
}
float coeff = ctx.Attr<float>("coeff");
auto* lr = ctx.Input<LoDTensor>("LearningRate");
LoDTensor* param;
if (ctx.HasInput("MasterParam")) {
// TODO(liupeng): master
param = const_cast<LoDTensor*>(ctx.Input<LoDTensor>("MasterParam"));
} else {
param = const_cast<LoDTensor*>(ctx.Input<LoDTensor>("Param"));
}
// AdamWFunctor(float coeff, const float* learning_rate, T* parma)
AdamWFunctor<T, CPUAdamW> functor(coeff, *lr->data<float>(),
param->data<T>());
functor(param->numel());
AdamOpKernel<DeviceContext, T>::Compute(ctx);
}
};
} // namespace operators
} // namespace paddle
......@@ -197,7 +197,6 @@ class FP16Utils(object):
if op.type == "update_loss_scaling":
update_loss_scaling_op_idx = idx
inf_var_name = op.desc.input('FoundInfinite')[0]
op._rename_input(inf_var_name, inf_var_name + "@GLOBAL_WORLD")
break
# not use amp
......@@ -246,10 +245,10 @@ class FP16Utils(object):
update_loss_scaling_op_idx,
type='cast',
inputs={'X': inf_var_int32},
outputs={'Out': inf_var_global},
outputs={'Out': inf_var},
attrs={
"in_dtype": inf_var_int32.dtype,
"out_dtype": inf_var_global.dtype,
"out_dtype": inf_var.dtype,
OP_ROLE_KEY: OpRole.Optimize
})
update_loss_scaling_op_idx += 1
......
......@@ -399,12 +399,18 @@ class OptimizerWithMixedPrecision(object):
self._decr_ratio,
name="update_loss_scaling")
# Pass found_inf to adam, to skip update for not only param, but also momentum and beta_pow
if isinstance(self._optimizer, paddle.fluid.optimizer.Adam):
# With fleet, optimizers are nested and the real optimizer set by user is the inner most one.
real_optimizer = self._optimizer
while hasattr(real_optimizer, "inner_opt"):
real_optimizer = real_optimizer.inner_opt
if isinstance(real_optimizer, (paddle.fluid.optimizer.Adam,
paddle.optimizer.AdamW)):
# NOTE(zhiqiu): Since found_inf needs to be on cpu in adam op, we
# copy it in advance to avoid multiple time copies.
found_inf = paddle.tensor.creation._memcpy(found_inf,
paddle.CPUPlace())
self._optimizer._set_auxiliary_var('found_inf', found_inf)
with self._train_program._optimized_guard([]):
found_inf = paddle.tensor.creation._memcpy(found_inf,
paddle.CPUPlace())
real_optimizer._set_auxiliary_var('found_inf', found_inf)
optimize_ops = self._optimizer.apply_gradients(params_grads)
return optimize_ops
......
......@@ -4661,12 +4661,8 @@ class PipelineOptimizer(object):
op._set_attr(self._op_device_key, f"{self._device}:all")
else:
other_known_ops = [
'update_loss_scaling',
'reduce_any',
'concat',
'sum',
'check_finite_and_unscale',
'alloc_float_status',
'update_loss_scaling', 'reduce_any', 'concat', 'sum',
'check_finite_and_unscale', 'alloc_float_status', 'memcpy'
]
assert op.type in other_known_ops, "For other ops without " \
"op_device set, they must be one of {}, but it " \
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from test_adam_op import adamw_step
paddle.enable_static()
SEED = 2021
class TestAdamW(OpTest):
def setUp(self):
self.set_npu()
self.place = paddle.NPUPlace(0)
self.op_type = "adamw"
param = np.random.uniform(-1, 1, (105, 102)).astype("float32")
grad = np.random.uniform(-1, 1, (105, 102)).astype("float32")
moment1 = np.random.uniform(-1, 1, (105, 102)).astype("float32")
# The second moment is positive
moment2 = np.random.random((105, 102)).astype("float32")
learning_rate = 0.5
beta1 = 0.78
beta2 = 0.836
epsilon = 1e-4
beta1_pow = beta1**10
beta2_pow = beta2**10
self.inputs = {
'Param': param,
'Grad': grad,
'Moment1': moment1,
'Moment2': moment2,
'LearningRate': np.array([learning_rate]).astype("float32"),
'Beta1Pow': np.array([beta1_pow]).astype("float32"),
'Beta2Pow': np.array([beta2_pow]).astype("float32")
}
self.attrs = {
'epsilon': epsilon,
'beta1': beta1,
'beta2': beta2,
"coeff": 0.9,
"with_decay": True
}
param_out, moment1_out, \
moment2_out = adamw_step(self.inputs, self.attrs)
self.outputs = {
'Moment1Out': moment1_out,
'Moment2Out': moment2_out,
'ParamOut': param_out,
'Beta1PowOut': np.array([beta1_pow]).astype("float32") * beta1,
'Beta2PowOut': np.array([beta2_pow]).astype("float32") * beta2
}
def set_npu(self):
self.__class__.use_npu = True
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-5)
class TestAdamOpWithSkipUpdate(OpTest):
def setUp(self):
self.set_npu()
self.place = paddle.NPUPlace(0)
self.op_type = "adamw"
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
# The second moment is positive
moment2 = np.random.random((102, 105)).astype("float32")
learning_rate = 0.004
beta1 = 0.78
beta2 = 0.836
epsilon = 1e-4
beta1_pow = beta1**10
beta2_pow = beta2**10
self.inputs = {
'Param': param,
'Grad': grad,
'Moment1': moment1,
'Moment2': moment2,
'LearningRate': np.array([learning_rate]).astype("float32"),
'Beta1Pow': np.array([beta1_pow]).astype("float32"),
'Beta2Pow': np.array([beta2_pow]).astype("float32"),
'Beta1Tensor': np.array([beta1]).astype("float32"),
'Beta2Tensor': np.array([beta2]).astype("float32"),
'EpsilonTensor': np.array([epsilon]).astype("float32"),
"SkipUpdate": np.array([True]).astype("bool"),
}
self.attrs = {'epsilon': epsilon, "coeff": 0.02, "with_decay": True}
self.outputs = {
'Moment1Out': moment1,
'Moment2Out': moment2,
'ParamOut': param,
'Beta1PowOut': self.inputs['Beta1Pow'],
'Beta2PowOut': self.inputs['Beta2Pow'],
}
def set_npu(self):
self.__class__.use_npu = True
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-5)
class TestAdamOpWithoutDecay(OpTest):
def setUp(self):
self.set_npu()
self.place = paddle.NPUPlace(0)
self.op_type = "adamw"
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
# The second moment is positive
moment2 = np.random.random((102, 105)).astype("float32")
learning_rate = 0.004
beta1 = 0.78
beta2 = 0.836
epsilon = 1e-4
beta1_pow = beta1**10
beta2_pow = beta2**10
self.inputs = {
'Param': param,
'Grad': grad,
'Moment1': moment1,
'Moment2': moment2,
'LearningRate': np.array([learning_rate]).astype("float32"),
'Beta1Pow': np.array([beta1_pow]).astype("float32"),
'Beta2Pow': np.array([beta2_pow]).astype("float32"),
'Beta1Tensor': np.array([beta1]).astype("float32"),
'Beta2Tensor': np.array([beta2]).astype("float32"),
'EpsilonTensor': np.array([epsilon]).astype("float32"),
"SkipUpdate": np.array([True]).astype("bool"),
}
self.attrs = {'epsilon': epsilon, "coeff": 0.02, "with_decay": False}
self.outputs = {
'Moment1Out': moment1,
'Moment2Out': moment2,
'ParamOut': param,
'Beta1PowOut': self.inputs['Beta1Pow'],
'Beta2PowOut': self.inputs['Beta2Pow'],
}
def set_npu(self):
self.__class__.use_npu = True
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-5)
class TestNet(unittest.TestCase):
def _test(self, run_npu=True):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
np.random.seed(SEED)
a_np = np.random.random(size=(32, 32)).astype('float32')
b_np = np.random.random(size=(32, 32)).astype('float32')
label_np = np.random.randint(2, size=(32, 1)).astype('int64')
with paddle.static.program_guard(main_prog, startup_prog):
a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
label = paddle.static.data(
name="label", shape=[32, 1], dtype='int64')
sum = paddle.add(a, b)
z = paddle.pow(sum, 2.0)
fc_1 = fluid.layers.fc(input=z, size=128)
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.reduce_mean(cost)
adam = paddle.optimizer.AdamW(learning_rate=0.01, weight_decay=0.02)
adam.minimize(loss)
if run_npu:
place = paddle.NPUPlace(0)
else:
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
print("Start run on {}".format(place))
for epoch in range(100):
pred_res, loss_res = exe.run(
main_prog,
feed={"a": a_np,
"b": b_np,
"label": label_np},
fetch_list=[prediction, loss])
if epoch % 10 == 0:
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
epoch, pred_res[0], loss_res))
return pred_res, loss_res
def test_npu(self):
npu_pred, npu_loss = self._test(True)
cpu_pred, cpu_loss = self._test(False)
self.assertTrue(np.allclose(npu_pred, cpu_pred, rtol=1e-3))
self.assertTrue(np.allclose(npu_loss, cpu_loss, rtol=1e-3))
if __name__ == '__main__':
unittest.main()
......@@ -215,6 +215,45 @@ def adam_step(inputs, attributes):
return param_out, moment1_out, moment2_out
def adamw_step(inputs, attributes):
'''
Simulate one step of the adam optimizer
:param inputs: dict of inputs
:param attributes: dict of attributes
:return tuple: tuple of output param, moment1, moment2,
beta1 power accumulator and beta2 power accumulator
'''
param = inputs['Param']
grad = inputs['Grad']
moment1 = inputs['Moment1']
moment2 = inputs['Moment2']
lr = inputs['LearningRate']
beta1_pow = inputs['Beta1Pow']
beta2_pow = inputs['Beta2Pow']
epsilon = attributes['epsilon']
coeff = attributes["coeff"]
if attributes.get("with_decay", False):
decay = 1.0 - lr * coeff
param2 = param * decay
param = param2.copy()
if 'beta1' in attributes:
beta1 = attributes['beta1']
else:
beta1 = inputs['Beta1Tensor'][0]
if 'beta2' in attributes:
beta2 = attributes['beta2']
else:
beta2 = inputs['Beta2Tensor'][0]
moment1_out = beta1 * moment1 + (1 - beta1) * grad
moment2_out = beta2 * moment2 + (1 - beta2) * np.square(grad)
lr_t = lr * np.sqrt(1 - beta2_pow) / (1 - beta1_pow)
param_out = param - lr_t * (moment1_out / (np.sqrt(moment2_out) + epsilon))
return param_out, moment1_out, moment2_out
def adam_step_sparse(inputs, attributes, height, rows, row_numel, np_grad,
lazy_mode):
'''
......
......@@ -16,9 +16,12 @@ from .optimizer import Optimizer
from .adam import Adam
from ..fluid import core
from ..fluid import framework
from ..fluid.framework import Variable
from ..fluid.dygraph import base as imperative_base
import paddle
_C_ops = core.ops
__all__ = []
......@@ -173,6 +176,23 @@ class AdamW(Adam):
multi_precision=multi_precision)
self._default_dict = {'coeff': coeff}
self.type = "adamw"
# now the adamw op doesn't support cuda
if core.is_compiled_with_cuda():
self.type = "adam"
# Use _auxiliary_vars together with _set_auxiliary_var/_get_auxiliary_var to achieve that.
self._auxiliary_vars = dict()
def _set_auxiliary_var(self, key, val):
self._auxiliary_vars[key] = val
def _get_auxiliary_var(self, key):
if key in self._auxiliary_vars:
return self._auxiliary_vars[key]
else:
return None
def _append_decoupled_weight_decay(self, block, param_and_grad):
"""
Add decoupled weight decay op.
......@@ -228,8 +248,107 @@ class AdamW(Adam):
paddle.fluid.layers.assign(input=scaled_param, output=param)
def _append_optimize_op(self, block, param_and_grad):
self._append_decoupled_weight_decay(block, param_and_grad)
return super(AdamW, self)._append_optimize_op(block, param_and_grad)
if not core.is_compiled_with_npu():
self._append_decoupled_weight_decay(block, param_and_grad)
return super(AdamW, self)._append_optimize_op(block, param_and_grad)
assert isinstance(block, framework.Block)
if isinstance(param_and_grad, dict):
param_and_grad = self._update_param_group(param_and_grad)
param, grad = param_and_grad
# Whether we should do weight decay for the parameter.
with_decay = True
if self._apply_decay_param_fun is not None \
and not self._apply_decay_param_fun(param.name):
with_decay = False
moment1 = self._get_accumulator(self._moment1_acc_str,
param_and_grad[0])
moment2 = self._get_accumulator(self._moment2_acc_str,
param_and_grad[0])
beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
param_and_grad[0])
beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
param_and_grad[0])
find_master = self._multi_precision and param_and_grad[
0].dtype == core.VarDesc.VarType.FP16
master_weight = (self._master_weights[param_and_grad[0].name]
if find_master else None)
lr = self._create_param_lr(param_and_grad)
# create the adam optimize op
if framework.in_dygraph_mode():
_beta1 = self._beta1 if not isinstance(
self._beta1, Variable) else self._beta1.numpy().item(0)
_beta2 = self._beta2 if not isinstance(
self._beta2, Variable) else self._beta2.numpy().item(0)
_, _, _, _, _ = _C_ops.adam(
param_and_grad[0], param_and_grad[1], lr, moment1, moment2,
beta1_pow_acc, beta2_pow_acc, param_and_grad[0], moment1,
moment2, beta1_pow_acc, beta2_pow_acc, 'epsilon', self._epsilon,
'lazy_mode', self._lazy_mode, 'min_row_size_to_use_multithread',
1000, 'beta1', _beta1, 'beta2', _beta2)
return None
inputs = {
"Param": [param_and_grad[0]],
"Grad": [param_and_grad[1]],
"LearningRate": [lr],
"Moment1": [moment1],
"Moment2": [moment2],
"Beta1Pow": [beta1_pow_acc],
"Beta2Pow": [beta2_pow_acc],
}
# Pass found_inf to adamw, to skip update for not only param, but also momentum and beta_pow
found_inf = self._get_auxiliary_var('found_inf')
if found_inf:
inputs['SkipUpdate'] = found_inf
outputs = {
"ParamOut": [param_and_grad[0]],
"Moment1Out": [moment1],
"Moment2Out": [moment2],
"Beta1PowOut": [beta1_pow_acc],
"Beta2PowOut": [beta2_pow_acc],
}
attrs = {
"lazy_mode": self._lazy_mode,
"min_row_size_to_use_multithread": 1000,
"multi_precision": find_master,
"with_decay": with_decay,
"coeff": self._coeff,
}
if isinstance(self._beta1, Variable):
inputs['Beta1Tensor'] = self._beta1
else:
attrs['beta1'] = self._beta1
if isinstance(self._beta2, Variable):
inputs['Beta2Tensor'] = self._beta2
else:
attrs['beta2'] = self._beta2
if isinstance(self._epsilon, Variable):
inputs['EpsilonTensor'] = self._epsilon
else:
attrs['epsilon'] = self._epsilon
if find_master:
inputs["MasterParam"] = master_weight
outputs["MasterParamOut"] = master_weight
adamw_op = block.append_op(
type=self.type,
inputs=inputs,
outputs=outputs,
attrs=attrs,
stop_gradient=True)
return adamw_op
def _create_optimization_pass(self, parameters_and_grads):
optimize_ops = super(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册