op_param.h 85.6 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26 27 28 29 30 31 32

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
33
#endif
朔-望's avatar
朔-望 已提交
34

L
liuruilong 已提交
35 36
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
37
#endif
朔-望's avatar
朔-望 已提交
38 39

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
40 41
namespace operators {

W
wangliu 已提交
42 43 44 45 46
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
47
using framework::Variable;
W
wangliu 已提交
48 49
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
50

N
nhzlx 已提交
51 52 53 54 55 56 57 58 59
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
60
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
61 62 63 64 65 66 67 68
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
69
#endif
L
liuruilong 已提交
70

L
liuruilong 已提交
71
class OpParam {
朔-望's avatar
朔-望 已提交
72
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
73 74 75 76
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
77 78 79 80 81
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

82 83 84 85 86 87 88 89 90
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
91 92 93 94 95
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

123 124 125 126
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
127 128 129 130 131 132

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

133 134 135 136 137
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
138 139 140 141 142
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

143 144 145 146 147
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
148 149 150 151
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
152 153 154 155 156 157 158 159 160 161 162 163
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
164 165 166 167
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
184

E
eclipsess 已提交
185 186 187 188 189 190 191 192 193 194
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
195 196 197 198
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
199

200
  template <typename T>
W
wangliu 已提交
201 202
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
203 204 205
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
206 207 208 209 210
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

240 241 242 243 244
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
245 246 247 248 249
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

250 251 252 253 254
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
255 256 257 258 259 260
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

261 262 263 264 265
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
266 267 268 269 270 271
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
272 273 274 275 276 277
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
278 279 280 281 282
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

Z
zhaojiaying01 已提交
283 284 285 286 287
  template <typename T>
  static T *OutputNormFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Norm", outputs, scope);
  }

E
eclipsess 已提交
288 289 290 291 292 293
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

294 295 296 297 298 299 300 301 302 303 304
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
305
  static const T GetAttr(const string &key, const AttributeMap &map) {
306 307
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
308 309
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
310 311
    return ((Attribute)map.at(key)).GetString();
  }
312

313 314 315 316
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

317
  template <typename T>
W
wangliu 已提交
318
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
319
                        const Scope &scope) {
W
wangliu 已提交
320 321
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
322 323 324 325 326 327
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
328
    }
329
  }
朔-望's avatar
朔-望 已提交
330

E
eclipsess 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

364
  template <typename T>
W
wangliu 已提交
365 366 367
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
368 369
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
370
    vector<T *> var_res;
371 372 373
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
374
    }
375 376
    return var_res;
  }
E
eclipsess 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
390 391
};

N
nhzlx 已提交
392
template <typename Dtype>
393
class ConvParam : public OpParam {
N
nhzlx 已提交
394 395 396
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
397
 public:
398
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
399
            const AttributeMap &attrs, const Scope &scope) {
400 401 402 403 404 405 406 407 408
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
409
  }
朔-望's avatar
朔-望 已提交
410

N
nhzlx 已提交
411
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
412

413
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
414

415
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
416

W
wangliu 已提交
417
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
418

W
wangliu 已提交
419
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
420

W
wangliu 已提交
421
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
422

H
hjchen2 已提交
423 424 425 426
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DEPTHWISE3x3S1P1_FLOAT,
427 428
    EXEC_DEPTHWISE3x3S2P0_FLOAT,
    EXEC_DEPTHWISE3x3S2P1_FLOAT,
H
hjchen2 已提交
429 430 431
    EXEC_DEPTHWISE3x3_FLOAT,
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
432
    EXEC_DEPTHWISE5x5_FLOAT,
H
hjchen2 已提交
433
    EXEC_GEMM_INT8,
H
hjchen2 已提交
434
    EXEC_DEPTHWISE3x3_INT8,
435
    EXEC_DEPTHWISE5x5_INT8,
H
hjchen2 已提交
436 437 438 439
  };

  ExecMode &ExecMode() const { return exec_mode_; }

440
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
441

442 443 444 445 446 447 448
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
449
 public:
N
nhzlx 已提交
450
  RType *input_;
451 452
  RType *output_;
  RType *filter_;
H
hjchen2 已提交
453
  RType *transformed_filter_;
W
wangliu 已提交
454 455 456
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
457
  mutable enum ExecMode exec_mode_;
458
  int groups;
459 460 461 462

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
463 464 465

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
466
 public:
Z
zhangyang 已提交
467 468 469 470 471
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
472 473 474 475 476 477 478

 public:
  fpga::DWconvArgs fpga_dwconv_args;

 public:
  const fpga::DWconvArgs &FpgaDwconvArgs() const { return fpga_dwconv_args; }
  void SetFpgaArgs(const fpga::DWconvArgs &args) { fpga_dwconv_args = args; }
Z
zhangyang 已提交
479
#endif
朔-望's avatar
朔-望 已提交
480
};
N
nhzlx 已提交
481 482
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
483

N
nhzlx 已提交
484
template <typename Dtype>
朔-望's avatar
朔-望 已提交
485
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
486 487 488
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
489
 public:
490
  ElementwiseAddParam(const VariableNameMap &inputs,
491 492
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
493 494 495
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
496 497 498
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
499
  const GType *InputX() const { return input_x_; }
500

xiebaiyuan's avatar
xiebaiyuan 已提交
501
  const GType *InputY() const { return input_y_; }
502

xiebaiyuan's avatar
xiebaiyuan 已提交
503
  GType *Out() const { return out_; }
504 505 506

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
507
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
508 509 510
  GType *input_x_;
  GType *input_y_;
  GType *out_;
511
  int axis_;
Z
zhangyang 已提交
512 513 514
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
515
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
516 517

 public:
H
hanbuhe 已提交
518 519
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
520
#endif
朔-望's avatar
朔-望 已提交
521 522
};

E
eclipsess 已提交
523
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
template <typename Dtype>
class ElementwiseMulParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
S
suiyang 已提交
553
#endif
E
eclipsess 已提交
554

555
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
556 557
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
558 559
#endif

560
#ifdef ELEMENTWISESUB_OP
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
template <typename Dtype>
class ElementwiseSubParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
590
#endif
591

L
liuruilong 已提交
592
#ifdef MUL_OP
N
nhzlx 已提交
593
template <typename Dtype>
朔-望's avatar
朔-望 已提交
594
class MulParam : OpParam {
N
nhzlx 已提交
595 596 597
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
598
 public:
599
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
600
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
601 602 603
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
604 605 606
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
607

xiebaiyuan's avatar
xiebaiyuan 已提交
608
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
609

xiebaiyuan's avatar
xiebaiyuan 已提交
610
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
611

xiebaiyuan's avatar
xiebaiyuan 已提交
612
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
613

614
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
615

616
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
617

朔-望's avatar
朔-望 已提交
618
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
619 620 621
  GType *input_x_;
  GType *input_y_;
  GType *out_;
622 623
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
624
};
L
liuruilong 已提交
625
#endif
朔-望's avatar
朔-望 已提交
626

L
liuruilong 已提交
627
#ifdef CONCAT_OP
N
nhzlx 已提交
628
template <typename Dtype>
朔-望's avatar
朔-望 已提交
629
class ConcatParam : public OpParam {
N
nhzlx 已提交
630 631 632
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
633
 public:
634
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
635
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
636 637
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
638 639
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
640

N
nhzlx 已提交
641
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
642

xiebaiyuan's avatar
xiebaiyuan 已提交
643
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
644

645
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
646

朔-望's avatar
朔-望 已提交
647
 private:
N
nhzlx 已提交
648
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
649
  GType *out_;
650
  int axis_;
Z
zhangyang 已提交
651 652 653 654 655 656 657 658 659
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
660
};
L
liuruilong 已提交
661
#endif
朔-望's avatar
朔-望 已提交
662

E
eclipsess 已提交
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, scope);
    out_var_ = OutVarFrom(outputs, scope);
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
694
#ifdef LRN_OP
N
nhzlx 已提交
695
template <typename Dtype>
E
eclipsess 已提交
696
class LrnParam : public OpParam {
N
nhzlx 已提交
697 698 699
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
700
 public:
701
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
702
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
703 704 705
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
706 707 708 709
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
710
    data_format_ = GetStringAttr("data_format", attrs);
711
  }
E
eclipsess 已提交
712

N
nhzlx 已提交
713
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
714

N
nhzlx 已提交
715
  RType *Out() const { return out_; }
E
eclipsess 已提交
716

N
nhzlx 已提交
717
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
718

719
  const int &N() const { return n_; }
E
eclipsess 已提交
720

721
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
722

723
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
724

725
  const float &K() const { return k_; }
E
eclipsess 已提交
726

W
wangliu 已提交
727
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
728

朔-望's avatar
朔-望 已提交
729
 private:
N
nhzlx 已提交
730 731 732
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
733 734 735 736
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
737
  string data_format_;
E
eclipsess 已提交
738
};
L
liuruilong 已提交
739 740
#endif

Z
zhaojiaying01 已提交
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
#ifdef NORM_OP
template <typename Dtype>
class NormParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_norm_ = OutputNormFrom<GType>(outputs, scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const RType *InputX() const { return input_x_; }

  RType *Out() const { return out_; }

  RType *OutputNorm() const { return output_norm_; }

  const float &Epsilon() const { return epsilon_; }

  const int &Axis() const { return axis_; }

 private:
  RType *input_x_;
  RType *out_;
  RType *output_norm_;
  float epsilon_;
  int axis_;
};
#endif

L
liuruilong 已提交
776
#ifdef BATCHNORM_OP
N
nhzlx 已提交
777
template <typename Dtype>
E
eclipsess 已提交
778
class BatchNormParam : OpParam {
N
nhzlx 已提交
779 780 781
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
782
 public:
783
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
784
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
785 786 787 788 789 790
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
791 792
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
793
    //    is_test_ = GetAttr<bool>("is_test", attrs);
794
  }
E
eclipsess 已提交
795

N
nhzlx 已提交
796
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
797

N
nhzlx 已提交
798
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
799

N
nhzlx 已提交
800
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
801

N
nhzlx 已提交
802
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
803

N
nhzlx 已提交
804
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
805

N
nhzlx 已提交
806
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
807

808
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
809

810
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
811

812
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
813

W
wangliu 已提交
814
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
815

816 817 818 819 820 821 822 823
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

朔-望's avatar
朔-望 已提交
824
 private:
N
nhzlx 已提交
825 826 827 828 829 830
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
831 832 833
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
834
  string data_format_;
835 836
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
837
};
L
liuruilong 已提交
838 839 840
#endif

#ifdef POOL_OP
N
nhzlx 已提交
841
template <typename Dtype>
842
class PoolParam : public OpParam {
N
nhzlx 已提交
843 844 845
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
846
 public:
847
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
848
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
849
    input_ = InputXFrom<GType>(inputs, scope);
850

N
nhzlx 已提交
851
    output_ = OutFrom<GType>(outputs, scope);
852
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
853 854 855
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
856
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
857
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
858
  }
859

N
nhzlx 已提交
860
  const RType *Input() const { return input_; }
861

N
nhzlx 已提交
862
  RType *Output() const { return output_; }
863

W
wangliu 已提交
864
  const string &PoolingType() const { return pooling_type_; }
865

W
wangliu 已提交
866
  const vector<int> &Ksize() const { return ksize_; }
867

W
wangliu 已提交
868
  const vector<int> &Strides() const { return strides_; }
869

W
wangliu 已提交
870
  const vector<int> &Paddings() const { return paddings_; }
871

872
  bool isCeilMode() const { return ceil_mode_; }
873

Z
zhangyang 已提交
874
  bool isGlobalPooling() const { return global_pooling_; }
875

朔-望's avatar
朔-望 已提交
876
 private:
N
nhzlx 已提交
877 878
  RType *input_;
  RType *output_;
W
wangliu 已提交
879 880 881 882
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
883
  bool ceil_mode_;
884
  bool global_pooling_ = false;
Z
zhangyang 已提交
885
#ifdef PADDLE_MOBILE_FPGA
886 887

 private:
H
hanbuhe 已提交
888
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
889 890

 public:
H
hanbuhe 已提交
891 892
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
893
#endif
894
};
L
liuruilong 已提交
895 896 897
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
898
template <typename Dtype>
E
eclipsess 已提交
899
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
900 901 902
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
903 904
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
905
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
906 907 908 909
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
910 911 912 913
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
914 915 916 917

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
918 919
    } else {
      min_max_aspect_ratios_order_ = false;
920
    }
E
eclipsess 已提交
921 922 923 924 925 926
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
927
  const RType *Input() const { return input_; }
E
eclipsess 已提交
928

N
nhzlx 已提交
929
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
930

N
nhzlx 已提交
931
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
932

N
nhzlx 已提交
933
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
934

W
wangliu 已提交
935
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
936

W
wangliu 已提交
937
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
938

W
wangliu 已提交
939
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
940

W
wangliu 已提交
941
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
942 943 944 945 946 947 948 949 950 951 952

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

953 954 955 956
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
957
 private:
N
nhzlx 已提交
958 959 960 961
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
962 963 964 965
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
966 967 968 969 970
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
971
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
972
};
L
liuruilong 已提交
973
#endif
E
eclipsess 已提交
974

L
liuruilong 已提交
975
#ifdef BOXCODER_OP
N
nhzlx 已提交
976
template <typename Dtype>
E
eclipsess 已提交
977
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
978 979 980
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
981 982
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
983
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
984 985 986 987
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
988
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
989
  }
N
nhzlx 已提交
990
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
991

N
nhzlx 已提交
992
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
993

N
nhzlx 已提交
994
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
995

N
nhzlx 已提交
996
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
997 998 999 1000

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
1001 1002 1003 1004
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
1005 1006
  std::string code_type_;
};
L
liuruilong 已提交
1007
#endif
W
wangliu 已提交
1008

L
liuruilong 已提交
1009
#ifdef SOFTMAX_OP
N
nhzlx 已提交
1010
template <typename Dtype>
W
wangliu 已提交
1011
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
1012 1013 1014
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1015 1016
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1017
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1018 1019
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1020
  }
H
hjchen2 已提交
1021 1022
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1023 1024

 private:
H
hjchen2 已提交
1025 1026
  GType *input_x_;
  GType *out_;
H
hanbuhe 已提交
1027 1028 1029 1030

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
1031
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
1032 1033 1034
  fpga::BypassArgs fpga_bypass_args;

 public:
1035
  RType *FloatInput() const {
H
hanbuhe 已提交
1036 1037 1038 1039 1040 1041
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1042
};
L
liuruilong 已提交
1043
#endif
W
wangliu 已提交
1044

L
liuruilong 已提交
1045
#ifdef SIGMOID_OP
N
nhzlx 已提交
1046
template <typename Dtype>
W
wangliu 已提交
1047
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1048 1049 1050
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1051 1052
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1053
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1054 1055
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1056
  }
N
nhzlx 已提交
1057 1058
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
1059 1060

 private:
N
nhzlx 已提交
1061 1062
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
1063
};
L
liuruilong 已提交
1064 1065 1066
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1067
template <typename Dtype>
E
eclipsess 已提交
1068
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1069 1070 1071
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1072 1073 1074 1075
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1076 1077 1078
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1079 1080 1081 1082 1083 1084 1085 1086
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

Y
yangfei 已提交
1087
  RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1088

Y
yangfei 已提交
1089
  RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1090

N
nhzlx 已提交
1091
  RType *Out() const { return out_; }
E
eclipsess 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
1106 1107 1108
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
1109 1110 1111 1112 1113 1114 1115
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1116
#endif
W
wangliu 已提交
1117

L
lijiancheng0614 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
  }
  const RType *Input() const { return input_; }
  RType *Output() const { return output_; }

 private:
  RType *input_;
  RType *output_;
};
#endif

N
nhzlx 已提交
1140
template <typename Dtype>
L
liuruilong 已提交
1141
class FeedParam : public OpParam {
N
nhzlx 已提交
1142 1143 1144
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1145 1146
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1147 1148 1149 1150
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    auto var = scope.FindVar("batch_size");
W
wangliu 已提交
1151
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1152
  }
Y
yangfei 已提交
1153
  const LoDTensor *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1154
  GType *Out() const { return out_; }
W
wangliu 已提交
1155
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1156

L
liuruilong 已提交
1157
 private:
Y
yangfei 已提交
1158
  LoDTensor *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1159
  GType *out_;
W
wangliu 已提交
1160
  int batch_size;
L
liuruilong 已提交
1161 1162
};

N
nhzlx 已提交
1163
template <typename Dtype>
L
liuruilong 已提交
1164
class FetchParam : public OpParam {
N
nhzlx 已提交
1165 1166 1167
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1168 1169
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1170
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1171
    input_x_ = InputXFrom<GType>(inputs, scope);
1172
    out_ = OutFrom(outputs, scope);
L
liuruilong 已提交
1173
  }
L
liuruilong 已提交
1174

N
nhzlx 已提交
1175
  const RType *InputX() const { return input_x_; }
1176 1177 1178
  Tensor *Out() const { return out_; }

  static Tensor *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
Z
zhaojiaying01 已提交
1179
    return GetVarValue<LoDTensor>("Out", outputs, scope);
1180
  }
L
liuruilong 已提交
1181

L
liuruilong 已提交
1182
 private:
N
nhzlx 已提交
1183
  RType *input_x_;
Y
yangfei 已提交
1184
  Tensor *out_;
L
liuruilong 已提交
1185 1186
};

L
lijiancheng0614 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    out_var_ = OutVarFrom(outputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

  RType *Out() const { return out_; }

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
  RType *out_;
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1223
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1224
template <typename Dtype>
E
eclipsess 已提交
1225
class TransposeParam : public OpParam {
N
nhzlx 已提交
1226 1227 1228
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1229 1230 1231
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1232 1233
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1234 1235 1236
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
1237
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1238

N
nhzlx 已提交
1239
  RType *Out() const { return out_; }
E
eclipsess 已提交
1240 1241 1242 1243

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
1244 1245
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1246 1247
  vector<int> axis_;
};
L
liuruilong 已提交
1248
#endif
E
eclipsess 已提交
1249

L
lijiancheng0614 已提交
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

  const RType *InputX() const { return input_x_; }

  RType *Out() const { return out_; }

  RType *OutputXShape() const { return output_xshape_; }

  const vector<int> &Axis() const { return axis_; }

 private:
  RType *input_x_;
  RType *out_;
  RType *output_xshape_;
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1347
#ifdef RESHAPE_OP
N
nhzlx 已提交
1348
template <typename Dtype>
E
eclipsess 已提交
1349
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1350 1351 1352
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1353 1354 1355
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1356 1357 1358
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1359
    shape_ = GetAttr<vector<int>>("shape", attrs);
1360 1361 1362 1363 1364 1365 1366

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1367 1368
  }

N
nhzlx 已提交
1369
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1370

N
nhzlx 已提交
1371
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1372

N
nhzlx 已提交
1373
  RType *Out() const { return out_; }
E
eclipsess 已提交
1374 1375 1376 1377 1378 1379

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1380 1381 1382
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1383 1384 1385
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1386
#endif
E
eclipsess 已提交
1387

L
lijiancheng0614 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

E
eclipsess 已提交
1409
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1410

E
eclipsess 已提交
1411
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1412

E
eclipsess 已提交
1413
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1414

E
eclipsess 已提交
1415
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1416 1417 1418 1419 1420 1421

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1422 1423 1424 1425
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1426 1427 1428 1429 1430
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1431
#ifdef SCALE_OP
N
nhzlx 已提交
1432
template <typename Dtype>
I
itminner 已提交
1433
class ScaleParam : public OpParam {
N
nhzlx 已提交
1434 1435 1436
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1437 1438 1439
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1440 1441 1442
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1443 1444 1445 1446 1447 1448
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1449
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1450

N
nhzlx 已提交
1451
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1452

N
nhzlx 已提交
1453
  RType *Out() const { return out_; }
I
itminner 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1464 1465 1466
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1467 1468 1469 1470 1471
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1472 1473 1474
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1475
template <typename Dtype>
I
itminner 已提交
1476
class SliceParam : public OpParam {
N
nhzlx 已提交
1477 1478 1479
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1480 1481 1482
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1483 1484 1485
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1486 1487 1488 1489 1490
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1491
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1492

N
nhzlx 已提交
1493
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1494

N
nhzlx 已提交
1495
  RType *Out() const { return out_; }
I
itminner 已提交
1496 1497 1498 1499 1500 1501 1502 1503

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1504 1505 1506
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1507 1508 1509 1510
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1511 1512 1513
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1514
template <typename Dtype>
T
Tian 已提交
1515
class ResizeParam : public OpParam {
N
nhzlx 已提交
1516 1517 1518
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1519 1520 1521
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1522 1523 1524
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1525 1526 1527 1528 1529 1530
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1531

N
nhzlx 已提交
1532
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1533

N
nhzlx 已提交
1534
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1535

N
nhzlx 已提交
1536
  RType *Out() const { return out_; }
T
Tian 已提交
1537

I
itminner 已提交
1538
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1539

I
itminner 已提交
1540
  const int &Height() const { return height_; }
T
Tian 已提交
1541

I
itminner 已提交
1542
  const int &Width() const { return width_; }
T
Tian 已提交
1543

I
itminner 已提交
1544
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1545

I
itminner 已提交
1546
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1547

I
itminner 已提交
1548
 private:
N
nhzlx 已提交
1549 1550 1551
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1552 1553 1554 1555 1556
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1557 1558 1559
};
#endif

L
liuruilong 已提交
1560
#ifdef RELU_OP
L
liuruilong 已提交
1561 1562 1563
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1564
template <typename Dtype>
D
relu  
dolphin8 已提交
1565
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1566 1567 1568
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1569
 public:
D
relu  
dolphin8 已提交
1570
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1571
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1572 1573
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1574 1575
  }

N
nhzlx 已提交
1576
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1577

N
nhzlx 已提交
1578
  RType *Out() const { return out_; }
E
eclipsess 已提交
1579 1580

 private:
N
nhzlx 已提交
1581 1582
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1583
};
D
relu  
dolphin8 已提交
1584 1585 1586

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1587
 public:
D
relu  
dolphin8 已提交
1588 1589 1590
  using ReluParamBase<Dtype>::ReluParamBase;
};

Y
yangfei 已提交
1591
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1592 1593
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1594
 public:
D
relu  
dolphin8 已提交
1595
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1596 1597 1598
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1599 1600
  framework::CLImage midImage;
};
Y
yangfei 已提交
1601
#endif
D
relu  
dolphin8 已提交
1602

L
liuruilong 已提交
1603
#endif
E
eclipsess 已提交
1604

Z
zhangyang 已提交
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
qnqinan's avatar
qnqinan 已提交
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
#ifdef PADDLE_MOBILE_FPGA

 private:
  std::shared_ptr<RType> float_input_x_;
  fpga::BypassArgs fpga_bypass_args;

 public:
  RType *FloatInput() const {
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1637
};
L
liuruilong 已提交
1638
#endif
E
eclipsess 已提交
1639

T
Tian 已提交
1640
#ifdef PRELU_OP
N
nhzlx 已提交
1641
template <typename Dtype>
T
Tian 已提交
1642
class PReluParam : public OpParam {
N
nhzlx 已提交
1643 1644 1645
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1646 1647 1648
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1649
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1650
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1651
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1652
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1653
    out_ = OutFrom<GType>(outputs, scope);
1654
    mode_ = GetStringAttr("mode", attrs);
1655
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1656
  }
N
nhzlx 已提交
1657
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1658
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1659
  RType *Out() const { return out_; }
1660
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1661

I
itminner 已提交
1662
 private:
N
nhzlx 已提交
1663 1664
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1665
  RType *alpha_;
1666
  std::string mode_;
T
Tian 已提交
1667 1668 1669
};
#endif

N
nhzlx 已提交
1670
template <typename Dtype>
L
liuruilong 已提交
1671
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1672 1673 1674
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1675
 public:
L
liuruilong 已提交
1676
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1677
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1678 1679 1680 1681
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1682 1683 1684 1685
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1686
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1687

Y
yangfei 已提交
1688
  RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1689

Y
yangfei 已提交
1690
  RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1691

xiebaiyuan's avatar
xiebaiyuan 已提交
1692
  GType *Out() const { return out_; }
E
eclipsess 已提交
1693 1694 1695 1696 1697 1698 1699 1700

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1701
  GType *input_x_;
N
nhzlx 已提交
1702 1703
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1704
  GType *out_;
E
eclipsess 已提交
1705 1706 1707
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1708

Z
ZhenWang 已提交
1709
#ifdef PADDLE_MOBILE_FPGA
1710
 private:  // NOLINT
Z
zhangyang 已提交
1711
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1712 1713

 public:
Z
zhangyang 已提交
1714 1715
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1716
#endif
E
eclipsess 已提交
1717
};
1718 1719

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1720 1721
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1722
#endif
E
eclipsess 已提交
1723

N
nhzlx 已提交
1724
template <typename Dtype>
1725
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1726 1727 1728
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1729
 public:
L
liuruilong 已提交
1730
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1731
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1732 1733 1734 1735 1736
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1737
  }
N
nhzlx 已提交
1738
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1739 1740 1741

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1742
  RType *Output() const { return output_; }
W
wangliu 已提交
1743

L
liuruilong 已提交
1744
 protected:
N
nhzlx 已提交
1745
  RType *bias_;
W
wangliu 已提交
1746
  int axis_;
N
nhzlx 已提交
1747
  RType *output_;
W
wangliu 已提交
1748 1749
};

N
nhzlx 已提交
1750 1751
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1752

Z
zhangyang 已提交
1753
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1754 1755
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1756
 public:
L
liuruilong 已提交
1757
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1758 1759
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
1760
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1761 1762 1763
};
#endif

1764
#ifdef FUSION_CONVADDPRELU_OP
1765 1766 1767 1768
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1769 1770 1771 1772

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1773 1774 1775
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1776
    mode_ = OpParam::GetStringAttr("mode", attrs);
1777
    framework::DDim dims = alpha_->dims();
1778 1779 1780
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1798 1799 1800 1801
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1802 1803 1804 1805

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1806 1807 1808 1809
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1810
    mode_ = OpParam::GetStringAttr("mode", attrs);
1811
    framework::DDim dims = alpha_->dims();
1812 1813 1814 1815 1816 1817
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1818
    if (keyX1_ == keyOutput_) {
1819
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1820
    } else if (keyY1_ == keyOutput_) {
1821
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1846
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1847
template <typename Dtype>
1848
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1849 1850 1851
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1852 1853 1854
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1867
  }
N
nhzlx 已提交
1868
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1869 1870 1871

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1872
  RType *Output() const { return output_; }
E
eclipsess 已提交
1873

N
nhzlx 已提交
1874
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1875

N
nhzlx 已提交
1876
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1877

N
nhzlx 已提交
1878
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1879

N
nhzlx 已提交
1880
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1881 1882 1883 1884 1885 1886 1887

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1888
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1889

N
nhzlx 已提交
1890
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1891

N
nhzlx 已提交
1892
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1893

N
nhzlx 已提交
1894
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1895 1896

 protected:
N
nhzlx 已提交
1897
  RType *bias_;
E
eclipsess 已提交
1898
  int axis_;
N
nhzlx 已提交
1899 1900 1901 1902 1903
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1904 1905 1906
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1907 1908
  RType *new_bias_;
  RType *new_scale_;
1909 1910 1911 1912 1913
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1914
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1915 1916 1917 1918 1919 1920
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1935
    if (keyX_ == keyBNY_) {
1936
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1937
    } else if (keyY_ == keyBNY_) {
1938
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1939
    }
1940
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
1986
};
1987
#endif
E
eclipsess 已提交
1988

Z
zhangyang 已提交
1989
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1990
template <typename Dtype>
1991
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1992 1993 1994
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1995 1996 1997
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
2008
  }
N
nhzlx 已提交
2009
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
2010

N
nhzlx 已提交
2011
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
2012

N
nhzlx 已提交
2013
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
2014

N
nhzlx 已提交
2015
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
2016

N
nhzlx 已提交
2017
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
2018 2019 2020 2021 2022 2023 2024

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2025
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
2026

N
nhzlx 已提交
2027
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
2028

N
nhzlx 已提交
2029
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
2030

N
nhzlx 已提交
2031
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
2032 2033

 protected:
N
nhzlx 已提交
2034 2035 2036 2037 2038
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
2039 2040 2041
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2042 2043
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
2044 2045 2046
};
#endif

2047
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2048
template <typename Dtype>
2049
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2050 2051 2052
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2053 2054 2055
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2068
  }
N
nhzlx 已提交
2069
  RType *Bias() const { return bias_; }
2070 2071 2072

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
2073
  RType *Output() const { return output_y_; }
2074

N
nhzlx 已提交
2075
  const RType *InputBias() const { return input_bias_; }
2076

N
nhzlx 已提交
2077
  const RType *InputMean() const { return input_mean_; }
2078

N
nhzlx 已提交
2079
  const RType *InputScale() const { return input_scale_; }
2080

N
nhzlx 已提交
2081
  const RType *InputVariance() const { return input_variance_; }
2082 2083 2084 2085 2086 2087 2088

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2089
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2090

N
nhzlx 已提交
2091
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2092

N
nhzlx 已提交
2093
  const RType *NewScale() const { return new_scale_; }
2094

N
nhzlx 已提交
2095
  const RType *NewBias() const { return new_bias_; }
2096 2097

 protected:
N
nhzlx 已提交
2098
  RType *bias_;
2099
  int axis_;
N
nhzlx 已提交
2100 2101 2102 2103 2104
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2105 2106 2107
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2108 2109
  RType *new_bias_;
  RType *new_scale_;
2110
};
E
eclipsess 已提交
2111
#endif
Y
Yao,kun 已提交
2112

E
eclipsess 已提交
2113
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2114
template <typename Dtype>
2115
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2116 2117 2118
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2119 2120 2121
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
2132
  }
N
nhzlx 已提交
2133
  RType *Output() const { return output_; }
E
eclipsess 已提交
2134

N
nhzlx 已提交
2135
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2136

N
nhzlx 已提交
2137
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2138

N
nhzlx 已提交
2139
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2140

N
nhzlx 已提交
2141
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2142 2143 2144 2145 2146 2147 2148

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2149
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2150

N
nhzlx 已提交
2151
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2152

N
nhzlx 已提交
2153
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2154

N
nhzlx 已提交
2155
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2156 2157

 protected:
N
nhzlx 已提交
2158 2159 2160 2161 2162
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
2163 2164 2165
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2166 2167
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
2168 2169 2170 2171
};

#endif

2172
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2173
template <typename Dtype>
2174
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2175 2176 2177
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2178 2179 2180
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2191
  }
N
nhzlx 已提交
2192
  RType *Output() const { return output_; }
2193

N
nhzlx 已提交
2194
  const RType *InputBias() const { return input_bias_; }
2195

N
nhzlx 已提交
2196
  const RType *InputMean() const { return input_mean_; }
2197

N
nhzlx 已提交
2198
  const RType *InputScale() const { return input_scale_; }
2199

N
nhzlx 已提交
2200
  const RType *InputVariance() const { return input_variance_; }
2201 2202 2203 2204 2205 2206 2207

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2208
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2209

N
nhzlx 已提交
2210
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2211

N
nhzlx 已提交
2212
  const RType *NewScale() const { return new_scale_; }
2213

N
nhzlx 已提交
2214
  const RType *NewBias() const { return new_bias_; }
2215 2216

 protected:
N
nhzlx 已提交
2217 2218 2219 2220 2221
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2222 2223 2224
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2225 2226
  RType *new_bias_;
  RType *new_scale_;
2227 2228 2229
};
#endif

Y
Yao,kun 已提交
2230
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2231
template <typename Dtype>
Y
Yao,kun 已提交
2232
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2233 2234 2235
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2236 2237 2238 2239
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
2240 2241
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2242 2243 2244 2245 2246
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2247
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2248

E
eclipsess 已提交
2249
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2250 2251 2252 2253 2254 2255 2256 2257

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2258 2259
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2260 2261 2262 2263
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2264
#endif
Y
Yao,kun 已提交
2265

2266
#ifdef DROPOUT_OP
N
nhzlx 已提交
2267
template <typename Dtype>
Y
Yao,kun 已提交
2268
class DropoutParam : public OpParam {
N
nhzlx 已提交
2269 2270 2271
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2272 2273 2274
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2275 2276
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
2277 2278

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2279 2280
  }

N
nhzlx 已提交
2281
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2282

N
nhzlx 已提交
2283
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2284

Y
yangfei 已提交
2285 2286
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2287
 private:
N
nhzlx 已提交
2288 2289
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
2290
  float dropout_prob_;
Y
Yao,kun 已提交
2291
};
2292
#endif
Y
Yao,kun 已提交
2293

N
nhzlx 已提交
2294
template <typename Dtype>
L
liuruilong 已提交
2295
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2296 2297 2298
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2299 2300 2301 2302
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2303 2304
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
2305
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2306
    if (outputs.count("Output")) {
2307
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2308
    }
L
liuruilong 已提交
2309 2310 2311 2312 2313 2314
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2315
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2316

N
nhzlx 已提交
2317
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2318

N
nhzlx 已提交
2319
  RType *Output() const { return output_; }
L
liuruilong 已提交
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2330 2331 2332
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2333 2334 2335 2336
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
Z
zhangyang 已提交
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
#endif
L
liuruilong 已提交
2347
};
Z
zhangyang 已提交
2348

qnqinan's avatar
qnqinan 已提交
2349 2350 2351 2352 2353
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2354 2355

 public:
qnqinan's avatar
qnqinan 已提交
2356
  FusionDeconvAddParam(const VariableNameMap &inputs,
2357 2358 2359
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope)
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
qnqinan's avatar
qnqinan 已提交
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
L
liuruilong 已提交
2381

Z
zhangyang 已提交
2382 2383 2384 2385 2386
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
2412 2413
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2458
    axis = GetAttr<int>("axis", attrs);
2459 2460 2461
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2462
  const int &Axis() const { return axis; }
2463 2464 2465 2466

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2467
  int axis;
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2481
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2482
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2483 2484 2485 2486 2487 2488
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2489 2490
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2491 2492 2493 2494 2495
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2496 2497 2498

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2499
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2500
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2501 2502 2503
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2504 2505 2506 2507 2508 2509 2510 2511 2512
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2529 2530
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2531 2532
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2533
  const RType *InputOutPutSize() const { return input_outsize_; }
2534
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2535 2536
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2537 2538 2539 2540 2541

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2542 2543
  int out_h_;
  int out_w_;
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2559
  const RType *Input() const { return input_; }
2560 2561 2562 2563 2564 2565 2566 2567
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

H
hjchen2 已提交
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, scope);
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
  RType *input_;
  RType *output_;
  RType *indices_;
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, scope);
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
  RType *input_;
  RType *output_;
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

2614
#ifdef QUANT_OP
2615
template <typename Dtype>
2616 2617 2618 2619 2620
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2621 2622
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
2623
    input_ = InputXFrom<GType>(inputs, scope);
H
hjchen2 已提交
2624
    output_ = OutFrom<GType>(outputs, scope);
2625 2626
    // online
    // scale = max(abs(x))
H
hjchen2 已提交
2627
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, scope);
2628
    // offline
2629
    if (inputs.count("InScale")) {
2630 2631
      offline_ = true;
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, scope);
2632 2633
    }
    // x = round(scale * x)
2634 2635
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
2636
    }
2637 2638 2639 2640
  }

 public:
  // op input
2641
  GType *input_;
2642
  // op output
2643
  GType *output_;
2644
  RType *online_scale_;
2645 2646 2647 2648
  // quantize offline scale
  RType *offline_scale_;
  // if offine scale or not
  bool offline_ = false;
2649
  // round method type
2650 2651
  RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  // RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
2652
};
2653
#endif
2654

2655
#ifdef DEQUANT_OP
2656
template <typename Dtype>
2657 2658 2659 2660 2661
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2662 2663
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
2664
    input_ = InputXFrom<GType>(inputs, scope);
2665
    output_ = OutFrom<GType>(outputs, scope);
H
hjchen2 已提交
2666
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, scope);
2667
    // dequantization is performed as x = x / static_scale / online_scale
2668 2669
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
2670
    } else {
2671
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
2672 2673 2674 2675 2676
    }
  }

 public:
  // op input
2677
  GType *input_;
2678
  // op output
2679
  GType *output_;
2680 2681 2682
  RType *activation_scale_;
  float weight_scale_;
};
2683
#endif
2684

2685 2686 2687 2688
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
2689
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
2690
template <typename Dtype>
2691
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
2692 2693 2694 2695
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2696 2697 2698
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope)
H
hjchen2 已提交
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
  RType *bn_mean_;
  RType *bn_variance_;
  RType *bn_scale_;
  RType *bn_bias_;
  float epsilon_;
2715 2716 2717
};
#endif

2718 2719 2720 2721
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
                          const AttributeMap &attrs, const Scope &scope)
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
  }

 public:
  // elementwise add
  int axis_;
  RType *bias_;
};
#endif

2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
                               const AttributeMap &attrs, const Scope &scope)
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, scope);
    // offline
2758 2759 2760
    if (inputs.count("InScale")) {
      offline_ = true;
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, scope);
2761 2762 2763 2764 2765 2766 2767 2768 2769
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  RType *online_scale_;
2770 2771 2772 2773
  // quantize offline scale
  RType *offline_scale_;
  // if offine scale or not
  bool offline_ = false;
2774 2775 2776 2777 2778 2779
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
#ifdef SEQUENCE_EXPAND_OP
template <typename Dtype>
class SequenceExpandParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequenceExpandParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    ref_level_ = -1;
    if (OpParam::HasAttr("ref_level", attrs)) {
      ref_level_ = OpParam::GetAttr<int>("ref_level", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int ref_level_;
};
#endif  // SEQUENCE_EXPAND_OP

#ifdef SEQUENCE_POOL_OP
template <typename Dtype>
class SequencePoolParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequencePoolParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    input_ = InputXFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    pool_type_ = "MAX";
    if (OpParam::HasAttr("pooltype", attrs)) {
H
hjchen2 已提交
2821
      pool_type_ = OpParam::GetStringAttr("pooltype", attrs);
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
    }
  }

 public:
  GType *input_;
  GType *output_;
  std::string pool_type_;
};
#endif  // SEQUENCE_EXPAND_OP

2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
#ifdef LOD_RESET_OP
template <typename Dtype>
class LodResetParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LodResetParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    input_y_ = nullptr;
    if (inputs.count("Y")) {
      input_y_ = InputYFrom<GType>(inputs, scope);
    } else {
      target_lod_ = OpParam::GetAttr<vector<int>>("target_lod", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  std::vector<int> target_lod_;
};
#endif  // LOD_RESET_OP

2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
#ifdef LESS_THAN_OP
template <typename Dtype>
class CompareParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CompareParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int axis_;
};
#endif  // LESS_THAN_OP

朔-望's avatar
朔-望 已提交
2882 2883
}  // namespace operators
}  // namespace paddle_mobile