op_param.h 70.1 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26
#ifdef PADDLE_MOBILE_FPGA
H
hanbuhe 已提交
27
#include "fpga/api.h"
Z
zhangyang 已提交
28
#endif
朔-望's avatar
朔-望 已提交
29 30

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
31 32
namespace operators {

W
wangliu 已提交
33 34 35 36 37 38 39
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
40

N
nhzlx 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
template <typename Dtype>
struct DtypeTensorTrait {
  typedef void ptype;
  typedef void rtype;
};

template <>
struct DtypeTensorTrait<CPU> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

template <>
struct DtypeTensorTrait<FPGA> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

template <>
struct DtypeTensorTrait<GPU_MALI> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
liuruilong 已提交
74
class OpParam {
朔-望's avatar
朔-望 已提交
75
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
76 77 78 79
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
80 81 82 83 84
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

85 86 87 88 89 90 91 92 93
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
94 95 96 97 98
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

126 127 128 129
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
130 131 132 133 134 135

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

136 137 138 139 140
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
141 142 143 144 145
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

146 147 148 149 150
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
151 152 153 154
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
155 156 157 158 159 160 161 162 163 164 165 166
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
167 168 169 170
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
187

E
eclipsess 已提交
188 189 190 191 192 193 194 195 196 197
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
198 199 200 201
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
202

203
  template <typename T>
W
wangliu 已提交
204 205
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
206 207 208
    return GetMultiVarValue<T>("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

238 239 240 241 242 243 244 245 246 247
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
248 249 250 251 252 253
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

254 255 256 257 258
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

E
eclipsess 已提交
259 260 261 262 263 264
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
265 266 267 268 269
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
270 271 272 273 274 275
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

276 277 278 279 280 281 282 283 284 285 286
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
287
  static const T GetAttr(const string &key, const AttributeMap &map) {
288 289 290
    return ((Attribute)map.at(key)).Get<T>();
  }

291 292 293 294
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

295
  template <typename T>
W
wangliu 已提交
296
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
297
                        const Scope &scope) {
W
wangliu 已提交
298 299
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
300 301 302 303 304 305
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
306
    }
307
  }
朔-望's avatar
朔-望 已提交
308

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

329
  template <typename T>
W
wangliu 已提交
330 331 332
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
333 334
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
335
    vector<T *> var_res;
336 337 338
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
339
    }
340 341
    return var_res;
  }
朔-望's avatar
朔-望 已提交
342 343
};

L
liuruilong 已提交
344
#ifdef CONV_OP
N
nhzlx 已提交
345
template <typename Dtype>
朔-望's avatar
朔-望 已提交
346
class ConvParam : OpParam {
N
nhzlx 已提交
347 348 349
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
350
 public:
351
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
352
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
353 354 355
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
W
wangliu 已提交
356 357 358
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
359 360
    groups = GetAttr<int>("groups", attrs);
  }
朔-望's avatar
朔-望 已提交
361

N
nhzlx 已提交
362
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
363

N
nhzlx 已提交
364
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
365

N
nhzlx 已提交
366
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
367

W
wangliu 已提交
368
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
369

W
wangliu 已提交
370
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
371

W
wangliu 已提交
372
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
373

374
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
375

朔-望's avatar
朔-望 已提交
376
 private:
N
nhzlx 已提交
377 378 379
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
380 381 382
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
383
  int groups;
朔-望's avatar
朔-望 已提交
384
};
N
nhzlx 已提交
385 386
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
L
liuruilong 已提交
387
#endif
朔-望's avatar
朔-望 已提交
388

N
nhzlx 已提交
389
template <typename Dtype>
朔-望's avatar
朔-望 已提交
390
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
391 392 393
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
394
 public:
395
  ElementwiseAddParam(const VariableNameMap &inputs,
396 397
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
398 399 400
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
401 402 403
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
404
  const GType *InputX() const { return input_x_; }
405

xiebaiyuan's avatar
xiebaiyuan 已提交
406
  const GType *InputY() const { return input_y_; }
407

xiebaiyuan's avatar
xiebaiyuan 已提交
408
  GType *Out() const { return out_; }
409 410 411

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
412
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
413 414 415
  GType *input_x_;
  GType *input_y_;
  GType *out_;
416
  int axis_;
Z
zhangyang 已提交
417 418 419
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
420
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
421 422

 public:
H
hanbuhe 已提交
423 424
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
425
#endif
朔-望's avatar
朔-望 已提交
426 427
};

428
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
429 430
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
431 432 433
#endif

#ifdef MUL_OP
N
nhzlx 已提交
434
template <typename Dtype>
朔-望's avatar
朔-望 已提交
435
class MulParam : OpParam {
N
nhzlx 已提交
436 437 438
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
439
 public:
440
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
441
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
442 443 444
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
445 446 447
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
448

xiebaiyuan's avatar
xiebaiyuan 已提交
449
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
450

xiebaiyuan's avatar
xiebaiyuan 已提交
451
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
452

xiebaiyuan's avatar
xiebaiyuan 已提交
453
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
454

455
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
456

457
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
458

朔-望's avatar
朔-望 已提交
459
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
460 461 462
  GType *input_x_;
  GType *input_y_;
  GType *out_;
463 464
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
465
};
L
liuruilong 已提交
466
#endif
朔-望's avatar
朔-望 已提交
467

L
liuruilong 已提交
468
#ifdef CONCAT_OP
N
nhzlx 已提交
469
template <typename Dtype>
朔-望's avatar
朔-望 已提交
470
class ConcatParam : public OpParam {
N
nhzlx 已提交
471 472 473
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
474
 public:
475
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
476
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
477 478
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
479 480
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
481

N
nhzlx 已提交
482
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
483

xiebaiyuan's avatar
xiebaiyuan 已提交
484
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
485

486
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
487

朔-望's avatar
朔-望 已提交
488
 private:
N
nhzlx 已提交
489
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
490
  GType *out_;
491
  int axis_;
朔-望's avatar
朔-望 已提交
492
};
L
liuruilong 已提交
493
#endif
朔-望's avatar
朔-望 已提交
494

L
liuruilong 已提交
495
#ifdef LRN_OP
N
nhzlx 已提交
496
template <typename Dtype>
E
eclipsess 已提交
497
class LrnParam : public OpParam {
N
nhzlx 已提交
498 499 500
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
501
 public:
502
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
503
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
504 505 506
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
507 508 509 510
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
W
wangliu 已提交
511
    data_format_ = GetAttr<string>("data_format", attrs);
512
  }
E
eclipsess 已提交
513

N
nhzlx 已提交
514
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
515

N
nhzlx 已提交
516
  RType *Out() const { return out_; }
E
eclipsess 已提交
517

N
nhzlx 已提交
518
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
519

520
  const int &N() const { return n_; }
E
eclipsess 已提交
521

522
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
523

524
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
525

526
  const float &K() const { return k_; }
E
eclipsess 已提交
527

W
wangliu 已提交
528
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
529

朔-望's avatar
朔-望 已提交
530
 private:
N
nhzlx 已提交
531 532 533
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
534 535 536 537
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
538
  string data_format_;
E
eclipsess 已提交
539
};
L
liuruilong 已提交
540 541 542
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
543
template <typename Dtype>
E
eclipsess 已提交
544
class BatchNormParam : OpParam {
N
nhzlx 已提交
545 546 547
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
548
 public:
549
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
550
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
551 552 553 554 555 556
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
557 558
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
559
    //    is_test_ = GetAttr<bool>("is_test", attrs);
560
  }
E
eclipsess 已提交
561

N
nhzlx 已提交
562
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
563

N
nhzlx 已提交
564
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
565

N
nhzlx 已提交
566
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
567

N
nhzlx 已提交
568
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
569

N
nhzlx 已提交
570
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
571

N
nhzlx 已提交
572
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
573

574
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
575

576
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
577

578
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
579

W
wangliu 已提交
580
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
581

朔-望's avatar
朔-望 已提交
582
 private:
N
nhzlx 已提交
583 584 585 586 587 588
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
589 590 591
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
592
  string data_format_;
E
eclipsess 已提交
593
};
L
liuruilong 已提交
594 595 596
#endif

#ifdef POOL_OP
N
nhzlx 已提交
597
template <typename Dtype>
598
class PoolParam : public OpParam {
N
nhzlx 已提交
599 600 601
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
602
 public:
603
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
604
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
605
    input_ = InputXFrom<GType>(inputs, scope);
606

N
nhzlx 已提交
607
    output_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
608 609 610 611
    pooling_type_ = GetAttr<string>("pooling_type", attrs);
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
612
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
613
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
614
  }
615

N
nhzlx 已提交
616
  const RType *Input() const { return input_; }
617

N
nhzlx 已提交
618
  RType *Output() const { return output_; }
619

W
wangliu 已提交
620
  const string &PoolingType() const { return pooling_type_; }
621

W
wangliu 已提交
622
  const vector<int> &Ksize() const { return ksize_; }
623

W
wangliu 已提交
624
  const vector<int> &Strides() const { return strides_; }
625

W
wangliu 已提交
626
  const vector<int> &Paddings() const { return paddings_; }
627

628
  bool isCeilMode() const { return ceil_mode_; }
629

Z
zhangyang 已提交
630
  bool isGlobalPooling() const { return global_pooling_; }
631

朔-望's avatar
朔-望 已提交
632
 private:
N
nhzlx 已提交
633 634
  RType *input_;
  RType *output_;
W
wangliu 已提交
635 636 637 638
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
639
  bool ceil_mode_;
640
  bool global_pooling_ = false;
Z
zhangyang 已提交
641
#ifdef PADDLE_MOBILE_FPGA
642 643

 private:
H
hanbuhe 已提交
644
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
645 646

 public:
H
hanbuhe 已提交
647 648
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
649
#endif
650
};
L
liuruilong 已提交
651 652 653
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
654
template <typename Dtype>
E
eclipsess 已提交
655
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
656 657 658
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
659 660
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
661
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
662 663 664 665
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
666 667 668 669
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
E
eclipsess 已提交
670 671 672 673 674 675
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
676
  const RType *Input() const { return input_; }
E
eclipsess 已提交
677

N
nhzlx 已提交
678
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
679

N
nhzlx 已提交
680
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
681

N
nhzlx 已提交
682
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
683

W
wangliu 已提交
684
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
685

W
wangliu 已提交
686
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
687

W
wangliu 已提交
688
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
689

W
wangliu 已提交
690
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
691 692 693 694 695 696 697 698 699 700 701 702

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

 private:
N
nhzlx 已提交
703 704 705 706
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
707 708 709 710
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
711 712 713 714 715 716
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
};
L
liuruilong 已提交
717
#endif
E
eclipsess 已提交
718

L
liuruilong 已提交
719
#ifdef BOXCODER_OP
N
nhzlx 已提交
720
template <typename Dtype>
E
eclipsess 已提交
721
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
722 723 724
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
725 726
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
727
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
728 729 730 731
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
E
eclipsess 已提交
732 733
    code_type_ = GetAttr<std::string>("code_type", attrs);
  }
N
nhzlx 已提交
734
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
735

N
nhzlx 已提交
736
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
737

N
nhzlx 已提交
738
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
739

N
nhzlx 已提交
740
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
741 742 743 744

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
745 746 747 748
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
749 750
  std::string code_type_;
};
L
liuruilong 已提交
751
#endif
W
wangliu 已提交
752

L
liuruilong 已提交
753
#ifdef SOFTMAX_OP
N
nhzlx 已提交
754
template <typename Dtype>
W
wangliu 已提交
755
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
756 757 758
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
759 760
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
761
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
762 763
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
764
  }
N
nhzlx 已提交
765 766
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
767 768

 private:
N
nhzlx 已提交
769 770
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
771 772 773 774

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
775
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
776 777 778
  fpga::BypassArgs fpga_bypass_args;

 public:
N
nhzlx 已提交
779
  RType *FloatInput() {
H
hanbuhe 已提交
780 781 782 783 784 785
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
786
};
L
liuruilong 已提交
787
#endif
W
wangliu 已提交
788

L
liuruilong 已提交
789
#ifdef SIGMOID_OP
N
nhzlx 已提交
790
template <typename Dtype>
W
wangliu 已提交
791
class SigmoidParam : public OpParam {
N
nhzlx 已提交
792 793 794
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
795 796
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
797
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
798 799
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
800
  }
N
nhzlx 已提交
801 802
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
803 804

 private:
N
nhzlx 已提交
805 806
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
807
};
L
liuruilong 已提交
808 809 810
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
811
template <typename Dtype>
E
eclipsess 已提交
812
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
813 814 815
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
816 817 818 819
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
820 821 822
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
823 824 825 826 827 828 829 830
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
831
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
832

N
nhzlx 已提交
833
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
834

N
nhzlx 已提交
835
  RType *Out() const { return out_; }
E
eclipsess 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848 849

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
850 851 852
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
853 854 855 856 857 858 859
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
860
#endif
W
wangliu 已提交
861

N
nhzlx 已提交
862
template <typename Dtype>
L
liuruilong 已提交
863
class FeedParam : public OpParam {
N
nhzlx 已提交
864 865 866
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
867 868
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
869
            const AttributeMap &attrs, Scope *scope) {
N
nhzlx 已提交
870 871
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
liuruilong 已提交
872
    auto var = scope->Var("batch_size");
W
wangliu 已提交
873
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
874
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
875 876
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
877
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
878

L
liuruilong 已提交
879
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
880 881
  GType *input_x_;
  GType *out_;
W
wangliu 已提交
882
  int batch_size;
L
liuruilong 已提交
883 884
};

N
nhzlx 已提交
885
template <typename Dtype>
L
liuruilong 已提交
886
class FetchParam : public OpParam {
N
nhzlx 已提交
887 888 889
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
890 891
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
892
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
893 894
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
L
liuruilong 已提交
895
  }
N
nhzlx 已提交
896 897
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
L
liuruilong 已提交
898

L
liuruilong 已提交
899
 private:
N
nhzlx 已提交
900 901
  RType *input_x_;
  RType *out_;
L
liuruilong 已提交
902 903
};

L
liuruilong 已提交
904
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
905
template <typename Dtype>
E
eclipsess 已提交
906
class TransposeParam : public OpParam {
N
nhzlx 已提交
907 908 909
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
910 911 912
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
913 914
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
915 916 917
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
918
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
919

N
nhzlx 已提交
920
  RType *Out() const { return out_; }
E
eclipsess 已提交
921 922 923 924

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
925 926
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
927 928
  vector<int> axis_;
};
L
liuruilong 已提交
929
#endif
E
eclipsess 已提交
930

xiebaiyuan's avatar
xiebaiyuan 已提交
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
997
#ifdef RESHAPE_OP
N
nhzlx 已提交
998
template <typename Dtype>
E
eclipsess 已提交
999
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1000 1001 1002
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1003 1004 1005
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1006 1007 1008
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1009
    shape_ = GetAttr<vector<int>>("shape", attrs);
1010 1011 1012 1013 1014 1015 1016

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1017 1018
  }

N
nhzlx 已提交
1019
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1020

N
nhzlx 已提交
1021
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1022

N
nhzlx 已提交
1023
  RType *Out() const { return out_; }
E
eclipsess 已提交
1024 1025 1026 1027 1028 1029

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1030 1031 1032
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1033 1034 1035
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1036
#endif
E
eclipsess 已提交
1037

T
Tian 已提交
1038
#ifdef SCALE_OP
N
nhzlx 已提交
1039
template <typename Dtype>
I
itminner 已提交
1040
class ScaleParam : public OpParam {
N
nhzlx 已提交
1041 1042 1043
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1044 1045 1046
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1047 1048 1049
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1050 1051 1052 1053 1054 1055
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1056
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1057

N
nhzlx 已提交
1058
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1059

N
nhzlx 已提交
1060
  RType *Out() const { return out_; }
I
itminner 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1071 1072 1073
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1074 1075 1076 1077 1078
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1079 1080 1081
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1082
template <typename Dtype>
I
itminner 已提交
1083
class SliceParam : public OpParam {
N
nhzlx 已提交
1084 1085 1086
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1087 1088 1089
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1090 1091 1092
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1093 1094 1095 1096 1097
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1098
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1099

N
nhzlx 已提交
1100
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1101

N
nhzlx 已提交
1102
  RType *Out() const { return out_; }
I
itminner 已提交
1103 1104 1105 1106 1107 1108 1109 1110

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1111 1112 1113
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1114 1115 1116 1117
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1118 1119 1120
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1121
template <typename Dtype>
T
Tian 已提交
1122
class ResizeParam : public OpParam {
N
nhzlx 已提交
1123 1124 1125
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1126 1127 1128
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1129 1130 1131
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1132 1133 1134 1135 1136 1137
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1138

N
nhzlx 已提交
1139
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1140

N
nhzlx 已提交
1141
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1142

N
nhzlx 已提交
1143
  RType *Out() const { return out_; }
T
Tian 已提交
1144

I
itminner 已提交
1145
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1146

I
itminner 已提交
1147
  const int &Height() const { return height_; }
T
Tian 已提交
1148

I
itminner 已提交
1149
  const int &Width() const { return width_; }
T
Tian 已提交
1150

I
itminner 已提交
1151
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1152

I
itminner 已提交
1153
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1154

I
itminner 已提交
1155
 private:
N
nhzlx 已提交
1156 1157 1158
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1159 1160 1161 1162 1163
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1164 1165 1166
};
#endif

L
liuruilong 已提交
1167
#ifdef RELU_OP
L
liuruilong 已提交
1168 1169 1170
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1171
template <typename Dtype>
E
eclipsess 已提交
1172
class ReluParam : public OpParam {
N
nhzlx 已提交
1173 1174 1175
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1176 1177 1178
 public:
  ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1179 1180
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1181 1182
  }

N
nhzlx 已提交
1183
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1184

N
nhzlx 已提交
1185
  RType *Out() const { return out_; }
E
eclipsess 已提交
1186 1187

 private:
N
nhzlx 已提交
1188 1189
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1190
};
L
liuruilong 已提交
1191
#endif
E
eclipsess 已提交
1192

T
Tian 已提交
1193
#ifdef PRELU_OP
N
nhzlx 已提交
1194
template <typename Dtype>
T
Tian 已提交
1195
class PReluParam : public OpParam {
N
nhzlx 已提交
1196 1197 1198
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1199 1200 1201
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1202
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1203
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1204
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1205
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1206
    out_ = OutFrom<GType>(outputs, scope);
1207 1208
    mode_ = GetAttr<std::string>("mode", attrs);
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1209
  }
N
nhzlx 已提交
1210
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1211
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1212
  RType *Out() const { return out_; }
1213
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1214

I
itminner 已提交
1215
 private:
N
nhzlx 已提交
1216 1217
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1218
  RType *alpha_;
1219
  std::string mode_;
T
Tian 已提交
1220 1221 1222
};
#endif

N
nhzlx 已提交
1223
template <typename Dtype>
L
liuruilong 已提交
1224
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1225 1226 1227
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1228
 public:
L
liuruilong 已提交
1229
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1230
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1231 1232 1233 1234
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1235 1236 1237 1238
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1239
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1240

1241
#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
1242
  RType *InputY() const { return input_y_; }
1243
#else
N
nhzlx 已提交
1244
  const RType *InputY() const { return input_y_; }
1245
#endif
E
eclipsess 已提交
1246

N
nhzlx 已提交
1247
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1248

xiebaiyuan's avatar
xiebaiyuan 已提交
1249
  GType *Out() const { return out_; }
E
eclipsess 已提交
1250 1251 1252 1253 1254 1255 1256 1257

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1258
  GType *input_x_;
N
nhzlx 已提交
1259 1260
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1261
  GType *out_;
E
eclipsess 已提交
1262 1263 1264
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1265 1266 1267
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
1268
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
1269 1270

 public:
H
hanbuhe 已提交
1271 1272
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1273
#endif
E
eclipsess 已提交
1274
};
1275 1276

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1277 1278
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1279
#endif
E
eclipsess 已提交
1280

N
nhzlx 已提交
1281
template <typename Dtype>
L
liuruilong 已提交
1282
class FusionConvAddParam : public OpParam {
N
nhzlx 已提交
1283 1284 1285
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1286
 public:
L
liuruilong 已提交
1287
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1288 1289
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1290
    bias_ = InputYFrom<GType>(inputs, scope);
W
wangliu 已提交
1291
    axis_ = GetAttr<int>("axis", attrs);
N
nhzlx 已提交
1292 1293 1294
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1295 1296 1297 1298 1299
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }
N
nhzlx 已提交
1300
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1301 1302 1303

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1304
  const RType *Input() const { return input_; }
W
wangliu 已提交
1305

1306
#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
1307
  RType *Filter() const { return filter_; }
1308
#else
N
nhzlx 已提交
1309
  const RType *Filter() const { return filter_; }
1310
#endif
W
wangliu 已提交
1311

N
nhzlx 已提交
1312
  RType *Output() const { return output_; }
W
wangliu 已提交
1313 1314 1315 1316 1317 1318 1319 1320 1321

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

L
liuruilong 已提交
1322
 protected:
N
nhzlx 已提交
1323
  RType *bias_;
W
wangliu 已提交
1324
  int axis_;
N
nhzlx 已提交
1325 1326 1327
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
1328 1329 1330 1331
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
Z
zhangyang 已提交
1332 1333 1334
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
1335
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
1336 1337

 public:
H
hanbuhe 已提交
1338 1339
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1340
#endif
W
wangliu 已提交
1341 1342
};

N
nhzlx 已提交
1343 1344
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1345

Z
zhangyang 已提交
1346
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1347 1348
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1349
 public:
L
liuruilong 已提交
1350
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1351 1352
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1353
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1354 1355 1356
};
#endif

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
#ifdef FUSION_CONVADDPRELU_OP
template <typename DeviceType>
class FusionConvAddPReluParam : public OpParam {
  typedef typename DtypeTensorTrait<DeviceType>::gtype GType;
  typedef typename DtypeTensorTrait<DeviceType>::rtype RType;

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
                          const AttributeMap &attrs, const Scope &scope) {
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
    mode_ = GetAttr<std::string>("mode", attrs);
    framework::DDim dims = alpha_->dims();
    bias_ = InputYFrom<GType>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  const RType *Input() const { return input_; }

#ifdef PADDLE_MOBILE_FPGA
  RType *Filter() const { return filter_; }
#else
  const RType *Filter() const { return filter_; }
#endif

  RType *Output() const { return output_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 protected:
  RType *bias_;
  int axis_;
  RType *input_;
  RType *output_;
  RType *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
  RType *alpha_;
  std::string mode_;
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConvArgs fpga_conv_args;

 public:
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
#endif
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
template <typename DeviceType>
class FusionConvAddAddPReluParam : public OpParam {
  typedef typename DtypeTensorTrait<DeviceType>::gtype GType;
  typedef typename DtypeTensorTrait<DeviceType>::rtype RType;

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
                             const AttributeMap &attrs, const Scope &scope) {
    bias1_ = InputYFrom1<GType>(inputs, scope);
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
    mode_ = GetAttr<std::string>("mode", attrs);
    framework::DDim dims = alpha_->dims();
    bias_ = InputYFrom<GType>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
    keyOutput_ = getkey("addOut", inputs, 0);
    keyX1_ = getkey("addX", inputs, 1);
    keyY1_ = getkey("Y", inputs, 1);
    if (keyX1_ == keyOutput_) {
      bias1_ = InputYFrom1<GType>(inputs, scope);
    } else if (keyY1_ == keyOutput_) {
      bias1_ = InputXFrom1<GType>(inputs, scope);
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  const RType *Input() const { return input_; }

#ifdef PADDLE_MOBILE_FPGA
  RType *Filter() const { return filter_; }
#else
  const RType *Filter() const { return filter_; }
#endif

  RType *Output() const { return output_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 protected:
  RType *bias_;
  int axis_;
  RType *input_;
  RType *output_;
  RType *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConvArgs fpga_conv_args;

 public:
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
#endif
};
#endif

E
eclipsess 已提交
1514
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1515
template <typename Dtype>
E
eclipsess 已提交
1516
class FusionConvAddBNReluParam : public OpParam {
N
nhzlx 已提交
1517 1518 1519
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1520 1521 1522 1523
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1524
    bias_ = InputYFrom<GType>(inputs, scope);
E
eclipsess 已提交
1525
    axis_ = GetAttr<int>("axis", attrs);
N
nhzlx 已提交
1526 1527 1528
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1529 1530 1531 1532
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1533 1534 1535 1536
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
E
eclipsess 已提交
1537 1538
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
1539
    //    is_test_ = GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1540
  }
N
nhzlx 已提交
1541
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1542 1543 1544

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1545
  const RType *Input() const { return input_; }
E
eclipsess 已提交
1546

1547
#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
1548
  RType *Filter() const { return filter_; }
1549
#else
N
nhzlx 已提交
1550
  const RType *Filter() const { return filter_; }
1551
#endif
E
eclipsess 已提交
1552

N
nhzlx 已提交
1553
  RType *Output() const { return output_; }
E
eclipsess 已提交
1554 1555 1556 1557 1558 1559 1560 1561 1562

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1563
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1564

N
nhzlx 已提交
1565
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1566

N
nhzlx 已提交
1567
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1568

N
nhzlx 已提交
1569
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1570 1571 1572 1573 1574 1575 1576

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1577
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1578

N
nhzlx 已提交
1579
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1580

N
nhzlx 已提交
1581
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1582

N
nhzlx 已提交
1583
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1584 1585

 protected:
N
nhzlx 已提交
1586
  RType *bias_;
E
eclipsess 已提交
1587
  int axis_;
N
nhzlx 已提交
1588 1589 1590
  RType *input_;
  RType *output_;
  RType *filter_;
E
eclipsess 已提交
1591 1592 1593 1594
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1595 1596 1597 1598
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1599 1600 1601
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1602 1603
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1604 1605 1606
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
1607
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
1608 1609

 public:
H
hanbuhe 已提交
1610
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
#endif
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
class FusionConvBNAddReluParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    bias_ = InputYFrom<GType>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    keyBNY_ = getkey("BNY", inputs, 0);
    keyX_ = getkey("X", inputs, 0);
    keyY_ = getkey("Y", inputs, 0);
    if (keyX_ == keyBNY_) {
      bias_ = InputYFrom<GType>(inputs, scope);
    } else if (keyY_ == keyBNY_) {
      bias_ = InputXFrom<GType>(inputs, scope);
    }
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  const RType *Input() const { return input_; }

#ifdef PADDLE_MOBILE_FPGA
  RType *Filter() const { return filter_; }
#else
  const RType *Filter() const { return filter_; }
#endif

  RType *Output() const { return output_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *input_;
  RType *output_;
  RType *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConvArgs fpga_conv_args;

 public:
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
H
hanbuhe 已提交
1724
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1725
#endif
E
eclipsess 已提交
1726
};
1727
#endif
E
eclipsess 已提交
1728

Z
zhangyang 已提交
1729
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1730
template <typename Dtype>
Z
zhangyang 已提交
1731
class FusionConvBNParam : public OpParam {
N
nhzlx 已提交
1732 1733 1734
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1735 1736 1737 1738
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
N
nhzlx 已提交
1739 1740 1741
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
Z
zhangyang 已提交
1742 1743 1744 1745
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1746 1747 1748 1749
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
Z
zhangyang 已提交
1750 1751 1752 1753 1754
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }

N
nhzlx 已提交
1755
  const RType *Input() const { return input_; }
Z
zhangyang 已提交
1756 1757

#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
1758
  RType *Filter() const { return filter_; }
Z
zhangyang 已提交
1759
#else
N
nhzlx 已提交
1760
  const RType *Filter() const { return filter_; }
Z
zhangyang 已提交
1761
#endif
N
nhzlx 已提交
1762
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1763 1764 1765 1766 1767 1768 1769 1770 1771

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1772
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1773

N
nhzlx 已提交
1774
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1775

N
nhzlx 已提交
1776
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1777

N
nhzlx 已提交
1778
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1779 1780 1781 1782 1783 1784 1785

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1786
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1787

N
nhzlx 已提交
1788
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1789

N
nhzlx 已提交
1790
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1791

N
nhzlx 已提交
1792
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1793 1794

 protected:
N
nhzlx 已提交
1795 1796 1797
  RType *input_;
  RType *output_y_;
  RType *filter_;
Z
zhangyang 已提交
1798 1799 1800 1801
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1802 1803 1804 1805
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1806 1807 1808
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1809 1810
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConvArgs fpga_conv_args;

 public:
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
#endif
};
#endif

1823
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1824
template <typename Dtype>
1825
class FusionConvAddBNParam : public OpParam {
N
nhzlx 已提交
1826 1827 1828
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1829 1830 1831 1832
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1833
    bias_ = InputYFrom<GType>(inputs, scope);
1834
    axis_ = GetAttr<int>("axis", attrs);
N
nhzlx 已提交
1835 1836 1837
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
1838 1839 1840 1841
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1842 1843 1844 1845
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
1846 1847 1848 1849
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }
N
nhzlx 已提交
1850
  RType *Bias() const { return bias_; }
1851 1852 1853

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1854
  const RType *Input() const { return input_; }
1855

1856
#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
1857
  RType *Filter() const { return filter_; }
1858
#else
N
nhzlx 已提交
1859
  const RType *Filter() const { return filter_; }
1860
#endif
N
nhzlx 已提交
1861
  RType *Output() const { return output_y_; }
1862 1863 1864 1865 1866 1867 1868 1869 1870

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1871
  const RType *InputBias() const { return input_bias_; }
1872

N
nhzlx 已提交
1873
  const RType *InputMean() const { return input_mean_; }
1874

N
nhzlx 已提交
1875
  const RType *InputScale() const { return input_scale_; }
1876

N
nhzlx 已提交
1877
  const RType *InputVariance() const { return input_variance_; }
1878 1879 1880 1881 1882 1883 1884

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1885
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1886

N
nhzlx 已提交
1887
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1888

N
nhzlx 已提交
1889
  const RType *NewScale() const { return new_scale_; }
1890

N
nhzlx 已提交
1891
  const RType *NewBias() const { return new_bias_; }
1892 1893

 protected:
N
nhzlx 已提交
1894
  RType *bias_;
1895
  int axis_;
N
nhzlx 已提交
1896 1897 1898
  RType *input_;
  RType *output_y_;
  RType *filter_;
1899 1900 1901 1902
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1903 1904 1905 1906
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1907 1908 1909
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1910 1911
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1912 1913 1914
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
1915
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
1916 1917

 public:
H
hanbuhe 已提交
1918 1919
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1920
#endif
1921
};
E
eclipsess 已提交
1922
#endif
Y
Yao,kun 已提交
1923

E
eclipsess 已提交
1924
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
1925
template <typename Dtype>
E
eclipsess 已提交
1926
class FusionDWConvBNReluParam : public OpParam {
N
nhzlx 已提交
1927 1928 1929
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1930 1931 1932 1933
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
                          const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1934 1935 1936
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1937 1938 1939 1940
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1941 1942 1943 1944
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
E
eclipsess 已提交
1945 1946
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
1947
    //    is_test_ = GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1948 1949
  }

N
nhzlx 已提交
1950
  const RType *Input() const { return input_; }
E
eclipsess 已提交
1951

N
nhzlx 已提交
1952
  const RType *Filter() const { return filter_; }
E
eclipsess 已提交
1953

N
nhzlx 已提交
1954
  RType *Output() const { return output_; }
E
eclipsess 已提交
1955 1956 1957 1958 1959 1960 1961 1962 1963

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1964
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1965

N
nhzlx 已提交
1966
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1967

N
nhzlx 已提交
1968
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1969

N
nhzlx 已提交
1970
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1971 1972 1973 1974 1975 1976 1977

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1978
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1979

N
nhzlx 已提交
1980
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1981

N
nhzlx 已提交
1982
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1983

N
nhzlx 已提交
1984
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1985 1986

 protected:
N
nhzlx 已提交
1987 1988 1989
  RType *input_;
  RType *output_;
  RType *filter_;
E
eclipsess 已提交
1990 1991 1992 1993
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1994 1995 1996 1997
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1998 1999 2000
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2001 2002
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
2003 2004 2005 2006
};

#endif

2007
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2008
template <typename Dtype>
2009
class FusionConvBNReluParam : public OpParam {
N
nhzlx 已提交
2010 2011 2012
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2013 2014 2015 2016
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
                        const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2017 2018 2019
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
2020 2021 2022 2023 2024

    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
2025 2026 2027 2028
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
2029 2030 2031 2032 2033
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }

N
nhzlx 已提交
2034
  const RType *Input() const { return input_; }
2035

Z
zhangyang 已提交
2036
#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
2037
  RType *Filter() const { return filter_; }
Z
zhangyang 已提交
2038
#else
N
nhzlx 已提交
2039
  const RType *Filter() const { return filter_; }
Z
zhangyang 已提交
2040
#endif
2041

N
nhzlx 已提交
2042
  RType *Output() const { return output_; }
2043 2044 2045 2046 2047 2048 2049 2050 2051

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
2052
  const RType *InputBias() const { return input_bias_; }
2053

N
nhzlx 已提交
2054
  const RType *InputMean() const { return input_mean_; }
2055

N
nhzlx 已提交
2056
  const RType *InputScale() const { return input_scale_; }
2057

N
nhzlx 已提交
2058
  const RType *InputVariance() const { return input_variance_; }
2059 2060 2061 2062 2063 2064 2065

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2066
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2067

N
nhzlx 已提交
2068
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2069

N
nhzlx 已提交
2070
  const RType *NewScale() const { return new_scale_; }
2071

N
nhzlx 已提交
2072
  const RType *NewBias() const { return new_bias_; }
2073 2074

 protected:
N
nhzlx 已提交
2075 2076 2077
  RType *input_;
  RType *output_;
  RType *filter_;
2078 2079 2080 2081
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
2082 2083 2084 2085
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2086 2087 2088
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2089 2090
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
2091 2092 2093 2094 2095 2096 2097 2098 2099
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConvArgs fpga_conv_args;

 public:
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
#endif
2100 2101 2102
};
#endif

Y
Yao,kun 已提交
2103
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2104
template <typename Dtype>
Y
Yao,kun 已提交
2105
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2106 2107 2108
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2109 2110 2111 2112
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
2113 2114
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2115 2116 2117 2118 2119
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

N
nhzlx 已提交
2120
  const RType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2121

N
nhzlx 已提交
2122
  RType *Output() const { return out_; }
Y
Yao,kun 已提交
2123 2124 2125 2126 2127 2128 2129 2130

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
N
nhzlx 已提交
2131 2132
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
2133 2134 2135 2136
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2137
#endif
Y
Yao,kun 已提交
2138

2139
#ifdef DROPOUT_OP
N
nhzlx 已提交
2140
template <typename Dtype>
Y
Yao,kun 已提交
2141
class DropoutParam : public OpParam {
N
nhzlx 已提交
2142 2143 2144
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2145 2146 2147
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2148 2149
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2150 2151
  }

N
nhzlx 已提交
2152
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2153

N
nhzlx 已提交
2154
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2155 2156

 private:
N
nhzlx 已提交
2157 2158
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
2159
};
2160
#endif
Y
Yao,kun 已提交
2161

L
liuruilong 已提交
2162
#ifdef CONV_TRANSPOSE
N
nhzlx 已提交
2163
template <typename Dtype>
L
liuruilong 已提交
2164
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2165 2166 2167
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2168 2169 2170 2171
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2172 2173 2174
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
2175 2176 2177 2178 2179 2180
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2181
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2182

N
nhzlx 已提交
2183
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2184

N
nhzlx 已提交
2185
  RType *Output() const { return output_; }
L
liuruilong 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2196 2197 2198
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2199 2200 2201 2202 2203 2204 2205
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
    activation_ = GetAttr<std::string>("activation", attrs);
    gate_activation_ = GetAttr<std::string>("gate_activation", attrs);
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2277
    axis = GetAttr<int>("axis", attrs);
2278 2279 2280
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2281
  const int &Axis() const { return axis; }
2282 2283 2284 2285

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2286
  int axis;
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2300
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2301
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2302 2303 2304 2305 2306 2307
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2308 2309
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2310 2311 2312 2313 2314
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2315 2316 2317

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2318
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2319
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2320 2321 2322
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2339 2340
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2341 2342
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2343
  const RType *InputOutPutSize() const { return input_outsize_; }
2344
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2345 2346
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2347 2348 2349 2350 2351

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2352 2353
  int out_h_;
  int out_w_;
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
  const RType *InputX() const { return input_; }
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

朔-望's avatar
朔-望 已提交
2378 2379
}  // namespace operators
}  // namespace paddle_mobile