op_param.h 100.3 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26 27 28 29 30 31 32

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
33
#endif
朔-望's avatar
朔-望 已提交
34

L
liuruilong 已提交
35 36
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
37
#endif
朔-望's avatar
朔-望 已提交
38 39

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
40 41
namespace operators {

W
wangliu 已提交
42 43 44 45 46
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
47
using framework::Variable;
W
wangliu 已提交
48 49
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
50

N
nhzlx 已提交
51 52 53 54 55 56 57 58 59
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
60
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
61 62 63 64 65 66 67 68
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
69
#endif
L
liuruilong 已提交
70

L
liuruilong 已提交
71
class OpParam {
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
 public:
  OpParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
          const AttributeMap &attrs, Scope *scope) {
    scope_pointer_ = scope;
    inputs_ = inputs;
  }

  template <typename T>
  T *CreateNewScale() {
    std::string scale_key = Getkey("Scale", inputs_, 0);
    auto var = scope_pointer_->Var(scale_key + "_new");
    return var->GetMutable<T>();
  }

  template <typename T>
  T *CreateNewBiase() {
    std::string biase_key = Getkey("Bias", inputs_, 0);
    auto var = scope_pointer_->Var(biase_key + "_new");
    return var->GetMutable<T>();
  }

  VariableNameMap inputs_;
  Scope *scope_pointer_ = nullptr;

朔-望's avatar
朔-望 已提交
96
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
97 98 99 100
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
Z
zhaojiaying01 已提交
101 102 103 104 105 106 107

  template <typename T>
  static T *InputHiddenPrevFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("HiddenPrev", inputs, scope);
  }

108 109 110 111 112
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

113 114 115 116 117 118 119 120 121
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
122 123 124 125 126
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

154 155 156 157
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
158 159 160 161 162 163

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

164 165 166 167 168
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
169 170 171 172 173
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

174 175 176 177 178
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
179 180 181 182
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
183 184 185 186 187 188 189 190 191 192 193 194
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
195 196 197 198
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
215

E
eclipsess 已提交
216 217 218 219 220 221 222 223 224 225
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
226 227 228 229
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
230

231
  template <typename T>
W
wangliu 已提交
232 233
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
234 235 236
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
237 238 239 240 241
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
242 243 244 245 246 247
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

Z
zhaojiaying01 已提交
248 249 250 251 252
  template <typename T>
  static T *OutputGateFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Gate", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
253 254 255 256 257 258 259 260 261 262 263
  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

Z
zhaojiaying01 已提交
264 265 266 267 268 269
  template <typename T>
  static T *OutputResetHiddenPrevFrom(const VariableNameMap &outputs,
                                      const Scope &scope) {
    return GetVarValue<T>("ResetHiddenPrev", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
270 271 272 273 274 275 276 277 278 279 280 281
  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

282 283 284 285 286
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
287 288 289 290 291
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

292 293 294 295 296
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
297 298 299 300 301 302
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

303 304 305 306 307
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
308 309 310 311 312 313
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
314 315 316 317 318 319
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
320 321 322 323 324
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

Z
zhaojiaying01 已提交
325 326 327 328 329
  template <typename T>
  static T *OutputNormFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Norm", outputs, scope);
  }

E
eclipsess 已提交
330 331 332 333 334 335
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

336 337 338 339 340 341 342 343 344 345 346
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
347
  static const T GetAttr(const string &key, const AttributeMap &map) {
348 349
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
350 351
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
352 353
    return ((Attribute)map.at(key)).GetString();
  }
354

355 356 357 358
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

359
  template <typename T>
W
wangliu 已提交
360
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
361
                        const Scope &scope) {
W
wangliu 已提交
362 363
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
364 365 366 367 368 369
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
370
    }
371
  }
朔-望's avatar
朔-望 已提交
372

E
eclipsess 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

386
  static std::string Getkey(const string &key, const VariableNameMap &var_map,
387
                            int index) {
388 389
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > index,
                          "%s is not contained in var_map", key.c_str())
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

408
  template <typename T>
W
wangliu 已提交
409 410 411
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
412 413
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
414
    vector<T *> var_res;
415 416 417
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
418
    }
419 420
    return var_res;
  }
E
eclipsess 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
434 435
};

N
nhzlx 已提交
436
template <typename Dtype>
437
class ConvParam : public OpParam {
N
nhzlx 已提交
438 439 440
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
441
 public:
442
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
443 444 445 446
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = OpParam::FilterFrom<GType>(inputs, *scope);
    input_ = OpParam::InputFrom<GType>(inputs, *scope);
447
    if (outputs.count("Output")) {
448
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
449 450 451 452 453
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
454
  }
朔-望's avatar
朔-望 已提交
455

456
  const GType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
457

458
  GType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
459

460
  GType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
461

W
wangliu 已提交
462
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
463

W
wangliu 已提交
464
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
465

W
wangliu 已提交
466
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
467

H
hjchen2 已提交
468 469 470
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
471 472
    EXEC_DEPTHWISE3x3S1_FLOAT,
    EXEC_DEPTHWISE3x3S2_FLOAT,
H
hjchen2 已提交
473 474
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
475
    EXEC_DEPTHWISE5x5_FLOAT,
H
hjchen2 已提交
476
    EXEC_GEMM_INT8,
H
hjchen2 已提交
477
    EXEC_DEPTHWISE3x3_INT8,
478
    EXEC_DEPTHWISE5x5_INT8,
S
StarryRain 已提交
479 480
    EXEC_SLIDINGWINDOW3x3S1_FLOAT,
    EXEC_SLIDINGWINDOW3x3S2_FLOAT,
H
hjchen2 已提交
481 482 483 484
  };

  ExecMode &ExecMode() const { return exec_mode_; }

485
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
486

487 488 489 490 491 492 493
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
494
 public:
495 496 497 498
  GType *input_;
  GType *output_;
  GType *filter_;
  GType *transformed_filter_;
W
wangliu 已提交
499 500 501
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
502
  mutable enum ExecMode exec_mode_;
503
  int groups;
504 505 506 507

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
508 509 510

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
511
 public:
Z
zhangyang 已提交
512 513 514 515 516
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
517 518 519 520 521 522 523

 public:
  fpga::DWconvArgs fpga_dwconv_args;

 public:
  const fpga::DWconvArgs &FpgaDwconvArgs() const { return fpga_dwconv_args; }
  void SetFpgaArgs(const fpga::DWconvArgs &args) { fpga_dwconv_args = args; }
Z
zhangyang 已提交
524
#endif
朔-望's avatar
朔-望 已提交
525
};
N
nhzlx 已提交
526 527
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
528

N
nhzlx 已提交
529
template <typename Dtype>
530
class ElementwiseAddParam : public OpParam {
N
nhzlx 已提交
531 532 533
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
534
 public:
535
  ElementwiseAddParam(const VariableNameMap &inputs,
536
                      const VariableNameMap &outputs, const AttributeMap &attrs,
537 538 539 540 541
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
542 543 544
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
545
  const GType *InputX() const { return input_x_; }
546

xiebaiyuan's avatar
xiebaiyuan 已提交
547
  const GType *InputY() const { return input_y_; }
548

xiebaiyuan's avatar
xiebaiyuan 已提交
549
  GType *Out() const { return out_; }
550 551 552

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
553
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
554 555 556
  GType *input_x_;
  GType *input_y_;
  GType *out_;
557
  int axis_;
Z
zhangyang 已提交
558 559 560
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
561
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
562 563

 public:
H
hanbuhe 已提交
564 565
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
qnqinan's avatar
qnqinan 已提交
566 567 568 569

 public:
  Tensor float_input_x, float_out;

Z
zhangyang 已提交
570
#endif
朔-望's avatar
朔-望 已提交
571 572
};

E
eclipsess 已提交
573
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
574
template <typename Dtype>
575
class ElementwiseMulParam : public OpParam {
E
eclipsess 已提交
576 577 578 579 580 581
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
582 583 584 585 586
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
qnqinan's avatar
qnqinan 已提交
603 604 605 606 607 608
#ifdef PADDLE_MOBILE_FPGA

 public:
  Tensor float_input_x, float_out;

#endif
E
eclipsess 已提交
609
};
S
suiyang 已提交
610
#endif
E
eclipsess 已提交
611

612
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
613 614
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
615 616
#endif

617
#ifdef ELEMENTWISESUB_OP
618
template <typename Dtype>
619
class ElementwiseSubParam : public OpParam {
620 621 622 623 624 625
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
626 627 628 629 630
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
648
#endif
649

L
liuruilong 已提交
650
#ifdef MUL_OP
N
nhzlx 已提交
651
template <typename Dtype>
652
class MulParam : public OpParam {
N
nhzlx 已提交
653 654 655
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
656
 public:
657
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
658 659 660 661 662
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
663 664 665
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
666

xiebaiyuan's avatar
xiebaiyuan 已提交
667
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
668

xiebaiyuan's avatar
xiebaiyuan 已提交
669
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
670

xiebaiyuan's avatar
xiebaiyuan 已提交
671
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
672

673
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
674

675
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
676

朔-望's avatar
朔-望 已提交
677
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
678 679 680
  GType *input_x_;
  GType *input_y_;
  GType *out_;
681 682
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
683
};
L
liuruilong 已提交
684
#endif
朔-望's avatar
朔-望 已提交
685

L
liuruilong 已提交
686
#ifdef CONCAT_OP
N
nhzlx 已提交
687
template <typename Dtype>
朔-望's avatar
朔-望 已提交
688
class ConcatParam : public OpParam {
N
nhzlx 已提交
689 690 691
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
692
 public:
693
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
694 695 696 697
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
698 699
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
700

N
nhzlx 已提交
701
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
702

xiebaiyuan's avatar
xiebaiyuan 已提交
703
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
704

705
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
706

朔-望's avatar
朔-望 已提交
707
 private:
N
nhzlx 已提交
708
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
709
  GType *out_;
710
  int axis_;
Z
zhangyang 已提交
711 712 713 714 715 716 717 718 719
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
720
};
L
liuruilong 已提交
721
#endif
朔-望's avatar
朔-望 已提交
722

E
eclipsess 已提交
723 724 725 726 727 728 729 730
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
731 732 733 734 735 736
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, *scope);
    out_var_ = OutVarFrom(outputs, *scope);
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
755
#ifdef LRN_OP
N
nhzlx 已提交
756
template <typename Dtype>
E
eclipsess 已提交
757
class LrnParam : public OpParam {
N
nhzlx 已提交
758 759 760
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
761
 public:
762
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
763 764 765 766 767
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    mid_out_ = MidOutFrom<GType>(outputs, *scope);
768 769 770 771
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
772
    data_format_ = GetStringAttr("data_format", attrs);
773
  }
E
eclipsess 已提交
774

775
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
776

777
  GType *Out() const { return out_; }
E
eclipsess 已提交
778

779
  GType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
780

781
  const int &N() const { return n_; }
E
eclipsess 已提交
782

783
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
784

785
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
786

787
  const float &K() const { return k_; }
E
eclipsess 已提交
788

W
wangliu 已提交
789
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
790

朔-望's avatar
朔-望 已提交
791
 private:
792 793 794
  GType *input_x_;
  GType *out_;
  GType *mid_out_;
795 796 797 798
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
799
  string data_format_;
E
eclipsess 已提交
800
};
L
liuruilong 已提交
801 802
#endif

Z
zhaojiaying01 已提交
803 804
#ifdef NORM_OP
template <typename Dtype>
805
class NormParam : public OpParam {
Z
zhaojiaying01 已提交
806 807 808 809 810
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
811 812 813 814 815
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_norm_ = OutputNormFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
816 817 818 819
    epsilon_ = GetAttr<float>("epsilon", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }

820
  const GType *InputX() const { return input_x_; }
Z
zhaojiaying01 已提交
821

822
  GType *Out() const { return out_; }
Z
zhaojiaying01 已提交
823

824
  GType *OutputNorm() const { return output_norm_; }
Z
zhaojiaying01 已提交
825 826 827 828 829 830

  const float &Epsilon() const { return epsilon_; }

  const int &Axis() const { return axis_; }

 private:
831 832 833
  GType *input_x_;
  GType *out_;
  GType *output_norm_;
Z
zhaojiaying01 已提交
834 835 836 837 838
  float epsilon_;
  int axis_;
};
#endif

L
liuruilong 已提交
839
#ifdef BATCHNORM_OP
N
nhzlx 已提交
840
template <typename Dtype>
841
class BatchNormParam : public OpParam {
N
nhzlx 已提交
842 843 844
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
845
 public:
846
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
847 848 849 850 851 852 853 854
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_y_ = OutputYFrom<GType>(outputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, *scope);
855 856
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
857
    //    is_test_ = GetAttr<bool>("is_test", attrs);
858
  }
E
eclipsess 已提交
859

860
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
861

862
  GType *OutputY() const { return output_y_; }
E
eclipsess 已提交
863

864
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
865

866
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
867

868
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
869

870
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
871

872
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
873

874
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
875

876
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
877

W
wangliu 已提交
878
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
879

880
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
881

882
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
883

884
  const GType *NewScale() const { return new_scale_; }
885

886
  const GType *NewBias() const { return new_bias_; }
887

朔-望's avatar
朔-望 已提交
888
 private:
889 890 891 892 893 894
  GType *input_x_;
  GType *output_y_;
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
895 896 897
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
898
  string data_format_;
899 900
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
901
};
L
liuruilong 已提交
902 903 904
#endif

#ifdef POOL_OP
N
nhzlx 已提交
905
template <typename Dtype>
906
class PoolParam : public OpParam {
N
nhzlx 已提交
907 908 909
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
910
 public:
911
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
912 913 914
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
915

916
    output_ = OutFrom<GType>(outputs, *scope);
917
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
918 919 920
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
921
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
922
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
923
  }
924

925
  const GType *Input() const { return input_; }
926

927
  GType *Output() const { return output_; }
928

W
wangliu 已提交
929
  const string &PoolingType() const { return pooling_type_; }
930

W
wangliu 已提交
931
  const vector<int> &Ksize() const { return ksize_; }
932

W
wangliu 已提交
933
  const vector<int> &Strides() const { return strides_; }
934

W
wangliu 已提交
935
  const vector<int> &Paddings() const { return paddings_; }
936

937
  bool isCeilMode() const { return ceil_mode_; }
938

Z
zhangyang 已提交
939
  bool isGlobalPooling() const { return global_pooling_; }
940

朔-望's avatar
朔-望 已提交
941
 private:
942 943
  GType *input_;
  GType *output_;
W
wangliu 已提交
944 945 946 947
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
948
  bool ceil_mode_;
949
  bool global_pooling_ = false;
Z
zhangyang 已提交
950
#ifdef PADDLE_MOBILE_FPGA
951 952

 private:
H
hanbuhe 已提交
953
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
954 955

 public:
H
hanbuhe 已提交
956 957
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
958
#endif
959
};
L
liuruilong 已提交
960 961 962
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
963
template <typename Dtype>
E
eclipsess 已提交
964
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
965 966 967
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
968 969
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
970 971 972 973 974 975
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    input_image_ = InputImageFrom<GType>(inputs, *scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, *scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, *scope);
W
wangliu 已提交
976 977 978 979
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
980 981 982 983

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
984 985
    } else {
      min_max_aspect_ratios_order_ = false;
986
    }
E
eclipsess 已提交
987 988 989 990 991 992
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
993
  const GType *Input() const { return input_; }
E
eclipsess 已提交
994

995
  const GType *InputImage() const { return input_image_; }
E
eclipsess 已提交
996

997
  GType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
998

999
  GType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
1000

W
wangliu 已提交
1001
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
1002

W
wangliu 已提交
1003
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
1004

W
wangliu 已提交
1005
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
1006

W
wangliu 已提交
1007
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

1019 1020 1021 1022
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
1023
 private:
1024 1025 1026 1027
  GType *input_;
  GType *input_image_;
  GType *output_boxes_;
  GType *output_variances_;
W
wangliu 已提交
1028 1029 1030 1031
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
1032 1033 1034 1035 1036
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
1037
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
1038
};
L
liuruilong 已提交
1039
#endif
E
eclipsess 已提交
1040

L
liuruilong 已提交
1041
#ifdef BOXCODER_OP
N
nhzlx 已提交
1042
template <typename Dtype>
E
eclipsess 已提交
1043
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
1044 1045 1046
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1047 1048
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1049 1050 1051 1052 1053 1054
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, *scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, *scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, *scope);
    output_box_ = OutputBoxFrom<GType>(outputs, *scope);
1055
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
1056
  }
1057
  const GType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
1058

1059
  const GType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
1060

1061
  const GType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
1062

1063
  GType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
1064 1065 1066 1067

  const std::string &CodeType() const { return code_type_; }

 private:
1068 1069 1070 1071
  GType *input_priorbox_;
  GType *input_priorboxvar_;
  GType *input_targetbox_;
  GType *output_box_;
E
eclipsess 已提交
1072 1073
  std::string code_type_;
};
L
liuruilong 已提交
1074
#endif
W
wangliu 已提交
1075

L
liuruilong 已提交
1076
#ifdef SOFTMAX_OP
N
nhzlx 已提交
1077
template <typename Dtype>
W
wangliu 已提交
1078
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
1079 1080 1081
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1082 1083
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1084 1085 1086 1087
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1088
  }
H
hjchen2 已提交
1089 1090
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1091 1092

 private:
H
hjchen2 已提交
1093 1094
  GType *input_x_;
  GType *out_;
H
hanbuhe 已提交
1095 1096 1097 1098

#ifdef PADDLE_MOBILE_FPGA

 private:
1099
  std::shared_ptr<GType> float_input_x_;
H
hanbuhe 已提交
1100 1101 1102
  fpga::BypassArgs fpga_bypass_args;

 public:
1103
  GType *FloatInput() const {
H
hanbuhe 已提交
1104 1105
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1106
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
H
hanbuhe 已提交
1107 1108 1109
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1110
};
L
liuruilong 已提交
1111
#endif
W
wangliu 已提交
1112

L
liuruilong 已提交
1113
#ifdef SIGMOID_OP
N
nhzlx 已提交
1114
template <typename Dtype>
W
wangliu 已提交
1115
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1116 1117 1118
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1119 1120
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1121 1122 1123 1124
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1125
  }
1126 1127
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1128 1129

 private:
1130 1131
  GType *input_x_;
  GType *out_;
1132 1133 1134 1135 1136 1137 1138 1139 1140
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1141
};
L
liuruilong 已提交
1142 1143 1144
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1145
template <typename Dtype>
E
eclipsess 已提交
1146
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1147 1148 1149
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1150 1151 1152
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1153 1154 1155 1156 1157
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, *scope);
    input_scores_ = InputScoresFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1158 1159 1160 1161 1162 1163 1164 1165
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

1166
  GType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1167

1168
  GType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1169

1170
  GType *Out() const { return out_; }
E
eclipsess 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
1185 1186 1187
  GType *input_bboxes_;
  GType *input_scores_;
  GType *out_;
E
eclipsess 已提交
1188 1189 1190 1191 1192 1193 1194
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1195
#endif
W
wangliu 已提交
1196

L
lijiancheng0614 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1206 1207 1208 1209
                           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutputFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1210
  }
1211 1212
  const GType *Input() const { return input_; }
  GType *Output() const { return output_; }
L
lijiancheng0614 已提交
1213 1214

 private:
1215 1216
  GType *input_;
  GType *output_;
L
lijiancheng0614 已提交
1217 1218 1219
};
#endif

N
nhzlx 已提交
1220
template <typename Dtype>
L
liuruilong 已提交
1221
class FeedParam : public OpParam {
N
nhzlx 已提交
1222 1223 1224
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1225 1226
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1227
            const AttributeMap &attrs, Scope *scope)
1228
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1229
    input_x_ = InputXFrom<std::vector<LoDTensor>>(inputs, *scope);
H
update  
hjchen2 已提交
1230
    out_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
1231
    col_ = GetAttr<int>("col", attrs);
H
update  
hjchen2 已提交
1232
    auto var = scope->FindVar("batch_size");
W
wangliu 已提交
1233
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1234
  }
H
hjchen2 已提交
1235
  const std::vector<LoDTensor> *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1236
  GType *Out() const { return out_; }
H
update  
hjchen2 已提交
1237
  const int Col() const { return col_; }
W
wangliu 已提交
1238
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1239

L
liuruilong 已提交
1240
 private:
H
hjchen2 已提交
1241
  std::vector<LoDTensor> *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1242
  GType *out_;
H
update  
hjchen2 已提交
1243
  int col_;
W
wangliu 已提交
1244
  int batch_size;
L
liuruilong 已提交
1245 1246
};

N
nhzlx 已提交
1247
template <typename Dtype>
L
liuruilong 已提交
1248
class FetchParam : public OpParam {
N
nhzlx 已提交
1249 1250 1251
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1252 1253
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1254
             const AttributeMap &attrs, Scope *scope)
1255
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1256 1257
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<std::vector<LoDTensor>>(outputs, *scope);
1258
    col_ = GetAttr<int>("col", attrs);
L
liuruilong 已提交
1259
  }
L
liuruilong 已提交
1260

H
hjchen2 已提交
1261 1262
  const GType *InputX() const { return input_x_; }
  std::vector<LoDTensor> *Out() const { return out_; }
1263
  const int Col() const { return col_; }
L
liuruilong 已提交
1264

L
liuruilong 已提交
1265
 private:
H
hjchen2 已提交
1266 1267
  GType *input_x_;
  std::vector<LoDTensor> *out_;
1268
  int col_;
qnqinan's avatar
qnqinan 已提交
1269
#ifdef PADDLE_MOBILE_FPGA
1270

qnqinan's avatar
qnqinan 已提交
1271 1272 1273
 public:
  fpga::BypassArgs fpga_bypass_args;
#endif
L
liuruilong 已提交
1274 1275
};

L
lijiancheng0614 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1285 1286 1287 1288
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    out_var_ = OutVarFrom(outputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1289 1290 1291 1292 1293 1294 1295
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

1296
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1297 1298 1299 1300 1301 1302 1303 1304 1305

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
1306
  GType *out_;
L
lijiancheng0614 已提交
1307 1308 1309 1310 1311 1312
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1313
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1314
template <typename Dtype>
E
eclipsess 已提交
1315
class TransposeParam : public OpParam {
N
nhzlx 已提交
1316 1317 1318
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1319 1320
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1321 1322 1323 1324
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1325 1326 1327
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1328
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1329

1330
  GType *Out() const { return out_; }
E
eclipsess 已提交
1331 1332 1333 1334

  const vector<int> &Axis() const { return axis_; }

 private:
1335 1336
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1337 1338
  vector<int> axis_;
};
L
liuruilong 已提交
1339
#endif
E
eclipsess 已提交
1340

L
lijiancheng0614 已提交
1341 1342 1343 1344 1345 1346 1347 1348
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1349 1350 1351 1352 1353
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1354 1355 1356
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1357
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1358

1359
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1360

1361
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1362 1363 1364 1365

  const vector<int> &Axis() const { return axis_; }

 private:
1366 1367 1368
  GType *input_x_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1369 1370 1371 1372
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1373 1374 1375 1376 1377 1378 1379 1380
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1381 1382 1383 1384 1385
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_w_ = InputWFrom<GType>(inputs, *scope);
    input_ids_ = InputIdsFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1412 1413
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
xiebaiyuan's avatar
xiebaiyuan 已提交
1414
    // todo crf params
1415 1416 1417 1418
    input_emission_ = InputEmissionFrom<GType>(inputs, *scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, *scope);
    input_label_ = InputLabelFrom<GType>(inputs, *scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1419 1420 1421 1422 1423 1424
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
1425 1426
  //  const GType *InputIds() const { return input_ids_; }
  //  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1427 1428 1429 1430 1431 1432 1433 1434
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

1435 1436
  //  GType *input_ids_;
  //  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1437 1438 1439 1440
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1441
#ifdef RESHAPE_OP
N
nhzlx 已提交
1442
template <typename Dtype>
E
eclipsess 已提交
1443
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1444 1445 1446
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1447 1448
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1449 1450 1451 1452 1453
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1454
    shape_ = GetAttr<vector<int>>("shape", attrs);
1455 1456 1457 1458 1459 1460 1461

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1462 1463
  }

1464
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1465

1466
  const GType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1467

1468
  GType *Out() const { return out_; }
E
eclipsess 已提交
1469 1470 1471 1472 1473 1474

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
1475 1476 1477
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
E
eclipsess 已提交
1478 1479 1480
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1481
#endif
E
eclipsess 已提交
1482

L
lijiancheng0614 已提交
1483 1484 1485 1486 1487 1488 1489 1490
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1491 1492 1493 1494 1495 1496
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1497 1498 1499 1500 1501 1502 1503 1504
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

E
eclipsess 已提交
1505
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1506

E
eclipsess 已提交
1507
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1508

E
eclipsess 已提交
1509
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1510

E
eclipsess 已提交
1511
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1512 1513 1514 1515 1516 1517

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1518 1519 1520 1521
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1522 1523 1524 1525 1526
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1527
#ifdef SCALE_OP
N
nhzlx 已提交
1528
template <typename Dtype>
I
itminner 已提交
1529
class ScaleParam : public OpParam {
N
nhzlx 已提交
1530 1531 1532
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1533 1534
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1535 1536 1537 1538
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
1539 1540
    scale_ = GetAttr<float>("scale", attrs);
    bias_ = GetAttr<float>("bias", attrs);
I
itminner 已提交
1541 1542
  }

1543
  const GType *InputX() const { return input_x_; }
I
itminner 已提交
1544

1545
  GType *Out() const { return out_; }
I
itminner 已提交
1546

1547
  const float Scale() const { return scale_; }
I
itminner 已提交
1548

1549
  const float Bias() const { return bias_; }
I
itminner 已提交
1550 1551

 private:
1552 1553
  GType *input_x_;
  GType *out_;
1554 1555
  float scale_;
  float bias_;
I
itminner 已提交
1556
};
T
Tian 已提交
1557 1558 1559
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1560
template <typename Dtype>
I
itminner 已提交
1561
class SliceParam : public OpParam {
N
nhzlx 已提交
1562 1563 1564
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1565 1566
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1567 1568 1569 1570
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1571

1572 1573 1574 1575
    axes_ = GetAttr<std::vector<int>>("axes", attrs);
    starts_ = GetAttr<std::vector<int>>("starts", attrs);
    ends_ = GetAttr<std::vector<int>>("ends", attrs);
  }
I
itminner 已提交
1576

1577 1578 1579 1580 1581 1582
 public:
  GType *input_;
  GType *output_;
  std::vector<int> axes_;
  std::vector<int> starts_;
  std::vector<int> ends_;
I
itminner 已提交
1583
};
T
Tian 已提交
1584 1585 1586
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1587
template <typename Dtype>
T
Tian 已提交
1588
class ResizeParam : public OpParam {
N
nhzlx 已提交
1589 1590 1591
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1592 1593
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1594 1595 1596 1597 1598
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1599 1600 1601 1602 1603 1604
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1605

1606
  const GType *InputX() const { return input_x_; }
T
Tian 已提交
1607

1608
  const GType *InputShape() const { return input_shape_; }
T
Tian 已提交
1609

1610
  GType *Out() const { return out_; }
T
Tian 已提交
1611

I
itminner 已提交
1612
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1613

I
itminner 已提交
1614
  const int &Height() const { return height_; }
T
Tian 已提交
1615

I
itminner 已提交
1616
  const int &Width() const { return width_; }
T
Tian 已提交
1617

I
itminner 已提交
1618
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1619

I
itminner 已提交
1620
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1621

I
itminner 已提交
1622
 private:
1623 1624 1625
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
I
itminner 已提交
1626 1627 1628 1629 1630
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1631 1632 1633
};
#endif

L
liuruilong 已提交
1634
#ifdef RELU_OP
L
liuruilong 已提交
1635 1636 1637
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1638
template <typename Dtype>
D
relu  
dolphin8 已提交
1639
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1640 1641 1642
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1643
 public:
D
relu  
dolphin8 已提交
1644
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
1645 1646 1647 1648
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1649 1650
  }

1651
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1652

1653
  GType *Out() const { return out_; }
E
eclipsess 已提交
1654 1655

 private:
1656 1657
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1658
};
D
relu  
dolphin8 已提交
1659 1660 1661

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1662
 public:
D
relu  
dolphin8 已提交
1663 1664 1665
  using ReluParamBase<Dtype>::ReluParamBase;
};

Y
yangfei 已提交
1666
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1667 1668
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1669
 public:
D
relu  
dolphin8 已提交
1670
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1671 1672 1673
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1674 1675
  framework::CLImage midImage;
};
Y
yangfei 已提交
1676
#endif
D
relu  
dolphin8 已提交
1677

L
liuruilong 已提交
1678
#endif
E
eclipsess 已提交
1679

Z
zhangyang 已提交
1680 1681 1682 1683 1684 1685 1686 1687
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1688 1689 1690 1691
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
1692
  }
1693 1694
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
Z
zhangyang 已提交
1695 1696

 private:
1697 1698
  GType *input_x_;
  GType *out_;
qnqinan's avatar
qnqinan 已提交
1699 1700 1701
#ifdef PADDLE_MOBILE_FPGA

 private:
1702
  std::shared_ptr<GType> float_input_x_;
qnqinan's avatar
qnqinan 已提交
1703 1704 1705
  fpga::BypassArgs fpga_bypass_args;

 public:
1706
  GType *FloatInput() const {
qnqinan's avatar
qnqinan 已提交
1707 1708
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1709
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
qnqinan's avatar
qnqinan 已提交
1710 1711 1712
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1713
};
L
liuruilong 已提交
1714
#endif
E
eclipsess 已提交
1715

T
Tian 已提交
1716
#ifdef PRELU_OP
N
nhzlx 已提交
1717
template <typename Dtype>
T
Tian 已提交
1718
class PReluParam : public OpParam {
N
nhzlx 已提交
1719 1720 1721
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1722 1723
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1724 1725
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
1726
    DLOG << "PReluParam inputs before";
1727 1728
    input_x_ = InputXFrom<GType>(inputs, *scope);
    alpha_ = InputAlphaFrom<GType>(inputs, *scope);
1729
    framework::DDim dims = alpha_->dims();
1730
    out_ = OutFrom<GType>(outputs, *scope);
1731
    mode_ = GetStringAttr("mode", attrs);
1732
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1733
  }
1734 1735 1736
  const GType *InputX() const { return input_x_; }
  const GType *InputAlpha() const { return alpha_; }
  GType *Out() const { return out_; }
1737
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1738

I
itminner 已提交
1739
 private:
1740 1741 1742
  GType *input_x_;
  GType *out_;
  GType *alpha_;
1743
  std::string mode_;
T
Tian 已提交
1744 1745 1746
};
#endif

N
nhzlx 已提交
1747
template <typename Dtype>
L
liuruilong 已提交
1748
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1749 1750 1751
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1752
 public:
L
liuruilong 已提交
1753
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1754 1755 1756 1757 1758 1759
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    input_z_ = InputZFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1760 1761 1762 1763
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1764
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1765

1766
  GType *InputY() const { return input_y_; }
E
eclipsess 已提交
1767

1768
  GType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1769

xiebaiyuan's avatar
xiebaiyuan 已提交
1770
  GType *Out() const { return out_; }
E
eclipsess 已提交
1771 1772 1773 1774 1775 1776 1777 1778

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1779
  GType *input_x_;
1780 1781
  GType *input_y_;
  GType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1782
  GType *out_;
E
eclipsess 已提交
1783 1784 1785
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1786

Z
ZhenWang 已提交
1787
#ifdef PADDLE_MOBILE_FPGA
1788
 private:  // NOLINT
Z
zhangyang 已提交
1789
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1790 1791

 public:
Z
zhangyang 已提交
1792 1793
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1794
#endif
E
eclipsess 已提交
1795
};
1796 1797

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1798 1799
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1800
#endif
E
eclipsess 已提交
1801

N
nhzlx 已提交
1802
template <typename Dtype>
1803
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1804 1805 1806
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1807
 public:
L
liuruilong 已提交
1808
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1809
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1810
                     Scope *scope)
1811
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1812
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1813
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1814
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1815
  }
1816
  GType *Bias() const { return bias_; }
W
wangliu 已提交
1817 1818 1819

  const int &Axis() const { return axis_; }

L
liuruilong 已提交
1820
 protected:
1821
  GType *bias_;
W
wangliu 已提交
1822 1823 1824
  int axis_;
};

N
nhzlx 已提交
1825 1826
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1827

Z
zhangyang 已提交
1828
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1829 1830
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1831
 public:
L
liuruilong 已提交
1832
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1833
                         const VariableNameMap &outputs,
1834
                         const AttributeMap &attrs, Scope *scope)
1835
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1836 1837 1838
};
#endif

1839
#ifdef FUSION_CONVADDPRELU_OP
1840 1841 1842 1843
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1844 1845 1846 1847

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1848
                          const AttributeMap &attrs, Scope *scope)
1849
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1850
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1851
    mode_ = OpParam::GetStringAttr("mode", attrs);
1852
    framework::DDim dims = alpha_->dims();
1853
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1854
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1855
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
1856
  }
1857
  const GType *InputAlpha() const { return alpha_; }
1858
  const std::string &Mode() const { return mode_; }
1859
  GType *Bias() const { return bias_; }
1860 1861 1862
  const int &Axis() const { return axis_; }

 protected:
1863
  GType *bias_;
1864
  int axis_;
1865
  GType *alpha_;
1866 1867 1868 1869 1870
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1871 1872 1873 1874
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1875 1876 1877 1878

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1879
                             const AttributeMap &attrs, Scope *scope)
1880
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1881 1882
    bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1883
    mode_ = OpParam::GetStringAttr("mode", attrs);
1884
    framework::DDim dims = alpha_->dims();
H
update  
hjchen2 已提交
1885
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1886
    axis_ = OpParam::GetAttr<int>("axis", attrs);
1887 1888 1889
    keyOutput_ = OpParam::Getkey("addOut", inputs, 0);
    keyX1_ = OpParam::Getkey("addX", inputs, 1);
    keyY1_ = OpParam::Getkey("Y", inputs, 1);
1890
    if (keyX1_ == keyOutput_) {
1891
      bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
1892
    } else if (keyY1_ == keyOutput_) {
1893
      bias1_ = OpParam::InputXFrom1<GType>(inputs, *scope);
1894
    }
H
update  
hjchen2 已提交
1895
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
1896
  }
1897
  const GType *InputAlpha() const { return alpha_; }
1898
  const std::string &Mode() const { return mode_; }
1899
  const GType *Bias1() const { return bias1_; }
1900

1901
  GType *Bias() const { return bias_; }
1902 1903 1904 1905

  const int &Axis() const { return axis_; }

 protected:
1906
  GType *bias_;
1907
  int axis_;
1908
  GType *alpha_;
1909
  std::string mode_;
1910
  GType *bias1_;
1911 1912 1913 1914 1915 1916
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1917
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1918
template <typename Dtype>
1919
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1920 1921 1922
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1923 1924 1925
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1926
                           const AttributeMap &attrs, Scope *scope)
1927
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1928
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1929
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1930 1931 1932 1933
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
1934 1935
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
1936
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1937
  }
1938
  GType *Bias() const { return bias_; }
E
eclipsess 已提交
1939 1940 1941

  const int &Axis() const { return axis_; }

1942
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1943

1944
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1945

1946
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1947

1948
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1949 1950 1951 1952 1953

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

1954
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1955

1956
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1957

1958
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1959

1960
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1961 1962

 protected:
1963
  GType *bias_;
E
eclipsess 已提交
1964
  int axis_;
1965 1966 1967 1968
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
1969 1970
  float epsilon_;
  float momentum_;
1971 1972
  GType *new_bias_;
  GType *new_scale_;
1973 1974 1975 1976 1977
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1978
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1979 1980 1981 1982 1983 1984
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1985
                           const AttributeMap &attrs, Scope *scope)
1986
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1987
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1988
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1989 1990 1991 1992
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
1993 1994
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
1995 1996 1997
    keyBNY_ = OpParam::Getkey("BNY", inputs, 0);
    keyX_ = OpParam::Getkey("X", inputs, 0);
    keyY_ = OpParam::Getkey("Y", inputs, 0);
1998
    if (keyX_ == keyBNY_) {
1999
      bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2000
    } else if (keyY_ == keyBNY_) {
2001
      bias_ = OpParam::InputXFrom<GType>(inputs, *scope);
2002
    }
H
update  
hjchen2 已提交
2003
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2004
  }
2005
  GType *Bias() const { return bias_; }
2006 2007 2008

  const int &Axis() const { return axis_; }

2009
  const GType *InputBias() const { return input_bias_; }
2010

2011
  const GType *InputMean() const { return input_mean_; }
2012

2013
  const GType *InputScale() const { return input_scale_; }
2014

2015
  const GType *InputVariance() const { return input_variance_; }
2016 2017 2018 2019 2020

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2021
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2022

2023
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2024

2025
  const GType *NewScale() const { return new_scale_; }
2026

2027
  const GType *NewBias() const { return new_bias_; }
2028 2029

 protected:
2030
  GType *bias_;
2031
  int axis_;
2032 2033 2034 2035
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2036 2037
  float epsilon_;
  float momentum_;
2038 2039
  GType *new_bias_;
  GType *new_scale_;
2040 2041 2042
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
2043
};
2044
#endif
E
eclipsess 已提交
2045

Z
zhangyang 已提交
2046
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
2047
template <typename Dtype>
2048
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2049 2050 2051
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
2052 2053 2054
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
2055
                    Scope *scope)
2056
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2057 2058 2059 2060
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2061 2062
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2063
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
2064 2065
  }

2066
  const GType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
2067

2068
  const GType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
2069

2070
  const GType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
2071

2072
  const GType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
2073 2074 2075 2076 2077

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2078
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
2079

2080
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
2081

2082
  const GType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
2083

2084
  const GType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
2085 2086

 protected:
2087 2088 2089 2090
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
Z
zhangyang 已提交
2091 2092
  float epsilon_;
  float momentum_;
2093 2094
  GType *new_bias_;
  GType *new_scale_;
Z
zhangyang 已提交
2095 2096 2097
};
#endif

2098
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2099
template <typename Dtype>
2100
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2101 2102 2103
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2104 2105 2106
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2107
                       const AttributeMap &attrs, Scope *scope)
2108
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2109
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2110
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2111 2112 2113 2114
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2115 2116
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2117
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
2118
  }
2119
  GType *Bias() const { return bias_; }
2120 2121 2122

  const int &Axis() const { return axis_; }

2123
  const GType *InputBias() const { return input_bias_; }
2124

2125
  const GType *InputMean() const { return input_mean_; }
2126

2127
  const GType *InputScale() const { return input_scale_; }
2128

2129
  const GType *InputVariance() const { return input_variance_; }
2130 2131 2132 2133 2134

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2135
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2136

2137
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2138

2139
  const GType *NewScale() const { return new_scale_; }
2140

2141
  const GType *NewBias() const { return new_bias_; }
2142 2143

 protected:
2144
  GType *bias_;
2145
  int axis_;
2146 2147 2148 2149
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2150 2151
  float epsilon_;
  float momentum_;
2152 2153
  GType *new_bias_;
  GType *new_scale_;
2154
};
E
eclipsess 已提交
2155
#endif
Y
Yao,kun 已提交
2156

E
eclipsess 已提交
2157
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2158
template <typename Dtype>
2159
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2160 2161 2162
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2163 2164 2165
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2166
                          const AttributeMap &attrs, Scope *scope)
2167
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2168 2169 2170 2171
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2172 2173
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2174
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
2175 2176
  }

2177
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2178

2179
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2180

2181
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2182

2183
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2184 2185 2186 2187 2188

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2189
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2190

2191
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2192

2193
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2194

2195
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2196 2197

 protected:
2198 2199 2200 2201
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2202 2203
  float epsilon_;
  float momentum_;
2204 2205
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
2206 2207 2208 2209
};

#endif

2210
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2211
template <typename Dtype>
2212
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2213 2214 2215
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2216 2217 2218
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2219
                        const AttributeMap &attrs, Scope *scope)
2220
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2221 2222 2223 2224
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2225 2226
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2227
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2228 2229
  }

2230
  const GType *InputBias() const { return input_bias_; }
2231

2232
  const GType *InputMean() const { return input_mean_; }
2233

2234
  const GType *InputScale() const { return input_scale_; }
2235

2236
  const GType *InputVariance() const { return input_variance_; }
2237 2238 2239 2240 2241

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2242
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2243

2244
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2245

2246
  const GType *NewScale() const { return new_scale_; }
2247

2248
  const GType *NewBias() const { return new_bias_; }
2249 2250

 protected:
2251 2252 2253 2254
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2255 2256
  float epsilon_;
  float momentum_;
2257 2258
  GType *new_bias_;
  GType *new_scale_;
2259 2260 2261
};
#endif

Y
Yao,kun 已提交
2262
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2263
template <typename Dtype>
Y
Yao,kun 已提交
2264
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2265 2266 2267
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2268 2269 2270
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
2271 2272 2273 2274
                   Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
Yao,kun 已提交
2275 2276 2277 2278 2279
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2280
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2281

E
eclipsess 已提交
2282
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2283 2284 2285 2286 2287 2288 2289 2290

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2291 2292
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2293 2294 2295 2296
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2297
#endif
Y
Yao,kun 已提交
2298

2299
#ifdef DROPOUT_OP
N
nhzlx 已提交
2300
template <typename Dtype>
Y
Yao,kun 已提交
2301
class DropoutParam : public OpParam {
N
nhzlx 已提交
2302 2303 2304
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2305 2306
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2307 2308 2309 2310
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
yangfei 已提交
2311 2312

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2313 2314
  }

2315
  const GType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2316

2317
  GType *Out() const { return out_; }
Y
Yao,kun 已提交
2318

Y
yangfei 已提交
2319 2320
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2321
 private:
2322 2323
  GType *input_x_;
  GType *out_;
Y
yangfei 已提交
2324
  float dropout_prob_;
Y
Yao,kun 已提交
2325
};
2326
#endif
Y
Yao,kun 已提交
2327

N
nhzlx 已提交
2328
template <typename Dtype>
L
liuruilong 已提交
2329
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2330 2331 2332
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2333 2334 2335
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
2336 2337 2338 2339
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = FilterFrom<GType>(inputs, *scope);
    input_ = InputFrom<GType>(inputs, *scope);
2340
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2341
    if (outputs.count("Output")) {
2342
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2343
    }
L
liuruilong 已提交
2344 2345 2346 2347 2348 2349
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

2350
  const GType *Input() const { return input_; }
L
liuruilong 已提交
2351

2352
  const GType *Filter() const { return filter_; }
L
liuruilong 已提交
2353

2354
  GType *Output() const { return output_; }
L
liuruilong 已提交
2355 2356 2357 2358 2359 2360 2361 2362 2363

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

H
hjchen2 已提交
2364 2365 2366 2367 2368 2369 2370 2371 2372
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DECONV3X3_FLOAT,
    EXEC_DECONV4X4_FLOAT,
  };

  ExecMode &ExecMode() const { return exec_mode_; }

L
liuruilong 已提交
2373
 private:
2374 2375 2376
  GType *input_;
  GType *output_;
  GType *filter_;
L
liuruilong 已提交
2377 2378 2379 2380
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
H
hjchen2 已提交
2381
  mutable enum ExecMode exec_mode_;
Z
zhangyang 已提交
2382 2383 2384 2385 2386

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;
qnqinan's avatar
qnqinan 已提交
2387
  fpga::DWDeconvArgs fpga_DWDeconv_args;
Z
zhangyang 已提交
2388 2389 2390

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
qnqinan's avatar
qnqinan 已提交
2391 2392 2393
  const fpga::DWDeconvArgs &FpgaDWDconvArgs() const {
    return fpga_DWDeconv_args;
  }
Z
zhangyang 已提交
2394
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
qnqinan's avatar
qnqinan 已提交
2395 2396 2397
  void SetFpgaArgs(const fpga::DWDeconvArgs &args) {
    fpga_DWDeconv_args = args;
  }
Z
zhangyang 已提交
2398
#endif
L
liuruilong 已提交
2399
};
Z
zhangyang 已提交
2400

qnqinan's avatar
qnqinan 已提交
2401 2402 2403 2404 2405
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2406 2407

 public:
qnqinan's avatar
qnqinan 已提交
2408
  FusionDeconvAddParam(const VariableNameMap &inputs,
2409
                       const VariableNameMap &outputs,
2410
                       const AttributeMap &attrs, Scope *scope)
2411
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2412
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
qnqinan's avatar
qnqinan 已提交
2413
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2414
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2415
  }
2416
  GType *Bias() const { return bias_; }
qnqinan's avatar
qnqinan 已提交
2417 2418 2419

  const int &Axis() const { return axis_; }

2420
  GType *Output() const { return output_; }
qnqinan's avatar
qnqinan 已提交
2421 2422

 protected:
2423
  GType *bias_;
qnqinan's avatar
qnqinan 已提交
2424
  int axis_;
2425
  GType *output_;
qnqinan's avatar
qnqinan 已提交
2426 2427 2428 2429 2430 2431 2432
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
2433 2434 2435 2436 2437 2438 2439 2440 2441
#ifdef FUSION_DECONVADDBN_OP
template <typename Dtype>
class FusionDeconvAddBNParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNParam(const VariableNameMap &inputs,
                         const VariableNameMap &outputs,
2442
                         const AttributeMap &attrs, Scope *scope)
2443
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2444 2445 2446 2447 2448
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2449 2450 2451 2452 2453 2454 2455
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVBNRELU_OP
template <typename Dtype>
class FusionDeconvBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2499
                          const AttributeMap &attrs, Scope *scope)
2500
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2501 2502 2503 2504 2505
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2506 2507 2508 2509 2510 2511
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVADDBNRELU_OP
template <typename Dtype>
class FusionDeconvAddBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
2555
                             const AttributeMap &attrs, Scope *scope)
2556
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2557 2558 2559 2560 2561
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
L
liuruilong 已提交
2603

Z
zhangyang 已提交
2604 2605 2606 2607 2608
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2623 2624 2625 2626 2627 2628 2629 2630
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_h0_ = InputH0From<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2631
    output_batch_reset_hidden_prev_ =
2632 2633 2634
        OutputBatchResetHiddenPrevFrom<GType>(outputs, *scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
2635 2636
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

Z
zhaojiaying01 已提交
2670 2671 2672 2673 2674 2675 2676
#ifdef GRU_UNIT_OP
template <typename Dtype>
class GruUnitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  GruUnitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2677 2678 2679 2680 2681 2682 2683 2684
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_hidden_prev_ = InputHiddenPrevFrom<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_gate_ = OutputGateFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2685
    output_reset_hidden_prev_ =
2686 2687
        OutputResetHiddenPrevFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
    activation_ = GetAttr<int>("activation", attrs);
    gate_activation_ = GetAttr<int>("gate_activation", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputHiddenPrev() const { return input_hidden_prev_; }
  const GType *InputBias() const { return input_bias_; }
  const int &Activation() const { return activation_; }
  const int &GateActivation() const { return gate_activation_; }

  GType *OutGate() const { return output_gate_; }
  GType *OutResetHiddenPrev() const { return output_reset_hidden_prev_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_hidden_prev_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_gate_;
  GType *output_reset_hidden_prev_;
  GType *output_hidden_;
  int activation_;
  int gate_activation_;
};
#endif

2716 2717 2718 2719 2720 2721 2722 2723
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2724 2725 2726 2727
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2728
    axis = GetAttr<int>("axis", attrs);
2729
  }
2730 2731
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2732
  const int &Axis() const { return axis; }
2733 2734

 private:
2735 2736
  GType *input_x_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2737
  int axis;
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2749 2750 2751 2752
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    outs_ = OutMultiFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2753
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2754 2755 2756 2757 2758 2759
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2760
  }
2761
  const GType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2762 2763 2764 2765 2766
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2767 2768

 private:
2769
  GType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2770
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2771
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2772 2773 2774
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2775 2776 2777 2778 2779 2780 2781 2782 2783
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
2796 2797 2798 2799 2800
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2801 2802
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2803
  }
2804 2805 2806
  const GType *InputX() const { return input_x_; }
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2807 2808
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2809 2810

 private:
2811 2812 2813
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2814 2815
  int out_h_;
  int out_w_;
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2827 2828 2829 2830
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
2831
  }
2832 2833
  const GType *Input() const { return input_; }
  GType *Out() const { return out_; }
2834 2835

 private:
2836 2837
  GType *input_;
  GType *out_;
2838 2839 2840
};
#endif

H
hjchen2 已提交
2841 2842 2843 2844 2845 2846 2847 2848
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2849 2850 2851 2852 2853
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, *scope);
H
hjchen2 已提交
2854 2855 2856 2857
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
2858 2859 2860
  GType *input_;
  GType *output_;
  GType *indices_;
H
hjchen2 已提交
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2873 2874 2875 2876
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
H
hjchen2 已提交
2877 2878 2879 2880 2881
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
2882 2883
  GType *input_;
  GType *output_;
H
hjchen2 已提交
2884 2885 2886 2887 2888
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

2889
#ifdef QUANT_OP
2890
template <typename Dtype>
2891 2892 2893 2894 2895
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2896
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2897 2898 2899 2900
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
2901 2902
    // online
    // scale = max(abs(x))
2903
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
2904
    // offline
2905
    if (inputs.count("InScale")) {
2906
      offline_ = true;
2907
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
2908 2909
    }
    // x = round(scale * x)
2910 2911
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
2912
    }
2913 2914 2915 2916
  }

 public:
  // op input
2917
  GType *input_;
2918
  // op output
2919
  GType *output_;
2920
  GType *online_scale_;
2921
  // quantize offline scale
2922
  GType *offline_scale_;
2923 2924
  // if offine scale or not
  bool offline_ = false;
2925
  // round method type
2926 2927
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
2928
};
2929
#endif
2930

2931
#ifdef DEQUANT_OP
2932
template <typename Dtype>
2933 2934 2935 2936 2937
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2938
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2939 2940 2941 2942 2943
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, *scope);
2944
    // dequantization is performed as x = x / static_scale / online_scale
2945 2946
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
2947
    } else {
2948
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
2949 2950 2951 2952 2953
    }
  }

 public:
  // op input
2954
  GType *input_;
2955
  // op output
2956
  GType *output_;
2957
  GType *activation_scale_;
2958 2959
  float weight_scale_;
};
2960
#endif
2961

2962 2963 2964 2965
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
2966
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
2967
template <typename Dtype>
2968
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
2969 2970 2971 2972
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2973 2974
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2975
                       const AttributeMap &attrs, Scope *scope)
H
hjchen2 已提交
2976 2977
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
2978 2979 2980 2981
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, *scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, *scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, *scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, *scope);
H
hjchen2 已提交
2982 2983 2984 2985 2986
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
2987 2988 2989 2990
  GType *bn_mean_;
  GType *bn_variance_;
  GType *bn_scale_;
  GType *bn_bias_;
H
hjchen2 已提交
2991
  float epsilon_;
2992 2993 2994
};
#endif

2995 2996 2997 2998
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
2999 3000 3001 3002 3003 3004 3005 3006
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
3007
                          const AttributeMap &attrs, Scope *scope)
3008 3009 3010
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
3011
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
3012 3013 3014 3015 3016
  }

 public:
  // elementwise add
  int axis_;
3017
  GType *bias_;
3018 3019 3020
};
#endif

3021 3022 3023 3024 3025 3026 3027 3028 3029
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
3030
                               const AttributeMap &attrs, Scope *scope)
3031 3032
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
3033
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3034
    // offline
3035 3036
    if (inputs.count("InScale")) {
      offline_ = true;
3037
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3038 3039 3040 3041 3042 3043 3044 3045
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
3046
  GType *online_scale_;
3047
  // quantize offline scale
3048
  GType *offline_scale_;
3049 3050
  // if offine scale or not
  bool offline_ = false;
3051 3052 3053 3054 3055 3056
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

3057 3058 3059 3060 3061 3062 3063 3064 3065
#ifdef SEQUENCE_EXPAND_OP
template <typename Dtype>
class SequenceExpandParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequenceExpandParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
3066 3067 3068 3069 3070
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
    ref_level_ = -1;
    if (OpParam::HasAttr("ref_level", attrs)) {
      ref_level_ = OpParam::GetAttr<int>("ref_level", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int ref_level_;
};
#endif  // SEQUENCE_EXPAND_OP

#ifdef SEQUENCE_POOL_OP
template <typename Dtype>
class SequencePoolParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequencePoolParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3094 3095 3096 3097
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3098 3099
    pool_type_ = "MAX";
    if (OpParam::HasAttr("pooltype", attrs)) {
H
hjchen2 已提交
3100
      pool_type_ = OpParam::GetStringAttr("pooltype", attrs);
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
    }
  }

 public:
  GType *input_;
  GType *output_;
  std::string pool_type_;
};
#endif  // SEQUENCE_EXPAND_OP

3111 3112 3113 3114 3115 3116 3117 3118
#ifdef LOD_RESET_OP
template <typename Dtype>
class LodResetParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LodResetParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3119 3120 3121 3122
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3123 3124
    input_y_ = nullptr;
    if (inputs.count("Y")) {
3125
      input_y_ = InputYFrom<GType>(inputs, *scope);
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
    } else {
      target_lod_ = OpParam::GetAttr<vector<int>>("target_lod", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  std::vector<int> target_lod_;
};
#endif  // LOD_RESET_OP

3139 3140 3141 3142 3143 3144 3145 3146
#ifdef LESS_THAN_OP
template <typename Dtype>
class CompareParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CompareParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3147 3148 3149 3150 3151
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
    axis_ = OpParam::GetAttr<int>("axis", attrs);
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int axis_;
};
#endif  // LESS_THAN_OP

Z
zhaojiaying01 已提交
3163
#if defined(LOGICAL_AND_OP) || defined(LOGICAL_OR_OP) || defined(LOGICAL_XOR_OP)
3164
template <typename Dtype>
Z
zhaojiaying01 已提交
3165
class LogicalBinaryParam : public OpParam {
3166 3167 3168 3169
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3170 3171
  LogicalBinaryParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3172 3173 3174 3175 3176
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
  }

  const GType *InputX() const { return input_x_; }
  const GType *InputY() const { return input_y_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
};
Z
zhaojiaying01 已提交
3188
#endif  // LOGICAL_AND_OP LOGICAL_OR_OP LOGICAL_XOR_OP
3189 3190 3191

#ifdef LOGICAL_NOT_OP
template <typename Dtype>
Z
zhaojiaying01 已提交
3192
class LogicalUnaryParam : public OpParam {
3193 3194 3195 3196
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3197 3198
  LogicalUnaryParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3199 3200 3201 3202
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // LOGICAL_NOT_OP

3214 3215 3216
#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype>
class WriteToArrayParam : public OpParam {
H
hjchen2 已提交
3217 3218 3219
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3220 3221 3222
 public:
  WriteToArrayParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3223 3224
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3225 3226 3227
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<std::vector<GType>>("Out", outputs, *scope);
3228 3229 3230
  }

 public:
H
hjchen2 已提交
3231 3232 3233
  GType *input_;
  GType *index_;
  std::vector<GType> *output_;
3234 3235 3236 3237 3238 3239
};
#endif

#ifdef READ_FROM_ARRAY_OP
template <typename Dtype>
class ReadFromArrayParam : public OpParam {
H
hjchen2 已提交
3240 3241 3242
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3243 3244 3245
 public:
  ReadFromArrayParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3246 3247
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3248 3249 3250
    input_ = OpParam::GetVarValue<std::vector<GType>>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
3251 3252 3253
  }

 public:
H
hjchen2 已提交
3254 3255 3256
  std::vector<GType> *input_;
  GType *index_;
  GType *output_;
3257 3258 3259
};
#endif

Z
zhaojiaying01 已提交
3260 3261 3262 3263 3264 3265 3266 3267
#ifdef IS_EMPTY_OP
template <typename Dtype>
class IsEmptyParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IsEmptyParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3268 3269 3270 3271
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // IS_EMPTY_OP

#ifdef INCREMENT_OP
template <typename Dtype>
class IncrementParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IncrementParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
3291
                 const AttributeMap &attrs, Scope *scope)
3292
      : OpParam(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
3293 3294
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
3295
    step_ = OpParam::GetAttr<float>("step", attrs);
Z
zhaojiaying01 已提交
3296 3297 3298 3299
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }
H
update  
hjchen2 已提交
3300
  float Step() const { return step_; }
Z
zhaojiaying01 已提交
3301 3302 3303 3304

 public:
  GType *input_x_;
  GType *output_;
H
update  
hjchen2 已提交
3305
  float step_;
Z
zhaojiaying01 已提交
3306 3307
};
#endif  // INCREMENT_OP
3308 3309 3310 3311 3312 3313 3314 3315
#ifdef PAD2D_OP
template <typename Dtype>
class Pad2dParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Pad2dParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3316 3317 3318 3319
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
3320 3321 3322 3323 3324 3325 3326 3327 3328
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
};
#endif
Z
zhaojiaying01 已提交
3329

朔-望's avatar
朔-望 已提交
3330 3331
}  // namespace operators
}  // namespace paddle_mobile