op_param.h 75.4 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26
#ifdef PADDLE_MOBILE_FPGA
H
hanbuhe 已提交
27
#include "fpga/api.h"
Z
zhangyang 已提交
28
#endif
朔-望's avatar
朔-望 已提交
29

L
liuruilong 已提交
30 31 32 33
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#endif

朔-望's avatar
朔-望 已提交
34
namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
35 36
namespace operators {

W
wangliu 已提交
37 38 39 40 41
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
42
using framework::Variable;
W
wangliu 已提交
43 44
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
45

N
nhzlx 已提交
46 47 48 49 50 51 52 53 54
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
55
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
56 57 58 59 60 61 62 63
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
64
#endif
L
liuruilong 已提交
65

L
liuruilong 已提交
66
class OpParam {
朔-望's avatar
朔-望 已提交
67
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
68 69 70 71
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
72 73 74 75 76
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

77 78 79 80 81 82 83 84 85
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
86 87 88 89 90
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

118 119 120 121
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
122 123 124 125 126 127

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

128 129 130 131 132
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
133 134 135 136 137
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

138 139 140 141 142
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
143 144 145 146
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
147 148 149 150 151 152 153 154 155 156 157 158
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
159 160 161 162
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
179

E
eclipsess 已提交
180 181 182 183 184 185 186 187 188 189
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
190 191 192 193
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
194

195
  template <typename T>
W
wangliu 已提交
196 197
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
198 199 200
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
201 202 203 204 205
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

235 236 237 238 239
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
240 241 242 243 244
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

245 246 247 248 249
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
250 251 252 253 254 255
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

256 257 258 259 260
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
261 262 263 264 265 266
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
267 268 269 270 271 272
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
273 274 275 276 277
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
278 279 280 281 282 283
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

284 285 286 287 288 289 290 291 292 293 294
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
295
  static const T GetAttr(const string &key, const AttributeMap &map) {
296 297
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
298 299
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
300 301
    return ((Attribute)map.at(key)).GetString();
  }
302

303 304 305 306
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

307
  template <typename T>
W
wangliu 已提交
308
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
309
                        const Scope &scope) {
W
wangliu 已提交
310 311
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
312 313 314 315 316 317
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
318
    }
319
  }
朔-望's avatar
朔-望 已提交
320

E
eclipsess 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

354
  template <typename T>
W
wangliu 已提交
355 356 357
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
358 359
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
360
    vector<T *> var_res;
361 362 363
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
364
    }
365 366
    return var_res;
  }
E
eclipsess 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
380 381
};

N
nhzlx 已提交
382
template <typename Dtype>
383
class ConvParam : public OpParam {
N
nhzlx 已提交
384 385 386
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
387
 public:
388
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
389
            const AttributeMap &attrs, const Scope &scope) {
390 391 392 393 394 395 396 397 398
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
399
  }
朔-望's avatar
朔-望 已提交
400

N
nhzlx 已提交
401
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
402

N
nhzlx 已提交
403
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
404

N
nhzlx 已提交
405
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
406

W
wangliu 已提交
407
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
408

W
wangliu 已提交
409
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
410

W
wangliu 已提交
411
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
412

413
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
414

415 416 417 418 419 420 421
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

朔-望's avatar
朔-望 已提交
422
 private:
N
nhzlx 已提交
423 424 425
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
426 427 428
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
429
  int groups;
430 431 432 433

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
朔-望's avatar
朔-望 已提交
434
};
N
nhzlx 已提交
435 436
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
437

N
nhzlx 已提交
438
template <typename Dtype>
朔-望's avatar
朔-望 已提交
439
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
440 441 442
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
443
 public:
444
  ElementwiseAddParam(const VariableNameMap &inputs,
445 446
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
447 448 449
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
450 451 452
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
453
  const GType *InputX() const { return input_x_; }
454

xiebaiyuan's avatar
xiebaiyuan 已提交
455
  const GType *InputY() const { return input_y_; }
456

xiebaiyuan's avatar
xiebaiyuan 已提交
457
  GType *Out() const { return out_; }
458 459 460

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
461
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
462 463 464
  GType *input_x_;
  GType *input_y_;
  GType *out_;
465
  int axis_;
Z
zhangyang 已提交
466 467 468
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
469
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
470 471

 public:
H
hanbuhe 已提交
472 473
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
474
#endif
朔-望's avatar
朔-望 已提交
475 476
};

E
eclipsess 已提交
477
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
template <typename Dtype>
class ElementwiseMulParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
S
suiyang 已提交
507
#endif
E
eclipsess 已提交
508

509
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
510 511
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
512 513
#endif

514
#ifdef ELEMENTWISESUB_OP
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
template <typename Dtype>
class ElementwiseSubParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
544
#endif
545

L
liuruilong 已提交
546
#ifdef MUL_OP
N
nhzlx 已提交
547
template <typename Dtype>
朔-望's avatar
朔-望 已提交
548
class MulParam : OpParam {
N
nhzlx 已提交
549 550 551
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
552
 public:
553
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
554
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
555 556 557
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
558 559 560
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
561

xiebaiyuan's avatar
xiebaiyuan 已提交
562
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
563

xiebaiyuan's avatar
xiebaiyuan 已提交
564
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
565

xiebaiyuan's avatar
xiebaiyuan 已提交
566
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
567

568
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
569

570
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
571

朔-望's avatar
朔-望 已提交
572
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
573 574 575
  GType *input_x_;
  GType *input_y_;
  GType *out_;
576 577
  int x_num_col_dims_;
  int y_num_col_dims_;
Z
zhangyang 已提交
578 579 580
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
581
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
582 583

 public:
Z
zhangyang 已提交
584 585
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
586
#endif
朔-望's avatar
朔-望 已提交
587
};
L
liuruilong 已提交
588
#endif
朔-望's avatar
朔-望 已提交
589

L
liuruilong 已提交
590
#ifdef CONCAT_OP
N
nhzlx 已提交
591
template <typename Dtype>
朔-望's avatar
朔-望 已提交
592
class ConcatParam : public OpParam {
N
nhzlx 已提交
593 594 595
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
596
 public:
597
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
598
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
599 600
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
601 602
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
603

N
nhzlx 已提交
604
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
605

xiebaiyuan's avatar
xiebaiyuan 已提交
606
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
607

608
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
609

朔-望's avatar
朔-望 已提交
610
 private:
N
nhzlx 已提交
611
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
612
  GType *out_;
613
  int axis_;
Z
zhangyang 已提交
614 615 616 617 618 619 620 621 622
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
623
};
L
liuruilong 已提交
624
#endif
朔-望's avatar
朔-望 已提交
625

E
eclipsess 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, scope);
    out_var_ = OutVarFrom(outputs, scope);
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
657
#ifdef LRN_OP
N
nhzlx 已提交
658
template <typename Dtype>
E
eclipsess 已提交
659
class LrnParam : public OpParam {
N
nhzlx 已提交
660 661 662
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
663
 public:
664
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
665
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
666 667 668
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
669 670 671 672
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
673
    data_format_ = GetStringAttr("data_format", attrs);
674
  }
E
eclipsess 已提交
675

N
nhzlx 已提交
676
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
677

N
nhzlx 已提交
678
  RType *Out() const { return out_; }
E
eclipsess 已提交
679

N
nhzlx 已提交
680
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
681

682
  const int &N() const { return n_; }
E
eclipsess 已提交
683

684
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
685

686
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
687

688
  const float &K() const { return k_; }
E
eclipsess 已提交
689

W
wangliu 已提交
690
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
691

朔-望's avatar
朔-望 已提交
692
 private:
N
nhzlx 已提交
693 694 695
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
696 697 698 699
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
700
  string data_format_;
E
eclipsess 已提交
701
};
L
liuruilong 已提交
702 703 704
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
705
template <typename Dtype>
E
eclipsess 已提交
706
class BatchNormParam : OpParam {
N
nhzlx 已提交
707 708 709
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
710
 public:
711
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
712
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
713 714 715 716 717 718
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
719 720
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
721
    //    is_test_ = GetAttr<bool>("is_test", attrs);
722
  }
E
eclipsess 已提交
723

N
nhzlx 已提交
724
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
725

N
nhzlx 已提交
726
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
727

N
nhzlx 已提交
728
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
729

N
nhzlx 已提交
730
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
731

N
nhzlx 已提交
732
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
733

N
nhzlx 已提交
734
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
735

736
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
737

738
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
739

740
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
741

W
wangliu 已提交
742
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
743

744 745 746 747 748 749 750 751
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

朔-望's avatar
朔-望 已提交
752
 private:
N
nhzlx 已提交
753 754 755 756 757 758
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
759 760 761
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
762
  string data_format_;
763 764
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
765
};
L
liuruilong 已提交
766 767 768
#endif

#ifdef POOL_OP
N
nhzlx 已提交
769
template <typename Dtype>
770
class PoolParam : public OpParam {
N
nhzlx 已提交
771 772 773
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
774
 public:
775
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
776
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
777
    input_ = InputXFrom<GType>(inputs, scope);
778

N
nhzlx 已提交
779
    output_ = OutFrom<GType>(outputs, scope);
780
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
781 782 783
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
784
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
785
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
786
  }
787

N
nhzlx 已提交
788
  const RType *Input() const { return input_; }
789

N
nhzlx 已提交
790
  RType *Output() const { return output_; }
791

W
wangliu 已提交
792
  const string &PoolingType() const { return pooling_type_; }
793

W
wangliu 已提交
794
  const vector<int> &Ksize() const { return ksize_; }
795

W
wangliu 已提交
796
  const vector<int> &Strides() const { return strides_; }
797

W
wangliu 已提交
798
  const vector<int> &Paddings() const { return paddings_; }
799

800
  bool isCeilMode() const { return ceil_mode_; }
801

Z
zhangyang 已提交
802
  bool isGlobalPooling() const { return global_pooling_; }
803

朔-望's avatar
朔-望 已提交
804
 private:
N
nhzlx 已提交
805 806
  RType *input_;
  RType *output_;
W
wangliu 已提交
807 808 809 810
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
811
  bool ceil_mode_;
812
  bool global_pooling_ = false;
Z
zhangyang 已提交
813
#ifdef PADDLE_MOBILE_FPGA
814 815

 private:
H
hanbuhe 已提交
816
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
817 818

 public:
H
hanbuhe 已提交
819 820
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
821
#endif
822
};
L
liuruilong 已提交
823 824 825
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
826
template <typename Dtype>
E
eclipsess 已提交
827
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
828 829 830
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
831 832
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
833
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
834 835 836 837
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
838 839 840 841
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
842 843 844 845 846

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
    }
E
eclipsess 已提交
847 848 849 850 851 852
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
853
  const RType *Input() const { return input_; }
E
eclipsess 已提交
854

N
nhzlx 已提交
855
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
856

N
nhzlx 已提交
857
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
858

N
nhzlx 已提交
859
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
860

W
wangliu 已提交
861
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
862

W
wangliu 已提交
863
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
864

W
wangliu 已提交
865
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
866

W
wangliu 已提交
867
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
868 869 870 871 872 873 874 875 876 877 878

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

879 880 881 882
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
883
 private:
N
nhzlx 已提交
884 885 886 887
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
888 889 890 891
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
892 893 894 895 896
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
897
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
898
};
L
liuruilong 已提交
899
#endif
E
eclipsess 已提交
900

L
liuruilong 已提交
901
#ifdef BOXCODER_OP
N
nhzlx 已提交
902
template <typename Dtype>
E
eclipsess 已提交
903
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
904 905 906
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
907 908
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
909
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
910 911 912 913
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
914
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
915
  }
N
nhzlx 已提交
916
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
917

N
nhzlx 已提交
918
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
919

N
nhzlx 已提交
920
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
921

N
nhzlx 已提交
922
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
923 924 925 926

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
927 928 929 930
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
931 932
  std::string code_type_;
};
L
liuruilong 已提交
933
#endif
W
wangliu 已提交
934

L
liuruilong 已提交
935
#ifdef SOFTMAX_OP
N
nhzlx 已提交
936
template <typename Dtype>
W
wangliu 已提交
937
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
938 939 940
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
941 942
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
943
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
944 945
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
946
  }
N
nhzlx 已提交
947 948
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
949 950

 private:
N
nhzlx 已提交
951 952
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
953 954 955 956

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
957
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
958 959 960
  fpga::BypassArgs fpga_bypass_args;

 public:
961
  RType *FloatInput() const {
H
hanbuhe 已提交
962 963 964 965 966 967
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
968
};
L
liuruilong 已提交
969
#endif
W
wangliu 已提交
970

L
liuruilong 已提交
971
#ifdef SIGMOID_OP
N
nhzlx 已提交
972
template <typename Dtype>
W
wangliu 已提交
973
class SigmoidParam : public OpParam {
N
nhzlx 已提交
974 975 976
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
977 978
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
979
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
980 981
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
982
  }
N
nhzlx 已提交
983 984
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
985 986

 private:
N
nhzlx 已提交
987 988
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
989
};
L
liuruilong 已提交
990 991 992
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
993
template <typename Dtype>
E
eclipsess 已提交
994
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
995 996 997
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
998 999 1000 1001
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1002 1003 1004
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1005 1006 1007 1008 1009 1010 1011 1012
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
1013
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1014

N
nhzlx 已提交
1015
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1016

N
nhzlx 已提交
1017
  RType *Out() const { return out_; }
E
eclipsess 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
1032 1033 1034
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
1035 1036 1037 1038 1039 1040 1041
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1042
#endif
W
wangliu 已提交
1043

L
lijiancheng0614 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
  }
  const RType *Input() const { return input_; }
  RType *Output() const { return output_; }

 private:
  RType *input_;
  RType *output_;
};
#endif

N
nhzlx 已提交
1066
template <typename Dtype>
L
liuruilong 已提交
1067
class FeedParam : public OpParam {
N
nhzlx 已提交
1068 1069 1070
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1071 1072
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1073 1074 1075 1076
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    auto var = scope.FindVar("batch_size");
W
wangliu 已提交
1077
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1078
  }
Y
yangfei 已提交
1079
  const LoDTensor *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1080
  GType *Out() const { return out_; }
W
wangliu 已提交
1081
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1082

L
liuruilong 已提交
1083
 private:
Y
yangfei 已提交
1084
  LoDTensor *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1085
  GType *out_;
W
wangliu 已提交
1086
  int batch_size;
L
liuruilong 已提交
1087 1088
};

N
nhzlx 已提交
1089
template <typename Dtype>
L
liuruilong 已提交
1090
class FetchParam : public OpParam {
N
nhzlx 已提交
1091 1092 1093
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1094 1095
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1096
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1097
    input_x_ = InputXFrom<GType>(inputs, scope);
1098
    out_ = OutFrom(outputs, scope);
L
liuruilong 已提交
1099
  }
L
liuruilong 已提交
1100

N
nhzlx 已提交
1101
  const RType *InputX() const { return input_x_; }
1102 1103 1104
  Tensor *Out() const { return out_; }

  static Tensor *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
Z
zhaojiaying01 已提交
1105
    return GetVarValue<LoDTensor>("Out", outputs, scope);
1106
  }
L
liuruilong 已提交
1107

L
liuruilong 已提交
1108
 private:
N
nhzlx 已提交
1109
  RType *input_x_;
Y
yangfei 已提交
1110
  Tensor *out_;
L
liuruilong 已提交
1111 1112
};

L
lijiancheng0614 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    out_var_ = OutVarFrom(outputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

  RType *Out() const { return out_; }

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
  RType *out_;
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1149
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1150
template <typename Dtype>
E
eclipsess 已提交
1151
class TransposeParam : public OpParam {
N
nhzlx 已提交
1152 1153 1154
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1155 1156 1157
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1158 1159
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1160 1161 1162
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
1163
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1164

N
nhzlx 已提交
1165
  RType *Out() const { return out_; }
E
eclipsess 已提交
1166 1167 1168 1169

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
1170 1171
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1172 1173
  vector<int> axis_;
};
L
liuruilong 已提交
1174
#endif
E
eclipsess 已提交
1175

L
lijiancheng0614 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

  const RType *InputX() const { return input_x_; }

  RType *Out() const { return out_; }

  RType *OutputXShape() const { return output_xshape_; }

  const vector<int> &Axis() const { return axis_; }

 private:
  RType *input_x_;
  RType *out_;
  RType *output_xshape_;
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1273
#ifdef RESHAPE_OP
N
nhzlx 已提交
1274
template <typename Dtype>
E
eclipsess 已提交
1275
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1276 1277 1278
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1279 1280 1281
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1282 1283 1284
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1285
    shape_ = GetAttr<vector<int>>("shape", attrs);
1286 1287 1288 1289 1290 1291 1292

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1293 1294
  }

N
nhzlx 已提交
1295
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1296

N
nhzlx 已提交
1297
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1298

N
nhzlx 已提交
1299
  RType *Out() const { return out_; }
E
eclipsess 已提交
1300 1301 1302 1303 1304 1305

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1306 1307 1308
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1309 1310 1311
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1312
#endif
E
eclipsess 已提交
1313

L
lijiancheng0614 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

  const RType *InputX() const { return input_x_; }

  const RType *InputShape() const { return input_shape_; }

  RType *Out() const { return out_; }

  RType *OutputXShape() const { return output_xshape_; }

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
  RType *output_xshape_;
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1357
#ifdef SCALE_OP
N
nhzlx 已提交
1358
template <typename Dtype>
I
itminner 已提交
1359
class ScaleParam : public OpParam {
N
nhzlx 已提交
1360 1361 1362
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1363 1364 1365
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1366 1367 1368
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1369 1370 1371 1372 1373 1374
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1375
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1376

N
nhzlx 已提交
1377
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1378

N
nhzlx 已提交
1379
  RType *Out() const { return out_; }
I
itminner 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1390 1391 1392
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1393 1394 1395 1396 1397
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1398 1399 1400
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1401
template <typename Dtype>
I
itminner 已提交
1402
class SliceParam : public OpParam {
N
nhzlx 已提交
1403 1404 1405
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1406 1407 1408
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1409 1410 1411
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1412 1413 1414 1415 1416
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1417
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1418

N
nhzlx 已提交
1419
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1420

N
nhzlx 已提交
1421
  RType *Out() const { return out_; }
I
itminner 已提交
1422 1423 1424 1425 1426 1427 1428 1429

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1430 1431 1432
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1433 1434 1435 1436
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1437 1438 1439
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1440
template <typename Dtype>
T
Tian 已提交
1441
class ResizeParam : public OpParam {
N
nhzlx 已提交
1442 1443 1444
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1445 1446 1447
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1448 1449 1450
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1451 1452 1453 1454 1455 1456
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1457

N
nhzlx 已提交
1458
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1459

N
nhzlx 已提交
1460
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1461

N
nhzlx 已提交
1462
  RType *Out() const { return out_; }
T
Tian 已提交
1463

I
itminner 已提交
1464
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1465

I
itminner 已提交
1466
  const int &Height() const { return height_; }
T
Tian 已提交
1467

I
itminner 已提交
1468
  const int &Width() const { return width_; }
T
Tian 已提交
1469

I
itminner 已提交
1470
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1471

I
itminner 已提交
1472
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1473

I
itminner 已提交
1474
 private:
N
nhzlx 已提交
1475 1476 1477
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1478 1479 1480 1481 1482
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1483 1484 1485
};
#endif

L
liuruilong 已提交
1486
#ifdef RELU_OP
L
liuruilong 已提交
1487 1488 1489
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1490
template <typename Dtype>
D
relu  
dolphin8 已提交
1491
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1492 1493 1494
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1495
 public:
D
relu  
dolphin8 已提交
1496
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1497
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1498 1499
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1500 1501
  }

N
nhzlx 已提交
1502
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1503

N
nhzlx 已提交
1504
  RType *Out() const { return out_; }
E
eclipsess 已提交
1505 1506

 private:
N
nhzlx 已提交
1507 1508
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1509
};
D
relu  
dolphin8 已提交
1510 1511 1512

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1513
 public:
D
relu  
dolphin8 已提交
1514 1515 1516
  using ReluParamBase<Dtype>::ReluParamBase;
};

Y
yangfei 已提交
1517
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1518 1519
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1520
 public:
D
relu  
dolphin8 已提交
1521
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1522 1523 1524
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1525 1526
  framework::CLImage midImage;
};
Y
yangfei 已提交
1527
#endif
D
relu  
dolphin8 已提交
1528

L
liuruilong 已提交
1529
#endif
E
eclipsess 已提交
1530

T
Tian 已提交
1531
#ifdef PRELU_OP
N
nhzlx 已提交
1532
template <typename Dtype>
T
Tian 已提交
1533
class PReluParam : public OpParam {
N
nhzlx 已提交
1534 1535 1536
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1537 1538 1539
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1540
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1541
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1542
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1543
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1544
    out_ = OutFrom<GType>(outputs, scope);
1545
    mode_ = GetStringAttr("mode", attrs);
1546
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1547
  }
N
nhzlx 已提交
1548
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1549
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1550
  RType *Out() const { return out_; }
1551
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1552

I
itminner 已提交
1553
 private:
N
nhzlx 已提交
1554 1555
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1556
  RType *alpha_;
1557
  std::string mode_;
T
Tian 已提交
1558 1559 1560
};
#endif

N
nhzlx 已提交
1561
template <typename Dtype>
L
liuruilong 已提交
1562
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1563 1564 1565
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1566
 public:
L
liuruilong 已提交
1567
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1568
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1569 1570 1571 1572
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1573 1574 1575 1576
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1577
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1578

N
nhzlx 已提交
1579
  const RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1580

N
nhzlx 已提交
1581
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1582

xiebaiyuan's avatar
xiebaiyuan 已提交
1583
  GType *Out() const { return out_; }
E
eclipsess 已提交
1584 1585 1586 1587 1588 1589 1590 1591

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1592
  GType *input_x_;
N
nhzlx 已提交
1593 1594
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1595
  GType *out_;
E
eclipsess 已提交
1596 1597 1598
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1599 1600 1601
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1602
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1603 1604

 public:
Z
zhangyang 已提交
1605 1606
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1607
#endif
E
eclipsess 已提交
1608
};
1609 1610

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1611 1612
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1613
#endif
E
eclipsess 已提交
1614

N
nhzlx 已提交
1615
template <typename Dtype>
1616
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1617 1618 1619
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1620
 public:
L
liuruilong 已提交
1621
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1622
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1623 1624 1625 1626 1627
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1628
  }
N
nhzlx 已提交
1629
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1630 1631 1632

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1633
  RType *Output() const { return output_; }
W
wangliu 已提交
1634

L
liuruilong 已提交
1635
 protected:
N
nhzlx 已提交
1636
  RType *bias_;
W
wangliu 已提交
1637
  int axis_;
N
nhzlx 已提交
1638
  RType *output_;
Z
zhangyang 已提交
1639 1640 1641
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1642
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1643 1644

 public:
Z
zhangyang 已提交
1645 1646
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1647
#endif
W
wangliu 已提交
1648 1649
};

N
nhzlx 已提交
1650 1651
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1652

Z
zhangyang 已提交
1653
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1654 1655
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1656
 public:
L
liuruilong 已提交
1657
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1658 1659
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1660
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1661 1662 1663
};
#endif

1664
#ifdef FUSION_CONVADDPRELU_OP
1665 1666 1667 1668
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1669 1670 1671 1672

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1673 1674 1675
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1676
    mode_ = OpParam::GetStringAttr("mode", attrs);
1677
    framework::DDim dims = alpha_->dims();
1678 1679 1680
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1697
  fpga::SplitConvArgs fpga_conv_args;
1698 1699

 public:
Z
zhangyang 已提交
1700 1701
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
1702 1703 1704 1705 1706
#endif
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1707 1708 1709 1710
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1711 1712 1713 1714

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1715 1716 1717 1718
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1719
    mode_ = OpParam::GetStringAttr("mode", attrs);
1720
    framework::DDim dims = alpha_->dims();
1721 1722 1723 1724 1725 1726
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1727
    if (keyX1_ == keyOutput_) {
1728
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1729
    } else if (keyY1_ == keyOutput_) {
1730
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1755
  fpga::SplitConvArgs fpga_conv_args;
1756 1757

 public:
Z
zhangyang 已提交
1758 1759
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
1760 1761 1762 1763
#endif
};
#endif

E
eclipsess 已提交
1764
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1765
template <typename Dtype>
1766
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1767 1768 1769
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1770 1771 1772
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1785
  }
N
nhzlx 已提交
1786
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1787 1788 1789

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1790
  RType *Output() const { return output_; }
E
eclipsess 已提交
1791

N
nhzlx 已提交
1792
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1793

N
nhzlx 已提交
1794
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1795

N
nhzlx 已提交
1796
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1797

N
nhzlx 已提交
1798
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1799 1800 1801 1802 1803 1804 1805

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1806
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1807

N
nhzlx 已提交
1808
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1809

N
nhzlx 已提交
1810
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1811

N
nhzlx 已提交
1812
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1813 1814

 protected:
N
nhzlx 已提交
1815
  RType *bias_;
E
eclipsess 已提交
1816
  int axis_;
N
nhzlx 已提交
1817 1818 1819 1820 1821
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1822 1823 1824
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1825 1826
  RType *new_bias_;
  RType *new_scale_;
1827

Z
zhangyang 已提交
1828 1829 1830
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1831
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1832 1833

 public:
Z
zhangyang 已提交
1834 1835
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
1836 1837 1838 1839 1840 1841
#endif
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1842
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1843 1844 1845 1846 1847 1848
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1863
    if (keyX_ == keyBNY_) {
1864
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1865
    } else if (keyY_ == keyBNY_) {
1866
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1867
    }
1868
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1917
  fpga::SplitConvArgs fpga_conv_args;
1918 1919

 public:
Z
zhangyang 已提交
1920 1921
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1922
#endif
E
eclipsess 已提交
1923
};
1924
#endif
E
eclipsess 已提交
1925

Z
zhangyang 已提交
1926
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1927
template <typename Dtype>
1928
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1929 1930 1931
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1932 1933 1934
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1945
  }
N
nhzlx 已提交
1946
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1947

N
nhzlx 已提交
1948
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1949

N
nhzlx 已提交
1950
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1951

N
nhzlx 已提交
1952
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1953

N
nhzlx 已提交
1954
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1955 1956 1957 1958 1959 1960 1961

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1962
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1963

N
nhzlx 已提交
1964
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1965

N
nhzlx 已提交
1966
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1967

N
nhzlx 已提交
1968
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1969 1970

 protected:
N
nhzlx 已提交
1971 1972 1973 1974 1975
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1976 1977 1978
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1979 1980
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1981 1982 1983
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1984
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1985 1986

 public:
Z
zhangyang 已提交
1987 1988
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1989 1990 1991 1992
#endif
};
#endif

1993
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1994
template <typename Dtype>
1995
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1996 1997 1998
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1999 2000 2001
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2014
  }
N
nhzlx 已提交
2015
  RType *Bias() const { return bias_; }
2016 2017 2018

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
2019
  RType *Output() const { return output_y_; }
2020

N
nhzlx 已提交
2021
  const RType *InputBias() const { return input_bias_; }
2022

N
nhzlx 已提交
2023
  const RType *InputMean() const { return input_mean_; }
2024

N
nhzlx 已提交
2025
  const RType *InputScale() const { return input_scale_; }
2026

N
nhzlx 已提交
2027
  const RType *InputVariance() const { return input_variance_; }
2028 2029 2030 2031 2032 2033 2034

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2035
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2036

N
nhzlx 已提交
2037
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2038

N
nhzlx 已提交
2039
  const RType *NewScale() const { return new_scale_; }
2040

N
nhzlx 已提交
2041
  const RType *NewBias() const { return new_bias_; }
2042 2043

 protected:
N
nhzlx 已提交
2044
  RType *bias_;
2045
  int axis_;
N
nhzlx 已提交
2046 2047 2048 2049 2050
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2051 2052 2053
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2054 2055
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
2056 2057 2058
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
2059
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
2060 2061

 public:
Z
zhangyang 已提交
2062 2063
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
2064
#endif
2065
};
E
eclipsess 已提交
2066
#endif
Y
Yao,kun 已提交
2067

E
eclipsess 已提交
2068
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2069
template <typename Dtype>
2070
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2071 2072 2073
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2074 2075 2076
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
2087
  }
N
nhzlx 已提交
2088
  RType *Output() const { return output_; }
E
eclipsess 已提交
2089

N
nhzlx 已提交
2090
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2091

N
nhzlx 已提交
2092
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2093

N
nhzlx 已提交
2094
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2095

N
nhzlx 已提交
2096
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2097 2098 2099 2100 2101 2102 2103

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2104
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2105

N
nhzlx 已提交
2106
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2107

N
nhzlx 已提交
2108
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2109

N
nhzlx 已提交
2110
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2111 2112

 protected:
N
nhzlx 已提交
2113 2114 2115 2116 2117
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
2118 2119 2120
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2121 2122
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
2123 2124 2125 2126
};

#endif

2127
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2128
template <typename Dtype>
2129
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2130 2131 2132
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2133 2134 2135
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2146
  }
N
nhzlx 已提交
2147
  RType *Output() const { return output_; }
2148

N
nhzlx 已提交
2149
  const RType *InputBias() const { return input_bias_; }
2150

N
nhzlx 已提交
2151
  const RType *InputMean() const { return input_mean_; }
2152

N
nhzlx 已提交
2153
  const RType *InputScale() const { return input_scale_; }
2154

N
nhzlx 已提交
2155
  const RType *InputVariance() const { return input_variance_; }
2156 2157 2158 2159 2160 2161 2162

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2163
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2164

N
nhzlx 已提交
2165
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2166

N
nhzlx 已提交
2167
  const RType *NewScale() const { return new_scale_; }
2168

N
nhzlx 已提交
2169
  const RType *NewBias() const { return new_bias_; }
2170 2171

 protected:
N
nhzlx 已提交
2172 2173 2174 2175 2176
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2177 2178 2179
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2180 2181
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
2182 2183 2184
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
2185
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
2186 2187

 public:
Z
zhangyang 已提交
2188 2189
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
2190
#endif
2191 2192 2193
};
#endif

Y
Yao,kun 已提交
2194
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2195
template <typename Dtype>
Y
Yao,kun 已提交
2196
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2197 2198 2199
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2200 2201 2202 2203
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
2204 2205
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2206 2207 2208 2209 2210
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2211
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2212

E
eclipsess 已提交
2213
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2214 2215 2216 2217 2218 2219 2220 2221

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2222 2223
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2224 2225 2226 2227
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2228
#endif
Y
Yao,kun 已提交
2229

2230
#ifdef DROPOUT_OP
N
nhzlx 已提交
2231
template <typename Dtype>
Y
Yao,kun 已提交
2232
class DropoutParam : public OpParam {
N
nhzlx 已提交
2233 2234 2235
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2236 2237 2238
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2239 2240
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
2241 2242

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2243 2244
  }

N
nhzlx 已提交
2245
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2246

N
nhzlx 已提交
2247
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2248

Y
yangfei 已提交
2249 2250
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2251
 private:
N
nhzlx 已提交
2252 2253
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
2254
  float dropout_prob_;
Y
Yao,kun 已提交
2255
};
2256
#endif
Y
Yao,kun 已提交
2257

H
hjchen2 已提交
2258
#ifdef CONV_TRANSPOSE_OP
N
nhzlx 已提交
2259
template <typename Dtype>
L
liuruilong 已提交
2260
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2261 2262 2263
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2264 2265 2266 2267
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2268 2269 2270
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
2271 2272 2273 2274 2275 2276
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2277
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2278

N
nhzlx 已提交
2279
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2280

N
nhzlx 已提交
2281
  RType *Output() const { return output_; }
L
liuruilong 已提交
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2292 2293 2294
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2295 2296 2297 2298 2299 2300 2301
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
2327 2328
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2373
    axis = GetAttr<int>("axis", attrs);
2374 2375 2376
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2377
  const int &Axis() const { return axis; }
2378 2379 2380 2381

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2382
  int axis;
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2396
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2397
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2398 2399 2400 2401 2402 2403
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2404 2405
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2406 2407 2408 2409 2410
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2411 2412 2413

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2414
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2415
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2416 2417 2418
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2435 2436
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2437 2438
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2439
  const RType *InputOutPutSize() const { return input_outsize_; }
2440
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2441 2442
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2443 2444 2445 2446 2447

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2448 2449
  int out_h_;
  int out_w_;
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2465
  const RType *Input() const { return input_; }
2466 2467 2468 2469 2470 2471 2472 2473
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

2474
#ifdef QUANT_OP
2475
template <typename Dtype>
2476 2477 2478 2479 2480
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2481 2482
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
2483 2484 2485 2486 2487 2488 2489
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    // online
    // scale = max(abs(x))
    online_scale_ = GetVarValue<GType>("OutScale", outputs, scope);
    // offline
    if (HasAttr("static_scale", attrs)) {
2490
      is_static_ = true;
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
      static_scale_ = GetAttr<float>("static_scale", attrs);
    }
    // x = round(scale * x)
    if (HasAttr("round_type", attrs)) {
      round_type_ = GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  //
  RType *online_scale_;
  // if static scale or not
  bool is_static_ = false;
  // quantize scale
  float static_scale_ = 1.0f;
  // round method type
  // nearest_zero and nearest_even is valid currently
2512
  RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
2513
};
2514
#endif
2515

2516
#ifdef DEQUANT_OP
2517
template <typename Dtype>
2518 2519 2520 2521 2522
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2523 2524
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    activation_scale_ = GetVarValue<GType>("Scale", inputs, scope);
    // dequantization is performed as x = x / static_scale / online_scale
    if (HasAttr("weight_scale", attrs)) {
      weight_scale_ = GetAttr<float>("weight_scale", attrs);
    } else {
      weight_scale_ = GetAttr<float>("max_range", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  RType *activation_scale_;
  float weight_scale_;
};
2544
#endif
2545

朔-望's avatar
朔-望 已提交
2546 2547
}  // namespace operators
}  // namespace paddle_mobile