op_param.h 76.7 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26 27 28 29 30 31 32

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
33
#endif
朔-望's avatar
朔-望 已提交
34

L
liuruilong 已提交
35 36
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
37
#endif
朔-望's avatar
朔-望 已提交
38 39

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
40 41
namespace operators {

W
wangliu 已提交
42 43 44 45 46
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
47
using framework::Variable;
W
wangliu 已提交
48 49
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
50

N
nhzlx 已提交
51 52 53 54 55 56 57 58 59
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
60
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
61 62 63 64 65 66 67 68
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
69
#endif
L
liuruilong 已提交
70

L
liuruilong 已提交
71
class OpParam {
朔-望's avatar
朔-望 已提交
72
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
73 74 75 76
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
77 78 79 80 81
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

82 83 84 85 86 87 88 89 90
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
91 92 93 94 95
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

123 124 125 126
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
127 128 129 130 131 132

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

133 134 135 136 137
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
138 139 140 141 142
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

143 144 145 146 147
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
148 149 150 151
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
152 153 154 155 156 157 158 159 160 161 162 163
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
164 165 166 167
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
184

E
eclipsess 已提交
185 186 187 188 189 190 191 192 193 194
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
195 196 197 198
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
199

200
  template <typename T>
W
wangliu 已提交
201 202
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
203 204 205
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
206 207 208 209 210
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

240 241 242 243 244
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
245 246 247 248 249
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

250 251 252 253 254
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
255 256 257 258 259 260
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

261 262 263 264 265
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
266 267 268 269 270 271
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
272 273 274 275 276 277
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
278 279 280 281 282
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
283 284 285 286 287 288
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

289 290 291 292 293 294 295 296 297 298 299
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
300
  static const T GetAttr(const string &key, const AttributeMap &map) {
301 302
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
303 304
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
305 306
    return ((Attribute)map.at(key)).GetString();
  }
307

308 309 310 311
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

312
  template <typename T>
W
wangliu 已提交
313
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
314
                        const Scope &scope) {
W
wangliu 已提交
315 316
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
317 318 319 320 321 322
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
323
    }
324
  }
朔-望's avatar
朔-望 已提交
325

E
eclipsess 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

359
  template <typename T>
W
wangliu 已提交
360 361 362
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
363 364
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
365
    vector<T *> var_res;
366 367 368
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
369
    }
370 371
    return var_res;
  }
E
eclipsess 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
385 386
};

N
nhzlx 已提交
387
template <typename Dtype>
388
class ConvParam : public OpParam {
N
nhzlx 已提交
389 390 391
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
392
 public:
393
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
394
            const AttributeMap &attrs, const Scope &scope) {
395 396 397 398 399 400 401 402 403
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
404
  }
朔-望's avatar
朔-望 已提交
405

N
nhzlx 已提交
406
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
407

H
hjchen2 已提交
408
  RType *&Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
409

H
hjchen2 已提交
410
  RType *&Output() const { return output_; }
朔-望's avatar
朔-望 已提交
411

W
wangliu 已提交
412
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
413

W
wangliu 已提交
414
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
415

W
wangliu 已提交
416
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
417

H
hjchen2 已提交
418 419 420 421 422 423 424 425
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DEPTHWISE3x3S1P1_FLOAT,
    EXEC_DEPTHWISE3x3_FLOAT,
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
    EXEC_GEMM_INT8,
H
hjchen2 已提交
426
    EXEC_DEPTHWISE3x3_INT8,
H
hjchen2 已提交
427 428 429 430
  };

  ExecMode &ExecMode() const { return exec_mode_; }

431
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
432

433 434 435 436 437 438 439
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

朔-望's avatar
朔-望 已提交
440
 private:
N
nhzlx 已提交
441
  RType *input_;
H
hjchen2 已提交
442 443
  mutable RType *output_;
  mutable RType *filter_;
W
wangliu 已提交
444 445 446
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
447
  mutable enum ExecMode exec_mode_;
448
  int groups;
449 450 451 452

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
453 454 455 456 457 458 459 460 461 462

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
#endif
朔-望's avatar
朔-望 已提交
463
};
N
nhzlx 已提交
464 465
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
466

N
nhzlx 已提交
467
template <typename Dtype>
朔-望's avatar
朔-望 已提交
468
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
469 470 471
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
472
 public:
473
  ElementwiseAddParam(const VariableNameMap &inputs,
474 475
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
476 477 478
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
479 480 481
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
482
  const GType *InputX() const { return input_x_; }
483

xiebaiyuan's avatar
xiebaiyuan 已提交
484
  const GType *InputY() const { return input_y_; }
485

xiebaiyuan's avatar
xiebaiyuan 已提交
486
  GType *Out() const { return out_; }
487 488 489

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
490
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
491 492 493
  GType *input_x_;
  GType *input_y_;
  GType *out_;
494
  int axis_;
Z
zhangyang 已提交
495 496 497
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
498
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
499 500

 public:
H
hanbuhe 已提交
501 502
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
503
#endif
朔-望's avatar
朔-望 已提交
504 505
};

E
eclipsess 已提交
506
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
template <typename Dtype>
class ElementwiseMulParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
S
suiyang 已提交
536
#endif
E
eclipsess 已提交
537

538
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
539 540
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
541 542
#endif

543
#ifdef ELEMENTWISESUB_OP
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
template <typename Dtype>
class ElementwiseSubParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
573
#endif
574

L
liuruilong 已提交
575
#ifdef MUL_OP
N
nhzlx 已提交
576
template <typename Dtype>
朔-望's avatar
朔-望 已提交
577
class MulParam : OpParam {
N
nhzlx 已提交
578 579 580
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
581
 public:
582
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
583
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
584 585 586
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
587 588 589
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
590

xiebaiyuan's avatar
xiebaiyuan 已提交
591
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
592

xiebaiyuan's avatar
xiebaiyuan 已提交
593
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
594

xiebaiyuan's avatar
xiebaiyuan 已提交
595
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
596

597
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
598

599
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
600

朔-望's avatar
朔-望 已提交
601
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
602 603 604
  GType *input_x_;
  GType *input_y_;
  GType *out_;
605 606
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
607
};
L
liuruilong 已提交
608
#endif
朔-望's avatar
朔-望 已提交
609

L
liuruilong 已提交
610
#ifdef CONCAT_OP
N
nhzlx 已提交
611
template <typename Dtype>
朔-望's avatar
朔-望 已提交
612
class ConcatParam : public OpParam {
N
nhzlx 已提交
613 614 615
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
616
 public:
617
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
618
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
619 620
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
621 622
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
623

N
nhzlx 已提交
624
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
625

xiebaiyuan's avatar
xiebaiyuan 已提交
626
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
627

628
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
629

朔-望's avatar
朔-望 已提交
630
 private:
N
nhzlx 已提交
631
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
632
  GType *out_;
633
  int axis_;
Z
zhangyang 已提交
634 635 636 637 638 639 640 641 642
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
643
};
L
liuruilong 已提交
644
#endif
朔-望's avatar
朔-望 已提交
645

E
eclipsess 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, scope);
    out_var_ = OutVarFrom(outputs, scope);
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
677
#ifdef LRN_OP
N
nhzlx 已提交
678
template <typename Dtype>
E
eclipsess 已提交
679
class LrnParam : public OpParam {
N
nhzlx 已提交
680 681 682
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
683
 public:
684
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
685
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
686 687 688
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
689 690 691 692
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
693
    data_format_ = GetStringAttr("data_format", attrs);
694
  }
E
eclipsess 已提交
695

N
nhzlx 已提交
696
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
697

N
nhzlx 已提交
698
  RType *Out() const { return out_; }
E
eclipsess 已提交
699

N
nhzlx 已提交
700
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
701

702
  const int &N() const { return n_; }
E
eclipsess 已提交
703

704
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
705

706
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
707

708
  const float &K() const { return k_; }
E
eclipsess 已提交
709

W
wangliu 已提交
710
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
711

朔-望's avatar
朔-望 已提交
712
 private:
N
nhzlx 已提交
713 714 715
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
716 717 718 719
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
720
  string data_format_;
E
eclipsess 已提交
721
};
L
liuruilong 已提交
722 723 724
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
725
template <typename Dtype>
E
eclipsess 已提交
726
class BatchNormParam : OpParam {
N
nhzlx 已提交
727 728 729
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
730
 public:
731
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
732
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
733 734 735 736 737 738
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
739 740
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
741
    //    is_test_ = GetAttr<bool>("is_test", attrs);
742
  }
E
eclipsess 已提交
743

N
nhzlx 已提交
744
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
745

N
nhzlx 已提交
746
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
747

N
nhzlx 已提交
748
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
749

N
nhzlx 已提交
750
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
751

N
nhzlx 已提交
752
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
753

N
nhzlx 已提交
754
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
755

756
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
757

758
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
759

760
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
761

W
wangliu 已提交
762
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
763

764 765 766 767 768 769 770 771
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

朔-望's avatar
朔-望 已提交
772
 private:
N
nhzlx 已提交
773 774 775 776 777 778
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
779 780 781
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
782
  string data_format_;
783 784
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
785
};
L
liuruilong 已提交
786 787 788
#endif

#ifdef POOL_OP
N
nhzlx 已提交
789
template <typename Dtype>
790
class PoolParam : public OpParam {
N
nhzlx 已提交
791 792 793
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
794
 public:
795
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
796
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
797
    input_ = InputXFrom<GType>(inputs, scope);
798

N
nhzlx 已提交
799
    output_ = OutFrom<GType>(outputs, scope);
800
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
801 802 803
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
804
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
805
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
806
  }
807

N
nhzlx 已提交
808
  const RType *Input() const { return input_; }
809

N
nhzlx 已提交
810
  RType *Output() const { return output_; }
811

W
wangliu 已提交
812
  const string &PoolingType() const { return pooling_type_; }
813

W
wangliu 已提交
814
  const vector<int> &Ksize() const { return ksize_; }
815

W
wangliu 已提交
816
  const vector<int> &Strides() const { return strides_; }
817

W
wangliu 已提交
818
  const vector<int> &Paddings() const { return paddings_; }
819

820
  bool isCeilMode() const { return ceil_mode_; }
821

Z
zhangyang 已提交
822
  bool isGlobalPooling() const { return global_pooling_; }
823

朔-望's avatar
朔-望 已提交
824
 private:
N
nhzlx 已提交
825 826
  RType *input_;
  RType *output_;
W
wangliu 已提交
827 828 829 830
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
831
  bool ceil_mode_;
832
  bool global_pooling_ = false;
Z
zhangyang 已提交
833
#ifdef PADDLE_MOBILE_FPGA
834 835

 private:
H
hanbuhe 已提交
836
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
837 838

 public:
H
hanbuhe 已提交
839 840
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
841
#endif
842
};
L
liuruilong 已提交
843 844 845
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
846
template <typename Dtype>
E
eclipsess 已提交
847
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
848 849 850
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
851 852
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
853
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
854 855 856 857
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
858 859 860 861
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
862 863 864 865

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
866 867
    } else {
      min_max_aspect_ratios_order_ = false;
868
    }
E
eclipsess 已提交
869 870 871 872 873 874
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
875
  const RType *Input() const { return input_; }
E
eclipsess 已提交
876

N
nhzlx 已提交
877
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
878

N
nhzlx 已提交
879
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
880

N
nhzlx 已提交
881
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
882

W
wangliu 已提交
883
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
884

W
wangliu 已提交
885
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
886

W
wangliu 已提交
887
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
888

W
wangliu 已提交
889
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
890 891 892 893 894 895 896 897 898 899 900

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

901 902 903 904
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
905
 private:
N
nhzlx 已提交
906 907 908 909
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
910 911 912 913
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
914 915 916 917 918
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
919
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
920
};
L
liuruilong 已提交
921
#endif
E
eclipsess 已提交
922

L
liuruilong 已提交
923
#ifdef BOXCODER_OP
N
nhzlx 已提交
924
template <typename Dtype>
E
eclipsess 已提交
925
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
926 927 928
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
929 930
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
931
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
932 933 934 935
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
936
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
937
  }
N
nhzlx 已提交
938
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
939

N
nhzlx 已提交
940
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
941

N
nhzlx 已提交
942
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
943

N
nhzlx 已提交
944
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
945 946 947 948

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
949 950 951 952
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
953 954
  std::string code_type_;
};
L
liuruilong 已提交
955
#endif
W
wangliu 已提交
956

L
liuruilong 已提交
957
#ifdef SOFTMAX_OP
N
nhzlx 已提交
958
template <typename Dtype>
W
wangliu 已提交
959
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
960 961 962
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
963 964
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
965
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
966 967
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
968
  }
N
nhzlx 已提交
969 970
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
971 972

 private:
N
nhzlx 已提交
973 974
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
975 976 977 978

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
979
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
980 981 982
  fpga::BypassArgs fpga_bypass_args;

 public:
983
  RType *FloatInput() const {
H
hanbuhe 已提交
984 985 986 987 988 989
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
990
};
L
liuruilong 已提交
991
#endif
W
wangliu 已提交
992

L
liuruilong 已提交
993
#ifdef SIGMOID_OP
N
nhzlx 已提交
994
template <typename Dtype>
W
wangliu 已提交
995
class SigmoidParam : public OpParam {
N
nhzlx 已提交
996 997 998
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
999 1000
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1001
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1002 1003
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1004
  }
N
nhzlx 已提交
1005 1006
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
1007 1008

 private:
N
nhzlx 已提交
1009 1010
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
1011
};
L
liuruilong 已提交
1012 1013 1014
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1015
template <typename Dtype>
E
eclipsess 已提交
1016
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1017 1018 1019
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1020 1021 1022 1023
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1024 1025 1026
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1027 1028 1029 1030 1031 1032 1033 1034
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

Y
yangfei 已提交
1035
  RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1036

Y
yangfei 已提交
1037
  RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1038

N
nhzlx 已提交
1039
  RType *Out() const { return out_; }
E
eclipsess 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
1054 1055 1056
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
1057 1058 1059 1060 1061 1062 1063
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1064
#endif
W
wangliu 已提交
1065

L
lijiancheng0614 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
  }
  const RType *Input() const { return input_; }
  RType *Output() const { return output_; }

 private:
  RType *input_;
  RType *output_;
};
#endif

N
nhzlx 已提交
1088
template <typename Dtype>
L
liuruilong 已提交
1089
class FeedParam : public OpParam {
N
nhzlx 已提交
1090 1091 1092
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1093 1094
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1095 1096 1097 1098
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    auto var = scope.FindVar("batch_size");
W
wangliu 已提交
1099
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1100
  }
Y
yangfei 已提交
1101
  const LoDTensor *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1102
  GType *Out() const { return out_; }
W
wangliu 已提交
1103
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1104

L
liuruilong 已提交
1105
 private:
Y
yangfei 已提交
1106
  LoDTensor *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1107
  GType *out_;
W
wangliu 已提交
1108
  int batch_size;
L
liuruilong 已提交
1109 1110
};

N
nhzlx 已提交
1111
template <typename Dtype>
L
liuruilong 已提交
1112
class FetchParam : public OpParam {
N
nhzlx 已提交
1113 1114 1115
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1116 1117
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1118
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1119
    input_x_ = InputXFrom<GType>(inputs, scope);
1120
    out_ = OutFrom(outputs, scope);
L
liuruilong 已提交
1121
  }
L
liuruilong 已提交
1122

N
nhzlx 已提交
1123
  const RType *InputX() const { return input_x_; }
1124 1125 1126
  Tensor *Out() const { return out_; }

  static Tensor *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
Z
zhaojiaying01 已提交
1127
    return GetVarValue<LoDTensor>("Out", outputs, scope);
1128
  }
L
liuruilong 已提交
1129

L
liuruilong 已提交
1130
 private:
N
nhzlx 已提交
1131
  RType *input_x_;
Y
yangfei 已提交
1132
  Tensor *out_;
L
liuruilong 已提交
1133 1134
};

L
lijiancheng0614 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    out_var_ = OutVarFrom(outputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

  RType *Out() const { return out_; }

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
  RType *out_;
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1171
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1172
template <typename Dtype>
E
eclipsess 已提交
1173
class TransposeParam : public OpParam {
N
nhzlx 已提交
1174 1175 1176
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1177 1178 1179
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1180 1181
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1182 1183 1184
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
1185
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1186

N
nhzlx 已提交
1187
  RType *Out() const { return out_; }
E
eclipsess 已提交
1188 1189 1190 1191

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
1192 1193
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1194 1195
  vector<int> axis_;
};
L
liuruilong 已提交
1196
#endif
E
eclipsess 已提交
1197

L
lijiancheng0614 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

  const RType *InputX() const { return input_x_; }

  RType *Out() const { return out_; }

  RType *OutputXShape() const { return output_xshape_; }

  const vector<int> &Axis() const { return axis_; }

 private:
  RType *input_x_;
  RType *out_;
  RType *output_xshape_;
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1295
#ifdef RESHAPE_OP
N
nhzlx 已提交
1296
template <typename Dtype>
E
eclipsess 已提交
1297
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1298 1299 1300
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1301 1302 1303
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1304 1305 1306
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1307
    shape_ = GetAttr<vector<int>>("shape", attrs);
1308 1309 1310 1311 1312 1313 1314

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1315 1316
  }

N
nhzlx 已提交
1317
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1318

N
nhzlx 已提交
1319
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1320

N
nhzlx 已提交
1321
  RType *Out() const { return out_; }
E
eclipsess 已提交
1322 1323 1324 1325 1326 1327

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1328 1329 1330
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1331 1332 1333
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1334
#endif
E
eclipsess 已提交
1335

L
lijiancheng0614 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

E
eclipsess 已提交
1357
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1358

E
eclipsess 已提交
1359
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1360

E
eclipsess 已提交
1361
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1362

E
eclipsess 已提交
1363
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1364 1365 1366 1367 1368 1369

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1370 1371 1372 1373
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1374 1375 1376 1377 1378
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1379
#ifdef SCALE_OP
N
nhzlx 已提交
1380
template <typename Dtype>
I
itminner 已提交
1381
class ScaleParam : public OpParam {
N
nhzlx 已提交
1382 1383 1384
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1385 1386 1387
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1388 1389 1390
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1391 1392 1393 1394 1395 1396
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1397
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1398

N
nhzlx 已提交
1399
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1400

N
nhzlx 已提交
1401
  RType *Out() const { return out_; }
I
itminner 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1412 1413 1414
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1415 1416 1417 1418 1419
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1420 1421 1422
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1423
template <typename Dtype>
I
itminner 已提交
1424
class SliceParam : public OpParam {
N
nhzlx 已提交
1425 1426 1427
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1428 1429 1430
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1431 1432 1433
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1434 1435 1436 1437 1438
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1439
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1440

N
nhzlx 已提交
1441
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1442

N
nhzlx 已提交
1443
  RType *Out() const { return out_; }
I
itminner 已提交
1444 1445 1446 1447 1448 1449 1450 1451

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1452 1453 1454
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1455 1456 1457 1458
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1459 1460 1461
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1462
template <typename Dtype>
T
Tian 已提交
1463
class ResizeParam : public OpParam {
N
nhzlx 已提交
1464 1465 1466
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1467 1468 1469
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1470 1471 1472
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1473 1474 1475 1476 1477 1478
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1479

N
nhzlx 已提交
1480
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1481

N
nhzlx 已提交
1482
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1483

N
nhzlx 已提交
1484
  RType *Out() const { return out_; }
T
Tian 已提交
1485

I
itminner 已提交
1486
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1487

I
itminner 已提交
1488
  const int &Height() const { return height_; }
T
Tian 已提交
1489

I
itminner 已提交
1490
  const int &Width() const { return width_; }
T
Tian 已提交
1491

I
itminner 已提交
1492
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1493

I
itminner 已提交
1494
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1495

I
itminner 已提交
1496
 private:
N
nhzlx 已提交
1497 1498 1499
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1500 1501 1502 1503 1504
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1505 1506 1507
};
#endif

L
liuruilong 已提交
1508
#ifdef RELU_OP
L
liuruilong 已提交
1509 1510 1511
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1512
template <typename Dtype>
D
relu  
dolphin8 已提交
1513
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1514 1515 1516
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1517
 public:
D
relu  
dolphin8 已提交
1518
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1519
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1520 1521
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1522 1523
  }

N
nhzlx 已提交
1524
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1525

N
nhzlx 已提交
1526
  RType *Out() const { return out_; }
E
eclipsess 已提交
1527 1528

 private:
N
nhzlx 已提交
1529 1530
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1531
};
D
relu  
dolphin8 已提交
1532 1533 1534

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1535
 public:
D
relu  
dolphin8 已提交
1536 1537 1538
  using ReluParamBase<Dtype>::ReluParamBase;
};

Y
yangfei 已提交
1539
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1540 1541
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1542
 public:
D
relu  
dolphin8 已提交
1543
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1544 1545 1546
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1547 1548
  framework::CLImage midImage;
};
Y
yangfei 已提交
1549
#endif
D
relu  
dolphin8 已提交
1550

L
liuruilong 已提交
1551
#endif
E
eclipsess 已提交
1552

Z
zhangyang 已提交
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
qnqinan's avatar
qnqinan 已提交
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
#ifdef PADDLE_MOBILE_FPGA

 private:
  std::shared_ptr<RType> float_input_x_;
  fpga::BypassArgs fpga_bypass_args;

 public:
  RType *FloatInput() const {
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1585
};
L
liuruilong 已提交
1586
#endif
E
eclipsess 已提交
1587

T
Tian 已提交
1588
#ifdef PRELU_OP
N
nhzlx 已提交
1589
template <typename Dtype>
T
Tian 已提交
1590
class PReluParam : public OpParam {
N
nhzlx 已提交
1591 1592 1593
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1594 1595 1596
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1597
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1598
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1599
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1600
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1601
    out_ = OutFrom<GType>(outputs, scope);
1602
    mode_ = GetStringAttr("mode", attrs);
1603
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1604
  }
N
nhzlx 已提交
1605
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1606
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1607
  RType *Out() const { return out_; }
1608
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1609

I
itminner 已提交
1610
 private:
N
nhzlx 已提交
1611 1612
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1613
  RType *alpha_;
1614
  std::string mode_;
T
Tian 已提交
1615 1616 1617
};
#endif

N
nhzlx 已提交
1618
template <typename Dtype>
L
liuruilong 已提交
1619
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1620 1621 1622
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1623
 public:
L
liuruilong 已提交
1624
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1625
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1626 1627 1628 1629
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1630 1631 1632 1633
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1634
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1635

N
nhzlx 已提交
1636
  const RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1637

N
nhzlx 已提交
1638
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1639

xiebaiyuan's avatar
xiebaiyuan 已提交
1640
  GType *Out() const { return out_; }
E
eclipsess 已提交
1641 1642 1643 1644 1645 1646 1647 1648

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1649
  GType *input_x_;
N
nhzlx 已提交
1650 1651
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1652
  GType *out_;
E
eclipsess 已提交
1653 1654 1655
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1656 1657 1658
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1659
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1660 1661

 public:
Z
zhangyang 已提交
1662 1663
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1664
#endif
E
eclipsess 已提交
1665
};
1666 1667

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1668 1669
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1670
#endif
E
eclipsess 已提交
1671

N
nhzlx 已提交
1672
template <typename Dtype>
1673
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1674 1675 1676
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1677
 public:
L
liuruilong 已提交
1678
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1679
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1680 1681 1682 1683 1684
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1685
  }
N
nhzlx 已提交
1686
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1687 1688 1689

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1690
  RType *Output() const { return output_; }
W
wangliu 已提交
1691

L
liuruilong 已提交
1692
 protected:
N
nhzlx 已提交
1693
  RType *bias_;
W
wangliu 已提交
1694
  int axis_;
N
nhzlx 已提交
1695
  RType *output_;
W
wangliu 已提交
1696 1697
};

N
nhzlx 已提交
1698 1699
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1700

Z
zhangyang 已提交
1701
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1702 1703
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1704
 public:
L
liuruilong 已提交
1705
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1706 1707
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1708
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1709 1710 1711
};
#endif

1712
#ifdef FUSION_CONVADDPRELU_OP
1713 1714 1715 1716
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1717 1718 1719 1720

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1721 1722 1723
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1724
    mode_ = OpParam::GetStringAttr("mode", attrs);
1725
    framework::DDim dims = alpha_->dims();
1726 1727 1728
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1746 1747 1748 1749
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1750 1751 1752 1753

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1754 1755 1756 1757
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1758
    mode_ = OpParam::GetStringAttr("mode", attrs);
1759
    framework::DDim dims = alpha_->dims();
1760 1761 1762 1763 1764 1765
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1766
    if (keyX1_ == keyOutput_) {
1767
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1768
    } else if (keyY1_ == keyOutput_) {
1769
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1794
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1795
template <typename Dtype>
1796
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1797 1798 1799
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1800 1801 1802
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1815
  }
N
nhzlx 已提交
1816
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1817 1818 1819

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1820
  RType *Output() const { return output_; }
E
eclipsess 已提交
1821

N
nhzlx 已提交
1822
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1823

N
nhzlx 已提交
1824
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1825

N
nhzlx 已提交
1826
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1827

N
nhzlx 已提交
1828
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1829 1830 1831 1832 1833 1834 1835

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1836
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1837

N
nhzlx 已提交
1838
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1839

N
nhzlx 已提交
1840
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1841

N
nhzlx 已提交
1842
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1843 1844

 protected:
N
nhzlx 已提交
1845
  RType *bias_;
E
eclipsess 已提交
1846
  int axis_;
N
nhzlx 已提交
1847 1848 1849 1850 1851
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1852 1853 1854
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1855 1856
  RType *new_bias_;
  RType *new_scale_;
1857 1858 1859 1860 1861
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1862
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1863 1864 1865 1866 1867 1868
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1883
    if (keyX_ == keyBNY_) {
1884
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1885
    } else if (keyY_ == keyBNY_) {
1886
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1887
    }
1888
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
1934
};
1935
#endif
E
eclipsess 已提交
1936

Z
zhangyang 已提交
1937
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1938
template <typename Dtype>
1939
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1940 1941 1942
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1943 1944 1945
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1956
  }
N
nhzlx 已提交
1957
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1958

N
nhzlx 已提交
1959
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1960

N
nhzlx 已提交
1961
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1962

N
nhzlx 已提交
1963
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1964

N
nhzlx 已提交
1965
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1966 1967 1968 1969 1970 1971 1972

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1973
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1974

N
nhzlx 已提交
1975
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1976

N
nhzlx 已提交
1977
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1978

N
nhzlx 已提交
1979
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1980 1981

 protected:
N
nhzlx 已提交
1982 1983 1984 1985 1986
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1987 1988 1989
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1990 1991
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1992 1993 1994
};
#endif

1995
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1996
template <typename Dtype>
1997
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1998 1999 2000
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2001 2002 2003
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2016
  }
N
nhzlx 已提交
2017
  RType *Bias() const { return bias_; }
2018 2019 2020

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
2021
  RType *Output() const { return output_y_; }
2022

N
nhzlx 已提交
2023
  const RType *InputBias() const { return input_bias_; }
2024

N
nhzlx 已提交
2025
  const RType *InputMean() const { return input_mean_; }
2026

N
nhzlx 已提交
2027
  const RType *InputScale() const { return input_scale_; }
2028

N
nhzlx 已提交
2029
  const RType *InputVariance() const { return input_variance_; }
2030 2031 2032 2033 2034 2035 2036

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2037
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2038

N
nhzlx 已提交
2039
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2040

N
nhzlx 已提交
2041
  const RType *NewScale() const { return new_scale_; }
2042

N
nhzlx 已提交
2043
  const RType *NewBias() const { return new_bias_; }
2044 2045

 protected:
N
nhzlx 已提交
2046
  RType *bias_;
2047
  int axis_;
N
nhzlx 已提交
2048 2049 2050 2051 2052
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2053 2054 2055
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2056 2057
  RType *new_bias_;
  RType *new_scale_;
2058
};
E
eclipsess 已提交
2059
#endif
Y
Yao,kun 已提交
2060

E
eclipsess 已提交
2061
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2062
template <typename Dtype>
2063
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2064 2065 2066
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2067 2068 2069
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
2080
  }
N
nhzlx 已提交
2081
  RType *Output() const { return output_; }
E
eclipsess 已提交
2082

N
nhzlx 已提交
2083
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2084

N
nhzlx 已提交
2085
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2086

N
nhzlx 已提交
2087
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2088

N
nhzlx 已提交
2089
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2090 2091 2092 2093 2094 2095 2096

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2097
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2098

N
nhzlx 已提交
2099
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2100

N
nhzlx 已提交
2101
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2102

N
nhzlx 已提交
2103
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2104 2105

 protected:
N
nhzlx 已提交
2106 2107 2108 2109 2110
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
2111 2112 2113
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2114 2115
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
2116 2117 2118 2119
};

#endif

2120
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2121
template <typename Dtype>
2122
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2123 2124 2125
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2126 2127 2128
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2139
  }
N
nhzlx 已提交
2140
  RType *Output() const { return output_; }
2141

N
nhzlx 已提交
2142
  const RType *InputBias() const { return input_bias_; }
2143

N
nhzlx 已提交
2144
  const RType *InputMean() const { return input_mean_; }
2145

N
nhzlx 已提交
2146
  const RType *InputScale() const { return input_scale_; }
2147

N
nhzlx 已提交
2148
  const RType *InputVariance() const { return input_variance_; }
2149 2150 2151 2152 2153 2154 2155

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2156
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2157

N
nhzlx 已提交
2158
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2159

N
nhzlx 已提交
2160
  const RType *NewScale() const { return new_scale_; }
2161

N
nhzlx 已提交
2162
  const RType *NewBias() const { return new_bias_; }
2163 2164

 protected:
N
nhzlx 已提交
2165 2166 2167 2168 2169
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2170 2171 2172
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2173 2174
  RType *new_bias_;
  RType *new_scale_;
2175 2176 2177
};
#endif

Y
Yao,kun 已提交
2178
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2179
template <typename Dtype>
Y
Yao,kun 已提交
2180
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2181 2182 2183
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2184 2185 2186 2187
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
2188 2189
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2190 2191 2192 2193 2194
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2195
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2196

E
eclipsess 已提交
2197
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2198 2199 2200 2201 2202 2203 2204 2205

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2206 2207
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2208 2209 2210 2211
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2212
#endif
Y
Yao,kun 已提交
2213

2214
#ifdef DROPOUT_OP
N
nhzlx 已提交
2215
template <typename Dtype>
Y
Yao,kun 已提交
2216
class DropoutParam : public OpParam {
N
nhzlx 已提交
2217 2218 2219
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2220 2221 2222
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2223 2224
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
2225 2226

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2227 2228
  }

N
nhzlx 已提交
2229
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2230

N
nhzlx 已提交
2231
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2232

Y
yangfei 已提交
2233 2234
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2235
 private:
N
nhzlx 已提交
2236 2237
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
2238
  float dropout_prob_;
Y
Yao,kun 已提交
2239
};
2240
#endif
Y
Yao,kun 已提交
2241

N
nhzlx 已提交
2242
template <typename Dtype>
L
liuruilong 已提交
2243
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2244 2245 2246
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2247 2248 2249 2250
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2251 2252
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
2253
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2254
    if (outputs.count("Output")) {
2255
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2256
    }
L
liuruilong 已提交
2257 2258 2259 2260 2261 2262
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2263
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2264

N
nhzlx 已提交
2265
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2266

N
nhzlx 已提交
2267
  RType *Output() const { return output_; }
L
liuruilong 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2278 2279 2280
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2281 2282 2283 2284
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
Z
zhangyang 已提交
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
#endif
L
liuruilong 已提交
2295
};
Z
zhangyang 已提交
2296

qnqinan's avatar
qnqinan 已提交
2297 2298 2299 2300 2301
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2302 2303

 public:
qnqinan's avatar
qnqinan 已提交
2304
  FusionDeconvAddParam(const VariableNameMap &inputs,
2305 2306 2307
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope)
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
qnqinan's avatar
qnqinan 已提交
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
L
liuruilong 已提交
2329

Z
zhangyang 已提交
2330 2331 2332 2333 2334
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
2360 2361
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2406
    axis = GetAttr<int>("axis", attrs);
2407 2408 2409
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2410
  const int &Axis() const { return axis; }
2411 2412 2413 2414

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2415
  int axis;
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2429
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2430
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2431 2432 2433 2434 2435 2436
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2437 2438
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2439 2440 2441 2442 2443
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2444 2445 2446

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2447
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2448
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2449 2450 2451
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2452 2453 2454 2455 2456 2457 2458 2459 2460
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2477 2478
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2479 2480
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2481
  const RType *InputOutPutSize() const { return input_outsize_; }
2482
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2483 2484
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2485 2486 2487 2488 2489

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2490 2491
  int out_h_;
  int out_w_;
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2507
  const RType *Input() const { return input_; }
2508 2509 2510 2511 2512 2513 2514 2515
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

2516
#ifdef QUANT_OP
2517
template <typename Dtype>
2518 2519 2520 2521 2522
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2523 2524
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
2525
    input_ = InputXFrom<GType>(inputs, scope);
H
hjchen2 已提交
2526
    output_ = OutFrom<GType>(outputs, scope);
2527 2528 2529 2530 2531
    // online
    // scale = max(abs(x))
    online_scale_ = GetVarValue<GType>("OutScale", outputs, scope);
    // offline
    if (HasAttr("static_scale", attrs)) {
2532
      is_static_ = true;
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
      static_scale_ = GetAttr<float>("static_scale", attrs);
    }
    // x = round(scale * x)
    if (HasAttr("round_type", attrs)) {
      round_type_ = GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
H
hjchen2 已提交
2545
  RType *output_;
2546 2547 2548 2549 2550 2551 2552
  RType *online_scale_;
  // if static scale or not
  bool is_static_ = false;
  // quantize scale
  float static_scale_ = 1.0f;
  // round method type
  // nearest_zero and nearest_even is valid currently
H
hjchen2 已提交
2553 2554 2555 2556 2557
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
  // optional paddings
  std::vector<int> paddings_;
  int8_t padding_val_;
2558
};
2559
#endif
2560

2561
#ifdef DEQUANT_OP
2562
template <typename Dtype>
2563 2564 2565 2566 2567
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2568 2569
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
2570
    input_ = InputXFrom<GType>(inputs, scope);
H
hjchen2 已提交
2571
    output_ = OutFrom<GType>(outputs, scope);
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
    activation_scale_ = GetVarValue<GType>("Scale", inputs, scope);
    // dequantization is performed as x = x / static_scale / online_scale
    if (HasAttr("weight_scale", attrs)) {
      weight_scale_ = GetAttr<float>("weight_scale", attrs);
    } else {
      weight_scale_ = GetAttr<float>("max_range", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
H
hjchen2 已提交
2585
  RType *output_;
2586 2587 2588
  RType *activation_scale_;
  float weight_scale_;
};
2589
#endif
2590

朔-望's avatar
朔-望 已提交
2591 2592
}  // namespace operators
}  // namespace paddle_mobile